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A unifying event-triggered control framework based on a hybrid

small-gain theorem

W. Wang, D. Nešić, R. Postoyan, W.P.M.H. Heemels

Abstract— We propose a unifying emulation-based design
framework for the event-triggered control of nonlinear systems
that is based on a hybrid small-gain perspective. We show that
various existing event-triggered controllers fit the unifying per-
spective. Moreover, we demonstrate that the flexibility offered
by our approach can be used for the development of novel
event-triggered schemes and for a systematic modification and
improvement of existing schemes. Finally, we illustrate via a
simulation example that these novel and/or modified event-
triggered controllers can lead to a reduction in the required
number of transmissions, while still guaranteeing the same
stability properties.

I. INTRODUCTION

Event-triggered control (ETC) is a class of sampled-data

schemes where the sampler and hold devices are triggered

whenever a state or output-dependent condition holds [3],

[4], [14]. As such, ETC is a natural generalization of

the classical sampled-data control [7], since state-dependent

sampling is used instead of equidistant sampling. Reasons

for considering ETC are manifold and we single out the

motivation arising from the emerging resource-aware control

applications with packed-based communication networks,

where the design of the event-triggering condition can be

used to reduce the communication between the plant and

controller while maintaining appropriate performance and ro-

bustness guarantees, see, e.g., [8], [12], [20], [21], [24], [26],

[28]. This approach was experimentally verified for mobile

robots [22] and for vehicle platooning [9], for instance.

The benefits of ETC were recognised for a long time,

see [4], and many approaches have been proposed in the

literature since then. However, the relationship between the

various approaches, the intuition behind different schemes

and their advantages/disadvantages are hard to understand

as the underlying design tools and philosophy appear to be

different. Typically, it is often unclear how the design flexi-

bility within each approach affects the required transmissions

and system performance. The recent studies on the required

transmissions [16], [23] for classes of ETC systems shed

some light on this issue, but a systematic design framework

remains elusive.
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The purpose of this paper is to show that a large class

of seemingly unrelated emulation-based ETC schemes can

be unified within a novel design framework. This provides

valuable insights not previously observed in the literature.

One advantage of such a unifying design perspective is

that it provides clear viewpoints on the essential differences

and similarities of existing ETC strategies. It also provides

the design flexibility for each existing approach, which

allows for a systematic modification or “redesign” of existing

schemes. Moreover, our approach can be used as a design

framework for generating novel ETC schemes, not previously

considered in the literature. This design flexibility enables a

more systematic design methodology that may be used for

the reduction of required transmissions as we illustrate via a

numerical example.

This work focuses on the emulation based approach, see

the relevant results in e.g., [8], [12], [20], [21], [24], [26],

[28] and the references therein, which is a prevailing design

approach in ETC. Emulation design consists of two steps.

In the first step, a (potentially dynamic) continuous-time

controller is designed to robustly stabilize the continuous-

time plant. In the second step, the controller is implemented

via an event-triggering rule that might involve auxiliary state

variables, see, e.g., [8], [12], [24], while preserving important

stability and performance properties. Our approach is to

decompose the closed-loop system as an interconnection of

two hybrid systems that need to satisfy a recently proposed

hybrid small-gain theorem [17] to ensure stability. The

required small-gain condition can be ensured by a judicious

selection of auxiliary variables, as well as the design of

the event-triggering rule. We demonstrate that this small-

gain analysis underlies various important emulation-based

schemes of the literature [12], [24], [26] and provides a

flexible design framework for the analysis of existing and the

design of novel ETC schemes. Indeed, the analysis reveals a

singularity: the ISS gain of one of the subsystems is equal to

zero, which trivially ensures the satisfaction of the small-gain

condition. Based on this observation, we redesign the original

techniques in [12], [24], [26] so that this is no longer the case,

thereby enlarging the flow set, which may help reducing

the number of transmissions as illustrated on a numerical

example.

Note that a small-gain interpretation of the static triggering

rule in [26] was already demonstrated in [17, Section V.C].

Here, we generalize this approach here to a much larger

class of dynamic triggering rules that involve auxiliary state

variables. The proofs are omitted for space reasons.



II. PRELIMINARIES

We will model closed-loop ETC systems as hybrid systems

[13] of the form below, for which the jump times correspond

to triggering instants,

H

{

q̇ = F(q) q ∈ C
q+ = G(q) q ∈ D,

(1)

where q ∈ R
n is the state, C,D ⊆ R

n are the flow and

the jump sets, which are assumed to be closed, and F ,G :
R

n → R
n are continuous. Hence, system (1) satisfies the

hybrid basic conditions in [13]. We focus on the following

stability property, and we omit the other description of the

notation and definitions used throughout this paper and refer

the reader to Section II in [27].

Definition 1: System H is uniformly globally asymptoti-

cally stable (UGAS), if there exists β ∈ KL such that, for

any solution ϕ and (t, j) ∈ dom ϕ, it holds that

|ϕ(t, j)| ≤ β(|ϕ(0, 0)|, t+ j), (2)

and all maximal solutions are complete. �

Definition 2: System H has a uniform semi-global dwell

time outside the origin, if for any ∆ > 0, there exists τ(∆) ∈
R>0 such that, for any hybrid solution ϕ with |ϕ(0, 0)| ≤ ∆
and for all j ∈ Z>0,
(

∀t ∈ [tj , tj+1], ϕ(t, j) 6= 0
)

⇒
(

tj+1 − tj ≥ τ(∆)
)

, (3)

where dom ϕ =
⋃

[tj , tj+1]× {j}. �

Remark 1: The only hybrid state, on which the existence

of a dwell-time is not guaranteed by the event-triggering

conditions in this paper, is the origin. The reason that we

do not “worry” about the origin is the fact that solutions

initialized at the origin are not unique for the considered

systems in the sequel: they all remain at the origin for all

future hybrid times but their hybrid time domains can take

any form, ranging from Zeno behaviour to no jump at all, see

also [24]. Hence, there exist (infinitely many) zero solutions,

whilst might not have a dwell-time. �

III. HYBRID MODEL

The purpose of this section is to derive a hybrid model of

a large class of emulation-based ETC schemes, like in [24],

and to recall a small-gain theorem for hybrid systems from

[17] that can enable a unifying ETC design framework. We

consider the plant

ẋp = fp(xp, u), (4)

where xp ∈ R
np is the state. The first step in the emulation

approach is to design a controller

ẋc = fc(xc, xp) u = gc(xc, xp), (5)

to robustly stabilize (4) as formalised below, see Assumption

1. We have that u ∈ R
nu and xc ∈ R

nc are respectively

the control input and the state of the controller. For a

static feedback controller, (5) simplifies to u = gc(xp). The

functions fp and fc are assumed to be continuous, and gc is

assumed to be continuously differentiable and zero at zero.

Fig. 1: Block diagram of the setup

In the second step of emulation, we implement the de-

signed controller (5) over a network, see Fig. 1. The com-

munication occurs at transmission instants tj , j ∈ I ⊆ Z≥0

at which the current values of xp and u are sent over the

network. In this setup, plant (4) has no longer access to u,

but to its networked version û, and controller (5) has access

to x̂p, the networked version of xp. We assume ideal packed-

based communication in the sense that x̂p(t
+

j ) = xp(tj) and

û(t+j ) = u(tj), for any j ∈ I. Between two successive

transmission instants, x̂p and û are governed by the dynamics

of the holding devices

˙̂xp = f̂p(xp, x̂p, û)

˙̂u = f̂c(xc, x̂p, û)

}

t ∈ (tj , tj+1) , j ∈ I, (6)

where f̂p and f̂c are continuous. Zero-order-hold devices

correspond to f̂p = f̂c = 0, for instance.

Let x := (xp, xc) ∈ R
nx , nx := np + nc, denote the

concatenation of the plant and the controller state, and let

e := (exp
, eu) ∈ R

ne , ne := np + nu, denote the network-

induced error with exp
:= x̂p − xp and eu := û − u. We

then derive that ẋ = f(x, e) with f being determined by

(4)-(6), where e is an input to x-system. We assume that the

controller (5) is designed so that the following conditions are

satisfied.

Assumption 1: There exist a continuously differentiable

function V : Rnx → R≥0, and functions αV , αV , αV , γ ∈
K∞ such that the following hold.

(i) For all x ∈ R
nx , αV (|x|) ≤ V (x) ≤ αV (|x|).

(ii) For all x ∈ R
nx and e ∈ R

ne , 〈∇V (x), f(x, e)〉 ≤
−αV (|x|) + γ(|e|). �

In general, the transmission instants tj , j ∈ I, are

generated by an event-triggering mechanism, which may

depend on xp, u and some auxiliary variables η ∈ R
nη ,

nη ∈ Z>0 that are modeled as

η̇ = h(x, e, η), t ∈ (tj , tj+1) , j ∈ I,

η(t+j ) = ℓ
(

x(tj), e(tj), η(tj)
)

, (7)

where h, ℓ : Rnx ×R
ne ×R

nη → R
nη are continuous func-

tions to be designed. The overall closed-loop ETC system is

then modeled as the hybrid system

ẋ = f(x, e)

ė = g(x, e)

η̇ = h(x, e, η)











(x, e, η) ∈ C (8)



x+ = x

e+ = 0

η+ = ℓ(x, e, η)











(x, e, η) ∈ D (9)

where functions f and g can be derived from (4)-(6), whereas

the sets C,D ⊂ R
nx × R

ne × R
nη and functions h, ℓ are

to be designed and they lead to different event-triggering

conditions. To design C,D, h and ℓ, we interpret system (8)

as a feedback interconnection of the (x, η)-system and the

e-system, see Fig. 2, and rewrite the model as

H1

{

(ẋ, η̇) = F1(q) q ∈ C
(

x+, η+
)

= G1(q) q ∈ D

H2

{

ė = F2(q) q ∈ C

e+ = G2(q) q ∈ D,

(10)

where q := (x, e, η), F1(q) :=
(

f(x, e), h(x, e, η)
)

,

G1(q) :=
(

x, ℓ(x, e, η)
)

, F2(q) := g(x, e), G2(q) := 0.

Fig. 2: Block diagram of the decomposition

The feedback interconnection (10) provides a starting

point for our unifying emulation-based ETC design frame-

work. The design consists in shaping the sets C and D of

hybrid system (10) (equivalently of the system (8)) together

with defining the flow and jumps dynamics of η, if any, to

guarantee that a hybrid small-gain condition holds. We next

state the hybrid small-gain theorem from [17, Theorem III.3],

which is a crucial technical tool in our approach.

Proposition 1: Suppose that there exist locally Lipschitz

functions Vi : R
ni → R≥0, n1 := nx + nη , n2 := ne,

αi, αi ∈ K∞, χi ∈ K∞∪{0}, and positive definite functions

αi : R≥0 → R≥0, i ∈ {1, 2}, such that the following hold.

(i) For all q ∈ C ∪ D α1 (|(x, η)|) ≤ V1(x, η) ≤
α1 (|(x, η)|), and α2 (|e|) ≤ V2(e) ≤ α2 (|e|).

(ii) For all q ∈ C,

V1(x, η) ≥ χ1

(

V2(e)
)

⇒ V ◦
1 ((x, η);F1(q)) ≤ −α1(|(x, η)|),

V2(e) ≥ χ2

(

V1(x, η)
)

⇒ V ◦
2 (e;F2(q)) ≤ −α2(|e|).

(iii) For all q ∈ D, Vi(Gi(q)) ≤ Vi(q), i ∈ {1, 2}.

(iv) The small-gain condition χ1 ◦ χ2(s) < s holds for all

s > 0.

Then, there exist αU , αU , ρ ∈ K∞ and positive definite

functions αU : R≥0 → R≥0 such that the following holds

for U(q) := max{V1(q), ρ(V2(q))}.

(a) For all q ∈ C ∪D, αU (|q|) ≤ U(q) ≤ αU (|q|).

(b) For all q ∈ C, U◦(q;F(q)) ≤ −αU (|q|), where F(q) :=
(F1(q),F2(q)).

(c) For all q ∈ D, U
(

G(q)
)

≤ U(q), where G(q) :=
(G1(q),G2(q)). �

Proposition 1 can be used to construct a Lyapunov function

for system (10) if its (x, η)-system and e-systems satisfy

input-to-state (ISS) properties, see its definition in hybrid

system setting in [6], with respect to inputs e and (x, η),
as specified in the ISS Lyapunov based conditions (i)-(iii)

in combination with the small-gain conditions (iv). We will

show how these ISS conditions can be ensured through the

ETC designs of [12], [24], [26] in the following sections.

Uniform global asymptotic stability of system (10) then

follows from (a)-(c) of Proposition 1 under extra conditions

on the hybrid time domains of its solutions, see [24, Theorem

1], as stated next.

Theorem 1: Consider system (10) and suppose that the

following holds.

1) The conditions of Proposition 1 are verified.

2) The system has a uniform semi-global dwell time out-

side the origin.

3) Maximal solutions are complete.

Then, the system is UGAS. �

Novelties of our approach are: (i) we demonstrate that

various popular ETC schemes in the literature can be rein-

terpreted using this unifying framework based on a hybrid

small-gain view; (ii) we show that the original triggering

conditions can be systematically modified to potentially

generate longer inter-event times. We sometimes use the

same notation to denote different quantities from one section

to another in the sequel to underline the similarities among

the different triggering techniques.

IV. THE RELATIVE THRESHOLD TECHNIQUE [26]

We start with the technique proposed in [26], which was

exploited and extended in various other contexts in, e.g., [1],

[2], [8], [10], [11], [17], [18].

A. Model

This approach does not involve auxiliary variable η, hence

(8) reduces to

ẋ = f(x, e)
ė = g(x, e)

}

q ∈ C,

x+ = x
e+ = 0

}

q ∈ D,

(11)

where q := (x, e). We translate the considered triggering

condition in [26] as sets C and D given by

C = {(x, e) : γ(|e|) ≤ σαV (|x|)}

D = {(x, e) : γ(|e|) ≥ σαV (|x|)},
(12)

see also, e.g. [5], [24], where σ ∈ (0, 1) is a design

parameter, and αV , γ ∈ K∞ come from Assumption 1. We

need the next Lipschitz conditions in view of [26, Theorem

III.1], to guarantee the existence of a uniform semi-global

dwell time outside the origin, see also [24, Theorem 4].

Assumption 2: The functions f , g in (11), and α−1

V , γ ∈
K∞ from Assumption 1 are locally Lipschitz. �



B. Analysis

In this case, we can show that the conditions of Proposition

1 hold with gains χ1 and χ2 given by

χ1(s) = 0

χ2(s) = (1 + ε)
(

γ−1 ◦
(

σαV ◦ α−1

V (s)
))2

,
(13)

where ε > 0 can take any value, and γ, αV , αV come from

Assumption 1.

According to Theorem 1, we need two extra conditions

to conclude about the stability of the origin: the dwell-

time property and the completeness of maximal solutions.

Thanks to Assumption 2, as shown in [26, Theorem III.1]

and [24, Theorem 4], system (11)-(12) has a uniform semi-

global dwell time outside the origin. Moreover, according to

[24, Theorem 4], all maximal solutions to system (11)-(12)

are complete. Then, we can apply Theorem 1 to derive the

following stability result.

Corollary 1: Consider system (11)-(12) and suppose that

Assumptions 1 and 2 hold. Then, the system is UGAS. �

This implies that the relative threshold technique [26] fits

our framework. It is important to note that the gain χ1 in

(13) is zero. This suggests that we can modify the triggering

condition, i.e., the flow and the jump sets, in such a way

that the ISS property of the x-system holds with a non-

zero gain, while still preserving the small-gain condition and

thus stability. By doing so, we inflate the flow set C, which

can help generating longer inter-event times as shown on an

example in Section VII. This is explained in the sequel.

Remark 2: Note that [17] already related the relative

threshold technique [26] with a hybrid Lyapunov small-gain

theorem. The difference here is that we consider exactly

the same condition as in the original paper [26], and not

a modified, more conservative, version as in [17]. �

C. Redesign

We modify the triggering condition by defining

C = {(x, e) : (1− δ)γ(|e|) ≤ σαV (|x|)}

D = {(x, e) : (1− δ)γ(|e|) ≥ σαV (|x|)},
(14)

where δγ(|e|) is the newly introduced term enlarging the

flow set compared to (12). To design δ, we rely on the next

assumption, which is satisfied when Assumption 1 holds with

αV , αV , αV all quadratic or all linear for instance.

Assumption 3: There exists c > 0 such that for any s ≥ 0,

αV ◦ α−1

V (s) ≤ cαV ◦ α−1

V (s). �

We select the parameter δ in

(

0,
1− σ

1− σ + σc

)

by veri-

fying conditions of Proposition 1. As a result, Proposition 1

holds with

χ1(s) = αV ◦ α−1

V

(

δ

ν(1− σ)
γ(s

1

2 )

)

χ2(s) =
(

γ−1
(

(1 + ε)χ2(s)
))2

,

(15)

where ν ∈ (0, 1) and ε > 0 are some constants, and χ2(s) =σ

1− δ
αV ◦ α−1

V (s).

Then, we derive the UGAS property of system (11), (14)

by following the analysis in Section IV-B.

Corollary 2: Consider system (11), (14) and suppose that

Assumptions 1, 2 and 3 hold. Then, the system is UGAS. �

V. THE DYNAMIC TRIGGERING CONDITION OF [12]

Here we study the dynamic event-triggering rule of [12],

which has been extended afterwards to other (distributed)

event-triggered control setting, see, e.g., [8].

A. Model

The auxiliary variable has the next dynamics [12]

η̇ = −β(η) + σαV (|x|)− γ(|e|) q ∈ C
η+ = η q ∈ D,

(16)

where β : R≥0 → R≥0 is any continuous positive definite

function. The triggering technique of [12] leads to

C = {q : η + θ(σαV (|x|)− γ(|e|)) ≥ 0, η ≥ 0}

D = {q : η + θ(σαV (|x|)− γ(|e|)) ≤ 0, η ≥ 0},
(17)

for αV , γ ∈ K∞ from Assumption 1, σ ∈ (0, 1) and θ > 0.

B. Analysis

Here, the conditions of Proposition 1 hold with

χ1(s) = 0, χ2(s) =
(

γ−1((1 + ε)χ2(s))
)2

, (18)

where χ2(s) =
(s

θ
+ σαV ◦ α−1

V (s)
)

for any ε > 0.

Moreover, the system (8), (16), (17) admits a uniform

semi-global dwell time outside the origin when Assumption

2 holds, according to [12, Proposition 2.3]. This, with

completeness of maximal solutions, ensures the following

property.

Corollary 3: Consider system (8), (16), (17) and suppose

that Assumptions 1 and 2 hold. The system is UGAS. �

Note that χ1 is equal to zero, as in Section IV. We can

modify the flow dynamics of η, as well as the flow and the

jump sets, so that χ1 is no longer zero, while still ensuring

the small-gain condition and thus stability.

C. Redesign

The redesign of [12] presented here relies on the next

condition, in place of item (ii) of Assumption 1, which can

always be satisfied by modifying V in Assumption 1 (which

is supposed to hold) if needed, in view of [15, Theorem 2].

We thus consider aV > 0 and γ ∈ K∞ such that, for all

x ∈ R
nx and e ∈ R

ne ,

〈∇V (x), f(x, e)〉 ≤ −aV V (x) + γ(|e|). (19)

We modify the dynamics of η to

η̇ = −bη + σαV V (x)− (1− δ)γ(|e|) q ∈ C,

η+ = η q ∈ D,
(20)

where b > 0 and δ ∈ (0, 1) are to be designed. We have

taken β in (16) linear in (20) for the sake of convenience.

The main difference with (16) is that we have added the term

δγ(|e|) in the flow map of η, which slows down the decrease



of η and which may thus help reducing the number of jumps.

We modify the flow and the jump sets accordingly as

C = {q : η + θ(σaV V (x)− (1− δ)γ(|e|)) ≥ 0, η ≥ 0}

D = {q : η + θ(σaV V (x)− (1− δ)γ(|e|)) ≤ 0, η ≥ 0}.
(21)

We design δ to ensure that the conditions of Proposition

1 hold. In particular, we take

δ ∈

(

0,
a1

a1 + a2

)

, (22)

where a1 := min{(1−σ)aV , b} and a2 := max{θ−1, σaV }.

As a result, conditions of Proposition 1 hold with

χ1(s) =
δ

νa1
γ(s

1

2 ), χ2(s) =

(

γ−1

(

1 + ε

1− δ
a2s

))2

,

for some ν ∈ (0, 1) and ε > 0.

We can then derive, similarly to Corollary 3, the next

stability result. Note that, for any given initial condition, the

first jump time generated by system (8), (20), (21) occurs

later than the one generated by (8), (16), (17). Using this

argument, we can prove that system (8), (20), (21) has a

semiglobal dwell-time outside the origin; completeness of

maximal solutions follows like for Corollary 3.

Corollary 4: Consider system (8), (20), (21) and suppose

that Assumptions 1 and 2 hold. The system is UGAS. �

VI. DECREASING THRESHOLD STRATEGY [24]

We next consider the decreasing threshold strategy of [24,

Section V.A], see similar techniques in, e.g., [19], [25].

A. Model

In [24, Section V.A], a scalar variable η is used in the

triggering condition. Its dynamics are given by

η̇ = −β(η) q ∈ C,

η+ = η q ∈ D,
(23)

where β is any function in K∞,

C := {q : γ(|e|) ≤ σ(αV (|x|) + β(η)), η ≥ 0}

D := {q : γ(|e|) ≥ σ(αV (|x|) + β(η)), η ≥ 0},
(24)

σ ∈ (0, 1) is a design parameter and γ, αV come from

Assumption 1. Note that we have slightly modified the

original triggering condition of [24, Section V.A] in (24),

but the rationale remains the same.

B. Analysis

We verify the conditions of Proposition 1, which hold with

χ1(s) = 0, χ2(s) =
(

γ−1
(

(1 + ε)σ(αV ◦ α−1

V + β)
))2

,

where ε > 0 is any strictly positive constant.

By following similar arguments as in [24, Section V.A],

we have that system (8) with (23) and (24) has a uniform

semi-global dwell time outside the origin, and its maximal

solutions are complete. Consequently, we have the next

result.

Corollary 5: Consider the system (8) with (23) and (24)

and suppose that Assumptions 1 and 2 hold. The system is

UGAS. �

C. Redesign

We redesign the technique presented above. As in Section

V-C, we rely on (19). We now consider

η̇ = −bη + δγ(|e|) q ∈ C,

η+ = η q ∈ D,
(25)

where b > 0 and δ > 0 are parameters to be designed. Note

the major difference exists between (23) and (25). While in

(23), η is an open-loop signal and this is no longer the case

in (25) as the flow dynamics now depends on |e|, via the

term δγ(|e|).
The flow and the jump sets are given by

C := {q : γ(|e|) ≤ σ(aV V (x) + bη), η ≥ 0}

D := {q : γ(|e|) ≥ σ(aV V (x) + bη), η ≥ 0},
(26)

where aV and b come from (19) and (25), respectively.

We select δ in (25) such that

δ ∈

(

0,
1− σ

σ

a1
a2

)

, (27)

where a1 := min{aV , b} and a2 := max{aV , b}. As a result,

the conditions of Proposition 1 are satisfied with

χ1(s) =
δ

ν(1− σ)a1
γ(s

1

2 ), χ2(s) =
(

γ−1 ((1 + ε)σa2s)
)2

,

for some constants ν ∈ (0, 1) and ε > 0. By following

similar arguments as in the previous sections, we derive the

next stability result from Section VI-B.

Corollary 6: Consider system (8), (25), (26) and suppose

that Assumptions 1 and 2 hold. The system is UGAS. �

VII. NUMERICAL EXAMPLE

We compare the redesigned techniques presented in Sec-

tions IV-C, V-C and VI-C, respectively, with the corre-

sponding original triggering conditions, in terms of number

of transmissions. We consider for this purpose the linear

example in [26] given by ẋ = Ax + Bu, where A =
[

0 1
−2 3

]

, B = [0 − 1]⊤. Controller (5) is taken as

u = Kx with K := [−3 − 7]. Assumption 1 is verified

with V (x) = x⊤Px, P =

[

0.55 −0.5
−0.5 0.75

]

, αV (s) =

λmin(P )s2, αV (s) = λmax(P )s2, αV (s) =
1

2
s2 and γ(s) =

2|PBK|s2 for any s ≥ 0. On the other hand, Assumption

3 is satisfied with c = λmax(P )/λmin(P ) and the inequality

in (19) holds with aV = 1/(2λmax(P )).
We have selected the parameters as σ = 0.9, δ =

0.9 1−σ
1−σ+σc

in (14), δ = 0.9 × 0.0413 in (22), δ = 0.999 ×
0.0479 in (27), and θ = 1. The dynamic triggering condition

of [12] studied in Section V has been implemented with η̇ =
−η + σαV V (x)− γ(|e|) and C and D defined accordingly

so that we can analyze the impact of the redesign condition

presented in Section V-C; hence, β(η) = bη = η for any

η ≥ 0. We have similarly simulated the triggering conditions

of Section VI using (26) for both cases with σ = 0 and

σ = 0.9, with δ in (27) and β(η) = bη = η for any η ≥ 0.



Section IV Section V Section VI
[26] Redesign [12] Redesign [24] Redesign

τavg 0.0738 0.0748 0.2723 0.2830 0.2330 0.2410

τmin 0.0246 0.0248 0.0176 0.0180 0.0150 0.0150

TABLE I: Average (τavg) and minimum (τmin) inter-transmission
times over 10 different initial conditions and an interval of 10

(continuous) time units.

We have run simulations for each triggering condition for

10 different initial conditions of1 x uniformly distributed

on the circle centered at the origin of radius 10. In all

cases, we have selected e(0, 0) = 0 and η(0, 0) = 10,

when relevant. The obtained average and minimum inter-

transmissions times over the ten simulations are summarized

in Table I. We observe that, in all cases, the redesigned

technique generates larger average inter-event times than the

corresponding original one, thus fewer transmissions, while

still guaranteeing desirable stability conditions. A similar

improvement is seen for the minimum inter-event times, at

the exception of the technique of Section VI.

The main purpose of this paper is to provide a unifying

view of event-triggering design and proof techniques. Indeed,

we concentrate on the “qualitative” properties of the event-

triggering mechanisms. This “qualitative” approach offers an

opportunity to deal with “quantitative” issues, i.e., get tighter

bounds on the gains, which have an impact on the number

of transmissions. We acknowledge that the improvements

reported in Table I on the average and minimum inter-event

times are moderate. This can be explained by the fact that

we do not strive to obtain the tightest bounds on the gains,

We rather provide a principle here. Future work will be

dedicated to tailor these bounds further to get even larger

improvements.

VIII. CONCLUSION

A unifying emulation-based ETC design framework was

proposed for a large class of nonlinear systems. The design

consists of choosing the dynamics of auxiliary variables and

jump and flow sets in such a manner that a small-gain

condition holds. We showed that several well-known ETC

schemes fit our framework and provided clear viewpoints

on the essential differences and similarities of these ETC

strategies. Moreover, we demonstrated the flexibility of the

framework by providing redesigns of each of these schemes,

which leads to the same stability guarantees as the original

scheduler, however, typically using less transmissions. This

was also illustrated through a numerical example. In future

work, the framework can be generalized to encompass other

(distributed) triggering conditions, as well as other control

scenarios such as systems with disturbances and the output

feedback control.
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[24] R. Postoyan, P. Tabuada, D. Nešić, and A. Anta. A framework for the

event-triggered stabilization of nonlinear systems. IEEE Transactions

on Automatic Control, 60:982–996, 2015.
[25] G.S. Seyboth, D.V. Dimarogonas, and K.H. Johansson. Event-based

broadcasting for multi-agent average consensus. Automatica, 49:245–
252, 2013.

[26] P. Tabuada. Event-triggered real-time scheduling of stabilizing control
tasks. IEEE Transactions on Automatic Control, 52:1680–1685, 2007.

[27] W. Wang, R. Postoyan, D. Nešić, and W.P.M.H. Heemels. Periodic
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