
A Unifying Framework for Compressed Pattern Matching

Takuya Kida Yusuke Shibata Masayuki Takeda
Ayumi Shinohara Setsuo Arikawa

Department of Informatics, Kyushu University 33

Fukuoka 812-8581, Japan

{ kida, yusuke, takeda, ayumi, arikawa } @i.kyushu-u.ac.jp

Abstract

We introduce a general framework which is suitable to
capture an essence of compressed pattern matching accord-
ing to various dictionary based compressions, and propose
a compressed pattern matching algorithm for the frame-
work. The goal is to find all occurrences of a pattern in
a text without decompression, which is one of the most ac-
tive topics in string matching. Our framework includes such
compression methods as Lempel-Ziv family, (LZ77, LZSS,
LZ78, LZW), byte-pair encoding, and the static dictionary
based method. Technically, our pattern matching algorithm
extends that for LZW compressed text presented by Amir,
Benson and Farach.

1 Introduction

Pattern matching is one of the most fundamental oper-
ations in string processing. The problem is to find all oc-
currences of a given pattern in a given text. A lot of clas-
sical or advanced pattern matching algorithms have been
proposed (see [3, 2]). Data compression is another most
important research topic, whose aim is to reduce its space
usage. Considerable amount of compression methods have
been proposed (see [15]).

Recently, thecompressed pattern matchingproblem has
attracted special concern where the goal is to find a pat-
tern in a compressed text without decompressing it. Var-
ious compressed pattern matching algorithms have been
proposed depending on underlying compression methods.
Among them, we focus on the following works. Amir
et al.[1] introduced an elegant compressed pattern match-
ing algorithm for Lempel-Ziv-Welch (LZW) compression
which runs inO(n + m2) time, wheren is the length of the
compressed text andm is the length of the pattern. (They
considered finding only the first occurrence of the pattern).
The basic idea is to simulate the move of the Knuth-Morris-
Pratt (KMP) automaton [3] on the compressed text directly.

In [11] we have extended it in order to findall occurrences
of multiplepatterns simultaneously, by simulating the move
of the Aho-Corasick automaton [3]. The running time is
O(n + m2 + r), wherem is the total length of the pat-
terns andr is the number of pattern occurrences. We imple-
mented a simple version of the algorithm and observed that
it is approximately twice faster than a decompression fol-
lowed by a search using the Aho-Corasick automaton. We
took another implementation of the algorithm utilizingbit-
parallelism, and reported some experiments [10]. Indepen-
dently, Navarro and Raffinot [14] developed a more general
technique for string matching on a text given as a sequence
of blocks, which abstracts both LZ77 and LZ78 compres-
sions, and gave bit-parallel implementations. The running
time of these algorithms based on the bit-parallelism for
LZW is O(nm/w + m + r), wherew is the length in bits
of the machine word. If the pattern is short (m < w), these
algorithms are efficient in practice. Moura et al. [4, 5] pro-
posed practical algorithms. They presented a new compres-
sion scheme which uses a word-based Huffman encoding
with a byte-oriented code. In recent papers, we developed
compressed pattern matching algorithms for compressed
text using anti-dictionaries [17], and for compressed text
using byte-pair encoding [16]. Especially, the latter was
showed to be even faster than pattern matching in uncom-
pressed texts.

In this paper, we introduce acollage system, that is a for-
mal system to represent a string by a pair of dictionaryD
and sequenceS of phrases inD. The basic operations are
concatenation, truncation, and repetition. Collage systems
give us a unifying framework of various dictionary-based
compression method, such as Lempel-Ziv family (LZ77,
LZSS, LZ78, LZW), byte-pair encoding, and the static dic-
tionary based method. Most of these compressed text can
be transformed in linear time into a corresponding collage
system which contains no truncation. Exceptions are LZ77
and LZSS, where the size growsO(n log n) and truncation
operations are required. We remark that a straight-line pro-
gram [9, 13] is a collage system containing concatenation

only, and a composition system introduced in [7] is also a
collage system which allows concatenation and truncation.

We develop a compressed pattern matching algorithm for
collage systems which contain no truncation, whose run-
ning time isO(‖D‖+ |S| + m2 + r) usingO(‖D‖+ m2)
space, where‖D‖ denotes the size of the dictionaryD
and |S| is the length of the sequenceS. For the case of
LZW compression, it matches the boundO(n + m2 + r)
in [11]. For general collage systems, which contain trun-
cation, we show a compressed pattern matching algorithm
which runs inO((‖D‖ + |S|) · height(D) + m2 + r) time
with O(‖D‖ + m2) space, whereheight(D) denotes the
maximum dependency of the operations inD. These re-
sults show that the truncation slows down the compressed
pattern matching to the factorheight(D).

2 Preliminaries

Stringsx, y, andz are said to be aprefix, factor, and
suffixof the stringu = xyz, respectively. A prefix, factor,
and suffix of a stringu is said to beproper if it is not u. The
length of a stringu is denoted by|u|. The empty string is
denoted byε, that is,|ε| = 0. Theith symbol of a stringu
is denoted byu[i] for 1 ≤ i ≤ |u|, and the factor of a string
u that begins at positioni and ends at positionj is denoted
by u[i : j] for 1 ≤ i ≤ j ≤ |u|. The reversed string of a
stringu is denoted byuR.

Let u be a string inΣ∗, and leti be a non-negative in-
teger. Denote by[i]u (resp.u[i]) the string obtained by re-
moving the lengthi prefix (resp. suffix) fromu. For a setA
of integers and an integerk, let A ⊕ k = {i + k | i ∈ A}
andA	 k = {i − k | i ∈ A}.

For stringsx andy, denote byOcc(x, y) the set of oc-
currences ofx in y. That is,Occ(x, y) =

{
|x| ≤ i ≤ |y|

∣∣
x = y[i − |x| + 1 : i]

}
. The next lemma follows from the

periodicity lemma.

Lemma 1 If Occ(x, y) has more than two elements and the
difference of the maximum and the minimum elements is at
most|x|, then it forms an arithmetic progression, in which
the step is the smallest period ofx.

3 Collage system and text compressions

Text compression methods can be viewed as mechanisms
to factorize a text into a series ofphrasesT = u1u2 . . . un

and to store a sequence of ‘representations’ of phrasesui.
The set of phrases is calleddictionary. In this section
we introduce a collage system as a general framework for
dictionary-based text compressions, and show that most of
such compression methods can be directly translated into
collage systems.

A collage systemis a pair 〈D,S〉 defined as follows:
D is a sequence of assignmentsX1 = expr1; X2 =
expr2; · · · ; Xn = exprn, where eachXk is a variable and
exprk is any of the form

a for a ∈ Σ ∪ {ε}, (primitive assignment)
XiXj for i, j < k, (concatenation)
[j]Xi for i < k and an integerj, (prefix truncation)

X
[j]
i for i < k and an integerj, (suffix truncation)

(Xi)j for i < k and an integerj. (j times repetition)

Each variable represents a string obtained by evaluating the
expression as it implies. We identify a variableXi with the
string represented byXi in the sequel. Thesizeof D is the
numbern of assignments and denoted by‖D‖. The syntax
tree of a variableX in D, denoted byT (X), is defined in-
ductively as follows. The root node ofT (X) is labeled by
X and has:

no subtree, ifX = a ∈ Σ ∪ {ε},
two subtreesT (Y) andT (Z), if X = Y Z,
one subtreeT (Y), if X = (Y)i, [i]Y , or Y [i].

Define theheightof a variableX to be the height of the syn-
tax treeT (X). Theheightof D is defined byheight(D) =
max{height(X) | X in D}. It expresses the maximum de-
pendency of the variables inD.

On the other hand,S = Xi1 , Xi2 , . . . , Xik is a sequence
of variables defined inD. We denote by|S| the numberk
of variables inS. The collage system represents a string
obtained by concatenating stringsXi1 , Xi2 , . . . , Xik . Es-
sentially, we can convert any collage system〈D,S〉 into the
one whereS consists of a single variable, by adding a series
of concatenation operations intoD. The fact may suggest
thatS is unnecessary. However, by separating a dictionary
D which only defines phrases, fromS which intends for a
sequence of phrases, we can capture a variety of compres-
sion methods naturally as we will show below. BothD and
S can be encoded in various ways. The compression ratios
therefore depend on the encoding sizes ofD andS rather
than‖D‖ and|S|.

We now translate various compression methods into cor-
responding collage systems. For notational convenience,
we allow abbreviations by composing multiple assignments
into one in the sequel.

LZW compression. [19] S = Xi1 , Xi2 , . . . , Xin andD
is as follows:

X1 = a1; X2 = a2; · · · ; Xq = aq;
Xq+1 = Xi1bi2 ; Xq+2 = Xi2bi3 ; · · · ;
Xq+n−1 = Xin−1bin ,

where the alphabet isΣ = {a1, . . . , aq}, andbj denotes the
first symbol of the stringXj . S is encoded as a sequence of
integersi1, i2, . . . , in in which an integerij is represented

in dlog2(q + j)e bits, whileD is not encoded since it can be
obtained fromS.

LZ78 compression. [20] S = X1, X2, . . . , Xn, andD is
as follows:

X0 = ε; X1 = Xi1b1; X2 = Xi2b2; · · · ; Xn = Xinbn,

wherebj is a symbol inΣ. While no need to encodeS,
the dictionaryD is encoded as a sequence in which integer
ik and characterbk appear alternately. Note that LZW is a
simplification of LZ78.

We will turn our attention to LZ77 and its variant. Al-
though we have no direct representations for LZ77, we
can convert inO(n log n) time a compressed text of size
n encoded by LZ77 into a collage system with‖D‖ =
O(n log n) [7]. Below we give a translation of the LZSS
compression method which is a simplified variant of LZ77.
The differences between LZSS and LZ77 are essentially the
same as those between LZW and LZ78.

LZSS compression. [18] S = Xq+1, Xq+2, . . . , Xq+n,
andD is as follows:

X1 = a1; X2 = a2; · · · ; Xq = aq;

Xq+1 =
((

[i1]X`(1)X`(1)+1 · · ·Xr(1)

)m1
)[j1]

b1;

...

Xq+n =
((

[in]X`(n)X`(n)+1 · · ·Xr(n)

)mn
)[jn]

bn;

where0 ≤ ik, jk, mk andbk ∈ Σ.

Byte pair encoding. [6] S = Xi1 , Xi2 , . . . , Xin , andD
is as follows:

X1 = a1; X2 = a2; · · · ; Xq = aq ;
Xq+1 = X`(1)Xr(1); Xq+2 = X`(2)Xr(2) ; · · · ;
Xq+s = X`(s)Xr(s),

wherea1, · · · , aq are the characters which appear in the text,
andq+s ≤ 256. S is encoded as a byte sequence. It is a de-
sirable property from the practical viewpoint of compressed
pattern matching.D is encoded in a simple way.

Static dictionary based methods. S = Xi1 , Xi2 , . . . ,
Xin , andD is as follows:

X1 = a1; X2 = a2; · · · ; Xq = aq;
Xq+1 = w1; Xq+2 = w2; · · · ; Xq+s = ws,

wherewk is a string inΣ+ with |wk| > 1. S is encoded
in various ways, such as the Huffman coding. Note that,
whens = 0 the compression methods of this type are called

character-based compressionand the compression ratio de-
pends only on how to encodeS. On the other hand, the
stringsw1, w2, . . . , ws in D are considered to be frequent
in many texts in common. It is often stored independently
of the compressed texts.

We emphasis that the truncation operation is only used
in LZSS (and LZ77) in the above, and that the repetition
operation is used in order to express theself-referencein
LZSS (and LZ77). By using the repetition operation, we
can express the run-length encoding in an obvious way.

4 Main result

Amir, Benson, and Farach presented in [1] a series of al-
gorithms with various time and space complexities for LZW
compressed text. From the viewpoint of speeding up of the
pattern matching, the most attractive one is theO(n + m2)
time and space algorithm, wheren is the compressed text
length andm is the pattern length. It essentially simulates
the move of the KMP automaton. The simulation utilizes
the fact that in the LZW compression a phrase newly added
to dictionary is restricted to a concatenation of an existing
phrase and a single character. The main contribution of this
paper is a generalization of their idea to the collage systems,
in which concatenation of two phrases,k times repetition of
a phrase, and prefix and suffix truncations of a phrase are al-
lowed.

One possible approach is to use the bit-parallelism, as in
the recent work by Navarro and Raffinot [14], which deals
with compressed pattern matching for the Lempel-Ziv fam-
ily. Although this approach is in fact efficient whenm < w,
wherew is the machine word length in bits, we take in this
paper another approach in order to deal with general case.
Moreover, our approach can be extended to multiple pattern
matching, if we allow only the concatenation operations.

Consider how to simulate the move of the KMP automa-
ton for a patternP running on the uncompressed textT . Let
δKMP : {0, 1, . . ., m} × Σ → {0, 1, . . ., m} be the state
transition function of the KMP automaton forP = P [1 :
m]. We extendδKMP to the domain{0, 1, . . ., m} × Σ∗ in
the standard manner. That is,

δKMP(j, ε) = j, δKMP(j, ua) = δKMP(δKMP(j, u), a),

wherej ∈ {0, 1, . . . , m}, u ∈ Σ∗ anda ∈ Σ. Let D be
the set of phrases defined byD. Define the functionJump:
{0, 1, . . ., m} ×D → {0, 1, . . ., m} by

Jump(j, u) = δKMP(j, u).

We also define the setOutput(j, u) for any pair〈j, u〉 in
{0, 1, . . ., m} ×D by

Output(j, u)
=

{
1 ≤ i ≤ |u|

∣∣ P is a suffix of stringP [1 : j] · u[1 : i]
}
.

Input. A collage system〈D,S〉 and a patternP = P [1 : m].
Output. All positions at whichP occurs inT .

/* Preprocessing*/
Perform the processing required forJumpandOutput(See Section 5);

/* Text scanning*/
let S = Xi1Xi2 . . .Xin .
` := 0;
state := 0;
for k := 1 to n do begin

for eachp ∈ Output(state, Xik
) do

Report a pattern occurrence that ends at position` + p ;
state = Jump(state, Xik

);
` := ` + |Xik

|
end

Figure 1. Pattern matching algorithm.

Our algorithm, given a patternP and an encoding of a
collage system〈D,S〉 representing a textT , processes the
sequenceS variable by variable (i.e. phrase by phrase) to
report all occurrences ofP within T . Thus we need to real-
ize

• the functionJump(j, X), and

• the procedure which enumerates the setOutput(j, X),

both take as input any pair of an integerj ∈ {0, 1, . . . , m}
and a variableX defined inD. An overview of the algo-
rithm based on the function and the procedure is shown in
Fig. 1.

In some cases, such as static dictionary based methods,
D is followed byS in the encoding, orD is given inde-
pendently ofS. Thus we can processD as a preprocess-
ing. In other cases, such as adaptive dictionary based meth-
ods like the Lempel-Ziv family,D is not given explicitly in
the encoding of〈D,S〉, and will be rebuilt incrementally
in the variable-by-variable processing ofS. From the the-
oretical viewpoint, we can processD being incrementally
reconstructed fromS in first step, and then processS again
in second step, without changing the time complexity. In
practice, we merge these steps into one.

We have the following theorems which will be proved in
the next section.

Theorem 1 The function Jump(j, X) can be realized in
O(‖D‖ · height(D) + m2) time usingO(‖D‖+ m2) space,
so that it answers inO(1) time. IfD contains no truncation,
the time complexity becomesO(‖D‖+ m2).

Theorem 2 The procedure to enumerate the set Output
(j, X) can be realized inO(‖D‖ · height(D) + m2) time
usingO(‖D‖+ m2) space, so that it runs inO(height(X)
+`) time, wherè is the size of the set Output(j, X). If D
contains no truncation, it can be realized inO(‖D‖+ m2)
time and space, so that it runs inO(`) time.

Thus we have the following result.

Theorem 3 The problem of compressed pattern matching
can be solved inO

(
(‖D‖+ |S|) ·height(D)+m2 + r

)
time

usingO(‖D‖ + m2) space. IfD contains no truncation, it
can be solved inO(‖D‖+ |S| + m2 + r) time.

In our framework, we can consider that the compressed
text lengthn is ‖D‖+ |S|, therefore the time and the space
complexities in the case of no truncation becomeO(n +
m2 + r) andO(n + m2), which match the bounds for the
algorithm [11] for the LZW compression.

5 Algorithm in detail

This section discusses the realizations of the function
Jumpand the procedure that enumerates the setOutput in
order to prove Theorems 1 and 2.

5.1 Realization ofJump

For an integerj with 0 ≤ j ≤ m and for a factoru
of P , let us denote byN1(j, u) the largest integerk with
1 ≤ k ≤ j such thatP [j − k + 1 : j] · u is a prefix ofP .
Let N1(j, u) = nil, if no such integer exists. Then, for any
j with 0 ≤ j ≤ m and any stringu,

Jump(j, u) =

N1(j, u) + |u|, if u is a factor ofP and
N1(j, u) 6= nil;

Jump(0, u), otherwise.

We assume that the second argumentu of N1 is given as a
node of the suffix trie [3]STP for P . Let Factor(v) denote
the set of factors of a stringv. Amir et al. [1] showed the
following fact.

Lemma 2 (Amir et al. 1996) The function which takes as
input (j, u) ∈ {0, . . . , m} × Factor(P) and returns the
valueN1(j, u) in O(1) time, can be realized inO(m2) time
and space.

Let NodeSTP (u) denote the node ofSTP represent-
ing a factoru of P . For a stringu 6∈ Factor(P), let
NodeSTP (u) = nil. We need the following tables both of
size‖D‖.

• The table storing the valuesNodeSTP (X) for the vari-
ablesX in D.

• The table storing the valuesJump(0, X) for the vari-
ablesX in D.

For a stringu ∈ Σ∗, let

lpf(u) = the longest prefix of the stringu that is
also a factor ofP , and

lsf(u) = the longest suffix of the stringu that is
also a factor ofP .

P

u

lpf(u)

P

u

lsf (u)

Figure 2. lpf(u) and lsf(u) for pattern P .

STP

x
y

xy??

Figure 3. Factor concatenation problem.

As will be shown in the proof of Theorem 1, the values
NodeSTP (X) and Jump(0, X) are obtained from the val-
ueslpf(X) and lsf(X). Thus we concentrate ourselves on
how to realize the tables of size‖D‖ which store the values
lpf(X) andlsf(X) for the variablesX ∈ D, respectively.

First, we consider the following problem which we will
refer to as thefactor concatenation problem.

Instance: Two factorsx andy of P each represented as a
node ofSTP .

Question: Is the stringxy a factor ofP ? If ‘Yes’ then re-
turn the node ofSTP representing the stringxy. Oth-
erwise returnnil.

A naive solution to this problem is to store the all answers
in a two-dimensional table of size|Factor(P)|2 = O(m4).
This table size can be reduced toO(m3) by reducing the
number of entries to the second argumenty to O(m).
Namely, we consider only the factorsy that are represented
as explicit nodes ofSTP . It seems that the same idea can
be applied to the first argumentx to reduce the table size to
O(m2). To do this, we will change the contents of the table
as follows.

For any factorsx andy of P , let Boundary(x, y) denote
the smallest integerk with 2 ≤ k ≤ m such thatx =
P [k − |x| : k − 1] andy = P [k : k + |y| − 1]. If no such
integer, letBoundary(x, y) = nil. Using this function we
get a position of an occurrence ofxy in P , and then we can
obtain the valueNodeSTP (xy) using anO(m2) size table
which stores the valuesNodeSTP (P [i : j]) for all pairs of
integersi andj such that0 ≤ i ≤ j ≤ m. Thus we focus
on the realization of the functionBoundary(x, y).

Lemma 3 The function Boundary(x, y) can be realized in
O(m2) time and space so that it answers inO(1) time.

P

x y

k m1

Figure 4. Boundary(x, y).

Proof. The table storing the one-to-one correspondence be-
tween the nodesx of STP and the nodesxR of STPR can
be built inO(m2) time and space. We can assume that the
node representingy is an explicit node ofSTP , and the node
representingxR is an explicit node ofSTPR . Therefore the
functionBoundary(x, y) can be stored in anO(m2) size ta-
ble. We can compute such table in the following manner.

1. Let Boundary(x, y) := nil for all explicit nodesxR

andy.

2. For eachk = 2, 3, . . . , m, and for each suffixx of
P [1 : k− 1] such thatxR is an explicit node ofSTPR ,
perform the following task:
For each prefixy of P [k : m] that is an explicit node
of STP in the descending order of length, execute the
statementBoundary(x, y) := k until we encounter a
stringy such thatBoundary(x, y) 6= nil.

We can show that the time complexity of the computation is
only O(m2) although it seems to beO(m3).

Thus we have the following lemma.

Lemma 4 Given a patternP of lengthm, a data structure
which solves the factor concatenation problem inO(1) time,
can be built inO(m2) time and space.

Then we can prove the following lemma.

Lemma 5 The tables which store the values lsf(X) and
lpf(X) for the variablesX in D can be computed in
O(‖D‖ · height(D)+ m2) time usingO(‖D‖+ m2) space.
If D contains no truncation, the time complexity becomes
O(‖D‖+ m2).

Proof. We show how we compute the valueslsf(X) and
lpf(X) for all variablesX which are defined eitherX = a,
X = Y Z, X = Y k, X = [k]Y , X = Y [k], assuming
that the valueslsf(Y), lsf(Z), lpf(Y), and lpf(Z) are al-
ready computed, whereX, Y, Z are variables andk is a pos-
itive integer. We show only the computation oflpf(X) since
lsf(X) can be computed a symmetric way.

Case 1:X = a. It is not hard to see thatlpf(X) = a if and
only if a appears inP .

Case 2:X = Y Z. Note that, if |lpf(Y)| < |Y |,
lpf(X) = lpf(Y), and otherwise,lpf(X) = lpf(Y ·
lpf(Z)). We need the function which returnslpf(xy)
for any pair of factorsx andy of P . Based on the ta-
ble Boundary(x, y), we can build anO(m2) size table
which stores the valueslpf(xy) for all pairs ofx andy
such thatxR is an explicit node ofSTPR , andy is an ex-
plicit node ofSTP , and the computation requires only
O(m2) time.

Case 3:X = Y k. It is trivial for k ≤ 2. Supposek > 2.
We can obtainlpf(Y Y) in constant time. If|lpf(Y Y)| <
|Y Y |, thenlpf(X) = lpf(Y Y). If |lpf(Y Y)| = |Y Y |,
we have to get the longest continuation of the periodY
to the right among the all occurrences ofY Y in P . The
smallest periods of all factors ofP can be computed in
O(m2) time and space. We store the smallest periods
into the nodes ofSTP , and build a data structure by
which we can obtain, for every factoru of P , the longest
factorv of P with the same period asu such thatu is a
prefix ofv.

Case 4:X = [k]Y . Let Q(Y, k) be the function which
returns the valuelpf([k]Y). Consider the computation
of Q(Y, k). It is trivial for Y = a (a ∈ Σ ∪ {ε}).
WhenY = Y1Y2, we haveX = ([k]Y1) · Y2 or X =
[k′]Y2 depending on whetherk ≤ |Y1| or not, where
k′ = k − |Y1|. ThereforeQ(Y, k) is computed by a call
of eitherQ(Y1, k) or Q(Y2, k

′). WhenY = (Y1)i, we
haveX = ([k

′]Y1)(Y1)j , for somej. ThusQ(Y, k) is
computed by a call ofQ(Y1, k

′). WhenY = [i]Y1, it

is trivial sinceX = [i+k]Y1. WhenY = Y
[i]
1 , since

X = [k](Y [i]
1) = ([k]Y1)[i], we can compute the value

Q(X, k) from the valuesQ(Y1, k) andi.

Case 5:X = Y [k]. It is not hard to see thatlpf(X) =
lpf(Y), if |Y | − k > |lpf(X)|, and lpf(X) =
(lpf(Y))[k−(|Y |−|lpf(Y)|)], otherwise.

Since recursive call of the functionQ(X, k) continues at
most height(X) times, the valuelpf(X) is computed in
O(height(X)) time.

For a stringu ∈ Σ∗, let

lps(u) = the longest prefix of the stringu that is
also a suffix ofP , and

lsp(u) = the longest suffix of the stringu that is
also a prefix ofP .

Now we are ready to prove Theorem 1.

Proof of Theorem 1 Note thatNodeSTP (X) = lpf(X),
if |X| = |lpf(X)|, and nil, otherwise. Also note that
Jump(0, X) = lsp(X) = lsp(lsf(X)). The table which
stores the valueslsp(u) for all factorsu of P can be com-
puted inO(m2) time and space. The proof is complete.

5.2 Realization ofOutput

Recall the definition of the setOutput(j, u). According
to whether a pattern occurrence covers the boundary be-
tween the stringsP [1 : j] andu, we can partition the set
Output(j, u) into two disjoint subsets as follows.

Output(j, u) = Output(j, lpps(u)) ∪ Output(0, u),

wherelpps(u) denotes the longest prefix of the stringu that
is also a proper suffix ofP . Since it holds thatlpps(X) =
lpps(lpf(X)), we can obtainlpps(X) for X ∈ D in O(1)
time using a table which stores the valueslpps(u) for u ∈
Factor(P). Such a table can be constructed inO(m2) time
and space.

First, we consider the subsetOutput(j, lpps(u)). Let
PrefSuff(j, k) = Occ

(
P, P [1 : j] ·P [m−k+1 : m]

)
	j. It

holds thatOutput(j, lpps(u)) = PrefSuff
(
j, |lpps(u)|

)
\{0},

where we exclude the integer0 which corresponds to the
case ofj = m. Then, it follows from Lemma 1 that the set
PrefSuff(j, k) has the following property.

Lemma 6 If PrefSuff(j, k) has more than two elements, it
forms an arithmetic progression, where the step is the small-
est period ofP .

Lemma 7 The table PrefSuff(j, k) for all pairs (k, `) ∈
{0, . . . , m} × {0, . . . , m} can be computed inO(m2) time
and space. Each entry of the table occupies onlyO(1)
space.

Proof. It follows from Lemma 6 thatPrefSuff(j, k) can be
stored inO(1) space as a pair of the minimum and the max-
imum values in it. The table storing the minimum values
of PrefSuff(j, k) for all (k, `) can be computed inO(m2)
time as stated in [1]. (TableN2 defined in [1] satisfies
min(PrefSuff(j, k)) = m−N2(k, `).) By reversing the pat-
ternP , the table of the maximum values is also computed
in O(m2) time. The smallest period ofP is computed in
O(m) time.

From the above, we have the following lemma.

Lemma 8 The procedure which enumerates the set
Output(j, lpps(u)) for j ∈ {0, . . . , m} and u ∈ D can be
realized inO(m2) time and space, and it can run inO(`)
time, wherè = |Output(j, lpps(u))|.

Next, we consider the subsetOutput(0, u). Then, it holds
that Output(0, u) = Occ (P, u). In what follows, we give
the computation of a representation of the setsOcc(P, X)
for the variablesX in D.

Denote byOcc?(P, u • v) the set of occurrences ofP
within the concatenation of two stringsu andv which cov-
ers the boundary betweenu andv. That is,Occ?(P, u•v) =

{
s ∈ Occ(P, uv)

∣∣ |u| ≤ s ≤ |u| + |P |
}
. Since

lsp(u) = lsp(lsf(u)) andlps(u) = lps(lpf(u)), we can ob-
tain inO(1) time the valueslsp(X) andlps(X) for X ∈ D
using the table which stores the valueslsp(u) andlps(u) for
u ∈ Factor(P), respectively. Then we have the next two
lemmas.

Lemma 9 For X = Y Z, the set Occ(P, X) can be com-
puted inO(1) time using the table PrefSuff, assuming that
the sets Occ(P, Y) and Occ(P,Z) and the values|lsp(Y)|
and|lps(Z)| are already computed.

Proof. It follows from the factsOcc?(P, Y • Z) =
PrefSuff

(
|lsp(Y)|, |lps(Z)|

)
andOcc(P, X) = Occ(P, Y)

∪((Occ?(P, Y • Z) ∪ Occ(P, Z))⊕ |Y |).

Lemma 10 For X = Y k with k > 1, the set Occ(P, X)
can be computed inO(1) time using the table PrefSuff, as-
suming that the set Occ(P, Y) and the value|lsp(Y)| and
|lps(Y)| are already computed.

Proof. We have three cases to consider.

Case 1:|P | ≤ |Y |. SinceP cannot cover more than
two Y ’s, Occ(P, X) is represented by a four tuple of
a pointer toOcc(P, Y), Occ?(P, Y • Y), |Y |, andk.

Case 2:|Y | < |P | < 2|Y |. We build two setsOcc?(P, Y •
Y) andOcc?(P, Y • Y Y)\Occ?(P, Y • Y). These sets
are computed only inO(1) time and space.Occ(P, X)
is represented by these sets,|Y | andk.

Case 3:2|Y | ≤ |P |. Note thatP occurs withinY ` for
some` > 0 if and only if (1) Y is a factor ofP ,
and (2)|Y | is a period ofP . The first item is true if
NodeSTP (Y) 6= nil. The second item is true if|Y | is
a multiple of the smallest periodt of P (recall the peri-
odicity lemma). The setOcc(P, X) forms an arithmetic
progression, whose step ist.

Lemma 11 We can build inO(‖D‖ · height(D) + m2)
time usingO(‖D‖ + m2) space a data structure by which
the enumeration of the set Occ(P, X) is performed in
O(height(X) + `) time, wherè = |Occ(P, X)|. If D con-
tains no truncation, it can be built inO(‖D‖ + m2) time
and space, and the enumeration requires onlyO(`) time.

Proof. Recall the syntax trees defined in Section 3. A node
labeled byX of a syntax tree is said to beactive if (1)
it has a child labeled byY such that eitherOcc(P, X) 6=
Occ(P, Y), or (2) it is a leaf node andOcc(P,X) 6= ∅.
The equality testing of the sets is replaced by the equal-
ity testing of their cardinalities, since it holds that either
Occ(P, X) ⊇ Occ(P, Y)⊕ k for concatenation and repeti-
tion, orOcc(P, X) ⊆ Occ(P, Y) ⊕ k for truncation, where
k is an appropriate offset.

It is not difficult to show that the tableCard(X) which
stores the cardinalities ofOcc(P, X) for all variablesX in
D, can be computed inO(‖D‖·height(D)+m2) time using
O(‖D‖+ m2) space. IfD contains no truncation, it can be
computed inO(‖D‖+ m2) time and space.

Next, using the tableCard, we add, for each nodev la-
beled byX, pointers as short-cut from it into the nearest ac-
tive descendants. Ifv has two children, we add two pointers.
By using these pointers, we can skip the inactive nodes in
traversing the syntax trees so that the enumeration is com-
pleted in linear time proportional to the number of elements.
To report the exact positions of pattern occurrences, we also
associate the ‘offset’ information.

We now briefly describe how to enumerate the set
Occ(P, X) for a variableX. When there is no truncation,
we have only to traverse the syntax treeT (X) utilizing the
short-cut pointers, and output the position of occurrences.
The time complexity is obviously linear to the number of
occurrences in this case. When we encounter a suffix trun-
cation, we monitor the enumeration in its descendants and
terminate the process if it exceeds the condition. If we en-
counter a prefix truncation, a kind of binary search will nav-
igate us inO(height(X)) time to the first position of the oc-
currence in its subtree. Then we continue the enumeration.

Proof of Theorem 2It follows from Lemmas 8 and 11.

6 Concluding remarks

We introduced a collage system which is an abstraction
of various dictionary-based compression methods. We de-
veloped a general compressed matching algorithm which
runs inO((‖D‖ + |S|) · height(D) + m2 + r) time with
O(‖D‖+ m2) space. The factorheight(D) can be dropped
if the collage system contains no truncation. It coincides
with the observation by Navarro and Raffinot [14] that LZ77
compression is not suitable for compressed pattern match-
ing compared with LZ78 compression. Recall that LZ77
requires truncation in our collage system while LZ78 does
not. They proposed a new hybrid compression method of
LZ77 and LZ78, whose intention is to achieve both effec-
tive compression and efficient compressed pattern match-
ing [14]. We can represent their compression method by a
collage system with no truncation.

For dealing with multiple patterns, we need to modify the
function Jumpand the procedure for enumeratingOutput.
We have verified thatJumpcan be generalized to treat multi-
ple patterns. Although we omit the detail, the idea is almost
the same as [11]. That is, we simulate the move of the AC
automaton instead of the KMP automaton, and use the gen-
eralized suffix trie [8]. ForOutput, we have also done if a
collage system contains neither repetitions nor truncations.
The rest is left for our future work.

Kosaraju [12] showed a faster pattern matching al-
gorithm for LZW compression, which runs inO(n +
m
√

m log m) time. It is a challenging problem to achieve
this bound in our general framework.

References

[1] A. Amir, G. Benson, and M. Farach. Let sleeping files lie:
Pattern matching in Z-compressed files.Journal of Com-
puter and System Sciences, 52:299–307, 1996.

[2] A. Apostolico and Z. Galil. Pattern Matching Algorithm.
Oxford University Press, New York, 1997.

[3] M. Crochemore and W. Rytter.Text Algorithms. Oxford
University Press, New York, 1994.

[4] E. S. de Moura, G. Navarro, N. Ziviani, and R. Baeza-Yates.
Direct pattern matching on compressed text. InProc. 5th
International Symp. on String Processing and Information
Retrieval, pages 90–95. IEEE Computer Society, 1998.

[5] E. S. de Moura, G. Navarro, N. Ziviani, and R. Baeza-Yates.
Fast sequencial searching on compressed texts allowing er-
rors. InProc. 21st Ann. International ACM SIGIR Confer-
ence on Researchand Development in Information Retrieval,
pages 298–306. York Press, 1998.

[6] P. Gage. A new algorithm for data compression.The C Users
Journal, 12(2), 1994.

[7] L. Gasieniec, M. Karpinski, W. Plandowski, and W. Rytter.
Efficient algorithms for Lempel-Ziv encoding. InProc. 5th
Scandinavian Workshop on Algorithm Theory, pages 392–
403, 1996.

[8] L. C. K. Hui. Color set size problem with application to
string matching. InCombinatorial Pattern Matching, vol-
ume 644 ofLecture Notes in Computer Science, pages 230–
243. Springer-Verlag, 1992.

[9] M. Karpinski, W. Rytter, and A. Shinohara. An efficient
pattern-matching algorithm for strings with short descrip-
tions. Nordic Journal of Computing, 4:172–186, 1997.

[10] T. Kida, M. Takeda, A. Shinohara, and S. Arikawa. Shift-
And approach to pattern matching in LZW compressed text.
In Proc. 10th Ann. Symp. on Combinatorial Pattern Match-
ing, Lecture Notes in Computer Science. Springer-Verlag,
1999. to appear.

[11] T. Kida, M. Takeda, A. Shinohara, M. Miyazaki, and
S. Arikawa. Multiple pattern matching in LZW compressed
text. In J. A. Atorer and M. Cohn, editors,Proc. Data Com-
pression Conference ’98, pages 103–112. IEEE Computer
Society, 1998.

[12] S. Kosaraju. Pattern matching in compressed texts. InProc.
Foundation of Software Technology and Theoretical Com-
puter Science, pages 349–362. Springer-Verlag, 1995.

[13] M. Miyazaki, A. Shinohara, and M. Takeda. An improved
pattern matching algorithm for strings in terms of straight-
line programs. InProc. 8th Ann. Symp. on Combinatorial
Pattern Matching, volume 1264 ofLecture Notes in Com-
puter Science, pages 1–11. Springer-Verlag, 1997.

[14] G. Navarro and M. Raffinot. A general practical approach
to pattern matching over Ziv-Lempel compressed text. In
Proc. 10th Ann. Symp. on Combinatorial Pattern Matching,
Lecture Notes in Computer Science. Springer-Verlag, 1999.
to appear.

[15] M. Nelson. The data compression book. M&T Publishing,
Inc., Redwood City, Calif., 1992.

[16] Y. Shibata, T. Kida, S. Fukamachi, M. Takeda, A. Shino-
hara, T. Shinohara, and S. Arikawa. Byte pair encoding: a
text compression scheme that accelerates pattern matching.
Technical Report DOI-TR-CS-161, Department of Informat-
ics, Kyushu University, April 1999.

[17] Y. Shibata, M. Takeda, A. Shinohara, and S. Arikawa. Pat-
tern matching in text compressed by using antidictionaries.
In Proc. 10th Ann. Symp. on Combinatorial Pattern Match-
ing, Lecture Notes in Computer Science. Springer-Verlag,
1999. to appear.

[18] J. Storer and T. Szymanski. Data compression via textual
substitution.J. Assoc. Comput. Mach., 29(4):928–951, Oct
1982.

[19] T. A. Welch. A technique for high performance data com-
pression.IEEE Comput., 17:8–19, June 1984.

[20] J. Ziv and A. Lempel. Compression of individual sequences
via variable-rate coding.IEEE Trans. on Inform. Theory,
24(5):530–536, Sep 1978.

