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Abstract In [11] we have extended it in order to firedl occurrences
of multiplepatterns simultaneously, by simulating the move

We introduce a general framework which is suitable to of the Aho-Corasick automaton [3]. The running time is
capture an essence of compressed pattern matching accordO(n + m? + r), wherem is the total length of the pat-
ing to various dictionary based compressions, and proposeterns and- is the number of pattern occurrences. We imple-
a compressed pattern matching algorithm for the frame- mented a simple version of the algorithm and observed that
work. The goal is to find all occurrences of a pattern in it is approximately twice faster than a decompression fol-
a text without decompression, which is one of the most ac-lowed by a search using the Aho-Corasick automaton. We
tive topics in string matching. Our framework includes such took another implementation of the algorithm utilizibd-
compression methods as Lempel-Ziv family, (LZ77, LZSSparallelism and reported some experiments [10]. Indepen-
LZ78, LZW), byte-pair encoding, and the static dictionary dently, Navarro and Raffinot [14] developed a more general
based method. Technically, our pattern matching algorithm technique for string matching on a text given as a sequence
extends that for LZW compressed text presented by Amirof blocks, which abstracts both LZ77 and LZ78 compres-
Benson and Farach. sions, and gave bit-parallel implementations. The running

time of these algorithms based on the bit-parallelism for

LZW is O(nm/w + m + r), wherew is the length in bits
1 Introduction of the machine word. If the pattern is shomt (< w), these

algorithms are efficient in practice. Moura et al. [4, 5] pro-

r.Posed practical algorithms. They presented a new compres-
sion scheme which uses a word-based Huffman encoding
currences of a given pattern in a given text. A lot of clas- With @ byte-oriented code. In recent papers, we developed
sical or advanced pattern matching algorithms have beerfOmpressed pattern matching algorithms for compressed
proposed (see [3, 2]). Data compression is another mostte)ft using antll—dlctlongrles [17], and fpr compressed text
important research topic, whose aim is to reduce its space'Sind byte-pair encoding [16]. Especially, the latter was
usage. Considerable amount of compression methods hav8howed to be even faster than pattern matching in uncom-
been proposed (see [15]). pressed texts.

Recently, thecompressed pattern matchipgoblem has In this paper, we introduceallage systenthat is a for-
attracted special concern where the goal is to find a pat-mal system to represent a string by a pair of dictiorRry
tern in a compressed text without decompressing it. Var- and sequencé of phrases irD. The basic operations are
ious compressed pattern matching algorithms have beerconcatenation, truncation, and repetition. Collage systems
proposed depending on underlying compression methodsgive us a unifying framework of various dictionary-based
Among them, we focus on the following works. Amir compression method, such as Lempel-Ziv family (LZ77,
et al.[1] introduced an elegant compressed pattern matchlZSS, LZ78, LZW), byte-pair encoding, and the static dic-
ing algorithm for Lempel-Ziv-Welch (LZW) compression tionary based method. Most of these compressed text can
which runs inO(n + m?) time, wheren is the length of the  be transformed in linear time into a corresponding collage
compressed text and is the length of the pattern. (They system which contains no truncation. Exceptions are LZ77
considered finding only the first occurrence of the pattern). and LZSS, where the size growXn logn) and truncation
The basic idea is to simulate the move of the Knuth-Morris- operations are required. We remark that a straight-line pro-
Pratt (KMP) automaton [3] on the compressed text directly. gram [9, 13] is a collage system containing concatenation

Pattern matching is one of the most fundamental ope
ations in string processing. The problem is to find all oc-



only, and a composition system introduced in [7] is also a
collage system which allows concatenation and truncation.

We develop a compressed pattern matching algorithm forexpr,; ---
collage systems which contain no truncation, whose run-

ning time isO(||D|| + |S| + m? + r) usingO(|| D|| + m?)
space, wherd|D| denotes the size of the dictionafy
and|S| is the length of the sequenc® For the case of
LZW compression, it matches the bouédn + m? + r)

in [11]. For general collage systems, which contain trun-

cation, we show a compressed pattern matching algorithm (Xi)

which runs inO((||D|| + |S|) - heightD) + m? + r) time
with O(||D|| + m?) space, wherdeigh{D) denotes the
maximum dependency of the operationsIm These re-

A collage systenis a pair (D, S) defined as follows:
D is a sequence of assignment§ = expr; X; =
; X, = expr,, where eachX,, is a variable and
expr, is any of the form

a fora e YU {e}, (primitive assignmet

X;X; fori,j <k, (concatenatioh
UlX; fori < kand anintegej, (prefix truncation
X}j] for i < k and an integey, (suffix truncation

for i < k and an integey. (j times repetitioh

Each variable represents a string obtained by evaluating the
expression as it implies. We identify a variatie with the
string represented h¥; in the sequel. Theizeof D is the

sults show that the truncation slows down the compressedhumbern of assignments and denoted |#®||. The syntax

pattern matching to the factbeigh{D).

2 Preliminaries

Stringsz, y, andz are said to be arefix factor, and
suffixof the stringu = zyz, respectively. A prefix, factor,
and suffix of a string: is said to beroperif itis not u. The
length of a string: is denoted byu|. The empty string is
denoted by, that is,|e| = 0. Theith symbol of a string:
is denoted by:[i] for 1 < i < |u|, and the factor of a string
u that begins at positiohand ends at positiof is denoted
by ufi : j] for1 < i < j < |u|. The reversed string of a
stringu is denoted by .

Let v be a string inX*, and leti be a non-negative in-
teger. Denote by!u (resp.ul?) the string obtained by re-
moving the length prefix (resp. suffix) from:. For a setd
of integers and an integéf, let Ad k = {i + k | i € A}
andAck={i—k|iec A}

For stringsz andy, denote byOcdz, y) the set of oc-
currences oft in y. Thatis,Ocqz,y) = {|z| < < |y| |
z = yli — |z| + 1 : i]}. The next lemma follows from the
periodicity lemma.

Lemma 1 If Occ(z, y) has more than two elements and the

difference of the maximum and the minimum elements is at

most|z|, then it forms an arithmetic progression, in which
the step is the smallest period.af

3 Collage system and text compressions

tree of a variableX in D, denoted byZ (X), is defined in-
ductively as follows. The root node Gf(X) is labeled by
X and has:

no subtree, iX =aeXU{e},
two subtreed (Y) and7 (2),if X =Y Z,
one subtred (Y), if X = (Y)), Yy, oryld,

Define theheightof a variableX to be the height of the syn-
tax tree7 (X). Theheightof D is defined byheigh{D) =
max{heigh(X) | X in D}. It expresses the maximum de-
pendency of the variables .

On the other hand§ = X;,, X,,, ..., X;, IS a sequence
of variables defined iD. We denote byS| the numbelrk
of variables inS. The collage system represents a string
obtained by concatenating strings,, X;,,..., X;,. Es-
sentially, we can convert any collage systém S) into the
one whereS consists of a single variable, by adding a series
of concatenation operations infd. The fact may suggest
thatS is unnecessary. However, by separating a dictionary
D which only defines phrases, fro§iwhich intends for a
sequence of phrases, we can capture a variety of compres-
sion methods naturally as we will show below. B@tand
S can be encoded in various ways. The compression ratios
therefore depend on the encoding size$oénd S rather
than||D| and|S|.
We now translate various compression methods into cor-
responding collage systems. For notational convenience,
we allow abbreviations by composing multiple assignments
into one in the sequel.

Text compression methods can be viewed as mechanisms

to factorize a text into a series phrasesl” = ujus ... u,
and to store a sequence of ‘representations’ of phrases
The set of phrases is calladictionary. In this section

we introduce a collage system as a general framework for
dictionary-based text compressions, and show that most ofwhere the alphabet 5 = {a, . .

LZW compression. [19] S = X;,, X,,,..., X;, andD
is as follows:
Xi=a1; Xo=uay -5 X,=ag
Xgt1 = Xiybins Xgpo = Xinbiy; -3
Xq+7L—1 = iﬂ,_lbin;

., aq}, andb; denotes the

such compression methods can be directly translated intdirst symbol of the string{;. S is encoded as a sequence of

collage systems.

integersiy, iz, . . ., iy, iN Which an integet; is represented



in [log,(g+ 7)] bits, whileD is not encoded since it can be character-based compressiand the compression ratio de-

obtained froms. pends only on how to encodg On the other hand, the
stringswy, wa, . .., ws in D are considered to be frequent
LZ78 compression. [20] S = X1, X, ..., X,,, andD is in many texts in common. It is often stored independently
as follows: of the compressed texts.
We emphasis that the truncation operation is only used
Xo=¢; X5 =X;,b1; Xo=Xiybo; -5 Xy = X, b,y in LZSS (and LZ77) in the above, and that the repetition
operation is used in order to express gedf-referencan
whereb; is a symbol in¥. While no need to encod§, | 7SS (and LZ77). By using the repetition operation, we

the dictionaryD is encoded as a sequence in which integer can express the run-length encoding in an obvious way.
i and characteb;, appear alternately. Note that LZW is a

simplification of LZ78.

We will turn our attention to LZ77 and its variant. Al-
though we have no direct representations for LZ77, we
can convert inO(nlogn) time a compressed text of size
n encoded by LZ77 into a collage system wit®| =

4 Main result

Amir, Benson, and Farach presented in [1] a series of al-
gorithms with various time and space complexities for LZW

O(nlogn) [7]. Below we give a translation of the LZSS compressed text. From the viewpoint of speeding up of the

compression method which is a simplified variant of Lz77. Pattern maiching, the most attractive one is@He: + m ?)

The differences between LZSS and LZ77 are essentially the tlme and space algorithm, whereis the compressed text
same as those between LZW and LZ78. ength andm is the pattern length. It essentially simulates
the move of the KMP automaton. The simulation utilizes

the fact that in the LZW compression a phrase newly added
to dictionary is restricted to a concatenation of an existing
phrase and a single character. The main contribution of this

LZSS compression. [18] S = Xq11, Xg+2,- .- Xgtns
andD is as follows:

Xy =a;; Xo=ay X, =ag paper is a generalization of their idea to the collage systems,
4 my\ 1] in which concatenation of two phraségjmes repetition of
Xog1 = (([“]Xé(l)Xé(l)+1 - -XT(l)) > bi; aphrase, and prefix and suffix truncations of a phrase are al-
lowed.

One possible approach is to use the bit-parallelism, as in

] ma \ lin] the recent work by Navarro and Raffinot [14], which deals
Xgtn = (( " Xy Xeny 41 'XT(H)) > b with compressed pattern matching for the Lempel-Ziv fam-
ily. Although this approach is in fact efficient when < w,
where0 < i, ji, mi andbg € . wherew is the machine word length in bits, we take in this
paper another approach in order to deal with general case.
Byte pair encoding. [6] S = X;,, Xi,,..., X, , andD Moreover, our approach can be extended to multiple pattern
is as follows: matching, if we allow only the concatenation operations.
Consider how to simulate the move of the KMP automa-
Xy =a1; Xp=az -5 Xg=ag ton for a patterr® running on the uncompressed téxtLet
Xot1 = Xy X1y Xgr2 = Xo) Xo2)5 - Skmp : {0,1,...,m} x & — {0,1,...,m} be the state

Xgts = Xe(s) Xr(s) transition function of the KMP automaton f@ = P[1

m]. We extenddknp to the domaif0,1,...,m} x ¥*in

wher re the char rs which rinthe text, .
ereas, - - -, aq are the characters which appea the standard manner. That is,

andq+s < 256. S is encoded as a byte sequence. Itis ade-
sirable property from the practical viewpoint of compressed Sxnp (G, €) = j, Swnp (J, ua) = Sxmp (Sxmp (4, w), @),
pattern matchingD is encoded in a simple way.

wherej € {0,1,...,m}, u € ¥* anda € X. Let D be

Static dictionary based methods. S = X;,, X,,... the set of phrases defined By Define the functiodump:
X; , andD is as follows: {0,1,...,m} x D —{0,1,...,m} by

Xlzal; XQ:GQ; s Xq:aq; JUmFij,u)ZéKMP(j,u).

Xop1 =wi; Xgpo = w25 5 Xgps = ws, We also define the s&butput(j, v) for any pair(j, u) in

. o . . 0,1,..., Db
wherewy, is a string inX* with |w,| > 1. S is encoded { m X y

in various ways, such as the Huffman coding. Note that, Outputj, )
whens = 0 the compression methods of this type are called = {1 <i < |u| | P is a suffix of stringP[1 : j] - u[1 : i] }.



Input. A collage system{D, S) and a patteri® = P[1 : m].
Output.  All positions at whichP occurs inT'.
/* Preprocessing/
Perform the processing required fhrmpandOutput(See Section 5);

[* Text scanning/

letS = Xi1Xi2 .. -Xin-
{:=0;
state := 0;

for k := 1to n do begin
for eachp € Output(state, X;, ) do
Report a pattern occurrence that ends at positienp ;
state = Jump(state, X;, );
=04 |X;, |
end

Figure 1. Pattern matching algorithm.

Our algorithm, given a patter® and an encoding of a
collage systemD, S) representing a text’, processes the
sequences variable by variable (i.e. phrase by phrase) to
report all occurrences d? within 7. Thus we need to real-
ize

e the functionJumgj, X), and

o the procedure which enumerates theGetputj, X),

both take as input any pair of an integee {0,1,...,m}
and a variableX defined inD. An overview of the algo-

rithm based on the function and the procedure is shown in

Fig. 1.

Thus we have the following result.

Theorem 3 The problem of compressed pattern matching
can be solved i ((||D|| +|S]|) - height D) + m? 4 r) time
usingO(||D|| + m?) space. IfD contains no truncation, it
can be solved iQ(||D|| + |S| + m? + r) time.

In our framework, we can consider that the compressed
text lengthn is || D|| + |S|, therefore the time and the space
complexities in the case of no truncation beco®g: +
m? +r) andO(n + m?), which match the bounds for the
algorithm [11] for the LZW compression.

5 Algorithm in detail

This section discusses the realizations of the function
Jumpand the procedure that enumerates theGadputin
order to prove Theorems 1 and 2.

5.1 Realization ofJump

For an integerj with 0 < j < m and for a factoru
of P, let us denote byV; (j,u) the largest integek with
1 <k<jsuchthatP[j — k+1:j]-uis a prefix of P.
Let NV, (j,u) = nil, if no such integer exists. Then, for any
j with 0 < 7 < m and any strings,

Ni(j,u) + |u|, if uis afactor ofP and
Jumg(j, u) = N1(j,u) # nil;
Jumpo, u), otherwise.

In some cases, such as static dictionary based methodsye assume that the second argumenf N is given as a

D is followed by S in the encoding, oD is given inde-
pendently ofS. Thus we can procesB as a preprocess-

node of the suffix trie [3[5Tp for P. Let Factor(v) denote
the set of factors of a string. Amir et al. [1] showed the

ing. In other cases, such as adaptive dictionary based methfo|lowing fact.

ods like the Lempel-Ziv familyD is not given explicitly in
the encoding of D, S), and will be rebuilt incrementally
in the variable-by-variable processing &f From the the-
oretical viewpoint, we can proce$3? being incrementally
reconstructed frons in first step, and then proceSsagain
in second step, without changing the time complexity. In
practice, we merge these steps into one.

We have the following theorems which will be proved in
the next section.

Theorem 1 The function Jum@, X) can be realized in
O(||D|| - heigh{D) + m?) time usingO(||D|| + m?) space,
so that it answers i@ (1) time. IfD contains no truncation,
the time complexity becoméX||D|| + m?).

Theorem 2 The procedure to enumerate the set Output

(4, X) can be realized irO(||D|| - heigh{D) + m?) time
usingO(||D|| + m?) space, so that it runs i® (height X)
+¢) time, where/ is the size of the set Outgyt X). If D
contains no truncation, it can be realized (|| D|| + m?)
time and space, so that it runs ((¢) time.

Lemma 2 (Amir et al. 1996) The function which takes as
input (j,u) € {0,...,m} x Factor(P) and returns the
valueN; (j,u) in O(1) time, can be realized i®(m?) time
and space.

Let Nodes7,. (u) denote the node obTp represent-
ing a factoru of P. For a stringu ¢ Factor(P), let
Noder, (u) = nil. We need the following tables both of
size||DJ].

e The table storing the valué$ode; ., (X) for the vari-
ablesX in D.

e The table storing the valuekimg0, X) for the vari-
ablesX in D.

For a stringu € X%, let

Ipf(u) = the longest prefix of the string that is
also a factor of?, and

Isf(u) = the longest suffix of the string that is
also a factor of°.



P % P

/-

(A
Ipf(u)

u |

Isf (u)

Figure 2. Ipf(u) and Isf(u) for pattern P.

Figure 3. Factor concatenation problem.

As will be shown in the proof of Theorem 1, the values
Noder, (X) and Jumg0, X) are obtained from the val-
ueslpf(X) andIsf(X). Thus we concentrate ourselves on
how to realize the tables of siZ®|| which store the values
Ipf(X) andlIsf(X) for the variablesX € D, respectively.

First, we consider the following problem which we will
refer to as théactor concatenation problem

Instance: Two factorsxz andy of P each represented as a
node of STp.

Question: Is the stringry a factor of P? If ‘Yes’ then re-
turn the node o7 representing the stringy. Oth-
erwise returmdl.

A naive solution to this problem is to store the all answers
in a two-dimensional table of siz€actor(P)|? = O(m*).
This table size can be reduced @m?) by reducing the
number of entries to the second argumegnto O(m).
Namely, we consider only the factoyghat are represented
as explicit nodes ob7p. It seems that the same idea can
be applied to the first argumentto reduce the table size to
O(m?). To do this, we will change the contents of the table
as follows.

For any factors: andy of P, let Boundaryzx, y) denote
the smallest integek with 2 < k£ < m such thatr =
Plk —|z|: k—1]andy = P[k : k + |y| — 1]. If no such
integer, letBoundaryz, y) = nil. Using this function we
get a position of an occurrenceef in P, and then we can
obtain the valueNode;r,. (zy) using anO(m?) size table
which stores the valuedode; 7, (P[i : j]) for all pairs of
integersi andj such tha0) < i < j5 < m. Thus we focus
on the realization of the functiodBoundaryz, y).

Lemma 3 The function Boundafy, y) can be realized in
O(m?) time and space so that it answers({1) time.

P |

y

Figure 4. Boundaryz, y).

Proof. The table storing the one-to-one correspondence be-
tween the nodes of ST, and the nodes” of STpr can

be built inO(m?) time and space. We can assume that the
node representingis an explicit node 067, and the node
representing:? is an explicit node 06Ty~ . Therefore the
functionBoundaryz, ) can be stored in a@(m?) size ta-

ble. We can compute such table in the following manner.

1. LetBoundaryz,y) := nil for all explicit nodesr’
andy.

. For eachk = 2,3,...,m, and for each suffixx of
P[1: k — 1] such that:# is an explicit node o6 Tpr,
perform the following task:

For each prefiy of P[k : m] that is an explicit node
of STp in the descending order of length, execute the
statemenBoundaryz, y) := k until we encounter a
stringy such thaBoundaryz, y) # nil.

We can show that the time complexity of the computation is
only O(m?) although it seems to b@(m?). [

Thus we have the following lemma.

Lemma 4 Given a patternP of lengthm, a data structure
which solves the factor concatenation problerifi ) time,
can be built inO(m?) time and space.

Then we can prove the following lemma.

Lemma5 The tables which store the values(I§f and
Ipf(X) for the variablesX in D can be computed in
O(||D|| - heigh{ D) + m?) time usingO(||D|| + m?) space.

If D contains no truncation, the time complexity becomes
O(ID|| +m?).

Proof. We show how we compute the valuks(X) and
Ipf(X) for all variablesX which are defined eitheX = a,

X =Y27 X =Yk X = Fly, X = Y*I, assuming
that the valuedsf(Y), Isf(Z), Ipf(Y'), andIpf(Z) are al-
ready computed, whet¥, Y, Z are variables andis a pos-
itive integer. We show only the computationlpf(X) since
Isf(X) can be computed a symmetric way.

Case 1: X = qa. Itis not hard to see th#pf(X) = a if and
only if a appears irP.



Case2:X = YZ. Note that, if |Ipf(Y)] < Y,
Ipf(X) = Ipf(Y), and otherwise)pf(X) = Ipf(Y -
Ipf(Z)). We need the function which returgf(xy)

for any pair of factorsc andy of P. Based on the ta-
ble Boundaryz, y), we can build arO(m?) size table
which stores the valudpf(xy) for all pairs ofz andy
such that:? is an explicit node 067 »x, andy is an ex-

plicit node of STp, and the computation requires only

O(m?) time.

Case 3:X = Y. Itis trivial for k& < 2. Supposé: > 2.
We can obtaipf(YY) in constant time. Iflpf(YY)| <
YY), thenlpf(X) = Ipf(YY). If |Ipf(YY)| = |YY],
we have to get the longest continuation of the peiiod
to the right among the all occurrenceso¥ in P. The
smallest periods of all factors @f can be computed in

O(m?) time and space. We store the smallest periods

into the nodes ofSTp, and build a data structure by
which we can obtain, for every factarof P, the longest
factorv of P with the same period assuch that: is a
prefix of v.

Case 4. X = [y, Let Q(Y,k) be the function which
returns the valudpf(l¥1Y"). Consider the computation
of Q(Y,k). Itis trivial for Y = a (a € X U {e}).
WhenY = Y1Ys, we haveX = (HY;) - Y, or X =
¥y, depending on whethet < |Y;| or not, where
k' = k — |Y1|. ThereforeQ(Y, k) is computed by a call
of eitherQ(Y1, k) or Q(Ya, k’). WhenY = (Y1), we
haveX = (¥1v;)(Y1)7, for somej. ThusQ(Y, k) is
computed by a call of(Y1, k). WhenY = [dy;, it
is trivial since X = [+*ly;. WhenY = Ylm, since
X = Wyll)y = (Ky})[, we can compute the value
Q(X, k) from the valueg) (Y1, k) andi.

Case5:X = Y. Itis not hard to see thdpf(X) =
pf(Y), if |Y] — & > [Ipf(X)|, and Ipf(X)
(Ipf(v)) k=Y I=IIPFONDI otherwise.

Since recursive call of the functiof (X, k) continues at
most heigh{ X) times, the valudpf(X) is computed in
O(height{ X)) time. ]

For a stringu € ¥*, let

Ips(u) = the longest prefix of the stringthat is
also a suffix ofP, and

Isp(u) = the longest suffix of the string that is
also a prefix ofP.

Now we are ready to prove Theorem 1.

Proof of Theorem 1 Note thatNode;7,. (X) = Ipf(X),
if | X|] = |Ipf(X)|, and nil, otherwise. Also note that
Jump0, X) = Isp(X) = Isp(Isf(X)). The table which
stores the valuelsp(w) for all factorsu of P can be com-
puted inO(m?) time and space. The proof is completes

5.2 Realization ofOutput

Recall the definition of the s@utpu{j, ). According
to whether a pattern occurrence covers the boundary be-
tween the strings[1 : j] andw, we can partition the set
Outputj, u) into two disjoint subsets as follows.

Outputj, u) = Outputj, Ipps(u)) U Output0, u),

wherelpps(u) denotes the longest prefix of the strimghat

is also a proper suffix oP. Since it holds thalpps(X) =
Ipps(Ipf(X)), we can obtaidppsX) for X € D in O(1)
time using a table which stores the vallpgs(u) for u €
Factor(P). Such a table can be constructed’ifin?) time
and space.

First, we consider the subs€&utpufj, Ipps(v)). Let
PrefSuffj, k) = Occ(P, P[1: j]- P[m—k+1:m])oj. It
holds thatOutpu((j, Ipps(u)) = PrefSuftj, [Ipps(u)|) \{0},

where we exclude the integ@rwhich corresponds to the

case ofj = m. Then, it follows from Lemma 1 that the set
PrefSuftj, k) has the following property.

Lemma 6 If PrefSuffj, k) has more than two elements, it
forms an arithmetic progression, where the step is the small-
est period ofP.

Lemma 7 The table PrefSuff, k) for all pairs (k,¢) €
{0,...,m} x {0,...,m} can be computed i®(m?) time
and space. Each entry of the table occupies aniy)
space.

Proof. It follows from Lemma 6 thaPrefSuffj, k) can be
stored inO(1) space as a pair of the minimum and the max-
imum values in it. The table storing the minimum values
of PrefSuffj, k) for all (k,¢) can be computed i (m?)
time as stated in [1]. (TabléVy defined in [1] satisfies
min(PrefSuftj, k)) = m— Ny (k, ¢).) By reversing the pat-
tern P, the table of the maximum values is also computed
in O(m?) time. The smallest period aP is computed in
O(m) time. |

From the above, we have the following lemma.

Lemma8 The procedure which enumerates the set
Outpuj, Ipps(w)) for j € {0,...,m} andu € D can be
realized inO(m?) time and space, and it can run i@(¢)
time, where/ = |Outpu(j, Ippgu))|.

Next, we consider the substtput0, «). Then, it holds
that Outpu{0, v) = Occ (P, ). In what follows, we give
the computation of a representation of the s@ts( P, X)
for the variablesX in D.

Denote byOcc' (P, u e v) the set of occurrences a?
within the concatenation of two stringsandv which cov-
ers the boundary betweerandv. That is,Occ' (P, uev) =



{s € OcqP,uv) | |ul < s < |ul + |P|}. Since
Isp(w) = Isp(Isf(u)) andlps(u) = Ips(Ipf(u)), we can ob-
tain in O(1) time the value$sp(X) andlps(X) for X € D
using the table which stores the vallgs(u) andlps(u) for
u € Factor(P), respectively. Then we have the next two

lemmas.

Lemma9 For X = Y Z, the set OcgP, X) can be com-
puted inO(1) time using the table PrefSuff, assuming that
the sets Oo@P, V) and OcgP, Z) and the valuedisp(Y)|
and|lps(Z)| are already computed.

Proof. It follows from the factsOcc'(P,Y e 2)
PrefSuf(|Isp(Y)|, |Ips(Z)|) andOcq P, X) = Ocd P, Y)
U((Occ (P, Y e Z) UOcd P, Z)) @ |Y]).

Lemma 10 For X = Y* with & > 1, the set OcP, X)
can be computed i®(1) time using the table PrefSuff, as-
suming that the set O¢®, Y") and the valudlsp(Y')| and
lIps(Y)| are already computed.

Proof. We have three cases to consider.

Case 1:|P| < |Y]. Since P cannot cover more than
two Y'’s, Ocq P, X) is represented by a four tuple of
a pointer toOcq P, Y'), Occ (P, Y oY), |Y|, andk.

Case 2:|Y| < |P| < 2|Y|. We build two setOcc (P, Y e
Y)andOcc(P,Y ¢ YY)\Occ'(P,Y o Y). These sets
are computed only i@ (1) time and spaceOcd P, X)
is represented by these séli$| andk.

Case 3:2|Y| < |P|. Note thatP occurs withinY* for
some/? > 0 if and only if (1) Y is a factor of P,
and (2)|Y] is a period ofP. The first item is true if
Noder, (Y) # nil. The second item is true || is
a multiple of the smallest periadof P (recall the peri-
odicity lemma). The seDc P, X) forms an arithmetic
progression, whose steptis ]

Lemma 11 We can buiId inO(||D|| - heigh{D) + m?)
time usingO(||D|| + m?) space a data structure by which
the enumeration of the set Qd¢ X) is performed in
O(heigh(X) + ¢) time, where/ = |Ocq P, X)|. If D con-
tains no truncation, it can be built i®(||D|| + m?) time
and space, and the enumeration requires anly) time.

Proof. Recall the syntax trees defined in Section 3. A node

labeled by X of a syntax tree is said to bactiveif (1)
it has a child labeled by such that eitheOcd P, X) #
OcP,Y), or (2) it is a leaf node an®@cq P, X) # 0.

The equality testing of the sets is replaced by the equal-

ity testing of their cardinalities, since it holds that either
Ocd P, X) D Ocd P, Y) @ k for concatenation and repeti-
tion, orOcq P, X) C Ocd P, Y) @ k for truncation, where

k is an appropriate offset.

It is not difficult to show that the tabl€ard(X) which
stores the cardinalities @cqo( P, X) for all variablesX in
D, canbe computed i@ (|| D|| - heightD) +m?) time using

O(||D| + m?) space. IfD contains no truncation, it can be
computed inO(||D|| + m?) time and space.

Next, using the table:ard, we add, for each node la-
beled byX, pointers as short-cut from it into the nearest ac-
tive descendants. 1fhas two children, we add two pointers.
By using these pointers, we can skip the inactive nodes in
traversing the syntax trees so that the enumeration is com-
pleted in linear time proportional to the number of elements.
To report the exact positions of pattern occurrences, we also
associate the ‘offset’ information.

We now briefly describe how to enumerate the set
Ocd P, X) for a variableX. When there is no truncation,
we have only to traverse the syntax tfE€X) utilizing the
short-cut pointers, and output the position of occurrences.
The time complexity is obviously linear to the number of
occurrences in this case. When we encounter a suffix trun-
cation, we monitor the enumeration in its descendants and
terminate the process if it exceeds the condition. If we en-
counter a prefix truncation, a kind of binary search will nav-
igate us inO(height X)) time to the first position of the oc-
currence in its subtree. Then we continue the enumeration.
]

Proof of Theorem 21t follows from Lemmas 8 and 11.m

6 Concluding remarks

We introduced a collage system which is an abstraction
of various dictionary-based compression methods. We de-
veloped a general compressed matching algorithm which
runs inO((HDH +|8]) - heigh{D) + m? + r) time with

O(||D|| + m?) space. The factdreightD) can be dropped
if the collage system contains no truncation. It coincides
with the observation by Navarro and Raffinot [14] that LZ77
compression is not suitable for compressed pattern match-
ing compared with LZ78 compression. Recall that LZ77
requires truncation in our collage system while LZ78 does
not. They proposed a new hybrid compression method of
Lz77 and LZ78, whose intention is to achieve both effec-
tive compression and efficient compressed pattern match-
ing [14]. We can represent their compression method by a
collage system with no truncation.

For dealing with multiple patterns, we need to modify the
function Jumpand the procedure for enumerati@utput
We have verified thalumpcan be generalized to treat multi-
ple patterns. Although we omit the detail, the idea is almost
the same as [11]. That is, we simulate the move of the AC
automaton instead of the KMP automaton, and use the gen-
eralized suffix trie [8]. FoOutput we have also done if a
collage system contains neither repetitions nor truncations.
The rest s left for our future work.



Kosaraju [12] showed a faster pattern matching al- [14] G. Navarro and M. Raffinot. A general practical approach
gorithm for LZW compression, which runs i®(n +
m+/mlogm) time. It is a challenging problem to achieve
this bound in our general framework.
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