
A UNIFYING FRAMEWORK FOR

COMPUTATIONAL REINFORCEMENT LEARNING
THEORY

BY LIHONG LI

A dissertation submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Computer Science

Written under the direction of

Michael L. Littman

and approved by

New Brunswick, New Jersey

October, 2009



c© 2009

Lihong Li

ALL RIGHTS RESERVED



ABSTRACT OF THE DISSERTATION

A Unifying Framework for

Computational Reinforcement Learning Theory

by Lihong Li

Dissertation Director: Michael L. Littman

Computational learning theory studies mathematical models that allow one to formally

analyze and compare the performance of supervised-learning algorithms such as their

sample complexity. While existing models such as PAC (Probably Approximately Cor-

rect) have played an influential role in understanding the nature of supervised learning,

they have not been as successful in reinforcement learning (RL). Here, the fundamental

barrier is the need for active exploration in sequential decision problems.

An RL agent tries to maximize long-term utility by exploiting its knowledge about

the problem, but this knowledge has to be acquired by the agent itself through explor-

ing the problem that may reduce short-term utility. The need for active exploration

is common in many problems in daily life, engineering, and sciences. For example, a

Backgammon program strives to take good moves to maximize the probability of win-

ning a game, but sometimes it may try novel and possibly harmful moves to discover

how the opponent reacts in the hope of discovering a better game-playing strategy. It

has been known since the early days of RL that a good tradeoff between exploration

and exploitation is critical for the agent to learn fast (i.e., to reach near-optimal strate-

gies with a small sample complexity), but a general theoretical analysis of this tradeoff

remained open until recently.
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In this dissertation, we introduce a novel computational learning model called KWIK

(Knows What It Knows) that is designed particularly for its utility in analyzing learn-

ing problems like RL where active exploration can impact the training data the learner

is exposed to. My thesis is that the KWIK learning model provides a flexible, modu-

larized, and unifying way for creating and analyzing reinforcement-learning algorithms

with provably efficient exploration. In particular, we show how the KWIK perspective

can be used to unify the analysis of existing RL algorithms with polynomial sample

complexity. It also facilitates the development of new algorithms with smaller sample

complexity, which have demonstrated empirically faster learning speed in real-world

problems. Furthermore, we provide an improved, matching sample complexity lower

bound, which suggests the optimality (in a sense) of one of the KWIK-based algorithms

known as delayed Q-learning.
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Chapter 1

Introduction

This chapter gives an informal introduction to reinforcement learning and the class of

problems we focus on in this dissertation, explains the challenges we try to solve, and

then states the thesis of this dissertation, followed by a summary of contributions.

1.1 Reinforcement Learning: Achieving Intelligence by Interaction

Reinforcement learning or RL [Bertsekas and Tsitsiklis 1996; Kaelbling et al. 1996;

Sutton and Barto 1998] is a sub-area of artificial intelligence [Russell and Norvig 2002],

which considers how an autonomous agent situated in a possibly unknown environment

may come to act intelligently by interacting/experimenting with the environment. Here,

the agent refers to a software or hardware entity that can perceive the state of the

environment, and take actions to affect the environment’s state. In return, it receives

a numerical signal called reinforcement from the environment for every action it takes.

Its goal is to maximize the total reinforcements it receives over time. The so-called

“reward hypothesis” says that the problem of achieving a goal can always be formulated

as one of maximizing the expected value of the cumulative, real-valued reinforcement

signals [Sutton 2004].

Reinforcement learning is “in a sense the whole Al problem in a microcosm” [Sut-

ton 1992],1 and has broad applicability. In addition to numerous natural applications

in robotics (e.g., Bresina et al. [2002], Tedrake et al. [2004], Ng et al. [2004], Peters

and Schaal [2007]), reinforcement learning has also been be applied successfully to

1Reinforcement learning also arguably subsumes many extensively studied machine-learning prob-
lems [Langford and Singh 2006].
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many other learning-to-control problems in a broad sense, including the early checkers-

learning program [Samuel 1959], the celebrated TD-Gammon program [Tesauro 1995]

that achieved world-champion-level game-playing ability in backgammon, packet rout-

ing [Boyan and Littman 1994], elevator dispatching [Crites and Barto 1996], discrete

optimization problems such as job-shop scheduling and Boolean satisfiability [Zhang and

Dietterich 1995; Boyan and Moore 2000; Lagoudakis and Littman 2001], channel allo-

cation [Singh and Bertsekas 1997], algorithm selection [Lagoudakis and Littman 2000],

option pricing [Tsitsiklis and Van Roy 2001], spoken dialog management [Williams

2006], resource allocation [Tesauro 2005], the game of Go [Silver et al. 2007], and pa-

rameter selection [Ruvolo et al. 2009], among numerous others.

Below, I describe some concrete examples and discuss how to formulate them as

reinforcement-learning problems. We start with a simple problem that will serve as a

running example in this chapter, and then move on to realistic ones.

Example 1 Consider a minimum-cost navigation task in the directed graph in Fig-

ure 1.1. There is a set of nodes connected by edges, with node S on the left as the

source and node T on the right as the sink. Each edge in the graph is associated with

a real-valued cost, as labelled in the figure. In each episode, the agent starts from the

source and moves along some path to the sink. In some nodes such as S and G, the

agent has to take an action, that is, to decide which edge to follow. Each time it crosses

an edge, the agent receives its cost. Once the sink is reached, the next episode begins.

We may view reinforcements as negative costs in this example, and thus maximizing the

total reinforcements received in an episode is equivalent to minimizing the total cost. In

this case, the minimum-cost path from S to T is: S → D → E → F → G → H → T ,

and the total cost is 3.

The simple problem above can in fact model many challenging problems including

numerous examples extensively studied in the intelligent planning literature [Russell

and Norvig 2002]. Furthermore, more realistic problems can be modelled if we intro-

duce stochastic transitions to the minimum-cost navigation problem; that is, following

an edge may land the agent to more than one node in a probabilistic manner. Such
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Figure 1.1: A directed graph with edge costs for minimum-cost navigation: S is the
source node and T the sink.

problems are known as stochastic shortest-path problems that find numerous applica-

tions [Bertsekas and Tsitsiklis 1996].

Example 2 In board games like backgammon and Go, two agents make alternating

moves. The state of the game is the entire board configuration; the number of states

is huge but still finite. We may assign a 0 reinforcement to every move an agent

makes, 1 if an agent wins, and −1 if it loses. By maximizing the total reinforcements

it receives, each agent effectively maximizes the chances it wins a game. After being

formulated into a reinforcement-learning problem, both games can be solved by standard

RL algorithms [Tesauro 1995; Silver et al. 2007]. Note that chess is a deterministic

game, while backgammon is stochastic because the next board configuration depends on

the result of rolling a die.

Example 3 In a spoken dialog system (SDS), an agent (a computer software/hardware

system) participates in a spoken conversation with a person. Dialer—a voice dialer

application accessible within the AT&T Research Labs, for example, receives daily calls

from human users, asks questions (such as ConfirmName) to collect information about

the callees, and then directs the call to the desired persons [Williams 2008]. Dialer’s

vocabulary consists of about 50, 000 AT&T employees. Since many employees have the

same name, Dialer can disambiguate by asking for the callee’s location. It can also

disambiguate between multiple phone listings for the same person (office vs. mobile)

and indicate when a callee has no number listed. In designing the system, we may

assign a −1 reinforcement for every communicative action Dialer takes, a large final

reward of +20 if the call is correctly transferred and a large penalty of −20 otherwise.

By maximizing the total reinforcements Dialer receives in a course of conversation, it
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fulfills our design objective: it should transfer a call to the desired callee by asking as few

questions as possible. After formulating the optimization of Dialer as an RL problem,

we may apply various RL algorithms to solve it [Williams 2008; Li et al. 2009c].

In this dissertation, we focus on risk-neutral, single-agent, online reinforcement

learning in Markovian environments that are fully observable and stationary. Formal

definitions are given in the next chapter, but it is helpful to give informal explanations

for our scope of interest.

• We focus on risk-neutral RL agents who goal is to maximize expected total re-

inforcements. Therefore, two distributions of total reinforcements are effectively

identical as long as they have the same expectation. In contrast, a risk-aversive or

risk-sensitive RL agent has to strike a balance between getting high reinforcements

and avoiding catastrophic situations even if they happen with tiny probability

(see, e.g., Mihatsch and Neuneier [2002]). For example, a profit-maximizing firm

may want to be conservative in making business decisions to avoid bankruptcy

even if its conservation will probably lower the expected profits.

• We consider RL problems that involve decision making of a single agent so that the

behavior of the environment is fixed beforehand and does not change according

to what the agent does. In contrast, numerous works in multi-agent systems

study interactions among multiple agents such as collaboration and competition

(see, e.g., Littman [1996]). Board games in Example 2 are instances of two-agent

systems, while spoken dialog management in Example 3 is a natural fit of single-

agent RL.

• We consider online RL problems in the sense that the interaction between the

agent and environment is continuous without interruption. Consequently, the

agent only perform actions in states it actually visits. In contrast, some authors

have studied mechanisms such as reset (which sends the agent to a certain state)

or generative model (which generates sample interactions in a state even if it is

not the actual state of the environment). The online RL problem is arguably

more challenging and general. More discussions are in §2.1.

• We consider Markovian environments where the state contains sufficient statistics
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to summarize the history of the environment. In other words, the future behavior

of the environment depends only on its current state and the actions taken by the

agent, and is independent of its history given the current state.

• A related assumption is that the state of the environment is fully observable

by the agent and thus the agent has full access to the sufficient statistics of the

environment’s history. In contrast, an agent in a partially observable environment

(e.g., partially observable Markov decision processes [Kaelbling et al. 1998]) has

the additional challenge of inferring the state of the environment. In poker, for

example, an agent does not observe the cards of the others, while in board games

like Go the entire state is completely visible to both players.

• We only consider stationary environments whose behavior do not change over

time. For instance, we require that the probability of outcomes of a coin flip does

not depend on when the coin is flipped. Sometimes a non-stationary problem can

be turned into a stationary one by including time as a component in the state of

the environment.

All these assumptions above are reasonable approximations of many real-life prob-

lems and are common in the majority of RL literature. They simplify the problem

setting and allow one to focus on many key issues in reinforcement learning that we

will discuss in the next section.

1.2 Three Challenges of Reinforcement Learning

Three challenges, among others, are critical in reinforcement learning: the need for

sequential decision making, the exploration/exploitation dilemma, and the need for gen-

eralization across states.

1.2.1 Sequential Decision Making

In reinforcement learning, an agent has to achieve its goal (that is, to maximize the total

reinforcements) by taking a sequence of actions. Each action affects not only the current

reinforcement the agent receives, but also the new state of the environment. Therefore,



6

the agent needs to maintain a balance between maximizing current reinforcement and

reaching a “good” new state that allows more reinforcements to be obtained in the

future. An agent that simply maximizes current reinforcement is suboptimal in almost

all RL problem of practical interests.

Example 4 Let us reconsider Example 1. In order for the agent to find a minimum-

cost path from the source S to sink T in Figure 1.1, it is insufficient to behave greedily in

each node by selecting the adjacent edge with the smallest cost. In node S, for instance,

if the agent chooses to go to A because the immediate cost is 0 as opposed to the cost

of 3 to go to D, then it has to suffer more costs by travelling from A to G. Intuitively,

the long-term benefit of going to the better node D outweighs the myopic advantage of

going to A.

1.2.2 The Exploration/Exploitation Dilemma

The second challenge to designing reinforcement-learning algorithms is the explo-

ration/exploitation dilemma, which is sometimes called the problem of dual con-

trol [Fel’dbaum 1961]. How can the agent maximize its total reinforcement if it has in-

complete knowledge about the environment? Without external help, the agent needs to

interact/experiment with the environment to acquire such knowledge. While the agent

strives to maximize its total reinforcements, it has to purposely try actions—even if

they appear suboptimal—in the hope of getting more total reinforcements in the future

by obtaining more information about the environment. A purely exploring agent that

extensively explores the environment is undesirable as such a utility-blind agent may

suffer small reinforcements. A purely exploiting agent which always picks actions that

appear the best is also undesirable as it may end up with a suboptimal action-choosing

strategy because of its incomplete knowledge of the environment. Therefore, a good

tradeoff between exploration and exploitation is critical.

Example 5 In Example 1, suppose the agent knows the costs of edges along the fol-

lowing path: S → D → E → F → G → T , but not the costs of others. It has to

explore an edge by actually crossing it. If the agent is afraid of potential cost increase
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incurred by exploration, it may content itself with the path above and stick to it in every

episode. By doing so, the agent avoids taking the worse path to T via I. However, such

a conservative agent will miss the actual optimal path with insufficient exploration, and

will suffer more costs in the long run.

The need for exploration also exists in other machine-learning settings such as active

learning, in which a supervised-learning agent decides what input–output data to use

in its training set; see Settles [2009] for a recent survey. As we will see in §4, the

exploration/exploitation tradeoff is significantly harder in sequential decision making.

On the other hand, techniques developed for exploration in RL may find use in other

machine-learning problems as well.

1.2.3 Generalization

The third challenge of reinforcement learning, which is also faced by other machine-

learning and artificial-intelligence problems, is how to generalize across states. The

game of backgammon, for example, has a gigantic state space (in which each state is a

board configuration), rendering reinforcement learning hopeless unless approximation

techniques are used to enable generalization [Tesauro 1995].

Consider the following example for concreteness.

Example 6 To find a minimum-cost path in problems like Figure 1.1 when edge costs

are unknown, the agent has to cross all edges at least once in the worst case, rending

this approach inefficient in graphs with many edges. However, if the agent has access

to additional information to generalize its observation of costs of some edges to others,

exploration may be done more efficiently. Figure 1.2 depicts a directed graph, in which

each edge is associated with a cost vector of dimension n = 3. The cost of traversing

an edge is the dot product of its cost vector with a fixed weight vector w∗ = [1, 2, 0]⊤.

The resulting edge costs coincide with those in Figure 1.1.

Now suppose w∗ is unknown to the agent, but the graph topology and all cost vectors

are. Also, we suppose the agent has explored the following edges and thus observed the

corresponding costs: (G,H), (G, I), (G,T ). These “training data” allow the agent to
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Figure 1.2: A directed graph with edge-cost vectors for minimum-cost navigation: S is
the source node and T the sink. The cost of an edge is the dot product between its cost
vector and the vector w∗ = [0, 1, 2]⊤. The resulting edge costs are identical to those in
Figure 1.1.
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for w∗ directly. Thus, the agent is able to infer all edge costs—without actually crossing

all edges—and then find the minimum-cost path. This example shows how generalization

of knowledge from one state/node to others may result in faster learning.

While function approximation such as linear regression, neural networks, and deci-

sion trees has been extensively studied in supervised learning (see, e.g., Hastie et al.

[2003]), it is much harder to be applied in reinforcement learning, partly due to the

sequential decision making nature of reinforcement-learning problems and the need for

balancing exploration and exploitation.

1.3 Thesis

The challenges discussed in the previous section suggest the difficulty of the central

question studied in this dissertation: Can we devise reinforcement-learning algorithms

that provably efficiently solve the exploration/exploitation dilemma when function ap-

proximation may be used?

The dissertation investigates a computational learning model called Knows What

It Knows or KWIK that is suitable for use in reinforcement-learning algorithms. A

key characteristic of a KWIK learner is the option of explicitly saying “I don’t know”
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when the learner is unable to make a sufficiently accurate prediction. Naturally, this

knows-what-it-knows property is useful for an RL agent to decide what to explore to

reduce uncertainty about the environment, as illustrated in the following example.

Example 7 In Example 6, the agent is able to infer w∗ if it has crossed the edges

(G,H), (G, I), (G,T ). However, we did not address the question how the agent decide

which edge to explore and which not to. Again, suppose w∗ ∈ R
3
+ is unknown to the

agent, but the graph topology and all cost vectors are.

First, the agent can deduce that the path, S → A → B → C → G, is more costly

than the alternative, S → D → E → F → G, so the agent can safely choose the latter

to arrive at G. From node G, there are three distinct paths to reach T : G → H → T ,

G→ T , and G→ I → T . Now, the agent has to decide which edge to follow.

A simple approach for this task is for the agent to assume edge costs are uniform

and walk the shortest (middle) path to collect the following data:

w∗ · [1, 1, 1] = 3, w∗ · [0, 1, 0] = 1.

Standard linear least-squares regression could use this dataset to find the following so-

lution: ŵ = [1, 1, 1]⊤. The learned weight vector could then be used to estimate costs

for the three paths from G to T : 2 for the top, 1 for the middle, and 2 for the bottom.

Using these estimates, an agent would continue to take the middle path forever, never

realizing it is not optimal.

In contrast, consider a learning algorithm that “knows what it knows”. Instead of

creating an approximate weight vector ŵ, it reasons about whether the costs for each edge

can be obtained from the available data. The middle path, since all its edge costs have

been observed, is definitely 1. The last edge of the bottom path has cost vector [0, 0, 0],

so its cost must be 0, but the penultimate edge of this path has cost vector [1, 0, 1]. This

vector is a linear combination of the two observed cost vectors, so, regardless of w∗, its

cost is

w∗ · [1, 0, 1] = w∗ · ([1, 1, 1]− [0, 1, 0]) = w∗ · [1, 1, 1]−w∗ · [0, 1, 0] = 3− 1 = 2.

Thus, the agent knows the bottom path’s cost is 2—worse than the middle path.



10

The vector [1, 0, 0] on the top path is linearly independent of the observed cost vectors,

so its cost is undecided. We know we do not know. A safe thing to assume provisionally

is that the cost is zero—the smallest possible cost, encouraging the agent to try the top

path in the next episode. Now, it observes w∗ · [1, 0, 0] = 0, allowing it to infer w∗

exactly and accurately predict the cost for any vector (since the training data spans

R
3). It now knows that it knows all the costs, and can confidently take the optimal

(top) path.

In general, any algorithm that guesses a weight vector may never find the optimal

path. An algorithm that uses linear algebra to distinguish known from unknown costs

will either take an optimal route or discover the cost of a linearly independent cost

vector on each episode. Thus, it can never choose suboptimal paths more than n times.

Formal discussions of learning noise-free linear functions are provided in §5.2.3.

In contrast, an agent that does not generalize, but visits every edge to learn its

cost, will require m episodes to learn optimal behavior, in the worst case, where m is

the number of edges in the graph. This example shows how combining generalization

with explicitly distinguished known and unknown areas can lead to efficient and optimal

decision algorithms.

As indicated in the example above, KWIK provides a useful mechanism for efficient

exploration. We argue that it does capture the necessary ingredients for efficient rein-

forcement learning, and indeed relate KWIK learning to efficient reinforcement learning

in a general way. We study some of the basic properties of KWIK learning, and then

use it to unify many existing provably efficient reinforcement-learning algorithms as

well as to propose new ones. My thesis is the following:

The KWIK learning model provides a flexible, modularized, and unifying way

for creating and analyzing reinforcement-learning algorithms with provably

efficient exploration.

1.4 Contributions

The rest of the document is divided into three parts, followed by a concluding chap-

ter and two appendices: Part I (§§2–4) reviews background of planning and learning
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in Markov decision processes; Part II (§§5–6) introduces the KWIK learning model;

Part III (§§7–8) uses tools from the KWIK model to create, analyze, and unify many

provably efficient reinforcement-learning algorithms. Each chapter and the major con-

tributions are outlined as follows.

• §2 reviews the basic theory of Markov decision processes (MDPs)—the class of

environments we focus on, and then defines the “planning” and “learning” prob-

lems in an MDP. Most results in this chapter are found in standard textbooks on

this topic, such as the ones by Puterman [1994] and by Bertsekas [2001].

• §3 surveys planning algorithms in MDPs, including exact algorithms for finite

MDPs and approximate algorithms that are more general and suitable for general

MDPs. New results in this chapter include:

⋄ A convergence proof of the prioritized sweeping algorithm and some of its

variants [Li and Littman 2008b].

⋄ A unified notation and theory of state abstraction for MDPs [Li, Walsh, and

Littman 2006].

• §4 surveys reinforcement learning in MDPs. First, classic examples of exact and

approximate RL algorithms are reviewed. Then, the exploration/exploitation

dilemma is introduced, which motivates the notion of PAC-MDP as a mathemat-

ical framework for formal analysis of exploration efficiency of RL algorithms. New

results in this chapter include:

⋄ The notion of PAC-MDP for formal analysis of RL algorithms, and a general

PAC-MDP theorem that generalizes the original one studied by Strehl, Li,

and Littman [2006a]. Furthermore, the theorem improves its ancestor via a

more careful analysis, yielding a better bound that will be used in §§7–8 to

improve a number of existing PAC-MDP results.

⋄ An example showing that Bayesian exploration may not be PAC-MDP al-

though it is optimal in its own sense.
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• §5 introduces the KWIK learning model, presents a few KWIK-learnable exam-

ples, and studies its basic properties. New results in this chapter include:

⋄ A formal definition of the KWIK model [Li, Littman, and Walsh 2008].

⋄ A number of KWIK-learnable examples, both deterministic and stochas-

tic, together with complete algorithmic details and analyses. Some of them

improve or extend previous results by Li, Littman, and Walsh [2008] and

Brunskill, Leffler, Li, Littman, and Roy [2008].

⋄ A preliminary discussion of basic properties of the KWIK framework.

• §6 studies general techniques for constructing algorithms for complex KWIK prob-

lems by combining base KWIK algorithms. New results in this chapter include:

⋄ Full details and improved analyses of a few general KWIK combination

techniques [Li, Littman, and Walsh 2008] including input-partition, output-

combination, cross-product, union, and noisy union.

⋄ A matching lower bound showing the optimality of noisy union in terms of

sample complexity [Diuk, Li, and Leffler 2009].

⋄ An algorithm for KWIK-learning multivariate normal distributions with un-

known mean vectors and covariance matrices, generalizing previous results

by Brunskill, Leffler, Li, Littman, and Roy [2008] and others.

• §7 studies and unifies model-based PAC-MDP reinforcement learning, in which

the agent estimates a model of the environment from observations and then uses

the model to choose actions. New results in this chapter include:

⋄ A novel, abstract algorithm, KWIK-Rmax, which is shown to be PAC-MDP

whenever the transition and reward functions of the underlying MDP can be

KWIK-learned.

⋄ A unification of almost all existing model-based PAC-MDP algorithms, based

on KWIK-Rmax, including those for finite MDPs, MDPs with linear dynam-

ics, MDPs with normal offset dynamics, and factored-state MDPs modeled

as a dynamical Bayes net (DBN).
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⋄ A new PAC-MDP algorithm, met-Rmax, which can learn the structure of the

DBN while efficiently exploring a factored-state MDP, improves on a state-

of-the-art algorithm both analytically and empirically [Diuk, Li, and Leffler

2009].

• §8 studies model-free PAC-MDP reinforcement learning, in which the agent de-

cides what action to take without estimating a model of the environment. New

results in this chapter include:

⋄ A general lemma relating Bellman error and a condition for PAC-MDP for

algorithms that acts greedily with respect to its value function. The lemma is

used in the PAC-MDP analysis of three algorithms, which are simplified ver-

sions of their ancestors [Strehl, Li, and Littman 2006b; Strehl, Li, Wiewiora,

Langford, and Littman 2006c].

⋄ The first model-free PAC-MDP algorithm, delayed Q-learning, for finite

MDPs. The algorithm simplifies the original one of Strehl, Li, Wiewiora,

Langford, and Littman [2006c].

⋄ A new lower bound of sample complexity of exploration for RL algorithms,

which matches the sample complexity upper bound of delayed Q-learning in

terms of several factors, including the probably most important one (number

of states), and thus showing the optimality of delayed Q-learning in this sense.

⋄ A new algorithm, LSPI-Rmax, which combines the algorithmic insights of

Rmax with the model-free least-squares policy iteration algorithm [Li, Littman,

and Mansley 2009a]. The algorithm has demonstrated promising empirical

results in a few benchmark problems, suggesting PAC-MDP algorithms and

analysis are useful for creating practical RL algorithms that work well em-

pirically.

⋄ A new algorithm, REKWIRE, which is model-free and uses linear function

approximation. We show REKWIRE is PAC-MDP under certain assumptions

about the linear approximation architecture [Li and Littman 2008a].
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• §9 concludes the dissertation, including implications concerning the strengths and

weaknesses of model-based and model-free RL algorithms. A number of open

problems, extensions, and limitations of our work are discussed.

• Supporting materials are provided in the appendices. §A lists the notation and

convention we adopt in the dissertation. §B collects a number of mathematical

facts that are used in our analysis.



Part I

Planning and Learning in Markov

Decision Processes

15
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Chapter 2

Markov Decision Processes

In reinforcement learning, an environment is often modeled as a Markov decision process

or MDP [Puterman 1994], where the history of the environment can be summarized in

a sufficient statistic called state. We first introduce Markov decision processes, define

(optimal) policies and value functions, and then give formal definitions of the planning

and learning problems in an MDP.

2.1 Definition

In reinforcement learning, an environment is often modeled as a Markov decision process

or MDP [Puterman 1994], where the history of the environment can be summarized

in a sufficient statistic called state. MDPs are natural abstraction of many real-life

problems such as those investigated by Puterman [1994].

A Markov decision process is defined as a five-tuple: M = 〈S,A, T,R, γ〉, where:

• S is the state space. It can be discrete or continuous.

• A is the action space. Similarly, it can be discrete or continuous.

• T ∈ (PS)S×A is a transition function, with PS denoting the set of probability

distributions over S. If S is discrete, we may define T (· | s, a) for any (s, a) ∈

S ×A as a probability mass function, so that T (s′ | s, a) is understood to be the

probability of reaching a new state s′ if action a is executed in state s. If S is

continuous, T (· | s, a) is understood to be a probability density function.

• R ∈ R
S×A is a reward function that defines the reinforcements received by the

agent. For now on, we will use the word “reward” instead of “reinforcement”

as the former is used more often in the literature. In most practical situations,

we may assume, without loss of generality, that R is bounded: R ∈ [0, 1]S×A;
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otherwise, policy-invariant reward transformation techniques [Ng et al. 1999] may

be used to transform the reward to the range [0, 1] when a priori bounds are

known for the reward function.

• γ ∈ (0, 1) is a discount factor, whose role will be discussed shortly.

In the minimum-cost navigation task of Example 1, states are the nodes in the

graph, actions are the edges, and rewards are the negative costs. In the spoken dialog

management problem of Example 3, a state contains the agent’s belief distribution of

the user intention and auxiliary information regarding the status of the conversation,

an action may be a communicative action (like asking whom the caller is trying to

reach), and the reward function is as given before. However, it is not appropriate to

model multi-agent problems like those in Example 2 as an MDP.

Definition 1 The online interaction between the agent and environment, modeled as

an MDP M = 〈S,A, T,R, γ〉, proceeds according to the following protocol. Beginning at

the initial timestep t = 1, an online interaction between the agent and the environment

proceeds in discrete timesteps as follows. At timestep t = 1, 2, 3, . . .,

1. The agent perceives the current state st ∈ S of the environment, and takes an

action at ∈ A.

2. In response, the environment sends an immediate reward rt ∈ [0, 1] to the agent,

and moves to a next state st+1 ∈ S. This transition is governed by the dynamics

of the MDP. In particular, the expectation of rt is R(st, at), and the next state

st+1 is drawn randomly from the distribution T (· | st, at).

3. The clock ticks: t← t+ 1.

Our discussion will be easier with the following terminology:

• An MDP is called finite if both the state and action spaces are finite sets; in

contrast, it is called continuous if either the state or action space is continuous.

• An MDP is often referred to as an uncontrolled MDP or a Markov chain if |A| = 1.

For a Markov chain, we may drop the dependence on a denote the transition

function and reward function by T (· | s) and R(s), respectively, since there is

only one action.



18

• An MDP is stochastic if the reward and transitions are randomized; otherwise, it

is deterministic. For a deterministic MDP, we abuse notation by using T (s, a) to

denote the next state of the agent if it takes action a in state s.

2.2 Policy and Value Function

The return of the agent at timestep t, denoted Rt, is defined as the total discounted

reward received by the agent after time t:

Rt
def
=

∞
∑

τ=0

γτrt+τ .

Mathematically, the discount factor is a convenient trick that guarantees boundedness

of the return provided that all immediate rewards are bounded. Practically, it says that

a unit reward in the next timestep is worth γ in the current timestep, which has useful

interpretations in many real-life problems [Puterman 1994].

The return Rt is defined using an infinite sum, which may result in difficulty in

analysis. The following useful lemma states that it can be approximated to arbitrary

precision by a partial sum of a “small” number of leading terms.

Lemma 1 Let Rt(H) be a H-step discounted return at timestep t defined by

Rt(H)
def
=

H−1
∑

τ=0

γτrt+τ .

Then for any ǫ > 0 and t, we have 0 ≤ Rt −Rt(H) ≤ ǫ when

H ≥ 1

1− γ ln
1

ǫ(1− γ) . (2.1)

Proof. It is clear that Rt ≥ Rt(H) as all immediate rewards are non-negative. On

the other hand, if H satisfies Equation 2.1, then the inequality γ ≥ 1 + ln γ implies

H ≥
ln 1

ǫ(1−γ)

ln 1
γ

= logγ (ǫ(1− γ)) ,

and hence

Rt −Rt(H) =
∞
∑

τ=H

γτrt+τ ≤
∞
∑

τ=H

γτ =
γH

1− γ ≤
ǫ(1− γ)
1− γ = ǫ.
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as all immediate rewards are bounded by 1 from above. �

Clearly, the return Rt is a random variable that depends on a few factors: the

transition and reward functions of the MDP as well as the agent’s action-selection rule.

The first two factors are inherent in the environment and cannot be altered by the

agent. However, by varying the way it chooses actions in the interaction, the agent is

able to control or maximize the return. Formally, a stationary policy, π ∈ AS , defines

an action-selection rule, where π(s) is the action to be chosen when the current state

is s. Policies are also called feedback laws or control laws in the literature.

For any MDP M , a stationary policy π determines a distribution of the reward

sequence, and thus a distribution of the return. Therefore, we may talk about expected

return and use it to evaluate a policy. Naturally, a reward-maximizing agent prefers

policies that yield largest expected returns in all states. We define the state-value

function, V π
M (s), as the expected return by executing π starting from state s:

V π
M (s)

def
= Eπ [R1 | s1 = s] , (2.2)

where Eπ refers to the probability distribution of the reward sequence induced by the

dynamics of the MDP as well as the policy (i.e., at = π(st) for all t). Similarly, the

state–action value function, Qπ
M (s, a), is the expected return by taking action a in state

s and following π thereafter:

Qπ
M (s, a)

def
= Eπ [R1 | s1 = s, a1 = a] , (2.3)

To maximize the total rewards received from the environment, the agent desires an

optimal policy π∗ whose value functions, denoted by V ∗
M (s) and Q∗

M (s, a), respectively,

satisfy the conditions:

V ∗
M (s) = max

π
V π

M (s)

Q∗
M (s) = max

π
Qπ

M (s).

The (optimal) state–action value functions are frequently referred to as (optimal) Q-

functions in the literature. If there is no ambiguity, we drop the subscript M from the

value functions and simplify the notation to V π, Qπ, V ∗, and Q∗, respectively.
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It is clear that the value functions defined above must be bounded between 0 and

1/(1− γ), since any return satisfies

R1 =

∞
∑

t=1

γt−1rt ≤
∞
∑

t=1

γt−1 =
1

1− γ .

In some applications, however, expert knowledge is available about a tighter upper

bound of the value function of an MDP. We denote this upper bound by Vmax, and will

use it in the analysis in later chapters to yield tighter results. It should be understood

that, if no such expert knowledge is available, we may simply set Vmax to 1/(1− γ).

As an analogue of Lemma 1, we may define H-step value functions in a straight-

forward manner, which are denoted V π(s,H) and Qπ(s, a,H), respectively. Lemma 1

implies the following result immediately:

Lemma 2 For any ǫ > 0, s ∈ S, a ∈ A, and policy π, we have 0 ≤ V π(s)−V π(s,H) ≤

ǫ and 0 ≤ Qπ(s, a)−Qπ(s, a,H) ≤ ǫ, when

H ≥ 1

1− γ ln
1

ǫ(1− γ) .

The existence of (optimal) value functions and policies is a well-studied problem.

They always exist for finite MDPs, and also exist under certain technical assumptions for

MDPs with infinite (either discrete or continuous) state or action spaces [Bertsekas and

Shreve 1996; Puterman 1994]. It is beyond the scope of the thesis to identify sufficient

conditions for their existence, and to simplify exposition, we will always assume such

quantities exist whenever they are used.

A greedy policy πV (or πQ) with respect to a value function V (or Q) is defined by

πV (s)
def
= argmax

a∈A

(

R(s, a) + γ
∑

s∈S
T (s′ | s, a)V (s′)

)

(2.4)

πQ(s)
def
= argmax

a∈A
Q(s, a). (2.5)

An important fact is that an optimal policy must be greedy with respect to the optimal

value functions:

π∗(s) = argmax
a∈A

(

R(s, a) + γ
∑

s∈S
T (s′ | s, a)V ∗(s′)

)

(2.6)

= argmax
a∈A

Q∗(s, a). (2.7)
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It is often easier to work with the state–action value function than state-value functions.

Most of the results presented in this dissertation are therefore stated in terms of state–

action value functions.

The following lemma, which is proved by Singh and Yee [1994], states that the greedy

policy with respect to a sufficiently accurate value function is uniformly near-optimal.1

Lemma 3 Let Q ∈ R
S×A be a state–action value function, and πQ the greedy policy

with respect to Q. Then,

V ∗(s)− V πQ(s) ≤ ‖Q−Q
∗‖∞

1− γ .

The policies we have discussed so far are deterministic and stationary policies. Two

other kinds of policies will be useful for our purpose, which we will define below. Value

functions as in Equations 2.2 and 2.3 can be defined in the same way, although it

is known that there exists at least one optimal policy that is both deterministic and

stationary [Puterman 1994].

A stochastic and stationary policy is one that selects actions randomly. Specifically,

it maps states to probability distributions over the set of actions; π ∈ (PA)S . We will

use π(a | s) to denote the probability of choosing a in state s when π is stochastic.

Another type of policy is those that are non-stationary in the sense that they do

not map states to actions (or probability distributions over actions, in the case of a

stochastic policy). Rather, it maps a history of interaction to actions. Formally, a

deterministic, non-stationary policy at timestep t is: πt ∈ A(S×A×R)t−1×S , where the

first (t−1) factors of S×A×R refers to the visited states, chosen actions, and observed

rewards in timesteps 1, 2, . . . , t− 1, and the last S corresponds to the current state.

Finally, we mention a useful observation that, when the agent follows a stationary

policy π, then the sequence of states of state–actions may be viewed as states of an

induced Markov chain. For instance, if π is stochastic, then the induced Markov chain

M ′ has an expanded state space, S ′ def
= S ×A, and the transition and reward functions,

1Singh and Yee [1994] considers finite MDPs only, but their proof may be adapted to general MDPs.
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T ′ and R′, are defined respectively by:

T ′ ((s′, a′) | (s, a)
) def

= T (s′ | s, a)π(a′ | s′)

R′ ((s, a)) def
= R(s, a).

2.3 Bellman Equations

Bellman equations characterize the structure of optimal value functions and embody

the principle of dynamic programming [Bellman 1957].

First, we define the Bellman operator (a.k.a. Bellman backup) B ∈
(

R
S)RS

by

BV (s)
def
= max

a∈A
B

aV (s), ∀s ∈ S (2.8)

where the operator Ba associated with action a is defined by

B
aV (s)

def
= R(s, a) + γ

∑

s′∈S
T (s′ | s, a)V (s′), ∀s ∈ S. (2.9)

In other words, BaV defines a new value function where BaV (s) is the one-step looka-

head value of state s using V (·) to retrieve the value of the successor states s′; BV (s)

is the maximum one-step lookahead value. Clearly, properties of B also holds for Ba

since Ba can be viewed as the Bellman operator in a new MDP whose action set is the

singleton {a}. By abusing notation, we also use B to denote the Bellman operator for

action–value functions: given any action–value function Q ∈ R
S×A,

BQ(s, a)
def
= R(s, a) + γ

∑

s′∈S
T (s′ | s, a) max

a′∈A
Q(s′, a′). (2.10)

It is easy to see that the Bellman operator is monotonic in the following sense:

Lemma 4 Let V1, V2 ∈ R
S be two bounded state-value functions and V1 ≤ V2, then

BV1 ≤ BV2. Similarly, let Q1, Q2 ∈ R
S×A be two bounded state–action value functions

and Q1 ≤ Q2, then BQ1 ≤ BQ2.

Proof. Assume V1 ≤ V2, and let s ∈ S be any state. Then for any a ∈ A,

B
aV1(s)−B

aV2(s) = γ
∑

s′∈S
T (s′ | s, a)

(

V1(s
′)− V2(s

′)
)

≤ 0,
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and so

BV1(s)−BV2(s) = max
a∈A

B
aV1(s)−max

a∈A
B

aV2(s) ≤ max
a∈A

(BaV1(s)−B
aV2(s)) ≤ 0,

where the inequality above makes use of the fact that maxx f1(x) − maxx f2(x) ≤

maxx(f1(x)− f2(x)). The inequality for Q can be proved similarly. �

A fundamental property of the Bellman operator is the contraction property, which

is stated formally in the following lemma.

Lemma 5 [Puterman 1994, Proposition 6.2.4] Let V1, V2 ∈ R
S be two bounded state-

value functions, then,

‖BV1 −BV2‖∞ ≤ γ ‖V1 − V2‖∞ .

Similarly, let Q1, Q2 ∈ R
S×A be two bounded state–action value functions, then,

‖BQ1 −BQ2‖∞ ≤ γ ‖Q1 −Q2‖∞ .

The contraction property guarantees existence of a fixed point, according to Banach’s

Fixed-Point Theorem [Puterman 1994, Theorem 6.2.3]. The fixed point coincides with

the optimal value function V ∗ (or Q∗). Therefore, computing V ∗ (or Q∗) of a given

MDP is equivalent to solving the so-called Bellman equation:

V = BV (2.11)

Q = BQ. (2.12)

If a value function does not solve the Bellman equation exactly, namely, V 6= V ∗ (or

Q 6= Q∗), then it incurs a nonzero Bellman error (or Bellman residual):

E(s;V )
def
= BV (s)− V (s). (2.13)

E(s, a;Q)
def
= BQ(s, a)−Q(s, a). (2.14)

An important special case of Bellman equations is when a fixed policy is used,

making the MDP an induced Markov chain and the corresponding Bellman operator

a linear operator. For instance, when the MDP has finitely many states and a fixed

policy π is used, then the functions V π solve the following system of linear equations:

V (s) = R(s, π(s)) + γ
∑

s′∈S
T (s′ | s, π(s))V (s′), (2.15)
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and similarly for V π:

Q(s, a) = R(s, a) + γ
∑

s′∈S
T (s′ | s, a)Q(s′, π(s′)). (2.16)

Finally, we give a useful lemma that follows immediately from the definition of B.

Lemma 6 Let V1, V2 ∈ R
S be two bounded state-value functions such that V1(s) =

V2(s) + c for all s ∈ S where c ∈ R is a constant, then,

BV1(s)−BV2(s) = γc, ∀s ∈ S.

Similarly, let Q1, Q2 ∈ R
S×A be two bounded state–action value functions such that

Q1(s, a) = Q2(s, a) + c for all (s, a) where c ∈ R is a constant, then,

BQ1(s, a)−BQ2(s, a) = γc, ∀(s, a) ∈ S ×A.

2.4 Planning and Learning

An implication of Equation 2.7 is that the agent can act optimally if it knows the

optimal value function Q∗. In fact, most algorithms for solving MDPs (i.e., finding

π∗) work along this line of reasoning by trying to approximate Q∗, whose asymptotic

correctness is guaranteed by Lemma 3. We make an important distinction between two

problems—planning and learning—when we talk about solving an MDP.

Definition 2 Let M = 〈S,A, T,R, γ〉 be an MDP. The planning problem is one of

computing an optimal policy π∗ of M when the complete five-tuple is given as input to

the agent.

Definition 3 Let M = 〈S,A, T,R, γ〉 be an MDP. The reinforcement-learning problem

is similar to the Planning problem except: (i) the transition and reward functions of M

are not provided as input; and (ii) the agent must infer these dynamics (either explicitly

or implicitly) from the transitions it experiences during interactions with the MDP.

Various models exist to capture the ways the agent interacts with the MDP. This

dissertation focuses on the most challenging one of online interactions (Definition 1),
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in which the agent can only take actions in the state in which it is situated. I briefly

mention other somewhat easier models of interactions:

• The reset model allows the agent to reset its state to a fixed state s0 ∈ S, which

is sometimes called the start state. In this model, finding an optimal policy can

be reduced to a sequence of supervised-learning problems [Fiechter 1994]. This

model will be used in §8.4, but not in other parts of the dissertation.

• The generative model allows the agent to send a query (s, a) to an oracle O, which

returns a sample (r, s′) so that E[r] = R(s, a) and s′ ∼ T (· | s, a). This model sig-

nificantly simplifies the exploration/exploitation tradeoff: when the agent chooses

an unnecessary state–action pair to sample, this mistake does not influence the

future states of the agent. In contrast, a mistake made by an online agent may

require a large number of actions to fix; see Example 8 for an example. Since a

generative model can be viewed as an implicit specification of the MDP model, re-

inforcement learning under the generative-model assumption is in fact very similar

to sampling-based approximate planning (c.f., §3.3).

• The parallel sampling model [Kearns and Singh 1999] is closely related to the

generative model: the agent may submit a argumentless query to an oracle O,

and receives a sample transition for every state–action pair:

D =
{

(s, a, r, s′) | s ∈ S, a ∈ A,E[r] = R(s, a), s′ ∼ T (· | s, a)
}

.

Clearly, a parallel sampler can be simulated by a generative model; on the other

hand, a parallel sampler can be used as a generative model, although all sample

transitions are wasted except the one for the queried state–action pair.

• The batch learning model requires that the agent optimizes its policy based on a

static set of sample transitions,

D = {(si, ai, ri, s
′
i) | E[ri] = R(si, ai), s

′
i ∼ T (· | si, ai), i = 1, 2, . . . ,m}.

Due to the limited access of the model dynamics (through the finite sample set

D), the agent may not always find a (near-)optimal policy. On the other hand,
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by separating policy optimization from data collection, it is often easier to create

and analyze algorithms (e.g., Lagoudakis and Parr [2003a] and Schuurmans and

Greenwald [1999]).

Planning and learning are closely related given their similarities [Sutton and Barto

1998, Chapter 9]. For ease of exposition, however, they are treated separately here.

The next two chapters survey a number of planning and learning algorithms in MDPs.
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Chapter 3

Planning in Markov Decision Processes

Planning is sometimes an important sub-step in reinforcement learning. In fact, it

can be viewed as a simpler version of reinforcement learning with access to the MDP

model. Planning in MDPs often involves computing or approximating the optimal value

function. This chapter surveys both exact and approximate planning algorithms.

In MDP planning, we typically assume the agent has access to the dynamics of

the MDP. Equations 2.6 and 2.7 imply that we may approximate either V ∗ or Q∗ to

approximate the optimal policy. Therefore, depending on convenience or convention,

some algorithms compute V ∗ while others compute Q∗.

3.1 Exact Planning in Finite Markov Decision Processes

This section summarizes a few classic planning approaches to finite MDPs, where we

can afford to compute and represent the exact optimal value function and policy. The

focus of this section is on a class of methods called dynamic programming [Bellman

1957], while a linear-programming-based approach is also described.

Since there are only finitely many states and actions, we assume the value functions

and policies are represented by lookup tables. Let n = |S| and m = |A| be the numbers

of states and actions, respectively. If we number the states and actions so that S =

{1, 2, . . . , n} and A = {1, 2, . . . ,m}, then the Q-function can be stored in a matrix with

n rows and m columns, with the (s, a)-entry storing the value of Q(s, a).
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3.1.1 Value Iteration

Value iteration [Bellman 1957] is probably the simplest and easiest-to-implement algo-

rithm for solving an MDP. This algorithm operates in the value-function space. Start-

ing with an arbitrary, bounded initial value-function estimate, it repeatedly applies the

Bellman operator (§2.3) so that the value-function estimate approaches the optimal

value function in the limit.

The basic form of value iteration is given in Algorithm 1. For concreteness, the

pseudocode initializes the value function to be zero everywhere, but value iteration

is guaranteed to converge to the optimal value function for any bounded initial value

function. Let Vt be the value-function estimate before the t-th iteration in Algorithm 1.

A well-known fact of value iteration is that the sequence of value functions, [Vt]t∈N,

approaches V ∗ at a geometric rate, which follows from the contraction property of the

Bellman operator (Lemma 5).

It should be noted that, even if Vt converges to V ∗ only in the limit, in practice, we

can terminate the algorithm after iteration t when we discover the change of value func-

tion, ‖Vt+1 − Vt‖∞, drops below a threshold [Williams and Baird 1993, Theorem 3.1].

In fact, it can be shown that the greedy policy πt of Vt in value iteration will converge

to π∗ after finitely many iterations even if Vt may not equal V ∗ exactly [Puterman 1994,

Theorem 6.3.3].

Algorithm 1 Value iteration

0: Inputs: M = 〈S,A, T,R, γ〉
1: Initialization: V (s)← 0 for all s ∈ S
2: for t = 1, 2, 3, . . . do
3: V ← BV
4: end for

3.1.2 Asynchronous Value Iteration

Value iteration is simple to implement and is quite efficient for problems with small state

and action spaces. But in every iteration it has to sweep over the whole state–action

space to update the value function, which renders it expensive in large-scale problems.
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In practice, however, such a thorough sweep is not necessary, due to a few reasons.

First, a state can be unimportant if selecting a wrong action in this state does not have

large (negative) impact on the rewards received by the agent (see, e.g., Li [2004] and

Li et al. [2007]). Second, the accuracy of the value function in some states may not

be important to a reward-maximizing agent if these states are unlikely to be visited

or unreachable. Finally, if some states’ values are already close to the optimal values,

performing updates of their values will result in small changes in the value function

(and possibly no change in the resulting greedy policy); in contrast, it may be more

economic to perform updates in states whose values are less accurate.

The last two reasons motivate the algorithmic idea of updating some states’ values

in an adaptive way that is not necessarily determined beforehand. In contrast to the

basic form given in Algorithm 1, which is often called synchronous value iteration, the

many variants of asynchronous value iteration [Bertsekas 1982; Bertsekas and Tsitsiklis

1989] update the value function in an asynchronous manner. A basic form is given

in Algorithm 2, where different variants adopt different strategies to select states for

performing value backup. It is well known that if every state s ∈ S is chosen infinitely

often for value update, then Vt converges to V ∗ [Bertsekas and Tsitsiklis 1989].

Algorithm 2 Asynchronous value iteration

0: Inputs: M = 〈S,A, T,R, γ〉
1: Initialization: V (s)← 0 for all s ∈ S
2: for t = 1, 2, 3, . . . do
3: Choose a state st ∈ S and update its state-value estimate: V (st)← BV (st).
4: end for

In the real-time dynamic programming (RTDP) algorithm [Barto et al. 1995], for in-

stance, the agent only performs a value-function backup in states it actually visits (c.f.,

Algorithm 3), and thus can spend its limited computational resources on states that

are more important, according to the second reason above. Although assumptions like

ergodicity are usually needed to guarantee every state–action pair be chosen infinitely

often for value update, online performance guarantees can be established for variants

of RTDP based on the analytic tools developed in this dissertation (§8.1).

In contrast to the online version of asynchronous value iteration like RTDP, we only
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Algorithm 3 A generic form of real-time dynamic programming.

0: Inputs: M = 〈S,A, T,R, γ〉
1: Initialize Q(s, a) for all (s, a) ∈ S ×A.
2: Initialize the initial state s1 ∈ S.
3: for t = 1, 2, 3, . . . do
4: Take some action at ∈ A.
5: Update the value function: Q(st, at)← BQ(st, at).
6: Reach a next state st+1 ∼ T (·|st, at).
7: end for

focus on the offline version where the agent does not choose actions, but its pure goal is

to compute a near-optimal value function. Specifically, we describe a class of algorithms

known as prioritized sweeping that prioritizes states according to certain errors (for

example, the Bellman error defined in Equation 2.14), which is motivated by the third

reason above. This approach1, originally proposed by Moore and Atkeson [1993] and

Peng and Williams [1993], has been quite successful in practice and resulted in a number

of variants [Andre et al. 1998; McMahan and Gordon 2005; Wingate and Seppi 2005].

These algorithms rely on a priority function, H, and update the values of states with

highest priority. Algorithm 4 gives a generic form of prioritized-sweeping algorithms,

which actually includes many specific instances of asynchronous value iteration with

appropriate priority functions H. Again, we use subscript to denote the value of the

quantity in the t-th iteration of Algorithm 4; for instance, Ht and Vt.

Algorithm 4 An abstract form of prioritized sweeping.

0: Inputs: M = 〈S,A, T,R, γ〉
1: Initialize V (s) for all s ∈ S.
2: Initialize priority values H(s) for all s ∈ S.
3: for t = 1, 2, 3, · · · do
4: Pick the state with the highest priority: st ← argmaxs∈S H(s).
5: Perform Bellman backup on state st: V (st)← BV (st).
6: Update priority values for all s ∈ S.
7: end for

1. Asynchronous value iteration given in Algorithm 2 repeatedly performs Bellman

backups in an arbitrary state ordering, which is easily guaranteed by many H(s)

1We note that prioritized sweeping was first proposed as a reinforcement-learning algorithm rather
than a planning algorithm.
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functions. For example, let S = {1, 2, · · · , n} and suppose we wish to perform

Bellman backups in the order of 1→ 2→ · · · → n− 1→ n→ 1→ 2→ · · · , then

this is guaranteed by the following priority function: It is initialized for every

state s by

H1(s)←
2n− s

2n
(3.1)

and updated by

Ht+1(s)←















Ht(s), if s 6= st

Ht(s)
2 if s = st

. (3.2)

Therefore, asynchronous value iteration is a special case of Algorithm 4.

2. The PS algorithm [Moore and Atkeson 1993] does not specify how to initialize H.

In practice, we may initialize H(s) with random positive values.2 The algorithm

then updates H(s) in the following way: for any state s ∈ S,

Ht+1(s)←















max {Ht(s),∆t ·maxa∈A T (st|s, a)} , if s 6= st

∆t ·maxa∈A T (st|s, a), if s = st

. (3.3)

where ∆t = |Vt+1(st)− Vt(st)| = |E(st;Vt)| is the change of st’s state value after

the most recent Bellman backup.

3. The GenPS algorithm [Andre et al. 1998] updates H(s) so that it is always the

absolute Bellman error in state s. Specifically, for all states s ∈ S,

Ht+1(s)← |E(s;Vt+1)| . (3.4)

Note that Andre et al. [1998] also provide a heuristic approach to updating H(s)

without explicitly computing Bellman errors in all states. We only consider a

version of GenPS that always maintains the exact absolute Bellman errors.3 As

shown by Lemma 8 in the next subsection, this condition can be satisfied quite

efficiently without recomputing Bellman errors for all states in every step.

2See Li and Littman [2008b] for an example that shows PS may not converge to the optimal value
function if some H(s) is initialized to 0.

3See Li and Littman [2008b] for an example that shows the heuristic GenPS algorithm may not
converge to the optimal value function.
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4. Since the IPS algorithm [McMahan and Gordon 2005] does not perform Bell-

man backups, it is quite different from all these Bellman-backup-based planning

algorithms above, and thus is not straightforward to convert to the form of Al-

gorithm 4. However, it becomes a special case of Algorithm 4 if A contains only

one action; namely, if the MDP is actually a Markov chain. More specifically, IPS

is for episodic problems in which:4

• there is an absorbing goal state sg so that R(sg, a) = 0 for all a ∈ A, and

• all other rewards are negative: −1 ≤ R(s, a) < 0 for all s 6= sg and a ∈ A.

Consequently, V ∗(sg) = 0 and there exists a constant ν ∈ (0, 1
1−γ ) such that

V ∗(s) ≤ −ν for all s ∈ S \ {sg}; that is, all non-goal states’ values differ from

0 by at least ν. This class of problems are also called stochastic shortest path

problems [Bertsekas 2001]. IPS can be viewed as an instance of Algorithm 4:5 it

initializes the value function pessimistically

V1(s)←















− 1
1−γ if s 6= sg

0 otherwise,

initializes the priority value by

H1(s)←















0 if s 6= sg

1 otherwise,

and updates priority values according to

Ht+1(s)← −
E(s;Vt+1)

Vt+1(s) + E(s;Vt+1(s))
.

It can be shown that the value function Vt will not decrease as the algorithm oper-

ates (c.f., Lemma 9), and Ht(s) ≥ 0 at all times (c.f., Lemma 10). The motivation

of the priority value above is that IPS reduces to the highly efficient Dijkstra’s

4We have adapted the algorithm to be consistent with our notation and setting. The algorithm
was originally proposed for non-discounting, minimum-cost problems by McMahan and Gordon [2005],
while we use a discount factor and consider reward-maximizing problems.

5The formulation we present here is not optimal for implementation, but will suffice for our theo-
retical purposes in this paper.
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algorithm when the Markov chain is a deterministic, acyclic graph [McMahan and

Gordon 2005].

We now present convergence results that are recently established by Li and Littman

[2008b]. Complete proofs are given in §3.4. The following key lemma gives a set of

sufficient conditions for the convergence of Algorithm 4.

Lemma 7 Let F ⊆ S be the set of states that are chosen for Bellman backups infinitely

often during the whole run of Algorithm 4; so, S \ F consists of states that eventually

become starved of backups. Let τ be the last step in which some state in S \F is chosen

for update. Clearly, F 6= ∅ by the Pigeonhole Principle. Then the Bellman errors of

infinitely updated states are driven to 0 in the limit; formally,

lim
t→∞

max
s∈F
|E(s;Vt)| = 0. (3.5)

Furthermore, Vt converges to V ∗ if the following conditions hold:

1. The priority values converge to 0 in the limit:

lim
t→∞

Ht(st) = 0.

2. There exists a constant C > 0 such that: Ht(s) ≥ C · |E(s;Vt)| for all states s /∈ F

and t > τ ;

Some intuitions are helpful. The first condition requires that, in the limit, all priority

values must approach 0 so that no state with a positive priority value will be starved of

updates. The second condition requires that, in the limit, the priority value for starving

states must not be too small compared to their absolute Bellman errors. Therefore, these

two conditions together guarantee that any starving state must have a zero Bellman

error, and thus does not need Bellman backups at all.

Lemma 7 allows one to prove a number of variants of prioritized-sweeping algorithms

converge to the optimal value function in the limit:6

6The literature contains a number of references to prioritized sweeping, but the only informal argument
for its asymptotic convergence to the optimal value function is flawed. Thus, although the community
appears confident the algorithm converges, no published proof exists to the best of my knowledge.
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Theorem 1 GenPS of Andre et al. [1998] converges to the optimal value function in

the limit.

Theorem 2 PS of Moore and Atkeson [1993] converges to the optimal value function

in the limit, if the initial priority values are non-zero, namely, H1(s) > 0 for all s ∈ S.

Theorem 3 IPS of McMahan and Gordon [2005] in a Markov chain converges to the

optimal value function in the limit.

3.1.3 Policy Iteration

Another classic dynamic-programming approach to planning in MDPs is policy itera-

tion [Howard 1960]. This algorithm directly searches for the optimal policy in the policy

space. Starting with an arbitrary policy, the algorithm proceeds in an iterative way:

in every iteration, it first performs the policy-evaluation step by computing the value

function of the current policy (which is equivalent to solving the system of linear equa-

tions in Equation 2.15 or 2.16), and then improves the policy by updating the policy

to be the greedy policy with respect to the value function of the current policy. The

pseudocode of policy iteration is given in Algorithm 5.

Algorithm 5 Policy iteration.

0: Inputs: M = 〈S,A, T,R, γ〉
1: Initialize π1 ∈ AS arbitrarily.
2: for t = 1, 2, 3, . . . do
3: Policy evaluation: solve for Qπt .
4: Policy improvement: define πt+1 that is greedy w.r.t. Qπt .
5: end for

It is known that the every policy πt in policy iteration dominates all previous poli-

cies πτ for τ < t [Puterman 1994, Proposition 6.4.1]. Since the number of deterministic

policies is finite in finite MDPs (|A||S|), policy iteration is guaranteed to terminate after

finitely many iterations. Although policy iteration often terminates in quite few itera-

tions in practice, it remains a long standing open problem whether it terminates after

a polynomial (in |S|, |A|, log 1
1−γ ) number of steps. In fact, it is known that certain

variants of policy iteration may take exponential time [Littman et al. 1995]. However,
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policy iteration is a polynomial-time algorithm if γ is fixed or if γ is represented in

unary [Littman et al. 1995]. Complexity results that are independent of γ are investi-

gated by Mansour and Singh [1999], but they are exponential in |S|. Interested readers

are also referred to Madani [2002] for discount-independent complexity bounds for this

algorithm in restricted classes of MDPs.

3.1.4 Linear Programming

In addition to dynamic programming, linear programming also provides a solution

method for planning in finite MDPs [d’Epenoux 1963]. Specifically, the optimal value

function of an MDP can be formulated as the solution to a linear program whose size is

polynomial in the representation size of the MDP. Since linear programs are polynomi-

ally solvable, their relation to MDPs is currently the only proof that MDPs can be solved

in polynomial time [Littman et al. 1995]. Given a finite MDP M = 〈S,A, T,R, γ〉, the

linear program can be defined as:

min
V ∈R|S|

∑

s∈S
V (s) subject to: V ≥ BV, (3.6)

whose solution is the optimal value function, V ∗. The optimization problem above

is indeed a linear program. To see it, observe that the nonlinear constraint V (s) ≥

(BV )(s) can be turned into a system of |A| many linear inequalities:

V (s) ≥ R(s) + γ
∑

s′∈S
T (s′ | s, a)V (s′), ∀a ∈ A.

Therefore, the inequality V ≥ BV is in fact a system of |S| |A| many linear inequalities.

3.2 Compact Representation and Function Approximation

One of the most important benefits of using function approximation is to avoid rep-

resenting the value function or policy by a lookup table. There are many alternatives

such as using multi-layer neural networks [Tesauro 1995; Crites and Barto 1996], lo-

cally weighted regression [Atkeson et al. 1997a], decision trees [McCallum 1995; Uther

2002] , and Gaussian processes [Engel et al. 2003; Rasmussen and Kuss 2004], just to

name a few. In the following, we only review two popular techniques known as state
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abstraction and linear function approximation that will be useful in our discussions in

the next chapters.

3.2.1 State Abstraction

State abstraction (a.k.a. state aggregation) has been extensively studied in artificial

intelligence (e.g., Giunchiglia and Walsh [1992]) and operations research (e.g., Rogers

et al. [1991]) as a technique for accelerating decision making. Abstraction can be

thought of as a process that maps the ground representation—the original description

of a problem—to an abstract representation, a much more compact and easier one to

work with [Giunchiglia and Walsh 1992]. In other words, abstraction allows the agent

to distinguish relevant information from irrelevant information. From a computational

perspective, state abstraction is a technique for making learning and planning algo-

rithms practical on large, real-world problems.

Here, we focus on state abstraction in Markov decision processes, where different

types of abstraction have been proposed such as bisimulation [Givan et al. 2003], homo-

morphism [Ravindran and Barto 2003], utile distinction [McCallum 1995], and policy

irrelevance [Jong and Stone 2005]. Despite many successes, negative results are re-

ported when using state abstraction in MDPs. For example, McCallum [1995] has

observed that aggregating states using one form of state abstraction makes it impossi-

ble to find the optimal policy using value iteration or Q-learning (c.f., §4.1.1); Gordon

[1996] reported a chattering phenomenon of Sarsa(λ) when combined with improperly

constrained state abstraction.

These undesirable results raise important questions like “What information is lost

when an abstraction is applied?” and “When is the optimal policy still preserved?”.

This concern motivates a unified theory of state abstraction proposed by Li et al. [2006],

which we will summarize below.

Giunchiglia and Walsh [1992] argue that abstraction is in general a mapping from

one problem representation to a new representation, while preserving certain properties.

Here, we focus on the preservation of properties that are needed for an agent to find an

optimal policy in an MDP. Previous abstraction definitions have applied this insight.
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For example, bisimulation [Givan et al. 2003] is essentially a type of abstraction that

preserves the one-step dynamics of an MDP (i.e., the transition and reward functions),

while policy irrelevance abstraction attempts to preserve the optimal actions [Jong

and Stone 2005]. Many of the methods we discussed attempt “fuzzy conservation” of

such properties through statistical tests and notions of bounding, but in the interest

of developing a formalism we choose to focus on abstraction schemes where states are

only aggregated when they have exact equality over the parameters of the abstraction

scheme.

Definition 4 Let M = 〈S,A, T,R, γ〉 be the ground MDP and its abstract version be

M̄ = 〈S̄,A, T̄ , R̄, γ〉. Define the abstraction function as φ ∈ S̄S ; φ(s) ∈ S̄ is the abstract

state corresponding to ground state s, and the inverse image φ−1(s̄), with s̄ ∈ S̄, is the

set of ground states that correspond to s̄ under abstraction function φ. Note that under

these assumptions, {φ−1(s̄) | s̄ ∈ S̄} partitions the ground state space S. To guarantee

T̄ and R̄ are well-defined, a weighting function is needed: w ∈ [0, 1]S , such that for each

s̄ ∈ S̄, ∑s∈φ−1(s̄)w(s) = 1. With these definitions at hand, we can define the transition

and reward functions of the abstract MDP as follows:

R̄(s̄, a)
def
=

∑

s∈φ−1(s̄)

w(s)R(s, a),

T̄ (s̄′ | s̄, a) def
=

∑

s∈φ−1(s̄)

∑

s′∈φ−1(s̄)

w(s)T (s′ | s, a).

It can be verified that T̄ (s̄′ | s̄, a) is a well-defined next state distribution: for any

s̄ ∈ S̄ and a ∈ A:

∑

s̄′∈S̄
T̄ (s̄′ | s̄, a) =

∑

s̄′∈S̄

∑

s∈φ−1(s̄)

∑

s′∈φ−1(s̄)

w(s)T (s′ | s, a)

=
∑

s∈φ−1(s̄)

∑

s̄′∈S̄

∑

s′∈φ−1(s̄)

w(s)T (s′ | s, a)

=
∑

s∈φ−1(s̄)

w(s)
∑

s′∈S
T (s′ | s, a)

=
∑

s∈φ−1(s̄)

w(s) = 1.

Intuitively, w(s) measures the extent to which state s contributes to the abstract state

φ(s). In the rest of the paper, we will only mention w when necessary; otherwise, it can
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be any valid weighting function. We now consider how policies π̄ in the abstract MDP

translate to policies π in the ground MDP. Since all ground states in φ−1(s) are treated

identically, it is natural to translate policies by the following rule: π(s, a) = π̄(φ(s), a)

for all s and a. Finally, value functions for the abstract MDP M̄ can be defined in the

straightforward way and are denoted V π̄(s̄), V ∗(s̄), Qπ̄(s̄, a), and Q∗(s̄, a), respectively.

We are now ready to define five types of state abstraction in MDPs and categorize

much previous work using this language.

Definition 5 Given an MDP M = 〈S,A, T,R, γ〉, and any states s1, s2 ∈ S, we define

five types of abstraction as below, with an arbitrary but fixed weighting function w(s).7

1. A model-irrelevance abstraction φmodel is such that for any action a and any

abstract state s̄, φmodel(s1) = φmodel(s2) implies

R(s1, a) = R(s2, a) and
∑

s′∈φ−1

model
(s̄)

T (s′ | s1, a) =
∑

s′∈φ−1

model
(s̄)

T (s′ | s2, a).

2. A Qπ-irrelevance abstraction φQπ is such that for any policy π and any action a,

φQπ(s1) = φQπ(s2) implies Qπ(s1, a) = Qπ(s2, a).

3. A Q∗-irrelevance abstraction φQ∗ is such that for any action a, φQ∗(s1) = φQ∗(s2)

implies Q∗(s1, a) = Q∗(s2, a).

4. An a∗-irrelevance abstraction φa∗ is such that every abstract class has an action

a∗ that is optimal for all the states in that class, and φa∗(s1) = φa∗(s2) implies

that Q∗(s1, a∗) = maxaQ
∗(s1, a) = maxaQ

∗(s2, a) = Q∗(s2, a∗).

5. A π∗-irrelevance abstraction φπ∗ is such that every abstract class has an action

a∗ that is optimal for all the states in that class, that is φπ∗(s1) = φπ∗(s2) implies

that Q∗(s1, a∗) = maxaQ
∗(s1, a) and Q∗(s2, a∗) = maxaQ

∗(s2, a).

Intuitively, φmodel preserves the one-step model (e.g., bisimulation [Givan et al.

2003]); φQπ preserves the state–action value function for all policies; φQ∗ preserves the

optimal state–action value function (e.g., stochastic dynamic programming with fac-

tored representations [Boutilier et al. 2000] or the G-algorithm [Chapman and Kaelbling

7Although w does not appear important in the definition, it can play an important role in affecting
planning and/or learning efficiency [Van Roy 2006].
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1991]); φa∗ preserves the optimal action and its value (e.g., utile distinction [McCallum

1995]); and φπ∗ attempts to preserve the optimal action [Jong and Stone 2005].

It is shown by Li et al. [2006] that by using any of the four abstractions: φmodel, φQπ ,

φQ∗ , and φa∗ , the optimal policy in the abstract MDP will be optimal in the ground

MDP; however, abstraction φπ∗ might lead to a suboptimal policy in the ground MDP.8

Similar results hold for reinforcement learning.9

Before ending this subsection, we note again that the abstractions in Definition 5

are based on exact equivalence of certain quantities. Although this definition has been

useful for developing a formal framework to study properties of state abstraction, it is

often too stringent in practice, especially in stochastic domains and discounted MDPs.

One possible extension is to relax the exactness and allow some form of approximate or

soft abstraction [Bertsekas and Castañon 1989; Dean et al. 1997; Even-Dar and Mansour

2003a; Ferns et al. 2004; Li and Littman 2005; Van Roy 2006; Taylor et al. 2009].

3.2.2 Linear Function Approximation

Linear function approximation is another general representation scheme. It is widely

used in planning (e.g., Schweitzer and Seidmann [1985]), reinforcement learning (e.g.,

Samuel [1959] and Sutton [1988]), and machine learning (e.g., Hastie et al. [2003]). It is

useful for at least a few reasons. First, the class of linear functions often provide good

approximations to the target function when the set of features (see below) is reasonably

well selected. Furthermore, the kernel trick [Shawe-Taylor and Cristianini 2004] can be

employed to boost the representational power of linear approximation schemes. Second,

the linear approximation scheme is relatively simple compared to nonlinear schemes like

neural networks, rendering intuitive understanding and rigorous analysis of its behavior

easier. Finally, linear approximation appears stabler than nonlinear approximation

when they are used in reinforcement learning; see §4.2.2 for more details.

8Related counterexamples for the suboptimality led by φa∗ are given by McCallum [1995] and Jong
and Stone [2005].

9When φa∗ is used, however, a chattering behavior has been observed for some reinforcement-
learning algorithms like Sarsa [Gordon 1996; Li et al. 2006]. But this kind of chattering does not affect
the optimality of the greedy policy Sarsa converges to.
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Given a set of k basis functions (a.k.a. features):

φi ∈ R
X , i = 1, 2, . . . , k

where X is the set of inputs, we may use a linear combination of them, denoted

f̂ , to approximate a target function f : X → R. That is, we seek a vector

w = [w1, w2, . . . , wk]
⊤ ∈ R

k so that

f̂
def
=

k
∑

i=1

wiφi ≈ f.

For convenience, we denote the feature vector by

φφφ
def
= [φ1, φ2, . . . , φk]

⊤ ∈
(

R
k
)X

,

and so the linear approximation is compacted written as f̂ = w⊤φφφ.

There are various ways to define optimal weight vectors in the search of good linear

approximations. For instance, the linear least-squares solution is a linear approximation

that minimizes squared differences between w⊤φφφ and f :

w∗ def
= argmin

w∈Rk

∥

∥

∥
w⊤φφφ− f

∥

∥

∥

2

2
.

When the set of basis functions, {φ1, φ2, . . . , φk}, is linearly independent, the least-

squares solution w∗ is unique.

Linear approximation is quite general, including a number of important cases with

appropriately chosen features. When we use the indicator feature for a finite input

set, we can recover the tabular representation, in which each component in the weight

vector corresponds to an entry in the lookup table. Similarly, linear approximation also

subsumes the abstraction/aggregation technique discussed in the previous subsection,

provided that the number of aggregated inputs is finite. Finally, we note that a wide

class of function approxitors known as averagers (c.f., §3.3.2) can be interpreted as a

special kind of linear approximator, including k-nearest neighbor regression and kernel

regression among others.

We now discuss a few popular choices of basis functions when the input space X

is a subset of R
n, and every input x ∈ X is represented as a column vector: x =

[x1, x2, . . . , xn]⊤.
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• A polynomial basis function φ of degree d can be represented by:

φ(x) =

n
∏

i=1

xdi

i , s.t. di ∈ Z+ and

n
∑

i=1

di = d.

For example, a degree-0 polynomial basis is the constant function, and a degree-1

polynomial basis can be one of the n possibilities: x1, x2, . . . , xn. It is known that

the set of all polynomial basis functions of degree up to d contains
(

n+d
d

)

functions,

and that they are linearly independent [Cheney and Light 2000, Chapter 4]. A nice

property of polynomial bases is the Weierstrass approximation theorem, which

states that any continuous function f defined in a bounded and closed set X ⊂ R
n

can be approximated to arbitrary precision by polynomial functions. However,

using high order polynomial basis functions can be numerically unstable.

• Radial basis functions (RBFs) define features for inputs based on a set of fixed pro-

totypical inputs. Specifically, let x1,x2, . . . ,xk be k fixed, distinct points (called

“centers”) in X . For any x ∈ X , we can define k basis functions by:10

φi(x)
def
= exp

(

−τ ‖x− xi‖2
)

.

where τ ∈ R+ is an adjustable constant, ‖·‖ is any metric defined on X , and i =

1, 2, . . . , k. When the k centers are distinct, then the set of radial basis functions

defined above is linear independent [Cheney and Light 2000, Chapter 15]. RBFs

are local basis functions in the sense that each basis φi(x) achieves maximum

value at xi and vanishes to 0 when x is far away from xi. Hence, any change in

the corresponding coefficient, wi, has a diminishing effect on the approximation

in regions far away from xi. The parameter τ controls the speed of diminishing.

In contrast, polynomial basis functions are global.

• Cerebellar model articulation controller or CMAC is a type of neural networks

motivated by neuroscience [Albus 1971]. It is also called cerebellar model arith-

metic computer [Miller et al. 1990] or tile coding [Sutton and Barto 1998]. CMAC

may be viewed a multi-layer discretization. At every layer, it poses a grid on the

10Note that a more general definition of RBFs is possible. Interested readers are referred to Chapter 15
of the textbook by Cheney and Light [2000].
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input space X to divide it into a number N of hyper-rectangles, each of which

corresponds to a cell in the grid. The grids for different layers are different. At

layer i, each input point x ∈ X has a feature vector φφφi ∈ {0, 1}N consisting of

zeros except in the position corresonding to the cell in the grid where x is located.

The final feature vector in CMAC is a concatenation of these vectors:

φφφ(x) =
[

φφφ1(x)⊤,φφφ2(x)⊤, · · · ,φφφK(x)⊤
]⊤
,

where K is the number of layers in CMAC. If every layer of discretization divides

X into N cells, then φφφ(x) ∈ {0, 1}NK ; furthermore, φφφ(x) contains exactly K ones

for all x. CMAC then approximates a target function using these k = NK basis

functions in CMAC to do linear approximation. CMAC has been popular and

successful in many reinforcement-learning systems (see, e.g., Miller et al. [1990]

and Sutton and Barto [1998]).

In addition to those surveyed above, other pre-defined features like proto-value

functions [Mahadevan and Maggioni 2007], Krylov basis function [Petrik 2007], and

Fourier basis functions [Konidaris and Osentoski 2008] are frequently used in practice.

But they may not always be effective for all problems. If the feature set is not expressive

enough to capture the underlying value function, a linear value-function approximation

will likely lead to a poor policy no matter what learning algorithm is used. On the

other hand, using a large pool of features helps avoid this problem, but at the cost of

increased computational and sample complexity.

The applicability of linear function approximation can be augmented by feature-

selection procedures like matching pursuit [Mallat and Zhang 1993] and Lasso [Tibshirani

1996]. This problem is an extremely important question that we cannot cover in this

dissertation. In the context of MDP planning and learning, interesting progress has

been made recently for feature section, including the use of Bellman errors [Menache

et al. 2005; Keller et al. 2006; Parr et al. 2007], spectral analysis [Mahadevan and

Maggioni 2007], Lasso-type regularization [Loth et al. 2007; Kolter and Ng 2009b], and

others [Parr et al. 2008; Li et al. 2009c].
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3.3 Approximate Planning in Large Markov Decision Processes

Although MDPs can be solved exactly in polynomial time (c.f., §3.1.4), most MDPs of

practical interest are too large to solve exactly. For instance, in the game of 19×19 Go,

the total number of states (legal board positions) is estimated to be 2.08×10170, which

far exceeds the number of atoms in the known universe [Tromp and Farnebäck 2007].

Consequently, it is impossible even to represent the Q-function for all possible state

by a lookup table (as what we assumed in §3.1), let alone running the exact planning

algorithms such as value iteration.11 As another example, many real-life problems such

as robotics applications exhibit continuous state spaces that contain infinitely many

states, which makes approximation necessary unless restricted assumptions are made

about the dynamics of the problem. This section describes approximation algorithms

that are feasible for large-scale problems such as Go at the price of losing the guarantee

of computing the exact optimal value functions.

There have been a number of approximate planning algorithms. Most of them

rely on compact representations of the value functions based on techniques surveyed in

§3.2 as opposed to the table-based representation. Below we first review some of the

most popular function approximation architectures, and then survey a few approximate

planning algorithms. Other approximate approaches are mentioned in the end.

3.3.1 State Abstraction

A natural way to solve a large MDP M is to solve an abstract MDP M̄ , and then use the

optimal policy in M̄ as a (hopefully) near-optimal policy in the original, ground MDP.

Such a method has success in solving large MDPs with performance guarantees [Givan

et al. 2000; Tsitsiklis and Van Roy 1996; Van Roy 2006; Taylor et al. 2009].

State abstraction in solving continuous MDPs is also known as aggregation or dis-

cretization. In this context, the state and action spaces are often assumed to be mul-

tidimensional cubes: S = [0, 1]n and A = [0, 1]m for some n,m ∈ N. Discretizing the

11As a two-player game, Go has the additional complexity that makes it EXP-complete [Robson
1983].
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state space evenly with resolution h ∈ (0, 1) results in a 1
h × 1

h × · · · 1
h grid with

(

1
h

)n

cells, and similar for the action space. A discretization algorithm first computes such

finite partitions of the state and action spaces, then constructs an approximate MDP

M̄ = 〈S̄, Ā, T̄ , R̄, γ〉 where S̄ and Ā correspond to cells in the grids, and P̄ and R̄ are

defined in different ways depending on the algorithm, and finally solves M̄ using finite

MDP planning algorithms surveyed in §3.1. Obviously, the optimal policy in M̄ may be

arbitrarily poor in the original MDP if no assumptions are made to limit the amount

of information lost during discretization. Often, one has to assume that the transition

and reward functions are sufficiently smooth (i.e., Lipschitz’s continuity conditions),

and that the transition probability density function is bounded.

Under such assumptions, Bertsekas [1975] show that as the discretization becomes

finer the resulting optimal value function in M̄ become closer to the optimal value

function in M ; in the limit, they coincide. Later on, Chow and Tsitsiklis [1991]

give a one-way multigrid algorithm whose computational complexity turns out to be

(near) optimal [Chow and Tsitsiklis 1989]. For example, when the transition and re-

ward functions are Lipschitz continuous and when the transition probability density

is bounded, their algorithm is able to compute an approximate value function V̂ such

that
∥

∥

∥
V̂ − V ∗

∥

∥

∥

∞
≤ ǫ with computational complexity:

O
(

1

(1− γ) ((1− γ)2ǫ)2n+m

)

,

where the corresponding lower bound is

Ω

(

1

((1− γ)2ǫ)2n+m

)

.

The process above discretizes the state and action spaces uniformly. In situations

where the value function is flat in some regions, it is better to use adaptive discretization

so that the same amount of computational resources (as measured by the total number

of discretization cells) can be used to produce more accurate solutions [Bertsekas and

Castañon 1989; Moore and Atkeson 1995; Munos and Moore 2002; Li and Littman

2005].
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3.3.2 Approximate Dynamic Programming

Using dynamic programming in an abstract MDP in the previous subsection is in fact

a special case of the more general method of approximate dynamic programming.

Approximate Value Iteration

Approximate value iteration (AVI) computes an estimate of the optimal value function

by repeatedly applying an approximate Bellman operator to the present value function

estimate, as opposed to applying the exact Bellman operator in value iteration. Starting

from an initial value function V1, AVI iterates using

Vt+1 ← B̂Vt,

where t = 1, 2, . . ., and B̂ ∈
(

R
S)RS

is an approximate Bellman operator. If B̂ is a

contraction such as in discretization algorithms, then Vt converges to its fixed point,

denoted V̂ ∗, that satisfies the Bellman equation: V̂ ∗ = B̂V̂ ∗. If B̂ is close to B, then

V̂ ∗ is closed to V ∗; formally (see, e.g., Munos and Moore [2000]),

∥

∥

∥V̂ ∗ − V ∗
∥

∥

∥

∞
≤ 1

1− γ
∥

∥

∥B̂V ∗ − V ∗
∥

∥

∥

∞
=

1

1− γ
∥

∥

∥B̂V ∗ −BV ∗
∥

∥

∥

∞
.

Hence, the right-hand side becomes 0 if B̂ = B, which in turn implies V̂ ∗ = V ∗.

A popular form of approximate value iteration is fitted value iteration [Gordon 1995],

or FVI for short, where the approximate Bellman operator is the concatenation of the

exact Bellman operator and an approximation operator: B̂ = AB, where A ∈
(

R
S)RS

is an approximation operator. Therefore, the update rule of FVI, Vt+1 ← ABVt, can be

viewed as a two-phase operation: the first phase involves the normal Bellman backup B

on the current value function Vt, and we denote the outcome function by V̂t; the second

phase uses A to approximate V̂t in some parametric/succinct way and the outcome

is Vt+1. A can be an interpolation operator or, more generally, a supervised-learning

algorithm:

• In lazy approximation [Li and Littman 2005], A produces a piecewise constant

approximation of V̂t in a continuous MDP.
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• In least-squares value iteration [Schweitzer and Seidmann 1985; Tsitsiklis and Van

Roy 1996; Bertsekas and Tsitsiklis 1996], A is a least-squares projection onto a

space of functions linear in pre-defined features.

• In a randomized algorithm by Rust [1997], Monte Carlo techniques are used to

replace the expensive Bellman operator by inexpensive sampling of next states.

• In smooth value iteration [Boyan and Moore 1995], A is a supervised-learning algo-

rithm such as locally weighted regression [Atkeson et al. 1997b] or backpropagation

for neural networks [Mitchell 1997].

Unfortunately, the combination of A and B may not always be stable: although B

is a γ-contraction in the ℓ∞-norm, as guaranteed in Lemma 5, the composition B̂ = AB

may be an expansion, potentially causing the sequence [Vt]t∈N to diverge or oscillate in

FVI. Such undesirable phenomena can be observed in practice for natural problems and

popular choices of A [Boyan and Moore 1995; Tsitsiklis and Van Roy 1996].

On the other hand, convergence is guaranteed if AB is also a contraction. An impor-

tant special case is when A is a non-expansion, such as the so-called averager [Gordon

1995]; that is,

‖AV1 − AV2‖∞ ≤ ‖V1 − V2‖∞ .

Asymptotic as well as finite-time convergence rates are established under further as-

sumptions about A and B [Munos 2007; Munos and Szepesvári 2008].

Approximate Policy Iteration

We can also obtain approximate versions of policy iteration. In Algorithm 5, two steps

are involved: policy evaluation and policy improvement. In approximate policy iteration

(API), both steps may be computed approximately. The reason we find approximate

policy improvement useful is that the action space may be too large (e.g., infinite)

to compute the exact greedy action. For finite-action MDPs, policy improvement can

always be performed exactly in time O(|A|). For concreteness in our discussion, pseu-

docode of API is provided in Algorithm 6.

Unlike policy iteration, Algorithm 6 may not converge: due to the approximation in

Lines 3 and 4, monotonicity in the sequence of policies, [πt]t∈N, is not guaranteed except
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Algorithm 6 Approximate policy iteration.

0: Inputs: M = 〈S,A, T,R, γ〉
1: Initialize π1 ∈ AS arbitrarily
2: for t = 1, 2, 3, . . . do
3: Approximate policy evaluation: compute Q̂πt ≈ Qπt .
4: Approximate policy improvement: compute πt+1 ≈ argmax Q̂πt .
5: end for

in special cases (e.g., Perkins and Precup [2003]). However, if the approximations in

API are sufficiently accurate, the sequence of policies does converge to a near-optimal

policy in a weaker sense. Define the policy-evaluation error by

ǫE
def
= max

t

∥

∥

∥
Q̂t −Qπt

∥

∥

∥

∞

and the policy-improvement error by

ǫI
def
= max

t
‖Qπt+1 −BQπt‖∞ ,

then the sequence of policies, [πt]t∈N, approximates the optimal policy in the limit for

finite MDPs in the sense that [Bertsekas and Tsitsiklis 1996]

lim sup
t→∞

‖V πt − V ∗‖∞ ≤
2γǫE + ǫI
(1− γ)2 .

This bound is limited partly because of the ℓ∞-norm it uses as many approximation

operators A minimize function approximation errors in other norms. Extensions of this

error bound have been established recently to weighted ℓp-norms [Munos 2003; Antos

et al. 2008].

3.3.3 Approximate Linear Programming

Approximate linear programming (ALP) introduces approximation of value functions to

the linear-programming formulation in Equation 3.6 for finite MDPs [de Farias and Van

Roy 2003]. First, we use a linear function approximation (c.f., §3.2.2): V = Φw, where

Φ ∈ R
|S|×k is the design matrix, each row of which encodes the transposed feature

vector for that state, and w ∈ R
k is a weight vector. Then, we rewrite the linear

program in Equation 3.6 with this approximation:

min
V ∈R|S|

c⊤Φw subject to: Φw ≥ BΦw, (3.7)
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where c ∈ R
k
+ measures relative importance of each state in the objective of Equa-

tion 3.7. Similar to the constraint in Equation 3.6, the constraint above can be turned

into a system of |S| |A| many inequalities. Although ALP reduces the number of vari-

ables from |S| to k, the number of constraints is still too large as we try to avoid heavy

dependence on |S| or |A|. To reduce dependence on the size of the state and action

spaces, constraint sampling can be used to solve Equation 3.7 approximately [de Farias

and Van Roy 2004].

3.3.4 Sparse Sampling

Algorithms in the previous three subsections are all global methods: once the algorithm

terminates, it produces a value function (in the form of a piecewise constant function,

a linear function, or a trained neural network, etc.) that can be used to derive a greedy

policy in all states using Equations 2.4 or 2.5. In contrast, local planning algorithms

produce an action that is (near-)optimal only in given states.

An example is lookahead (heuristic) search algorithms [Russell and Norvig 2002] that

are sometimes effective for solving deterministic MDPs. Conceptually, these methods

create a search tree rooted at the state of interest by some form of forward search

(depth-first search, breadth-first search, etc.) in the state space. If heuristic functions

are available, there are techniques to prune the search tree to reduce computational

complexity. In stochastic MDPs, however, the forward-search procedure above must

be replaced by repeatedly sampling trajectories to re-construct the expected reward

function and transition probabilities in reachable states. This idea appears in the sparse

sampling algorithms [Kearns et al. 2002]. A similar technique known as rollout has also

been useful [Tesauro and Galperin 1997].

Thanks to the discount factor (c.f., Lemma 1), the depth of sparse sampling is on the

order of Õ(1/(1 − γ)), making the algorithm’s complexity independent of the number

of states. However, the number of nodes in the forward search tree has an exponential

dependence on the tree height, Õ(1/(1 − γ)). More recently, adaptive sparse sampling

algorithms based on bandit exploration techniques (c.f., §4.3.1) have been developed

to reduce the computational complexity by reducing the amount of sampling [Chang
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et al. 2005; Kocsis and Szepesvári 2006]. These algorithms have recently achieved

considerable success in the challenging game of Go [Gelly et al. 2006].

3.4 Proofs

This section provides detailed proofs of all technical lemmas used in this chapter.

3.4.1 Proof of Lemma 7

The following lemma will also be useful in our convergence proof later. For convenience,

define Ea(s;V ) for all a ∈ A as follows:

Ea(s;V )
def
= R(s, a) + γ

∑

s′∈S
T (s′ | s, a)V (s′)− V (s).

It follows from the definition that

E(s;V ) = max
a∈A

Ea(s;V ). (3.8)

As before, we will use Vt to denote value of V in the t-th iteration.

Lemma 8 Using the notation in Algorithm 4, we have for all t = 1, 2, . . . that:

E(s;Vt+1) =















maxa∈A [Ea(s;Vt) + γT (st | s, a)E(st;Vt)] , if s 6= st

maxa∈A [Ea(s;Vt) + γT (st | st, a)E(st;Vt)]− E(st;Vt), if s = st.

(3.9)

Proof. We consider the two cases separately. For s 6= st and any a ∈ A,

Ea(s;Vt+1) = R(s, a) + γ
∑

s′∈S
T (s′ | s, a)Vt+1(s

′)− Vt+1(s)

= R(s, a) + γ
∑

s′∈S
T (s′ | s, a)Vt(s

′) + γT (st | s, a)E(st;Vt)− Vt(s)

= Ea(s;Vt) + γT (st | s, a)E(st;Vt),

where the first equality is due to the definition of Ea, the second equality follows from

the fact that Vt+1(s
′) differs from Vt(s

′) only when s′ = st and the difference is exactly

E(st;Vt), and the last equality is again due to the definition of Ea. Using Equation 3.8,
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we have proved the first part of Equation 3.9. For s = st and any a ∈ A, a similar

reasoning follows:

Ea(st;Vt+1) = R(st, a) + γ
∑

s′∈S
T (s′ | st, a)Vt+1(s

′)− Vt+1(st)

= R(st, a) + γ
∑

s′∈S
T (s′ | st, a)Vt(s

′) + γT (st | st, a)E(st;Vt)−
(

Vt(st) + E(st;Vt)
)

= Ea(st;Vt) + γT (st | st, a)E(st;Vt)− E(st;Vt).

Using Equation 3.8 again, we have proved the second part of Equation 3.9. �

Proof (of Lemma 7). Given any MDP M = 〈S,A, T,R, γ〉, we run Algorithm 4 forever

using an arbitrary bounded initial value function V1. Now, we will construct an induced

MDP M ′ = 〈S,A, T ′, R′, γ〉 with the same states, actions, and discount factor. For

states s ∈ F , the reward function and transition probabilities are the same as M ; for

states s /∈ F and any a ∈ A,

R′(s, a) def
= Vτ+1(s) · (1− γ) and T ′(s′ | s, a) def

= I(s′ = s).

In other words, we turn states s /∈ F to absorbing states with self loops, and the new

reward is constructed so that Vτ+1(s) is exactly the optimal value of s in the induced

MDP M ′.

After timestep τ , Algorithm 4 running on M can be viewed as running on M ′ since

states s /∈ F will not get their values updated anyway. By construction of M ′, the value

function over these states converges to the optimal value function of M ′ [Bertsekas and

Tsitsiklis 1989], since all states s ∈ F are updated infinitely often and all states s /∈ F

already have their optimal values. Hence, the Bellman error evaluated using the model

of M ′ converges to 0 for all states s ∈ S.

Finally, we consider the Bellman error evaluated using the model of M . For states

s ∈ F , the Bellman error in s converges to 0, as M and M ′ have the same dynamics

for these states. Thus, we have proved the first part of the lemma:

lim
t→∞

max
s∈F
|E(s;Vt)| = 0.

We now consider Bellman errors of states outside of F . For any t > τ , we have

max
s/∈F
|E(s;Vt)| ≤ max

s/∈F
Ht(s)

C
≤ Ht(st)

C
,
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where the first inequality follows from Condition 2, and the second from the operations

of Algorithm 4. But, Condition 1 requires that Ht(st) converges to 0, implying that,

lim
t→∞

{

max
s/∈F
|E(s;Vt)|

}

= 0.

In other words, the Bellman errors of starving states also converge to 0. Therefore, we

have shown that limt→∞ |E(s;Vt)| = 0 for all states s ∈ S, and thus completed the

asymptotic convergence proof since zero Bellman error implies an exact optimal value

function. �

3.4.2 Proof of Theorem 1

Proof (of Theorem 1). Since Ht(s) = |E(s;Vt)| for all s ∈ S and all t ≥ 1 in GenPS,

Condition 1 of Lemma 7 follows immediately from Equation 3.5, and Condition 2 is sat-

isfied with constant C = 1. Therefore, GenPS converges to the optimal value function,

by Lemma 7. �

3.4.3 Proof of Theorem 2

Proof (of Theorem 2). We first verify that Condition 1 of Lemma 7 holds in PS. For

t > τ , let t′ be the last time st is chosen for a Bellman backup. Since st is chosen for

backups infinitely often if t > τ , we can always find a t large enough so that t′ exists. It

follows from Equation 3.3 that state st’s priority value at time t, Ht(st), can be written

equivalently as:

Ht(st) = max
t′≤t0<t

[

|E(st0 ;Vt0)|max
a

[T (st0 |st, a)]
]

.

Since the right-hand side above converges to 0, due to Equation 3.5, Ht(st) also con-

verges to 0. Thus, Condition 1 of Lemma 7 is satisfied.

Verifying Condition 2 is more involved. Let s be any state outside of F . We first
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consider the case of s = st for some t ≤ τ . On one hand,

E(s;Vt+1) = max
a∈A

[Ea(s;Vt) + γT (st | st, a)E(st;Vt)]− E(st;Vt)

≤ max
a∈A

[Ea(s;Vt)] + γmax
a∈A

[T (st | st, a)E(st;Vt)]− E(st;Vt)

= γmax
a∈A

[T (st | st, a)E(st;Vt)]

≤ γmax
a∈A

[T (st | st, a)] |E(st;Vt)|

= γHt+1(st),

where the first equality is justified by Lemma 8, the first inequality is due to the

fact that maxx[f(x) + g(x)] ≤ maxx f(x) + maxx g(x), the second equality is due to

Equation 3.8 and s = st, and the last equality is due to Equation 3.3. On the other

hand, let at = arg maxa∈AEa(st;Vt), then we have

E(s;Vt+1) = max
a∈A

[Ea(s;Vt) + γT (st | st, a)E(st;Vt)]− E(st;Vt)

≥ Eat(s;Vt) + γT (st | st, at)E(st;Vt)− E(st;Vt)

= γT (st | st, at)E(st;Vt)

≥ −γT (st | st, at) |E(st;Vt)|

≥ −γmax
a∈A

[T (st | st, a)] |E(st;Vt)|

= −γHt+1(st),

where the first equality is again due to Lemma 8, the second equality is by definition of

at and s = st, and the last equality is due to Equation 3.3. Therefore, we have proved

for all t that |E(st;Vt+1)| ≤ γHt+1(st), or equivalently,

Ht+1(st) ≥
1

γ
|E(st;Vt+1)| . (3.10)

In general, a similar analysis for s 6= st seems impossible. So, we use another trick. For

any state s /∈ F , let τs ≤ τ be the last time that it is chosen for update by PS.12 Due

to Equation 3.10, we have

Hτs+1(s) ≥
1

γ
|E(s;Vτs+1)| . (3.11)

12We have verified Condition 1 of Lemma 7, which requires that the priority values of non-starving
states converge to 0 in the limit. Therefore, any state s will be chosen for Bellman backup at least
once if H1(s) > 0, since Ht(s) is non-decreasing w.r.t. t if s is never chosen for Bellman backup. This
justifies the well-definedness of τs.
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As verified above, Ht(s) converges to 0 in the limit, and it is non-decreasing for t > τs,

due to Equation 3.3. Therefore, Hτs+1(s) = 0, implying E(s;Vτs+1) = 0. Furthermore,

we can show that E(s;Vt) = 0 for all t > τs. Otherwise, let t be the first time after τs in

which E(s;Vt) 6= 0. This event can happen only when the Bellman backup on st at step

t makes the Bellman error of s be nonzero; namely, |E(st;Vt)|maxa∈A[T (s|st, a)] 6= 0.

But, it also causes Ht+1(s) 6= 0, contradicting the fact that Ht(s) = 0 for all t > τs.

Since both Ht(s) and E(s;Vt) are zero, Condition 2 is satisfied trivially with constant

C = 1. �

3.4.4 Proof of Theorem 3

Two lemmas will be useful. The first says that the Bellman error in IPS is non-negative;

in other words, the value function cannot decrease over time. The second says that the

denominator in IPS’s priority function, Vt+1(s)+E(s;Vt+1(s)), is never close to 0. Since

we only consider Markov chains (MDPs with a single action), we suppress dependences

on actions to simplify our notation.

Lemma 9 During the execution of IPS in a Markov chain, E(s;Vt) ≥ 0 for all t. That

is, Vt(s) is non-decreasing over time, since Vt+1(s) = Vt(s) + I(s = st)E(s;Vt).

Proof. We prove the lemma by mathematical induction. For t = 1, we have

E(s;V1) = R(s) + γ
∑

s′∈S
T (s′ | s)V1(s

′)− V1(s)

= R(s) + γ

(

− 1

1− γ

)

−
(

− 1

1− γ

)

= R(s) + 1 ≥ 0,

since we have assumed R(s) ≥ −1. For the inductive step, assume E(s;Vt−1) ≥ 0 for

some t > 1, and consider any state s at timestep t. If s = st−1, then according to

Lemma 8, we have

E(s;Vt) = E(s;Vt−1) + γT (st−1 | st−1)E(st−1;Vt−1)− E(st−1;Vt−1)

= γT (st−1 | st−1)E(st−1;Vt−1) ≥ 0.
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On the other hand, if s 6= st−1, Lemma 8 implies that

E(s;Vt) = E(s;Vt−1) + γT (st−1 | s)E(st−1;Vt−1) ≥ 0.

So in either case, E(s;Vt) ≥ 0 and thus the lemma is proved by mathematical induction.

�

Lemma 10 During the execution of IPS in a Markov chain, E(s;Vt) + Vt(s) ≤ −ν for

all t and all s 6= sg.

Proof. We will first prove the fact that Vt(s) ≤ V ∗(s) for all t by mathematical induc-

tion. This statement is true for t = 1 as the algorithm uses pessimistic initialization:

V1(s)← −1/(1− γ). Suppose Vt−1(s) ≤ V ∗(s) for all τ < t for some t > 1 and consider

timestep t for any state s. If s 6= st−1, then Vt(s) = Vt−1(s) ≤ V ∗(s); otherwise,

Vt(s) = R(s) + γ
∑

s′∈S
T (s′ | s)Vt−1(s

′) ≤ R(s) + γ
∑

s′∈S
T (s′ | s)V ∗(s′) = V ∗(s),

where the inequality makes use of the inductive hypothesis that Vt−1(s
′) ≤ V ∗(s′), and

last step is due to the Bellman equation. We have thus proved Vt(s) ≤ V ∗(s) for all t.

The lemma then follows immediately from this fact, since for any s 6= sg,

E(s;Vt) + Vt(s) = R(s) + γ
∑

s′∈S
T (s′ | s)Vt(s

′)

≤ R(s) + γ
∑

s′∈S
T (s′ | s)V ∗(s′)

= V ∗(s) ≤ −ν.

�

Proof (of Theorem 3). We verify both conditions in Lemma 7. First, note that

Ht+1(s) = − |E(s;Vt+1)|
Vt+1(s) + E(s;Vt+1(s))

≤ |E(s;Vt+1)|
ν

,

where the first step is due to Lemma 9 and the second to Lemma 10. According to

Lemma 7, |E(s;Vt)| converges to 0 in the limit. It follows that Ht(s) also converges to

0 in the limit, and so Condition 1 is satisfied. Similarly, we have

Ht+1(s) = − |E(s;Vt+1)|
Vt+1(s) + E(s;Vt+1(s))

≥ −|E(s;Vt+1)|
V1(s)

= (1− γ) |E(s;Vt+1)| ,

which verifies that Condition 2 also holds. Thus, by Lemma 7, IPS converges to the

exact value function V ∗ in the limit. �
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Chapter 4

Reinforcement Learning in Markov Decision Processes

This chapter surveys a number of reinforcement-learning algorithms, including exact

ones for finite MDPs and approximate ones with function approximation. Of particular

interest is the exploration/exploitation tradeoff and ad hoc heuristics approaches, which

motivate the formal notion of PAC-MDP as a mathematical framework for evaluating

the efficiency of exploration.

4.1 Reinforcement Learning in Finite Markov Decision Processes

This section surveys a small number of classical reinforcement-learning algorithms for

finite MDPs. Similar to exact planning algorithms in the previous section, we assume

that the value function and policies are represented by lookup tables and the goal is to

learn an exact optimal policy or value function.

We start in §4.1.1 with model-free algorithms that directly learn optimal value func-

tions from which optimal policies can be derived using Equation 2.7. In contrast, the

model-based ones in §4.1.2 are indirect in the sense that they first learn the MDP model

and then plan in the MDP to obtain an optimal policy. It is worth mentioning a third

class of algorithms known as policy search that attempt to search for an optimal policy

directly in a pre-given policy space [Baxter and Bartlett 2001; Konda and Tsitsiklis

2000; Sutton et al. 2000]. Many reinforcement-learning algorithms are not covered

here, such as adaptive heuristic critic [Barto et al. 1983] and adaptive real-time dynamic

programming [Barto et al. 1995].
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4.1.1 Temporal Difference

Temporal difference or TD [Sutton 1988; Watkins 1989] is a family of algorithms for

solving online reinforcement learning as defined in Definition 3. They can be viewed as

stochastic approximation algorithms based on the Bellman equation (Equation 2.12).

When the environment is an ergodic Markov chain, the TD(λ) algorithm of Sutton

[1988] can be used to learn the value function exactly in the limit. Here, we focus on

another algorithm known as Q-learning [Watkins 1989] that aims at learning the optimal

value function of a finite MDP, and is similar to an algorithm called Sarsa [Sutton 1996].

Algorithm 7 gives a detailed description of Q-learning. The algorithm requires a

sequence of learning rates, [αt]t∈N, where αt ∈ (0, 1). It is known that [Watkins and

Dayan 1992; Tsitsiklis 1994] the value function in Q-learning converges to Q∗ asymptot-

ically with probability 1 as long as the following conditions hold for every state–action

pair, (s, a):

∞
∑

i=1

αti =∞ and

∞
∑

i=1

α2
ti <∞, (4.1)

where t1, t2, . . . are the timesteps in which action a is taken in state s (that is, sti = s

and ati = a). These two conditions are often needed in proving asymptotic convergence

of stochastic approximation algorithms [Robbins and Monro 1951]. Intuitively, the first

condition guarantees that the sequence of learning rates is sufficiently large to move the

initial Q(s, a) value to approach Q∗(s, a), while the second guarantees that the updates

on Q(s, a) decreases fast enough so that Q(s, a) eventually stablizes at Q∗(s, a). Similar

convergence guarantees are established for variants of Q-learning, including TD(0) and

Sarsa [Sutton 1988; Szepesvári and Littman 1999; Singh et al. 2000].

Since the learning rate αt is less than 1, the first condition in Equation 4.1 implies

that every action a must be tried in every state s infinitely often. Obviously, this

requirement is unavoidable for convergence of Q-learning unless further assumptions

are made: if the agent wants to learn Q∗(s, a) exactly in a stochastic MDP, it has to

apply action a infinitely many times in state s to recover R(s, a) and T (· | s, a) precisely.

This fact is related to the exploration/exploitation dilemma that we describe in §1.2 and

elaborate more in §4.3. Among many natural exploration strategies [Thrun 1992], the
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“ǫ-greedy” rule is popular in reinforcement learning. An ǫ-greedy agent simply takes a

greedy action with respect to its current value-function estimate with probability 1− ǫ

and a random action with probability ǫ. If an MDP is ergodic, then every action will be

tried in every state infinitely often, and thus Q-learning converges to Q∗ asymptotically

with probability 1.

Algorithm 7 Q-learning.

0: Inputs: S,A, γ.
1: Initialize Q(s, a) for all (s, a) ∈ S ×A
2: for all t = 1, 2, . . . do
3: Observe current state st, take action at, observe reward rt, and transition to a

new state st+1.
4: Update Q-function by

Q(st, at)← Q(st, at) + αt

(

rt + γmax
a∈A

Q(st+1, a)−Q(st, at)

)

.

5: end for

4.1.2 Certainty Equivalence

Q-learning in the previous subsection works by learning the optimal value function based

on online transitions without estimating rewards and transitions of the underlying MDP.

It is thus called model free. In contrast, model-based approaches are more straightfor-

ward: they often learn the reward and transition functions of the MDP either implicitly

or explicitly, and then compute the optimal policy in the learned MDP using any of

the MDP planning algorithms surveyed in §3.1. This subsection describes certainty

equivalence [Kumar and Varaiya 1986], a representative model-based algorithm.

At time t, let the MDP estimate be M̂t = 〈S,A, T̂t, R̂t, γ〉, where T̂t and R̂t are

maximum-likelihood estimates of the true transition and reward functions, respectively.

Formally,

T̂t(s
′ | s, a) def

=
Ns,a,s′(t)

Ns,a(t)
=

∑t−1
τ=1 I(sτ = s, aτ = a, sτ+1 = s′)
∑t−1

τ=1 I(sτ = s, aτ = a)
(4.2)

R̂t(s, a)
def
=

1

Ns,a(t)

t−1
∑

τ=1

rτ I(sτ = s, aτ = a), (4.3)

where Ns,a(t) is the number of times action a is taken in state s before timestep t, and
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Ns,a,s′(t) is the number of times state s′ is reached after the agent takes action a in

state s before timestep t. When Ns,a(t) = 0, various adjustments to Equations 4.2 and

4.3 are possible, such as adding 1 to the denominator.

An implementation of certainty equivalence is given in Algorithm 8, where the MDP

estimate is updated and a new policy is re-computed at every step. This choice is

computationally expensive but simplifies the exposition. It is expected that smarter,

but more complicated, variants of Algorithm 8 are more efficient in practice.

Algorithm 8 A version of certainty equivalence.

0: Inputs: S,A, γ.
1: for all t = 1, 2, . . . do
2: Compute an MDP estimate, M̂t, using Equations 4.2 and 4.3.
3: Compute an optimal policy, π∗t , of the MDP M̂t.
4: Observe current state st, take action at = π∗t (st) (possibly with some exploration

rule such as ǫ-greedy), observe reward rt, and transition to a next state st+1.
5: end for

The simulation lemma (c.f., Lemma 33) implies that if the true MDP model param-

eters are learned to within sufficient accuracy, then the optimal policy in the learned

MDP is near-optimal in the true MDP. Therefore, if certainty equivalence is able to

collect data so that Ns,a(t) → ∞ in the limit for all (s, a), then the estimated model

converges to the true model, and thus the policy π∗t converges to π∗.

4.1.3 Dyna

Certainty equivalence and Q-learning represent two extremes: the former performs a

complete planning step when it updates its policy based on the estimate MDP, while the

latter performs extremely simple planning by one-step lookahead. Although certainty

equivalence seems to make the best use of data, it is computationally demanding. In

contrast, Q-learning is computationally cheap, but makes inefficient use of data as every

transition is used once. Middle-ground solutions seek to combine the best of both

worlds. A representative solution is Dyna [Sutton 1990; 1991].

Dyna maintains an estimated MDP like certainty equivalence, and also acts based on

an estimate of the Q-function like Q-learning. Instead of a complete replanning in every

step like certainty equivalence, Dyna performs shallow planning. This computation can
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be achieved in different ways, such as:

• select a subset of previous transitions and perform Q-learning-like backups (e.g.,

the experience-replay technique of Lin [1992]);

• select a subset of states, for each s of them pick an action a, simulate a transition

from (s, a) using the model, and then do Q-learning-like backups (e.g., the Dyna-Q

algorithm of Sutton [1990]); and

• select a subset of states and perform Bellman backups in those states using the

estimated transition and reward functions (e.g., the PS algorithm of Moore and

Atkeson [1993]; c.f., §3.1.2).

Dyna was first proposed [Sutton 1990; 1991] with the subset of states being chosen

randomly for shallow planning. It was then shown independently by Moore and Atkeson

[1993] and Peng and Williams [1993] that it is beneficial to select such states in an

informed manner.

4.2 Approximate Reinforcement Learning

As we shall see, approximate reinforcement learning bears many similarities to approx-

imate planning. A fundamental reason is that many approximate planning algorithms

avoid computational complexity that is explicitly dependent on the size of the MDP

by using samples of transitions of the MDP. For instance, one of the algorithms we

will discuss is based on approximate policy iteration. When the learning algorithm is

similar to the planning algorithm, we will mention it briefly without going into details.

Since the motivation of studying approximate RL is to solve large-scale MDPs, we

will use compact function representations such as those covered in §3.2.

4.2.1 State Abstraction

Similar to discretization/abstraction-based planning algorithms, an approximate RL

algorithm may discretize the state/action space of a possibly continuous MDP to obtain

a smaller, finite MDP, and then run any of the algorithms for finite MDPs in §4.1.

Adaptive discretization such as the U-tree algorithm [McCallum 1995] adaptively refines
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the piecewise constant value function estimate (which is represented as a regression tree)

based on observed state transitions. See Moore and Atkeson [1995] and Bernstein and

Shimkin [2008] for more examples.

4.2.2 Incremental Temporal Difference

The temporal-different methods in §4.1.1 can be modified naturally when the value

function is represented compactly by: Q(s, a) = Qw(s, a), where Qw(·, ·) is a para-

metric function with parameter vector w ∈ R
k for some k ∈ N. For instance, if state

discretization is used, then Qw is a piecewise constant function, and components of w

correspond to the function values in the discretized states. As another example, if Qw

is linearly parameterized, then w is the weight vector defining the linear function. As

a third example, if Qw is represented by a neural network with fixed topology, then w

consists of weights associated with links in the network.

Q-learning for finite MDPs (Algorithm 7) can be modified to be Algorithm 9 when

function approximation is used, with only two changes in the initialization step and

update rule (Lines 1 and 4, respectively). Here, w may be initialized in different ways.

Learning occurs on the parameter vector instead of the Q-values directly. An important

special case is when Q is linear in some pre-defined basis function, φφφ : S ×A → R
k,

Qw(s, a)
def
= w⊤φφφ(s, a),

in which case the update rule in Line 4 of Algorithm 9 becomes

wt+1 ← wt + αt

(

rt + γmax
a∈A

w⊤
t φφφ(st+1, a)−w⊤

t φφφ(st, at)

)

φφφ(st, at).

Extensions similar to Line 4 of Algorithm 9 can be applied to variants of Q-learning,

such as TD(λ) [Sutton 1988] and Sarsa [Sutton 1996]. Unfortunately, these stochastic-

approximation-style updates do not necessarily guarantee convergence. Mixed results

are known such as the tremendous empirical success of applying neural network as the

function approximator in Backgammon [Tesauro 1995] and the unfortunate divergence

results reported in the literature [Boyan and Moore 1995; Baird 1995]. Special cases

are investigated to establish convergence guarantees. Such cases often rely on the
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Algorithm 9 Q-learning with function approximation.

0: Inputs: S,A, γ.
1: Initialize w.
2: for all t = 1, 2, . . . do
3: Observe current state st, take action at, observe reward rt, and transition to a

new state st+1.
4: Update parameter by

w← w + αt

(

rt + γmax
a∈A

Qw(st+1, a)−Qw(st, at)

)

∇wQw(st, at).

5: end for

fact that the Bellman operator when combined with special function approximators

is a contraction [Tsitsiklis and Van Roy 1997; Szepesvári and Smart 2004; Melo and

Ribeiro 2007; Melo et al. 2008]; see §3.3.2 for more discussions.

Another approach known as residual gradient is due to Baird [1995]. It changes

the update rule of Algorithm 9 to perform stochastic gradient descent on the squared

Bellman error. Although the algorithm is limited by a double-sample requirement to

guarantee unbiasedness, its value function cannot diverge. However, this algorithm can

be slow in learning [Baird 1995; Schoknecht and Merke 2003] or suffer suboptimal online

prediction performance [Li 2008].

A third approach known as grow-support is proposed by Boyan and Moore [1995],

which assumes the optimal value function can be represented exactly by the approxima-

tion scheme. The algorithm maintains a “support set” of states whose optimal values

have been computed sufficiently accurately, and is initialized to the empty set at the

beginning. When sample transitions accumulate, the support set grows and eventually

the optimal value function is computed for all states.

4.2.3 Approximate Policy Iteration

Approximate policy iteration (Algorithm 6) can be used to solve reinforcement-learning

problems as well. Different ways to do the approximate policy-evaluation and policy-

improvement steps result in different API-based algorithms. For instance, when rollouts

are used to estimate Q̂πt and a classifier mapping states to the greedy action with respect
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to Q̂πt are used, we have a classifier-based RL algorithm [Lagoudakis and Parr 2003b;

Li 2004; Li et al. 2007]. Other examples include an algorithm that uses kernel regression

for policy evaluation [Ormoneit and Sen 2002]. In this section, we focus on least-squares

policy iteration or LSPI [Lagoudakis and Parr 2003a], an algorithm that employs least-

squares techniques for policy evaluation based on linear function approximation. A

more general algorithm is studied by Antos et al. [2008].

In its original form, LSPI is an offline algorithm. Instead of requiring data to be

obtained from online interaction with the environment (Definition 1), the algorithm

assumes that a set of sampled transitions are provided without requirements on how

they are collected. Precisely, the sample set D contains m data points:

D = {(si, ai, ri, s
′
i) | i = 1, 2, . . . ,m},

where the i-th sample, (si, ai, ri, s
′
i), provides a piece of information for the dynamics

in (si, ai): the agent takes action ai in state si, receives an immediate reward ri and

reaches a next state s′i. Algorithm 10 gives a pseudo-code description of the algorithm.

In practice, various approaches can be used to decide when to terminate the algo-

rithm [Lagoudakis and Parr 2003a]. Furthermore, robust matrix inversion like pseudo-

inverse [Golub and Van Loan 1996] is needed when the matrix Â is ill-conditioned.

Algorithm 10 Least-squares policy iteration.

0: Inputs: S,A, γ,D = {(si, ai, ri, s
′
i) | i = 1, 2, . . . ,m},φφφ ∈

(

R
k
)S×A

1: Initialize w1 ∈ R
k arbitrarily.

2: for t = 1, 2, 3, . . . do
3: Â← Ok×k {the k × k zero matrix}
4: b̂← 0k {the zero vector of dimension k}
5: for i = 1, 2, . . . ,m do
6: a′i ← argmaxa∈AQwt(s

′
i, a) = argmaxa∈A w⊤

t φφφ(s′i, a).
7: Â← Â+φφφ(si, ai) (φφφ(si, ai)− γφφφ(s′i, a

′
i))

⊤.
8: b̂← b̂+φφφ(si, ai)ri.
9: end for

10: wt+1 ← Â−1b̂.
11: end for

Like generic API algorithms, LSPI has the policy-evaluation and policy-improvement

steps in every iteration. The intermediate policies are represented implicitly as the

greedy policy with respect to the linear value functions. In iteration t, the weight
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vector is wt, and the policy is

πt(s)
def
= argmax

a∈A
w⊤

t φφφ(s, a).

The key component of LSPI is its policy-evaluation step (Lines 3—10 in Algorithm 10),

which is called LSTDQ [Lagoudakis and Parr 2003a]. This algorithm can be viewed

as an off-line, off-policy version of the least-squares temporal difference (LSTD) algo-

rithm [Bradtke and Barto 1996] applied to an induced Markov chain (c.f., §2.1) whose

state space is S × A. A useful extension known as LSTD(λ) is due to Boyan [2002]

who showed the potential advantage of using a nonzero λ value. LSTD is identical to

LSTD(0).

Assuming A is finite and it takes O(k) time to compute the basis φφφ, the computa-

tional complexity of LSTDQ in Algorithm 10 is O(km |A| + k2m + k3): the first term

is from the computation of greedy actions in state s′i, the second from the construction

of matrix Â and vector b̂, and the last from the matrix inversion in Line 10. Although

the linear dependence on m and |A| is reasonable, the cubic dependence on k makes

the algorithm intractable except for small value of k. Recently, recursive least-squares

techniques were applied to LSTD and LSTDQ, so that the matrix inverse, Â−1, is com-

puted iteratively using the Sherman-Morrison formula [Golub and Van Loan 1996],

resulting in an O(k2) complexity [Xu et al. 2002]. More recently, techniques for solving

sparse linear systems motivate even more efficient LSTD-like algorithms that enjoys

O(k) complexity [Geramifard et al. 2006; 2007; Yao and Liu 2008]. Interested readers

are referred to the discussions at the end of §3.2.2 for related papers on feature selection

in reinforcement learning when linear value-function approximation is used.

Motivated by successes of the kernel trick in machine learning [Shawe-Taylor and

Cristianini 2004], Xu et al. [2005] introduced the kernel LSTD(λ) algorithm, the use of

which in the general API framework results in kernel LSPI [Xu et al. 2007]. Recently,

Taylor and Parr [2009] gave an analysis of Bellman errors when kernel methods are

used in temporal difference learning.
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4.2.4 Other Algorithms

There are many other RL algorithms that cannot be covered in detail in this disser-

tation. For example, policy-search and policy-gradient algorithms search a pre-defined

policy space for a near-optimal policy [Sutton et al. 2000; Baxter and Bartlett 2001;

Ng and Jordan 2000]; Actor-critic algorithms [Barto et al. 1983; Sutton 1984; Konda

and Tsitsiklis 2003; Peters et al. 2005] consist of two interacting components: The actor

maintains and updates a policy for choosing actions, while the critic learns a value func-

tion for that policy incrementally. Motivated by the success of Dyna in finite MDPs,

Sutton et al. [2008] introduce the use of linear value functions to Dyna in continuous

MDPs. Finally, we note that the RL problem can be formulated as an optimization

problem and can be approached by many general-purpose algorithms such evolutionary

algorithms [Moriarty et al. 1999; Whiteson and Stone 2006].

4.3 Exploration in Reinforcement Learning

This section reviews previous work on balancing exploration and exploitation. We start

with the K-armed bandit problems, which can be viewed as a special case of MDPs,

and then discuss Bayesian exploration, which is optimal in a sense but computationally

expensive. Finally, ad hoc heuristics are described with examples showing why they

may fail. These negative results motivate a formal framework to evaluate efficiency of

exploration in §4.4.3.

4.3.1 Exploration in K-Armed Bandit Problems

Many of the exploration strategies for MDPs find their analogues in a specific type

of MDP called K-armed bandits [Berry and Fristedt 1985]. It suffices to focus on this

problem for the purpose of the dissertation. Interested readers are referred to the litera-

ture on several variants of it, such as adversarial bandits [Auer et al. 2002b; Auer 2002],

non-stationary bandits [Auer et al. 2002b; Auer 2002], associative bandits [Kaelbling

1994; Auer 2002; Abe et al. 2003; Strehl et al. 2006d], and budgeted bandits [Madani

et al. 2004]. Although the terms “arm” and “payoff” are typically used in the K-armed
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bandit literature, we will instead use “action” and “reward” to be consistent with the

terminology in the rest of the dissertation.

A K-armed bandit is an MDP M with a single state (so |S| = 1) and K actions (so

|A| = K). Rewards due to taking an action are stochastic as in general MDPs, but the

transition always falls back to the same state. Since there is only one state, we suppress

s and denote the reward function by R(a). The optimal policy in a K-armed bandit is

to choose the action with maximum expected reward:

a∗ = argmax
a∈A

R(a).

Without knowledge of the function R(·), the agent has to explore different actions and

hopefully converges to the optimal action eventually. To evaluate how fast the agent

learns in this process, two natural formalisms can be used.

Regret Analysis

The expected regret is the expected difference between cumulative expected rewards of

the optimal action and the actions chosen by the agent. Precisely, let at be the action

chosen at timestep t, then the expected regret up to time H ∈ N is defined by

L(H)
def
= H ·R(a∗)−

H
∑

t=1

R(at).

By definition, it is clear that L(H) ≥ 0 for any H. If L(H) = o(H), it implies the

agent will choose the optimal action almost always in the limit. The smaller L(H) is,

the faster the agent is expected to converge to (near-)optimal actions.

A regret lower bound of Ω(lnH) in K-armed bandits has been known for a long

time. Lai and Robbins [1985] show an algorithm that achieves this lower bound asymp-

totically. Later, more algorithms with Θ(lnH) regret bound were developed.

More recently, Auer et al. [2002a] proposed an algorithm called UCB (standing for

“upper confidence bound”) that achieves a Θ(lnH) regret uniformly over time. The

algorithm is simple and sheds lights on some efficient exploration methods for MDPs.

For time t ∈ N and action a ∈ A, denote by (similar to Equation 4.3)

R̂t(a) =
1

Na(t)

t−1
∑

τ=1

rτ I(aτ = a)
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the maximum-likelihood estimate of the average reward of action a at time t, where

Na(t) is the number of times action a has been chosen before timestep t. A purely

exploiting agent will choose an action that maximizes the empirical average reward so

far; that is,

at = argmax
a∈A

R̂t(a).

But since these finite-sample estimates of average rewards are imprecise, the action with

the highest empirical average reward may not be the optimal action a∗. Thus, it may be

beneficial in the long run to try alternative actions in case we have underestimated their

rewards. Naturally, we have a higher confidence in our maximum-likelihood estimate

when it is computed using more data. If few data are available for estimating the reward

of an action, we would like to encourage the agent to explore this action to refine the

estimate of its reward. The UCB algorithm uses exactly this idea by applying:

at = argmax
a∈A

{

R̂t(a) +

√

2 ln(t− 1)

Na(t)

}

.

The second term above is a confidence interval, and thus the sum is an upper confidence

bound of the true reward, R(a). The confidence-interval term is an exploration bonus

that encourages trying infrequently chosen actions. Auer [2002] also show that a similar

idea can be used in variations of K-armed bandit problems, such as in the adversarial

setting. Finally, the idea of UCB has been used in sampling-based approximate planning

for large-scale MDPs (§3.3.4).

PAC Analysis

Another way to quantify learning speed inK-armed bandits is through sample complex-

ity in the Probably Approximately Correct (PAC) framework [Valiant 1984]. Although

PAC was originally proposed for supervised learning (c.f., §5.4), it can be defined sim-

ilarly for studying bandit problems. Roughly speaking, the PAC sample complexity

is an upper bound of the number of timesteps a learner needs to identify, with high

probability, a near-optimal action of the bandit.

Formally, let A be a K-armed bandit learning algorithm. The algorithm is allowed

to try the K actions in a sequential order, and then must terminate with an output
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â∗ ∈ A after finitely many timesteps. The algorithm is also allowed to be randomized.

Due to randomness in the algorithm and in the rewards observed, both the number T

of timesteps A takes to terminate and its output action â∗ are stochastic.

Definition 6 Let A be a K-armed bandit learning algorithm that terminates after T

timesteps with action â∗. A function ζ(ǫ, δ) is called a sample complexity of A, if for

any ǫ, δ ∈ (0, 1), the following holds with probability at least 1− δ: (i) T ≤ ζ(ǫ, δ), and

(ii) R(a∗)−R(â∗) < ǫ.

Matching upper and lower bounds are found for K-armed bandit problems. Even-

Dar et al. [2002] describe the median elimination algorithm that eliminates actions in

rounds. In each round, each surviving action is tried for some polynomial number of

times, and the bottom half actions (in terms of the rewards they collect in that round)

are eliminated. The algorithm continues until all but one action are eliminated, and

returns this surviving action. The sample complexity of this algorithm is

ζ(ǫ, δ) = O
(

K

ǫ2
ln

1

δ

)

.

Later, Mannor and Tsitsiklis [2004] show a matching lower bound. We cite their result

here, which will be useful in §6 and §8:

Lemma 11 [Mannor and Tsitsiklis 2004, Theorem 1] The sample complexity ζ of any

K-armed bandit algorithm A is, in the worst case,

ζ(ǫ, δ) = Ω

(

K

ǫ2
ln

1

δ

)

.

4.3.2 Bayesian Exploration

We now turn to the general MDP setting that features the nature of sequential decision

making; that is, actions can affect future states and thus future rewards. This is

different from bandit problems where earlier actions does not affect later consequences.

It turns out that this difference makes MDPs a much harder problem than bandits

when studying the exploration-exploitation tradeoff.
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About half a century ago, researchers started studying Bayesian approaches to ex-

ploration; see Duff [2002] for an interesting historical review. Starting with a prior

distribution of parameters in the underlying MDP, these methods repeatedly update

the posterior distribution of the parameters conditional on the observation history. At

each time step, the action that maximizes expected future rewards with respect to the

posterior distribution is taken.

Let M be the class of MDPs over which we have a prior distribution, p0, and pt

be the posterior distribution over M after t transitions have been observed. Assume,

for simplicity, that the reward function is known and the only uncertainty about the

MDP is in its transition function. Then, Bayes rule implies the following formula for

computing pt based on pt−1 and the transition at timestep t: for any M ∈M

pt(M) =
TM (st+1 | st, at)pt−1(M)

∑

M ′∈M TM ′(st+1 | st, at)pt−1(M ′)
,

where TM is the transition function of MDP model M .

Bayesian action selection is optimal in the sense that it takes the posterior into

account and finds the Bayesian-optimal balance between exploration and exploitation.

However, their use in practice is limited for two reasons. First, they all require a

prior distribution over candidate MDPs, which is unclear in many real-world applica-

tions. Second, computing the optimal value function over posterior distributions can

be a computationally extremely expensive procedure, although progress has been made

recently [Duff 2002; Poupart et al. 2006]. Furthermore, we will show an example in

§4.4.4 where an agent that uses Bayesian exploration fails to find the optimal policy in

the limit. For these reasons, we focus on non-Bayesian and computationally tractable

approaches in the dissertation.

4.3.3 Exploration Heuristics

Given the expensive operations of Bayesian exploration strategies, people have used

many practical exploration heuristics; see the survey by Thrun [1992]. These heuristics

work quite well in some problems, but all require trial-and-error tuning of parameters.

In some problems, these ad hoc approaches may fail or be inefficient.
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The simplest and most popular exploration rule is probably ǫ-greedy : the agent

chooses the greedy action with respect to its current value-function estimate with prob-

ability 1− ǫ, and a random action with probability ǫ. If there are finitely many actions,

this exploration rule can be formally defined by (assuming the greedy action is unique,

for simplicity):

π(a | s) =















1− |A|−1
|A| ǫ, if a = argmaxa′∈AQ(s, a′)

ǫ
|A| , otherwise

.

Clearly, 0-greedy is a purely greedy policy, while 1-greedy is a uniformly random policy

that assigns equal probability mass to all actions. In practice, it is helpful to use large

ǫ at the beginning and then decrease it to zero, since after a long run the agent has

hopefully converged to a good enough policy and thus the fraction of exploration can

be reduced.

While ǫ-greedy differentiates greedy actions from non-greedy actions, the Boltzmann

exploration rule takes the Q-function estimates into account and embodies a soft version

of ǫ-greedy. This strategy requires a temperature parameter τ ∈ R+, and the action-

selection probabilities are given by the following rule:1

π(a | s) =
exp

(

Q(s,a)
τ

)

∑

a′∈A exp
(

Q(s,a′)
τ

) ,

where Q is an estimated Q-function. Therefore, instead of having a hard separation

between greedy and non-greedy actions, this exploration smooths the probability by

taking into account the Q-values. The parameter τ controls the degree of exploration:

when it is smaller, more probability mass is placed on the greedy action; in the limit of

τ → 0, this exploration rule converges to a greedy policy; in the limit of τ →∞, the rule

converges to a uniformly random policy. Because Boltzmann exploration approaches the

greedy action selection in the limit and the difference is governed by the temperature,

this exploration rule is sometimes called softmax. In practice, we may start with a

relatively large temperature, and then decay it as learning proceeds.

1It is easily verified that
∑

a∈A π(a | s) = 1 for all s ∈ S.
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An alternative approach, called counter-based exploration, has shown empirical ad-

vantages over ǫ-greedy in some problems [Thrun 1992]. It requires a threshold m ∈ N,

and a counter c is maintained for each (s, a) pair that remembers how many times

action a has been taken in state s. When the agent is in state s, it randomly picks

action a such that c(s, a) < m; if no such action exists, a greedy action is chosen. The

threshold controls the exploration-exploitation tradeoff: when m is small, the agent

tries to exploit sooner, but risks at a higher probability of ending up with suboptimal

policies; when m gets larger, the agent becomes more conservative and tends to explore

more before exploiting and hence it is more likely to learn a near-optimal policy. While

this strategy is able to explore various actions when visiting a certain state, it is myopic

as it only reasons about uncertainty of actions in the current state. A similar algorithm

called Rmax remedies this problem, and is discussed in more details in §7.

Another approach is to add an exploration bonus to the value-function estimate and

then act greedily or ǫ-greedily. The bonus term decreases over time, and is somewhat

similar in form to the UCB algorithm described in §4.3.1. This additive bonus has the

effect of encouraging taking actions that have not been taken frequently, and may bring

benefits even in non-stationary environments [Sutton 1990].

Finally, we mention another common practical choice known as optimistic initial-

ization [Sutton and Barto 1998]. The idea is to initialize the value function so that

Q1(s, a) ≥ Q∗(s, a) for all s ∈ S and a ∈ A. The intuition is that if an action’s Q-value

is optimistic in the current state, the agent is encouraged to execute that action and

thus learn much of it. When sufficient learning has been completed and all Q-values

are close to their true Q∗-values, selecting the maximum will guarantee near-optimal

behavior. This trick can also be combined with other exploration techniques. For ex-

ample, the agent can initialize its value function optimistically, and then follow the

ǫ-greedy policy.

Successes have been observed for the ad hoc exploration rules above [Thrun 1992;

Sutton and Barto 1998]. However, they may not always work effectively in all MDPs.

For example, Whitehead [1991] gives an example where ǫ-greedy rule takes O(2|S|)

many steps even to reach the goal state for the first time, although only O(|S|2) many
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1 2 3 N-1 N G

Figure 4.1: Combination lock.

steps are needed by better exploration strategies. Similarly, several common algorithms

such as Q-learning with ǫ-greedy exploration and/or optimistic initialization are shown

to be inefficient [Strehl 2007b, Section 4.1].

Example 8 [Whitehead 1991] Figure 4.1 shows a combination-lock example where the

ǫ-greedy rule may be inefficient. We have an MDP with N + 1 states and 2 actions.

State 1 is the start state and state G is the absorbing goal state. Taking the solid action

transports the agent to the state to the right, while taking the dashed action resets the

agent to the start state 1 and it has to re-start from 1 trying to get to the goal state. To

simplify exposition, we use γ = 1, and R(s, a) = −1 for all state–actions unless s = G,

in which case R(s, a) = 0.

An agent that uses ǫ-greedy exploration rule will, at each timestep, be reset to the

start state with probability at least ǫ/2. Therefore, the probability that the agent always

chooses the solid action until it reaches the goal is (1− ǫ/2)N , which implies the value

of state N is exponentially small in N . In contrast, the optimal policy requires only N

steps. This example shows that a poor exploration rule may be exponentially inefficient.

4.4 Performance Measures of Reinforcement-Learning Algorithms

Much early theoretical investigation of reinforcement-learning algorithms was on

whether the algorithms converge to the optimal solution in the limit. While such

theory is important for showing an algorithm is sound or consistent, it largely ignores

the issue of efficiency. The negative (inefficiency) results mentioned in the previous

section motivate a rigorous study of performance of reinforcement-learning algorithms.

The next three subsections discuss three considerations that are essential to measure
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the goodness of an RL algorithm: computation, space, and learning speed. Finally, we

briefly mention a few other dimensions that we do not focus on in this dissertation.

4.4.1 Computational Complexity

The per-timestep computational complexity (or computational complexity for short)

measures the amount of computation the algorithm has to carry out per timestep in the

worst case. We do not consider the total amount of computation during the execution

of an algorithm mainly because we allow the algorithm to run forever, in which case

the total computation is trivially infinity. However, we note that it may be useful to

consider computational complexity in the amortized sense [Cormen et al. 2001].

The per-timestep computation of an RL algorithm often comes from two sources: the

computation required to choose actions, and the computation requires to learn (i.e., to

update the internal data structures and quantities like the value functions and policies).

The latter depends critically on algorithms, and so only the former is discussed at a

high level here.

Two operations are common in choosing actions: one is to compute a value-function

estimate, and the other is to find the greedy action in a state with respect to the value-

function estimate. The first operation is frequently used in model-based algorithms

(c.f., §4.1.2) when they re-plan by solving the optimal value function for the learned

MDP model. This process can be quite expensive (see Littman [1996] for a survey).

For instance, value iteration takes

Õ
(

|S|2 |A|2
1− γ

)

time in the worst case. In contrast, model-free algorithms like Q-learning do not require

this planning step but uses their value-function estimates for action selection.

The second operation—finding a (near-)greedy action—is a necessary operation for

all meaningful reinforcement-learning algorithms. If the Q-function is represented by a

heap [Cormen et al. 2001], finding the greedy action takes O(ln |A|) time. In general,

O(|A|) complexity is needed.
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4.4.2 Space Complexity

The space complexity measures the amount of space the algorithm needs in the worst

case. Q-learning, for example, requires |S| |A| space to store the Q-function in a tabular

manner. For incremental algorithms with linear value-function representations like

Algorithm 9, the space complexity is O(k), the number of free parameters to learn.

LSPI, however, requires O(k2) space to store the matrix Â as well as additional O(m)

space to store the sample set D.

4.4.3 Some Notions of Learning Complexity

As opposed to computational and space complexities that measures how feasible an

algorithm is in terms of computing resources, the third quantity, learning complexity,

measures how much information is needed by the algorithm to learn to achieve near-

optimal policies. However, such a notion is not easy to define as in other learning

problems like supervised learning [Kearns and Vazirani 1994]. A fundamental challenge

in reinforcement learning is the interactive nature in the sequential-decision-making

scenario. In this subsection, we examine natural extensions of a few notions of learning

complexity in supervised learning, and discuss their limitations. We then, in the fol-

lowing subsection, define the sample complexity of exploration, which addresses some

of the limits and will be the focus of the dissertation.

The first such choice is regret, an idea borrowed from competitive analysis of bandit

algorithms (§4.3.1). The idea is to compare the performance of an algorithm, where

“performance” is problem dependent such as prediction mistakes, to the best possible in

hindsight. In the case of reinforcement learning, we may also analyze the regret, which

is difference between the largest total reward obtained by the best policy and that of

the algorithm [Auer and Ortner 2007]. In a sense, the regret is exactly what a reward-

maximizing algorithm tries to minimize. However, analysis of regret is significantly

harder and requires rather restricted assumptions that are not needed in our sample-

complexity analysis. Furthermore, the regret bounds obtained are often weaker than

the sample-complexity bounds we present in this dissertation.



74

If the algorithm has some prior information about the true, underlying MDP, it

can adopt the Bayesian approach (§4.3.2): at every timestep, it maintains a posterior

distribution of the underlying MDP based on the prior and the data it has observed

so far, and computes the Bayesian optimal action that maximizes the expected future

return. This class of methods, although optimal in the Bayesian sense, are computa-

tionally intractable in general, and as we will show soon, do not necessarily converge

to a near-optimal value function or policy. Furthermore, specifying the prior distribu-

tion over MDPs may not be easy in many applications, and an unfortunately specified

prior may prevent convergence to the true MDP model even if infinitely many data are

given [Diaconis and Freedman 1986].

A third approach is to study asymptotic convergence rate of the value function to

the optimal value function. Due to the need for exploration, assumptions must be made

about the sequence of data in the online interaction. For instance, Szepesvári [1998]

assumes the data are IID (independent and identically distributed). A weaker kind of

assumption is to assume that the MDP is fast mixing [Even-Dar and Mansour 2003b;

Antos et al. 2008]. Under the mixing assumption, the exploration/exploitation dilemma

is less challenging since the agent will have the chance to visit almost all states very

quickly in a fast mixing MDP no matter what policy it uses.

Finally, Şimşek and Barto [2006] studied a different model for exploration, where the

online interaction of the agent is separated into an exploration phase and an exploitation

phase, similar to the training and testing separation in supervised learning. The goal of

the agent is to collect as much information of the unknown MDP during exploration to

compute a good policy for late exploitation. In contrast, the focus of the dissertation

is more natural for a reinforcement-learning agent that has to balance exploration and

exploitation simultaneously.

4.4.4 Sample Complexity of Exploration and PAC-MDP

This subsection defines the sample complexity of exploration, first proposed by Kakade

[2003]. Such a notion is very general, without restrictive assumptions such as mixing

that are needed in other notions of learning complexity. On the other hand, the criterion
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of achieving small sample complexity of exploration is tractable in many challenging

problems, and families of algorithms have been developed for various classes of MDPs. It

is the main theme of the dissertation to create and analyze algorithms with polynomial

sample complexity of exploration.

Definition

In measuring the sample complexity of exploration (or sample complexity for short) of

a reinforcement-learning algorithm A, we treat A as a non-stationary policy that maps

histories to actions (c.f., §2.2). Two additional inputs are needed: ǫ, δ ∈ (0, 1). The

precision parameter, ǫ, controls the quality of behavior we require of the algorithm (i.e.,

how close to optimality do we desire to be). The confidence parameter, δ, measures how

certain we want to be of the algorithm’s performance. As both parameters decrease,

greater exploration and learning is necessary as more is expected of the algorithms.

Similar to other learning algorithms for stochastic problems, we cannot expect an

algorithm to identify the optimal policy with finite experience and with full confidence:

we allow ǫ > 0 because a finite sample does not reveal the whole dynamics of the MDP

in general; we allow δ > 0 because there is always some, albeit tiny, probability that

the experience observed by the agent is not representative and thus misleads the agent

to end up with a poor policy.

The following definition is proposed by Kakade [2003].

Definition 7 Let ct = (s1, a1, r1, s2, a2, r2, . . . , st) be a path generated by executing a

reinforcement-learning algorithm A in an MDP M up to timestep t. The algorithm is

viewed as a non-stationary policy, denoted At at timestep t. For any fixed ǫ > 0, the

sample complexity of A is the number of timesteps t such that the policy at time t, At,

is non-ǫ-optimal: V At(st) ≤ V ∗(st)− ǫ.

The sample complexity of exploration of an algorithm A is defined using the infinite-

length online interaction between an agent running A and an environment. If we view it

a “mistake” when V At(st) ≤ V ∗(st)−ǫ happens, then sample complexity of exploration

measures the total number of mistakes of an RL algorithm during the whole run of it.
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We place no limitations on when the algorithm makes a mistake during an infinite-

length interaction with the MDP. This freedom is essential for RL as, in a stochastic

MDP, the agent does not have absolute control of the sequence of states it will visit,

and so a mistake may happen at any time during the interaction, depending on when

the agent is stochastically transitioned to those “bad” states. Intuitively, we prefer

algorithms with smaller sample complexity, which motivates the following notation of

sample efficiency [Strehl et al. 2006a;c]:

Definition 8 An algorithm A is said to be PAC-MDP (Probably Approximately Cor-

rect in Markov Decision Processes) in an MDP M if, for any ǫ > 0 and 0 < δ < 1, the

sample complexity of A is bounded by some function polynomial in the relevant quanti-

ties (1/ǫ, 1/δ, 1/(1− γ), and |M |) with probability at least 1− δ, where |M | measures

the complexity of the MDP M . Usually, |M | is polynomially related to the number of

parameters describing M ; for instance, it is the numbers of states and actions for finite

MDPs, and it is the number of parameters if the MDP can be described in a parametric

way. Furthermore, the algorithm is called efficiently PAC-MDP if its computational

and sample complexities are polynomial.

The terminology, PAC, in our definition is borrowed from Angluin [1988] for the

distribution-free supervised-learning model proposed by Valiant [1984]. A discussion of

the parameters involved in Definition 8 is in order:

• The precision parameter, ǫ, specifies the level of optimality we want the algorithm

to achieve, and a mistake is incurred when the non-stationary policy, At, is not

ǫ-optimal. As in supervised learning, we cannot guarantee ǫ = 0 because any

finite set of samples does not reveal the complete dynamics of an MDP when it

is stochastic.

• The confidence parameter, δ, measures how certain we want to be of the algo-

rithm’s sample complexity of exploration. As in supervised learning, we cannot

guarantee δ = 0 because there is always a non-zero, albeit tiny, probability that

the observed interactions/samples are not representative of the true dynamics of

the MDP and thus misleads the agent to act sub-optimally.
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• The dependence on 1/(1 − γ) is necessary and unique in reinforcement learning.

In many RL analyses, 1/(1− γ) plays a role that is roughly the effective depth of

decision horizon for value functions and policies (c.f., Lemma 2). The larger this

effective decision horizon is, the more we expect the sample complexity to be.

• The quantity |M | of an MDP M is used to measure how large the MDP is. An

analogue in PAC learning of concept classes is the number of variables in the

Boolean formula [Valiant 1984]. The quantity |M | is often defined in a natural

way, and will be made clear when we analyze the sample complexity of exploration

in later chapters.

Efficiency in the PAC-MDP framework implies efficiency in a more complicated

framework called average loss which, as an analogue of per-timestep regret in sequential

decision making problems, measures the actual per-timestep reward achieved by the

agent against the expected per-timestep reward of the optimal policy in states the

agent visits [Strehl and Littman 2008a]. While these two notions are closely related,

we choose to focus on PAC-MDP learnability due to its cleanness.

The definition of sample complexity of exploration was first used in the analysis of

Rmax by Kakade [2003], and will be the focus of the present dissertation. However, we

note the analyses of E3 by Kearns and Singh [2002], factored E3 by Kearns and Koller

[1999], and metric E3 by Kakade et al. [2003] use slightly different definitions of efficient

learning. In particular, these algorithms are required to halt after a polynomial amount

of time and output a near-optimal policy for the last state, with high probability. Our

analyses are essentially equivalent, but simpler in the sense that mixing-time arguments

are avoided.

A General PAC-MDP Theorem

Most of the PAC-MDP results developed in this dissertation depend on the following

general theorem for proving PAC-MDP-ness, first established by Strehl et al. [2006a]

and then slightly generalized in later works [Strehl 2007b; Strehl et al. 2009]. The one

presented here generalizes and improves previous versions and the modifications are

important for our discussion in later chapters.
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Definition 9 During an online interaction as described in Definition 1, let Kt be a set

of state–action pairs defined arbitrarily in a way that depends only on the history of the

agent up to timestep t (before the t-th action is chosen). An escape event, denoted AK ,

occurs at timestep t if (st, at) /∈ Kt.

Definition 10 [Strehl et al. 2006a] Let M = 〈S,A, T,R, γ〉 be an MDP, Q ∈ R
S×A a

state–action value function, and K ⊆ S × A a subset of state–action pairs. We define

the known state–action MDP (with respect to K) as MK = 〈S,A, TK , RK , γ〉, where

for all s, s′ ∈ S and a ∈ A,

TK(s′ | s, a) def
=















T (s′ | s, a), if (s, a) ∈ K

I(s = s′), otherwise,

and

RK(s, a)
def
=















R(s, a), if (s, a) ∈ K

(1− γ)Q(s, a), otherwise.

In words, the known state–action MDP is defined in a way so that the transition

and reward functions coincide with the true MDP in state–action pairs in K, and the

Q-functions are exact in state–action pairs outside K.

Theorem 4 [Strehl et al. 2006a] Let A(ǫ, δ) be an algorithm that takes ǫ and

δ as inputs (in addition to other algorithm-specific inputs), acts greedily accord-

ing to its estimated state–action value function, denoted Qt at timestep t. Define

Vt(s)
def
= argmaxa∈AQt(s, a). Suppose that on every timestep t, there exists a set Kt

of state–action pairs that depends only on the agent’s history up to timestep t. We

assume that Kt = Kt+1 unless, during timestep t, an update to some state–action value

occurs or the escape event AK happens. Let MKt be the known state–action MDP and

πt be the greedy policy with respect to Qt. Suppose that for any inputs ǫ and δ, with

probability at least 1− δ/2, the following conditions hold for all timesteps t:

1. (Optimism) Vt(st) ≥ V ∗(st)− ǫ/4,

2. (Accuracy) Vt(st)− V πt

MKt
(st) ≤ ǫ/4, and
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3. (Bounded Surprises) The total number of updates of action–value estimates plus

the number of times the escape event from Kt, AK , can occur is bounded by a

function ζ(ǫ, δ). The function ζ may depend on |M |.

Then, with probability at least 1− δ, the sample complexity of exploration of A(ǫ, δ) is

O
(

Vmax

ǫ(1− γ)

(

ζ(ǫ, δ) + ln
1

δ

)

ln
1

ǫ(1− γ)

)

.

Proof. Suppose that the learning algorithm A(ǫ, δ) is executed on an MDP M . Fix

the history of the agent up to the t-th timestep. Define

H =
1

1− γ ln
4

ǫ(1− γ) .

Let W denote the event that, after following the policy At from state st in M for H

timesteps, one of the two following events occur: (a) the algorithm performs a successful

update (a change to its state–action value function) of some state–action pair (s, a), or

(b) some state–action pair (s, a) /∈ Kt is experienced (escape event AK). Then,

V At

M (st, H) ≥ V πt

MKt
(st, H)− Pr(W )Vmax

≥ V πt

MKt
(st)−

ǫ

4
− Pr(W )Vmax

≥ V (st)−
ǫ

2
− Pr(W )Vmax

≥ V ∗(st)−
3ǫ

4
− Pr(W )Vmax.

where: the first step follows from the fact that following At in MDP M is identical to

following πt in MKt unless event W occurs, in which case a difference of at most Vmax

can occur; the second step is due to Lemma 2; and the last two steps make use of the

accuracy and optimism conditions.

Now, suppose Pr(W ) < ǫ
4Vmax

and the inequality derived above implies ǫ-optimality

of the non-stationary policy at timestep t:

V At

M (st) ≥ V At

M (st, H) ≥ V ∗(st)− ǫ.

Otherwise, Pr(W ) ≥ ǫ
4Vmax

; that is, an agent following At will either update its state–

action value function in H timesteps, or encounter some (s, a) /∈ Kt in H timesteps,
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with probability at least ǫ
4Vmax

. We view this H-step trajectory as a Bernoulli trial with

success probability at least ǫ
4Vmax

. Then, Lemma 56 implies that after

8HVmax

ǫ

(

ζ(ǫ, δ) + ln
2

δ

)

= O
(

Vmax

ǫ(1− γ)

(

ζ(ǫ, δ) + ln
1

δ

)

ln
1

ǫ(1− γ)

)

timesteps t where Pr(W ) ≥ ǫ
4Vmax

, ζ(ǫ, δ) successes will occur, with probability at least

1−δ/2. However, by Condition 3, with high probability, ζ(ǫ, δ) is the maximum number

of successes in these Bernoulli trials that can occur during an entire execution of A.

Finally, we may complete the proof using a union bound to bound the total failure

probability by δ/2 + δ/2 = δ. �

Bayesian Reinforcement Learning Is Not PAC-MDP

Given the fact that Bayesian exploration maximizes the expected utility in every action,

it is natural to ask how it is related to the PAC-MDP framework. The following example

shows a Bayesian RL algorithm is not PAC-MDP in general. In fact, the example shows

a stronger assertion that Bayesian RL in not consistent: the learned policy may not

converge to the optimal policy even in the limit. A more general, yet more complicated,

result is given by Kolter and Ng [2009a] that applies to any greedy algorithm with a

fast decaying exploration bonus:

Example 9 The MDP is a two-armed bandit; namely, it has a single state and two

actions with self-looping transitions (Figure 4.2). The reward of action a1 is known to

be 1/2; equivalently, the prior probability of R(a1) being 1/2 is 1. The reward of action

a2 may have two values, whose respective prior probabilities are:

Pr (R(a2) = 0) = p

Pr (R(a2) = 1/2 + ǫ(1− γ)) = 1− p,

for some p ∈ R+ that we will specify. If R(a2) = 0, the optimal policy is to choose a1;

otherwise, choosing a1 is not an ǫ-optimal policy as the difference between this policy

and the optimal policy that chooses a2 is ǫ(1 − γ)(1 + γ + γ2 + · · · ) = ǫ. Since the

MDP has only one state, we suppress dependence on states, and thus the prior and

posterior distributions of reward functions are represented as a binomial distribution:
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Figure 4.2: An example showing Bayesian exploration may not be PAC-MDP or con-
sistent.

b = (α, 1−α), where α ∈ [0, 1] is the probability that R(a2) = 0. Initially, b0 = (p, 1−p).

The Bellman equation of this MDP in “belief state” b0 is

Q∗(b0, a1) = R(a1) + γV ∗(b0)

Q∗(b0, a2) = p (γV ∗(b1)) + (1− p)
(

1

2
+ ǫ(1− γ) + γV ∗(b2)

)

,

where b1 = (1, 0) and b2 = (0, 1) correspond to the next belief states after action a2 is

chosen. Since complete knowledge of the MDP is available with belief state b1 or b2, we

can compute their value functions easily:

V ∗(b1) =
1

2(1− γ)
V ∗(b2) =

1

2(1− γ) + ǫ.

Our goal is to decide the free parameter p such that Q∗(b0, a1) > Q∗(b0, a2), and so a

Bayesian algorithm will never choose action a2, and thus will fail to find the optimal

policy when R(a2) = 1/2 + ǫ(1− γ).

Instead of computing V ∗(b0) exactly using the Bellman equation above, it suffices

for our purpose to show that Q∗(b0, a2) is smaller than a lower bound of Q∗(b0, a1).

Specifically, we have

Q∗(b0, a1) =
1

2
+ γV ∗(b0) ≥

1

2
+ γQ∗(b0, a1),

and thus

Q∗(b0, a1) ≥
1

2(1− γ) .

On the other hand, we may compute Q∗(b0, a2) easily by the Bellman equation:

Q∗(b0, a2) = p (0 + γV ∗(b1)) + (1− p)
(

1

2
+ ǫ(1− γ) + γV ∗(b2)

)

= −p
2

+ (1− p)ǫ+
1

2(1− γ) .
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Therefore,

Q∗(b0, a1)−Q∗(b0, a2) ≥ p(ǫ+ 1/2)− ǫ.

and it suffices to set

p >
ǫ

ǫ+ 1/2
≈ 2ǫ

to force a Bayesian algorithm to always select a1.

In this example above, it is interesting to note that the undesirable inconsistency

phenomenon happens for essentially all values of p, not just for extreme values. How-

ever, it is possible to introduce PAC-MDP-like result in Bayesian RL with techniques

we study in this dissertation [Asmuth et al. 2009].

4.5 Use of Models in Reinforcement Learning

Most reinforcement-learning algorithms can roughly be categorized into two families:

model-based and model-free. As mentioned in §4.1, model-based algorithms work by

estimating parameters of the unknown MDP and then computing the optimal policy of

the estimated MDP model. The simulation lemma insures that the policy will be near-

optimal as long as the MDP is learned to sufficient accuracy. Model-free algorithms, on

the other hand, often learn the optimal value function directly without trying to learn

the MDP model, either explicitly or implicitly.

The use of model estimation in reinforcement learning has been a topic of controversy

(see, e.g., Atkeson and Gordon [1997]). While there are good reasons to prefer model-

based approaches, other concerns make model-free approaches a better choice. In our

following discussions, the term “model-based” is used in a broad sense which either

means (i) the algorithm builds an explicit model such as in certainty equivalence, or (ii)

the algorithm uses an implicit representation of a model such as experience replay.

The major reason to use model-based approaches is probably that they are often

more sample-efficient—a critical advantage in situations where data are expensive, such

as in robotics [Sutton 1990; Lin 1992; Moore and Atkeson 1993; Peng and Williams 1993;

Atkeson and Santamaria 1997]. For instance, Sutton [1990] proposes the Dyna architec-

ture with two instantiations: Dyna-PI and Dyna-Q. In every timestep, the learned MDP
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model is used to generate hypothetical state transitions, with which Bellman backups

are performed (called relaxation planning). In contrast, model-free algorithms such as

Q-learning often discard a sample transition after performing a stochastic-approximation

step with it, and so are generally considered less sample-efficient.

A related advantage of model-based approaches is that they can facilitate efficient

exploration [Moore and Atkeson 1993; Schneider 1997; Jong and Stone 2007]. By ex-

plicitly estimating a model and measuring uncertainty in the model parameters, an

agent is able to tell which part of the state space needs more exploration. In fact,

the first algorithm with provably efficient exploration in general, finite MDPs is model-

based [Kearns and Singh 2002]. In contrast, efficient exploration is harder to achieve in

model-free approaches. Simple heuristics like ǫ-greedy can be inefficient (Example 8),

and rather complicated exploration strategies are needed [Strehl et al. 2006c].

But there are limitations of model-based approaches, which make model-free ap-

proaches a better choice in some cases. A major problem with model-based methods is

that they are often computational expensive. Solving an MDP often suffers the curse

of dimensionality [Bellman 1957]: the computational complexity of finding a (near)

optimal policy in an MDP often grows exponentially with the number of variables used

to describe a state [Chow and Tsitsiklis 1989]. Approximate planning algorithms with

policy-quality guarantees may suffer an exponential dependence on other quantities

(c.f., §3.3.4).

A more subtle risk with model-based approaches is that an agent can end up with

suboptimal policies when the model is misleadingly imprecise. For example, Lin [1992]

found empirically that model building may actually slow down learning. Kuvayev

and Sutton [1997] also report empirical evidence that using a learned but imprecise

model in fact impedes learning in a Dyna-style algorithm. Recently, a hybrid approach

is proposed so that the learned, but possibly imprecise, model is used to make local

improvement to the policy [Abbeel et al. 2006b].

The results in the dissertation provide novel insights regarding comparisons between

model-based and model-free approaches.
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Chapter 5

The KWIK Learning Framework

This and the next chapters deviate from reinforcement learning and focus on a new

supervised -learning framework called Knows What It Knows, or KWIK in short [Li

et al. 2008]. This framework provides a unifying mathematical background for the

formal study of efficient RL algorithms in Part III.

5.1 Definition

As shown by Example 7, the key property of a KWIK learner provides a useful mech-

anism for efficiently exploring an unknown environment. We formalize the learning

model here. A KWIK problem is specified by a five-tuple: P = 〈X ,Y,Z,H, h∗〉, where:

X is an input set ; Y is an output set ; Z is a observation set ; H ⊆ YX is a hypothesis set

consisting of hypotheses mapping X to Y; and h∗ ∈ YX is an unknown target function.

In this dissertation, we make the following “realization assumption” for KWIK

problems:

Assumption 1 In a KWIK problem P = 〈X ,Y,Z,H, h∗〉, we have h∗ ∈ H.

The study of “unrealizable” KWIK models are left for future work; see §5.5 for a

preliminary discussion.

Two parties are involved in a KWIK learning process. The learner runs a learning

algorithm and makes predictions; the environment, which represents an instance of

a KWIK learning problem, provides the learner with inputs and observations. The

protocol for a KWIK “run” is as follows (Figure 5.1):

1. The input set X , output set Y, observation set Z, hypothesis class H, accuracy

parameter ǫ ∈ (0, 1), and confidence parameter δ ∈ (0, 1) are known to both the
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Environment: Pick               

secretly & adversarially

Given:

,     ,     ,     ,    ,

Learner
“I know”

“I don’t know”

Environment: Pick      adversarially

“ ”

“ ” Observe     

Figure 5.1: KWIK protocol.

learner and the environment.

2. The environment selects a target function h∗ ∈ H secretly and adversarially.

3. At timestep t = 1, 2, 3, . . .

• The environment selects an input xt ∈ X in an arbitrary way and informs

the learner. The target value yt = h∗(xt) is unknown to the learner.

• The learner predicts an output ŷt ∈ Y ∪ {⊥}, where ⊥ is a special symbol

that is not in Y. We call ŷt valid if ŷ 6= ⊥.

• If ŷt = ⊥, the learner makes an observation zt ∈ Z of the output. In the

deterministic case, zt = yt. In the stochastic case, the relation between zt

and yt is problem specific, and may or may not be known by the learner. For

example, §5.3.1 considers a problem where zt = 1 with probability yt and

0 with probability 1 − yt when Z = {0, 1}, and §5.3.3 assumes zt = yt + ηt

where ηt is a normally distributed random variable with zero mean and

known variance, while more complicated examples arise in §6.

To simplify notation, we always assume that Y is a subset of R
n for an appropriate

value of n, so that the subtraction, y1 − y2, is well-defined for any elements y1, y2 ∈ Y.

With this numeric representation of Y, we further require that Y be equipped with a

real-valued function, |·|, so that |y1 − y2| measures the discrepancy or distance between
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y1 and y2. For example, |·| may be understood to be a vector ℓp-norm. Conceptually,

any real-valued function can be used in the KWIK protocol above. However, certain

conditions are necessary for a formal analysis of algorithms in this and the next chapters.

Specifically, we make the following mild assumptions, which, for instance, are satisfied

when |·| is a semi-norm:

Assumption 2 The discrepancy function, |·| ∈ R
Y , associated with Y satisfies the

following conditions: for all y, y1, y2 ∈ Y,

• |y − y| = 0,

• Non-negativity: |y1 − y2| ≥ 0,

• Symmetry: |y1 − y2| = |y2 − y1|, and

• Triangle inequality: |y1 − y2| ≤ |y1 − y|+ |y − y2|.

Definition 11 Let P = 〈X ,Y,Z,H, h∗〉 be a KWIK problem. We say that H is

KWIK-learnable if there exists an algorithm A with the following property: for any

0 < ǫ, δ < 1, the following two requirements are satisfied with probability at least 1− δ

in a whole run of A according to the KWIK protocol above:

1. (Accuracy) If ŷt 6= ⊥, it must be ǫ-accurate: |ŷt − yt| < ǫ;

2. (Sample complexity) The total number of ⊥s predicted during the whole run is

bounded by a function, denoted B(ǫ, δ,dim(H)), which is polynomial in 1/ǫ, 1/δ,

and dim(H), where dim(H) is a pre-defined nonnegative-valued function measur-

ing the dimension or complexity of H.

We call A a KWIK algorithm and B(ǫ, δ,dim(H)) its KWIK bound. We will also use

B(ǫ, δ) for simplicity, if there is no ambiguity. Furthermore, H is efficiently KWIK-

learnable if, in addition to the accuracy and sample-complexity requirements, the per-

timestep computational complexity of A is polynomial in 1/ǫ, 1/δ, and dim(H).

All KWIK algorithms studied in this dissertation enjoy polynomial computational

complexity and thus are efficient. We note that a KWIK algorithm can be randomized,

and so the confidence parameter, δ, may be necessary even in deterministic problems.

Finally, we point out a minor difference between the above definition and the origi-

nal one. Li et al. [2008] requires a KWIK algorithm must produce finitely many ⊥s with
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probability 1, while Definition 11 allows infinitely many ⊥s with at most δ probability.

To show these two definitions are equivalent, it suffices to show that any KWIK algo-

rithm A satisfying Definition 11 with a KWIK bound B(ǫ, δ,dim(H)) can be converted

into another algorithm A′ satisfying the definition in Li et al. [2008]. The conversion is

straightforward: A′ simply simulates A using parameter ǫ and δ, and then makes ar-

bitrary predictions if A returns more than B(ǫ, δ,dim(H)) many ⊥s. By Definition 11,

the probability that A outputs more than B(ǫ, δ,dim(H)) many ⊥s or makes a non-ǫ-

accurate prediction during a run is at most δ. It follows that A′ dissatisfies the accuracy

requirement with probability at most δ. Furthermore, the number of ⊥s returned by A′

is at most B(ǫ, δ,dim(H)), by construction. Therefore, A′ satisfies the KWIK definition

of Li et al. [2008].

5.2 Example KWIK Learners in Deterministic Problems

This and the next sections describe some KWIK-learnable hypothesis classes, some

of which will be useful in later chapters. We begin by describing the simplest and

most general KWIK algorithms, and then transition to more complicated, stochastic

problems in the next section.

5.2.1 Memorization

The memorization algorithm (Algorithm 11) can be used when the input set is finite

and observations are deterministic.

The algorithm simply memorizes the corresponding output for each possible x ∈ X .

It initializes a hypothesis, ĥ, that is represented by a lookup table and predicts ⊥ for

all inputs. When the environment chooses an input x for the first time, the algorithm

reports ⊥ to observe the corresponding y and remembers it by storing y in entry ĥ(x).

It only reports ⊥ once for each input. We have thus proved the following theorem:

Theorem 5 Memorization is a KWIK algorithm for deterministic KWIK problems,

P = 〈X ,Y,Z,H, h∗〉, where X is finite, with the following KWIK bound:

Bmemorization(ǫ, δ) = |X | .
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While memorization ignores ǫ and δ, the KWIK bound in Theorem 5 is clearly

tight. The computational complexity of the algorithm is linear in the time required for

retrieving entries in the table ĥ, which is constant if it is a hash table and is at most

O(|X |) with a reasonable representation of ĥ.

Algorithm 11 Memorization.

0: Inputs: X ,Y,H, ǫ, δ.
1: Initialize ĥ(x)← ⊥ for all x ∈ X .
2: for t = 1, 2, . . . do
3: Observe xt ∈ X and predict ŷt = ĥ(x).
4: if ĥ(x) = ⊥ then
5: Observe yt.
6: Update hypothesis: ĥ(x)← yt.
7: end if
8: end for

5.2.2 Enumeration

When the hypothesis set is finite and observations are deterministic, the enumeration

algorithm (Algorithm 12) can be used.

The algorithm keeps track of Ĥ ⊆ H, the version space containing hypotheses that

are consistent with observed data. Initially, Ĥ is set to H. In every timestep t, the

algorithm computes L̂ = {h(xt) | h ∈ Ĥ}, the set of outputs for xt computed by all

hypotheses in the version space. If
∣

∣

∣
L̂
∣

∣

∣
= 0, then the version space is empty, implying

that the target hypothesis is not in the hypothesis classH, which violates Assumption 1.

If
∣

∣

∣L̂
∣

∣

∣ = 1, it means that all remaining hypotheses in Ĥ agree on the output for this

input, and therefore the algorithm knows what the correct output must be, thanks to

the realization assumption. In this case, the only element in L̂ is predicted as the output.

On the other hand, if
∣

∣

∣
L̂
∣

∣

∣
> 1, two hypotheses in the version space disagree. Hence,

the algorithm is uncertain about the true output and has to return ⊥ to receive the

true label yt. It then updates the version space by eliminating all mistaken hypotheses

(Line 9 of Algorithm 12). Therefore, the new version space must be strictly smaller. If
∣

∣

∣
Ĥ
∣

∣

∣
= 1 at any point,

∣

∣

∣
L̂
∣

∣

∣
= 1 for all future inputs, and the algorithm will no longer

return ⊥. We have thus proved the main theorem in this section:
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Theorem 6 Enumeration is a KWIK algorithm for deterministic KWIK problems, P =

〈X ,Y,Z,H, h∗〉, where |H| is finite, with the following KWIK bound:

Benumeration(ǫ, δ) = |H| − 1.

The computational complexity of enumeration is O(|H|), assuming it takes O(1)

time to compute h(x) for all h ∈ H and x ∈ X .

Algorithm 12 Enumeration.

0: Inputs: X ,Y,H, ǫ, δ.
1: Ĥ ← H.
2: for t = 1, 2, . . . do
3: Observe xt ∈ X .
4: Compute L̂ = {h(xt) | h ∈ Ĥ}.
5: if

∣

∣

∣L̂
∣

∣

∣ = 1 then

6: Predict ŷt = y where y is the only element in L̂.
7: else
8: Predict ŷt = ⊥ and observe yt.
9: Ĥ ← Ĥ \ {h | h ∈ Ĥ ∧ h(xt) 6= yt}.

10: end if
11: end for

An example given by Li et al. [2008] shows enumeration may enjoy an exponentially

smaller KWIK bound than memorization. However, memorization becomes better when

H is large or infinite.

5.2.3 Deterministic Linear Regression

The previous two algorithms exploited the finiteness of the hypothesis class and input

set. Finite KWIK bounds can also be achieved when these sets are all infinite, as

shown by the deterministic linear regression problem. Specifically, we define X = R
n,

Y = Z = R, and

H = {fw | fw(x) = w⊤x,w ∈ R
n}.

That is, H is the set of linear functions on n variables for some unknown weight vector

w. In the deterministic case where zt = yt, H can be KWIK-learned by the deterministic

linear-regression algorithm (Algorithm 13) with the following guarantee:
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Algorithm 13 Deterministic linear-regression.

0: Inputs: X ,Y,Z,H, ǫ, δ.
1: D ← ∅.
2: for t = 1, 2, . . . do
3: Let D be {(v1, f(v1)), (v2, f(v2)), . . . , (vk, f(vk))}.
4: Observe xt ∈ X .
5: if x is linearly independent of v1,v2, . . . ,vk then
6: Predict ŷt = ⊥ and observe yt.
7: D ← D ∪ {(xt, yt)}.
8: else
9: Let xt = a1v1 + a2v2 + · · ·+ akvk for some a1, . . . , ak ∈ R.

10: Predict ŷt using Equation 5.1.
11: end if
12: end for

Theorem 7 Deterministic linear-regression solves the deterministic linear-regression

problem with a KWIK bound of:

Bdeterministic linear-regression(ǫ, δ) = n.

Proof. The algorithm maintains a training set D of training examples, which is

initialized to the empty set ∅ prior to learning. On the t-th input xt, let

D = {(v1, f(v1)), (v2, f(v2)), · · · , (vk, f(vk))}

be the current set of training examples. The algorithm first detects if xt is linearly

dependent of the previous inputs stored in D. This test can be decided efficiently by,

say, Gaussian elimination [Golub and Van Loan 1996]. If xt is linearly independent,

then the algorithm predicts ⊥, observes the output yt = f(xt), and then expands the

training set: D ← D ∪ {(xt, yt)}. Otherwise, there exist k real numbers, a1, a2, · · · , ak,

such that xt = a1v1 + a2v2 + . . . + akvk. In this case, we can accurately predict the

value of f(xt) using information in D, without necessarily knowing the weight vector

w:

f(xt) = w⊤xt

= w⊤(a1v1 + a2v2 + . . .+ akvk)

= a1w
⊤v1 + a2w

⊤v2 + . . .+ akw
⊤vk

= a1f(v1) + a2f(v2) + . . .+ akf(vk). (5.1)



92

Thus, the accuracy requirement is satisfied.

By operation of the algorithm, the inputs in D (i.e., v1,v2, . . . ,vk) must be linearly

independent at all times. Hence, D contains at most n training pairs. Since every ⊥

will increase the size of D by 1, the algorithm can return ⊥ at most n times. �

Any case where the sequence of inputs, [xt]t∈N, contain n linearly independent

vectors may be used to show this KWIK bound is tight. Furthermore, we may allow

a small prediction error if xt is “almost” linearly dependent on the inputs in D, which

may result in practically more useful algorithms. However, we shall confine ourselves

to a slightly more constrained hypothesis class where the weight vector has a bounded

ℓ2-norm:

H = {fw | fw(x) = w⊤x,w ∈ R
n, ‖w‖2 ≤ 1}.

We decompose xt into a linear combination of v1, . . . ,vk plus a residual term ∆xt that

is orthogonal to all vi:

xt = a1v1 + · · ·+ akvk + ∆xt.

If ‖∆xt‖2 ≤ ǫ, we may pretend the input is

x̃t = xt −∆xt = a1v1 + · · ·+ akvk

and apply Equation 5.1 to predict f(x̃t) precisely. The prediction, ŷt ← f(x̃t), must be

ǫ-close to f(xt):

|ŷt − f(xt)| =
∣

∣

∣
ŷt −w⊤x̃t + w⊤x̃t −w⊤xt

∣

∣

∣

≤
∣

∣

∣ŷt −w⊤x̃t

∣

∣

∣+
∣

∣

∣w⊤x̃t −w⊤xt

∣

∣

∣

= 0 +
∣

∣

∣
w⊤∆xt

∣

∣

∣

≤ ‖w‖2 ‖∆xt‖2

≤ ǫ,

where we have applied the triangle inequality in the first inequality and the Cauchy-

Schwarz inequality in the second.
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5.2.4 Distance Learning

This section considers another KWIK problem with infinite input/output sets and

hypothesis class. In distance learning, we are to KWIK-learn the distance of an input

point to an unknown point in a Euclidean space.

Define X = R
n, Y = Z = R+ ∪ {0}, and

H = {fc | fc(x) = ‖x− c‖2 , c ∈ R
n},

where ‖x‖2 =
√

x⊤x denotes the ℓ2-norm of vector x ∈ R
n. That is, there is an unknown

point and the target function maps input points to the ℓ2-distance from the unknown

point. Since translations do not change the ℓ2-distance metric in R
n, we may assume

without loss of generality that the first input is the origin: x1 = 0. This assumption will

simplify our exposition; otherwise, we simply subtract x1 from all inputs xt. Although

this problem can be solved using a geometric argument [Li et al. 2008], we give a simpler

solution by reducing it to the deterministic linear regression problem that we studied

in the previous subsection.1

First, consider the squared ℓ2-distance of an input x to the unknown point c:

‖x− c‖22 = ‖c‖22 − 2c⊤x + ‖x‖22 , (5.2)

If we augment the input x by appending a unity component to it to yield a (n + 1)-

dimensional column vector, denoted x′:

x′ def
=
[

x⊤, 1
]⊤
∈ R

n+1

then Equation 5.2 can be rewritten as

‖x− c‖22 − ‖x‖22 = w⊤x′,

where

w
def
=
[

−2c⊤, ‖c‖22
]⊤
∈ R

n+1

is an unknown weight vector defining a linear function in the augmented input x′.

Therefore, we can learn the following hypothesis class with a KWIK bound of n + 1,

1This reduction is due to Robert Schapire.
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based on Theorem 7:

H′ = {gc | gc(x) = ‖x− c‖22 − ‖x‖22 , c ∈ R
n}.

Finally, if we can predict gc(x) for an input x accurately, we can use the following

formula to compute fc(x) exactly:

fc(x) =

√

gc(x) + ‖x‖22.

Thus, we have proved the main result of this subsection:

Theorem 8 Distance-learning is a KWIK algorithm with the following KWIK bound:

Bdistance-learning(ǫ, δ) = n+ 1.

5.3 Example KWIK Learners in Stochastic Problems

In problems in the previous section, observations are noise free. In this section, we

consider a few fundamental, noisy KWIK learning problems.

5.3.1 Coin Learning

We start with the simplest Bernoulli case and note that the same algorithm can actually

be applied to KWIK-learn the expectation of a bounded, real-valued random variable.

Algorithm 14 Coin-learning.

0: Inputs: X ,Y,Z,H, ǫ, δ,m.
1: c← 0. {Number of observed data.}
2: p̂← 0. {Maximum-likelihood of p.}
3: for t = 1, 2, . . . do
4: Observe xt ∈ X .
5: if c < m then
6: Predict ŷt = ⊥ and observe zt.
7: c← c+ 1.
8: p̂← p̂+ (zt − p̂) /c.
9: else

10: Predict ŷt = p̂.
11: end if
12: end for
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We have a biased coin whose unknown probability of heads is p. In the notation

of this paper, X is a singleton containing an arbitrarily chosen element (meaning that

we have a single coin with a fixed but unknown head probability), Y = H = [0, 1], and

Z = {0, 1} with 0 for tail and 1 for head. With probability at least 1− δ, we want to

learn an estimate p̂ that is ǫ-accurate: |p̂− p| ≤ ǫ. Note that |p̂− p| coincides with the

total variation between two binomial distributions, Bin(p̂, 1− p̂) and Bin(p, 1− p).

If we could observe p, then this problem would be trivial with a KWIK bound

of 1. However, observations are noisy: instead of observing p, we see either 1 (with

probability p) or 0 (with probability 1−p). A natural idea to make use of such discrete

outcomes would be to compute the maximum-likelihood estimate given enough data.

Each time the algorithm says ⊥, it gets an independent trial that it can use to compute

the empirical probability:

p̂ =
1

m

m
∑

t=1

zt,

where zt ∈ Z is the t-th observation in the m trials. The number of trials needed before

we are 1− δ certain our estimate is within ǫ-accuracy follows directly from Hoeffding’s

inequality (Lemma 52):

m =
1

2ǫ2
ln

2

δ
.

We have thus proved the main theorem in this section:

Theorem 9 With an appropriate parameter m, the coin-learning algorithm (Algo-

rithm 14) can accurately learn a binomial distribution with a KWIK bound of

Bcoin-learning(ǫ, δ) = m =
1

2ǫ2
ln

2

δ
= O

(

1

ǫ2
ln

1

δ

)

.

Note that a trick is used in Line 8 of Algorithm 14 to maintain a running average

of all observations seen so far, resulting in O(1) space complexity. The computational

complexity of the algorithm is O(1), assuming all arithmetic operations can be done in

constant time.

5.3.2 Dice Learning

Dice-learning generalizes coin-learning and can KWIK-learn a multinomial distribution

over n elements, where each distribution is specified by n non-negative numbers that
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sum up to unity. An example is dice rolling (hence the name of the algorithm) where

one tries to predict the probabilities of getting 1, 2, . . . , 6; in this case, n = 6.

Formally, the input set X still contains a single element, meaning there is one specific

multinomial distribution to learn; the output set and hypothesis class coincide and both

contain all possible multinomial distributions over n elements:

Y = H = {p | p ∈ R
n
+, ‖p‖1 = 1};

and the observation set, for convenience, is the set of elementary basis vectors in the

n-dimensional space: Z = {e1, e2, . . . , en}, where ei = [0, . . . , 0, 1, 0, . . . , 0]⊤ with the

only nonzero element 1 in the i-th component. Naturally, ei corresponds to the discrete

observation that the i-th outcome is observed. Given two discrete distributions in H,

p and p̂, we use as the discrepancy metric their total variation, defined by:

|p̂− p| = dvar (p̂,p)
def
=

1

2

n
∑

i=1

|p̂i − pi| . (5.3)

Theorem 10 With an appropriate parameter m, the dice-learning algorithm (Algo-

rithm 15) can accurately learn a multinomial distribution over n outcomes with a KWIK

bound of

Bdice-learning(ǫ, δ) = m =
2n

ǫ2
ln

2n

δ
= O

( n

ǫ2
ln
n

δ

)

.

Algorithm 15 Dice-learning.

0: Inputs: X ,Y,Z,H, ǫ, δ.
1: Initialization:

c← 0, p̂← 0 = (0, 0, . . . , 0) ∈ R
n, m← 2n

ǫ2
ln

2n

δ
.

2: for t = 1, 2, . . . do
3: Observe xt ∈ X .
4: if c ≤ m then
5: Predict ŷt = ⊥ and observe zt.
6: c← c+ 1.
7: p̂← p̂ + zt−p̂

c .
8: else
9: Predict ŷt = p̂.

10: end if
11: end for
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For comparison, note that KWIK-learning a multinomial distribution can be reduced

to KWIK-learning a binomial distribution. We may re-use coin-learning to KWIK-learn

each probability in the multinomial distribution p = (p1, p2, . . . , pn) to ensure 2ǫ/n

accuracy with probability at least 1 − δ/n. Applying a union bound (Lemma 51), we

conclude that with probability at least 1− δ, every pi is learned to within 2ǫ
n -accuracy,

implying the total variation is at most ǫ:

|p̂− p| = 1

2

n
∑

i=1

|p̂i − pi| ≤
1

2

n
∑

i=1

2ǫ

n
= ǫ,

The resulting KWIK bound for dice-learning is

Bcoin-learning

(

2ǫ

n
,
δ

n

)

=
n2

8ǫ2
ln

2n

δ
= O

(

n2

ǫ2
ln
n

δ

)

,

which, however, is asymptotically worse by a factor of n than the stated bound.

However, a different analysis using a multiplicative form of the Chernoff [1952] in-

equality (Lemma 53) proves the KWIK bound given by Theorem 10 suffices to guarantee

ǫ total variation [Kakade 2003, Lemma 8.5.5]. Although Bdice-learning is asymptotically

better than Bcoin-learning, it is worse for small values of n due to the larger constant,

which is a by-product of the more complicated analysis. Interested readers are also

referred to Weissman et al. [2003] for a similar result.

Similar to coin-learning, the analysis and KWIK bound for dice-learning also applies

to a slightly more general situation, where the hypothesis space is

H = {p ∈ R
n
+ | ‖p‖1 ≤ C}.

for some constant C ∈ R+. By re-scaling and introducing a dummy dimension, we may

re-use the KWIK bound of dice-learning to obtain the following KWIK bound:

O
(

nC2

ǫ2
ln
n

δ

)

.

The dice-learning algorithm will serve as an important building block in some of our

KWIK applications to reinforcement learning in §7. Two other important stochastic

problems are studied in the next subsections.
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5.3.3 Learning the Mean of A Univariate Normal Distribution

An important continuous distribution is the univariate normal distribution, N (µ, σ2),

whose probability density function and cumulative distribution function are given by

ϕ(x)
def
=

1√
2πσ

exp

(

−(x− µ)2

2σ2

)

,

and

Φ(x)
def
= Pr

(

y ≤ x | y ∼ N (ǫ, σ2)
)

=

∫ x

−∞
ϕ(y)dy,

respectively, where µ ∈ R is the mean and σ2 ∈ R+ is the variance. For simplicity,

this section considers the simplified problem of KWIK-learning the value of µ when

the variance σ2 is known a priori. The general problem of KWIK-learning multivariate

normal distributions with unknown mean and covariance is considered in §6.6.

The algorithm is identical to coin-learning, and thus we omit the pseudocode descrip-

tions. The only difference lies in the analytic technique used to quantify the KWIK

bound, namely, the parameter m. In coin-learning, we may use Hoeffding’s inequality

as all observations are bounded random variables. But, this bound does not apply

to a normally distributed random variable simply because it is unbounded. Below we

discuss three approaches for determining m.

Using Hoeffding’s Inequality

Two indirect techniques can be used to handle such unbounded random variables. One

is to discard a random variable when its magnitude is large, and then argue that when

m is large enough, with high probability, the sample set contains enough samples with

small magnitude. This approach is adopted by Brunskill et al. [2008] to learn the mean

vector of a multivariate normal distribution. Another way is to use a truncated normal

distribution. Let τ ∈ R+ be a constant, and x ∼ N (µ, σ2). Then the induced random

variable, x̄, defined by

x̄
def
= sgn(x) min{|x| , τ},

follows the τ -truncated normal distribution. In other words, we truncate the random

variable x so that it is always within the range [−τ, τ ]. If |µ| < 1, it can be shown
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that [Strehl and Littman 2008b; Li et al. 2009b]

|µ−E[x̄]| ≤ ǫ

2
,

when

τ ≥ 1 + 2σ ln
16√
2πǫ

= O
(

σ ln
1

ǫ

)

.

Now, we may KWIK-learn E[x̄] using coin-learning as |x̄| ≤ τ . Applying Lemma 52, we

have that the following sample size (or KWIK bound) guarantees that the maximum-

likelihood estimate, µ̂, approximates E[x̄] to within precision ǫ/2 with probability 1−δ:

m =
8τ2

ǫ2
ln

1

δ
= O

(

σ2

ǫ2
ln2 1

ǫ
ln

1

δ

)

. (5.4)

And, we can easily show that µ̂ is an ǫ-accurate estimate of µ by the triangle inequality:

|µ̂− µ| ≤ |µ̂−E[x̄]|+ |E[x̄]− µ| ≤ ǫ

2
+
ǫ

2
= ǫ,

with probability at least 1− δ.

Using Chebyshev’s Inequality

A direct and simple way to get around unbounded random variables is to use Cheby-

shev’s inequality (Lemma 54), which requires boundedness of the variance of the random

variable, instead of the variable itself. This approach enables a simple analysis to de-

cide a KWIK bound for learning the mean of a univariate normal distribution when

the variance is known. We let the right-hand side of Chebyshev’s inequality be δ and

solve for m:

m =
σ2

δǫ2
. (5.5)

Unfortunately, the dependence on 1/δ is not logarithmic, because the tail bound in

Chebyshev’s inequality is not exponential. However, Equation 5.5 has a slightly better

dependence on 1/ǫ than Equation 5.4.

The result above can be generalized to a multivariate normal distribution, denoted

N (µ,Σ), in several ways. One way is to use one of the general techniques to combine

individual KWIK learners that we will discuss in the next chapter (c.f., §6.6, and in
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particular, Lemma 17). Another way is to use the multidimensional form of Chebyshev’s

inequality (Lemma 57). A slightly improved result is recently proved by Monhor [2007]

showing that the following sample size suffices to guarantee the maximum-likelihood

estimate, µ̂, is ǫ-close to µ in ℓ2-norm:

m = O
(

tr (Σ)

ǫ2δ

)

, (5.6)

where the trace, tr (Σ), is the sum of the diagonal elements of Σ. Clearly, this KWIK

bound is precisely a generalization of Equation 5.5.

Using Bernstein’s Inequality

Bernstein’s inequality (see Lemma 55 in the appendix for a precise statement) provides

another way to analyze the KWIK bound of learning the mean of a univariate normal

distribution. Like Hoeffding’s inequality, it gives the desired exponential tail bounds;

like Chebyshev’s inequality, it allows one to reason with the original normal distribution

directly without tricks such as truncation.

The key to using Lemma 55 is to find a constant c that satisfies the condition of

this lemma (in particular, Equation B.1 in the appendix). In our problem of learning

the mean of a normal distribution, we have the following technical lemma, whose proof

is given in §5.6.1:

Lemma 12 Let x ∼ N (µ, σ2), then for all k > 3,

E
[

|x− µ|k
]

≤ (
√

2σ)k
√
k!.

Lemma 12 implies immediately that Equation B.1 holds for univariate normal dis-

tributions with constant c = 4σ/
√

3 = Θ(σ). We then let the right-hand side of

Bernstein’s inequality be δ and solve for m, resulting in the following KWIK bound:

m =
σ2 + 4√

3
σǫ

ǫ2
ln

1

δ
= O

(

σ2

ǫ2
ln

1

δ

)

. (5.7)

Clearly, this KWIK bound is asymptotically better than Equations 5.4 and 5.5. The

analysis above proves the main theorem of this section.
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Theorem 11 The coin-learning algorithm can be used to KWIK-learn the mean of a

univariate normal distribution with known variance, when m is set by Equation 5.7.

The resulting KWIK bound is

Bunivariate normal(ǫ, δ) =

(

σ2

ǫ2
ln

1

δ

)

.

5.3.4 Subinterval Prediction

This section considers another way to generalize the learning problem in §5.3.1 that

will be useful in studying a model-free reinforcement-learning algorithm in §8. In this

problem, the learner is going to predict a subinterval of an interval that grows over

time, but it only has access to noisy observations of numbers chosen arbitrarily from

this interval.

Formally, we are given two known constants L < U , X = N, Y = {(l, u) | L ≤ l ≤

u ≤ U} ⊂ R
2, Z = [L,U ] ⊂ R, and H = YX . Here, Y is viewed a set of closed intervals,

so each element y = (l, u) ∈ Y is understood to be the closed interval [l, u]. At timestep

t, the input is xt = t, and the t-th output is yt = (lt, ut). The environment chooses a

number ct ∈ yt in an arbitrary way, and provides a stochastic observation, zt, so that

E[zt] = ct. In addition, we assume that l1 ≥ l2 ≥ l3 ≥ · · · , and u1 ≤ u2 ≤ u3 ≤ · · · ;

namely, the output sequence, [yt]t∈N, is a sequence of non-shrinking intervals with non-

increasing lower endpoints and non-decreasing upper endpoints. The goal of the learner

at timestep t is to predict ⊥ or an interval, ŷt = [l̂t, ût], such that ŷt is a subinterval of

yt, modulo ǫ-error. Formally, we use the following discrepancy function:

|ŷt − yt| = max
{

[lt − l̂t]+, [ût − ut]+

}

, (5.8)

where [v]+
def
= max{v, 0} for all v ∈ R. In other words, a predicted subinterval is not

ǫ-accurate if its lower endpoint is too small or its upper endpoint is too large.

For the specific version of subinterval prediction problem defined above, we note

two important observations. First, if |ŷt − yt| < ǫ, then |ŷ′t − yt| < ǫ, where

ŷ′t =

(

l̂t + ût

2
,
l̂t + ût

2

)
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is a degenerate interval. Therefore, we may assume that every non-⊥ prediction ŷt is

degenerate. Second, if some non-⊥ prediction ŷt is made at timestep t, then the same

prediction will be ǫ-correct for all future timesteps τ > t, since the target intervals are

non-shrinking: y1 ⊆ y2 ⊆ y3 ⊆ · · · .

To see the connection between subinterval prediction and coin-learning, consider

the degenerate case where we assume l1 = u1 = l2 = u2 = l3 = u3 = · · · = c∗ for

some unknown constant c∗, and so each interval yt becomes a singleton, {c∗}. Then,

the discrepancy function of Equation 5.8 is equivalent to the requirements that the

predictions be ǫ-close to c∗.

Perhaps unsurprisingly, the coin-learning algorithm can be used almost without mod-

ification to solve the subinterval prediction problem. The only difference in the algo-

rithm is that, when making a prediction at timestep t, instead of predicting ŷt = p̂, we

need to predict ŷt = (p̂, p̂) since every prediction must be an interval in Y. The main

theorem of this section is similar to that for coin-learning:

Theorem 12 The coin-learning algorithm can be used to solve the subinterval prediction

problem, when m is set appropriately. The resulting KWIK bound is

Bsubinterval(ǫ, δ) =

(

(U − L)2

ǫ2
ln

1

δ

)

.

Proof. The proof is an application of Hoeffding’s inequality. Suppose the algorithm

has outputted m ⊥s and observed the first m observations, z1, z2, . . . , zm. Define

pm
def
=

c1 + c2 + · · ·+ cm
m

.

Then, Hoeffding’s inequality implies

Pr (p̂− pm ≥ ǫ) ≤ exp

(

− 2mǫ2

(U − L)2

)

, (5.9)

Pr (p̂− pm ≤ −ǫ) ≤ exp

(

− 2mǫ2

(U − L)2

)

. (5.10)

By setting the right-hand sides above to δ/2 and solving for m, we have

m =
(U − L)2

2ǫ2
ln

2

δ
,
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which guarantees the validity of Equations 5.9 and 5.10 with probability at least 1− δ.

Therefore, with probability at least 1− δ, we have

lt − p̂ < lt − (pm − ǫ) =
1

m

m
∑

i=1

(lt − ci) + ǫ =
1

m

m
∑

i=1

(li − ci) + ǫ ≤ ǫ

and

p̂− ut < (pm + ǫ)− ut =
1

m

m
∑

i=1

(ci − ut) + ǫ ≤ 1

m

m
∑

i=1

(ci − ui) + ǫ ≤ ǫ

for all t > m, which implies

|(p̂, p̂)− yt| < ǫ.

�

5.3.5 Stochastic Linear Regression

This section extends deterministic linear-regression (Algorithm 13) to the noisy case

where the observations are target outputs corrupted by additive, white noise [Strehl

and Littman 2008b]. In this setting, certain regularity assumptions are necessary in

the problem formulation. Define X = {x ∈ R
n | ‖x‖2 ≤ 1}, Y = Z = [−1, 1], and

H = {fw | fw(x) = w⊤x,w ∈ R
n, ‖w‖2 ≤ 1}.

That is, H is a set of linear functions on n variables. The target output is corrupted by

additive, white noise: zt = yt + ηt, where ηt is a real-valued random variable with zero

expectation. Note also that ηt is bounded since both yt ∈ Y and zt ∈ Z are bounded.

Here, we describe the noisy linear-regression algorithm proposed by Strehl and Littman

[2008b], which has the KWIK bound of:

Bnoisy linear-regression = Õ
(

n3

ǫ4

)

.

We note that an algorithm was recently developed by Walsh et al. [2009b], which enjoys

a significantly improved KWIK bound of Õ
(

n/ǫ4
)

.

In contrast, the deterministic case in §5.2.3 enjoys a significantly smaller KWIK

bound in terms of n (linear instead of cubic). Here, the algorithm must be cautious to

average over the noisy samples to make predictions accurately. Each time the algorithm

returns ⊥, it acquires a training input–output pair. Intuitively speaking, the algorithm
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reports ⊥ whenever it finds the current input does not lie in a subspace spanned by

sufficiently many inputs in the training set. First, if the input does not lie close to the

subspace spanned by inputs in the training data, no reliable prediction is possible, as

in deterministic linear-regression. However, even if inputs in the training set span the

whole input space, we still have to require a large enough number of training data to

average out noise in the outputs.

Let X ∈ R
m×n denote an m×n design matrix whose rows we interpret as transposed

input vectors. We let X(i) denote the transpose of the i-th row of X. Let z ∈ R
m

denote an m-dimensional vector whose i-th component, denoted z(i), is interpreted as

the corresponding noisy observation.

SinceX⊤X is symmetric and positive semi-definite, it can be written as the following

form of singular value decomposition [Golub and Van Loan 1996]:

X⊤X = UΛU⊤, (5.11)

where U = [u1, . . . ,un] ∈ R
n×n, with u1, . . . ,un being a set of orthonormal singular

vectors of X⊤X, and Λ = diag(λ1, . . . , λn), with corresponding singular values λ1 ≥

λ2 ≥ · · · ≥ λk ≥ 1 > λk+1 ≥ · · · ≥ λn ≥ 0. Note that Λ is diagonal but not necessarily

invertible. Now, define Ū = [u1, . . . ,uk] ∈ R
n×k and Λ̄ = diag(λ1, . . . , λk) ∈ R

k×k. For

a fixed input xt (a new input provided to the algorithm at time t), define

q̄
def
= XŪ Λ̄−1Ū⊤xt ∈ R

m, (5.12)

ū
def
=

[

0, . . . , 0,u⊤
k+1xt, . . . ,u

⊤
n xt

]⊤
∈ R

n. (5.13)

The main result about this algorithm is the following theorem. A proof sketch is

provided due to Strehl and Littman [2008b] and detailed by Li et al. [2009b].

Theorem 13 With appropriate parameter settings, noisy linear-regression is an efficient

KWIK algorithm with a KWIK bound of Õ
(

n3/ǫ4
)

.
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Algorithm 16 Noisy linear-regression.

0: Inputs: X ,Y,Z,H, ǫ, δ, α1, α2

1: Initialize X = [ ] and z = [ ].
2: for t = 1, 2, 3, · · · do
3: Observe xt ∈ X .
4: Compute q̄ and ū using Equations 5.12 and 5.13.
5: if ‖q̄‖2 ≤ α1 and ‖ū‖2 ≤ α2 then
6: Solve for ŵ:

ŵ← argmin
w∈Rn:‖w‖

2
≤1
‖Xw − z‖22 .

7: Predict ŷt = ŵ⊤xt.
8: else
9: Predict ŷt = ⊥.

10: Receive observation zt.
11: Append x⊤

t as a new row to the matrix X.
12: Append zt as a new element to the vector z.
13: end if
14: end for

Figure 5.2: A Pictorial Comparison of PAC, MB, and KWIK (from Li et al. [2008]).

5.4 Related Learning Models

The KWIK model is most relevant to two existing learning models: PAC (probably

approximately correct) [Valiant 1984] and MB (mistake bound) [Littlestone 1988]. Fig-

ure 5.2 gives a pictorial comparison among PAC, MB, and KWIK.

The PAC model is extensively studied mostly for batch learning a binary concept,

where there is a separation between training and testing phases. In the training phase,

a set of training input–output pairs, drawn IID from an unknown distribution, are

provided to the learner, and the learner strives to infer the target function to within

ǫ-accuracy in the testing phase. Precisely, let D be the distribution over the input set,
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X . PAC requires the inferred hypothesis, denoted ĥ, to be ǫ-accurate with probability

at least 1− δ with respect to the target function h∗ in the following sense:

Ex∼D

[

I(ĥ(x) 6= h∗(x))
]

≤ ǫ.

Many hypothesis spaces are known to be learnable in the PAC model, such as the set

of conjunctions and 3-CNF, but some are computationally intractable to learn under

certain cryptographical assumptions [Kearns and Vazirani 1994].

The MB model is for online learning in which inputs may be chosen adversarially,

both similar to KWIK. However, this model does not explicitly allow the option of

predicting ⊥ and so the learner must make a prediction ŷt ∈ Y in every timestep t,

and some of these predictions may be wrong. To achieve successful learning in this

model, the number of mistakes made by the learner has to be small (such as being

polylogarithmic in the size of the hypothesis class). In binary classification, for example,

the total number of mistakes may be defined as

∞
∑

t=1

I(ŷt 6= yt).

The MB model is shown to be polynomially equivalent to the learning-by-query

model [Angluin 1988]: if a hypothesis class H is learnable in the MB model, then

it is also learnable in the query model, and vice versa.

Littlestone [1989] proves that a MB-learnable hypothesis space must be PAC-

learnable. On the other hand, Blum [1994] shows that there exists a hypothesis space

that is efficiently PAC-learnable but not efficiently MB-learnable, assuming the exis-

tence of one-way functions, a cryptographical conjecture that is widely assumed to be

true (see, e.g., Papadimitriou [1994]). Therefore, MB appears to be a strictly harder

model than PAC. The following examples show that KWIK is strictly harder than MB.

Example 10 A MB-learnable, but not KWIK-learnable example is Boolean conjunc-

tions. Define X = B
n,Y = Z = B, and

H = {h | h(x) = xi1 ∧ xi2 ∧ · · · ∧ xik , where 0 ≤ k ≤ n and i1, . . . , ik ∈ {1, 2, . . . , n}}.

By convention, define h(x) ≡ 1 when no variable is used in the conjunction. Let
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observations be deterministic. We define dim(H) = n, and so desire an algorithm with

at most poly(n) mistakes in the MB model, or at most poly(n) ⊥s in the KWIK model.

This hypothesis class is MB-learnable with no more than n mistakes by the following

algorithm. It initializes a set R by {1, 2, . . . , n}. For an input x, if xi = 1 for all i ∈ R,

it predicts ŷ = 1 (TRUE), and otherwise, ŷ = 0 (FALSE). It then gets to observe the

true output, y. If ŷ = 0 and ŷ = 1, it updates R by: R ← R \ {i | xi = 0}. First,

it can be observed that R is always a superset of the indices of the variables involved

in the target conjunction, h∗. Therefore, a “false positive” error (namely, ŷ = 1 and

y = 0) is impossible, and so the number of mistakes made by the algorithm is upper

bounded by the number of “false negative” errors (namely, ŷ = 0 and y = 1). Second,

we can observe that every false negative error reduces the size of R by at least one.

Since |R| = n initially and is non-negative, the total number of mistakes is at most n.

We now show that it may require 2n−1 many ⊥s to learn H in the KWIK model. Let

the target function be the conjunction of all variables; namely, h∗(x) = x1∧x2∧· · ·∧xn.

We now construct a worst-case sequence of inputs to get the 2n − 1 KWIK bound:

x1,x2, . . . ,x2n−1. These inputs are distinct and are organized in n groups:

• The first group consists of the first input x1 = [0, 0, . . . , 0]⊤;

• The second group consists of the next n inputs, each of which has exactly one 1 in

one component and 0 elsewhere; namely, xt = [0, 0, . . . , 0, 1, 0, · · · , 0]⊤, in which

the 1 appears in the (t− 1)-st position for 2 ≤ t ≤ n+ 1;

• The third group consists of the next
(

n
2

)

= n(n − 1)/2 inputs, each of which has

exactly two 1s in two components and 0 elsewhere;

• . . .

• The last group consists of the final
(

n
n−1

)

= n inputs, each of which has exactly

n− 1 1s in n− 1 components and 0 in the rest.

The total number of inputs above is

(

n

0

)

+

(

n

1

)

+ · · ·+
(

n

n− 1

)

= 2n − 1.

The correct output for all labels above are FALSE, but at any timestep t < 2n, the

input–output observations up to t − 1 do not reveal any positive instance of h∗. The
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way we construct the inputs guarantees that in all these timesteps, the correct output

can be either TRUE or FALSE, without knowing h∗. Only until y2n−1 = FALSE is

observed can the learner realize that h∗ is the conjunction of all n variables and start

making accurate predictions.

In addition to PAC and MB, KWIK also shares elements with a few other learning

models. First, we consider a generalization of the number of mistakes known as loss,

which applies to both classification and regression problems. The learning process is

similar to that in MB: we also denote the input, prediction, and output at timestep t by

xt, ŷt, and yt, respectively. The learner is informed of a loss function ℓ : Y2 → R+; the

function value, ℓ(ŷt, yt), is understood to be a measure of how inconsistent or different

the prediction ŷt is from the ground truth yt. For example, in binary classification

problems the 0/1-loss function is often used:

ℓ(ŷt, yt) = I(ŷt 6= yt);

whereas in a regression problem where Y ⊆ R, ℓ may be the square loss function:

ℓ(ŷt, yt) = (ŷt − yt)
2 .

The total H-step loss of the learner is

H
∑

t=1

ℓ(ŷt, yt),

which may be infinite as H → ∞. We can now define H-step regret L(H) as the

difference between the total loss of the learner and the total loss of the best hypothesis

of the hypothesis space in hindsight:

L(H)
def
=

H
∑

t=1

ℓ(ŷt, yt)−min
h∈H

{

H
∑

t=1

ℓ(h(xt), yt)

}

.

If L(H) = o(H), we know the learner’s total loss will approach that of the best hypoth-

esis in hindsight, and thus call the learner (or the learning algorithm) no-regret. See

§4.3.1 for a similar definition of regret.

Another model similar to MB is the regret framework as applied to associative bandit

problems [Strehl et al. 2006d]: at every timestep t in this model, the learner receives
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input xt ∈ X , selects an action at from a possibly infinite set A, and then receives

a randomized payoff rt ∈ R, whose expectation depends on xt and at. The goal is

to minimize the regret, defined as the difference between the largest total payoff by

following the best action-selection rule π in some given rule set Π and the total payoff

received by the learner. No-regret algorithms have been found for variants of associative

bandit problems in the sense that their regrets are sublinear in the number of timesteps

(e.g., Auer [2002]). Consequently, the average per-timestep regret converges to 0 in

the limit. Under certain conditions and transformations, we can equate regret with the

number of prediction mistakes, and thus the overall probability of making a mistake of

a no-regret algorithm converges to 0. However, these algorithms, like MB algorithms,

may make inaccurate predictions, violating the accuracy requirement of the KWIK

model.

Conformal prediction [Shafer and Vovk 2008] is an online-learning paradigm in which

the learner has to make a region, rather than a point, prediction, for the present input

based on previously observed input–output pairs. It is required that these prediction

regions contain the correct output with high probability. It is straightforward to decide

whether the output is known within sufficient accuracy based on the “size” of the region.

For example, in regression problems, if the region is an interval of length smaller than

ǫ, then any point prediction in this region will be ǫ-accurate with high probability.

However, existing conformal-prediction methods make statistical assumptions about

inputs such as independence or exchangeability, and thus are rendered inapplicable in

the KWIK setting.

The notion of allowing the learner to opt out of some inputs by returning ⊥ is not

unique to KWIK. Several other authors have considered related models. For example:

• In the MB-like apple-tasting setting [Helmbold et al. 2000], the learner receives

feedback asymmetrically only when it predicts a particular label (a positive ex-

ample, say), which conflates the request for a sample with the prediction of a

particular outcome.

• Sleeping experts [Freund et al. 1997a] can respond ⊥ for some inputs, although

they need not learn from these experiences and the number of ⊥s in the whole
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run may be unbounded.

• Learners in the settings of selective sampling [Cesa-Bianchi et al. 2006] and la-

bel efficient prediction [Cesa-Bianchi et al. 2005] request labels randomly with a

changing probability and achieve bounds on the expected number of mistakes and

the expected number of label requests for a finite number of interactions. These

algorithms cannot be used unmodified in the KWIK setting because, with high

probability, KWIK algorithms must not make mistakes at any time.

• Query-by-committee algorithms [Seung et al. 1992; Freund et al. 1997b] deter-

mines the confidence level of its prediction for an example based on the degree of

disagreements in the predictions of sub-algorithms in the committee. Similarly to

selective sampling algorithms, query-by-committee algorithms were proposed for

active learning and may not possess the accuracy requirement as KWIK.

• Finally, the averaged classifier by Freund et al. [2004] may return ⊥ if the averaged

prediction for an example is close to the classification boundary. However, it is

assumed that examples are i.i.d. and a non-⊥ prediction may not be accurate.

5.5 Further Discussions

So far in this chapter, we have defined KWIK and investigated some of its basic proper-

ties under the realization assumption. In this section, we briefly discuss a few potential

extensions.

5.5.1 Agnostic KWIK Learning

For simplicity, the dissertation focuses on the realizable case where the hypothesis class

must contain the true hypothesis: h∗ ∈ H. A natural extension is the agnostic case

that removes such an assumption. This subsection gives a preliminary study of agnostic

KWIK learning. We first show a simple case where agnostic KWIK learning is possible,

then give a hypothesis class that cannot be KWIK-learned agnostically, and finally

provide a general impossibility result by a reduction to online learning with malicious

noise.
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Before going into positive and negative examples, it is necessary to define when a

learning algorithm is deemed successful in the agnostic setting. It is possible that no

hypothesis in the hypothesis class is able to make accurate predictions for all inputs.

Motivated by the agnostic PAC model [Kearns et al. 1994], a natural way to define

the problem is to compare the prediction error of the learner to the prediction error

of the best hypothesis in H. Specifically, we may replace the accuracy requirement in

Definition 11 by: “There is a constant c ≥ 1 so that if ŷt 6= ⊥, it must be close to the

best hypothesis’ prediction: |ŷt − yt| < ǫ+ cξ”, where

ξ = inf
h∈H
‖h− h∗‖∞ = inf

h∈H
sup
x∈X
|h(x)− h∗(x)|

is the smallest ℓ∞-error of the best hypothesis in H, and h∗ is the target function and

may not be in H. Note that the realization assumption guarantees ξ = 0 as h∗ ∈ H.

The following algorithm which we call agnostic enumeration (Algorithm 17) is due to

Michael Littman2 and can be viewed as a robust version of enumeration in the agnostic

and deterministic case when H is finite and Y ⊂ R. It can KWIK-learn H when c ≥ 2

with a KWIK bound of

Bagnostic enumeration = |H| − 1.

Algorithm 17 Agnostic enumeration.

0: Inputs: X ,Y,H, ǫ, δ, ξ.
1: Ĥ ← H.
2: for t = 1, 2, . . . do
3: Observe xt ∈ X .
4: Compute L̂ = {h(xt) | h ∈ Ĥ}.
5: lmax ← maxl∈L̂ and lmin ← minl∈L̂.
6: if lmax − lmin < 2ξ then
7: Predict ŷt = (lmax + lmin)/2.
8: else
9: Predict ŷt = ⊥ and observe yt.

10: Ĥ ← Ĥ \ {h | h ∈ Ĥ ∧ |h(xt)− yt| ≥ ξ}.
11: end if
12: end for

In general, however, agnostic KWIK learning may not be possible for small values

of c, as shown by the following example of learning a linear function:

2Personal communications, 2008.
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Example 11 Let X = Y = Z = [0, 1] and require c = 1. The observations are

deterministic. Let ǫ < ξ. The target function f to learn is the zero function (which is

trivially linear): f(x) ≡ 0. Let the input at time t be xt = min{tβ, 1} for some small

β > 0, then the corresponding output is yt = f(xt) = 0. Assume that the learner knows

f is noise free. But, since it does not know that f is exactly linear, it has to predict

conservatively to handle the worst-case situations. At time t where ξ
β < t < 1

β , the

learner has to predict ⊥, based on the training data up to time t−1. The possible range

of yt, which is [− 2tξ
t−1 ,

2tξ
t−1 ], is too wide to guarantee a prediction error of at most ξ + ǫ.

By letting β ↓ 0, the number of ⊥s does not depend on ǫ or ξ, and is unbounded.

Finally, we note that since KWIK-learning is strictly harder than PAC learning with

malicious noise [Kearns and Li 1993], their bounds for maximum possible error rates

that can be tolerated by any learning algorithm applies directly to the KWIK model.

5.5.2 Dimension in KWIK Learning

An open problem in KWIK is how we may characterize the dimension or complexity

of a hypothesis class, which would be useful in characterizing the sample-complexity

bounds, similar to the VC dimension. A natural idea is to define a combinatorial

dimension that helps in this direction. For simplicity, we only consider the noise-free

and realizable case in this section. The following definition is motivated by a similar

combinatorial parameter proposed by Kearns and Li [1993].

Definition 12 A hypothesis class H is s-splittable with precision ǫ if there exist s

input–output pairs (xi, yi) ∈ X × Y and s distinct hypotheses h1, ..., hs ∈ H such that:

1. xi 6= xj if i 6= j;

2. |hi(xi)− yi| ≥ ǫ, but |hj(xi)− yi| < ǫ for all other j.

In other words, the i-th data can only rule out hypothesis hi, but not other hj. The

complexity metric, denoted dims(H, ǫ), is then defined as the largest possible s.

It is useful to compare dims to other complexity measures in computational learning

theory. To allow a reasonable comparison, we assume that Y = B and so H contains
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binary concepts. First, it can be shown that dims(H) is never smaller than the VC-

dimension of H [Vapnik 2006]. Second, dims(H) bears some similarity to the teaching

dimension [Goldman and Kearns 1995], but is never smaller than the teaching dimen-

sion.

A few simple observations follow directly from definition. The proofs are omitted.

Lemma 13 Let B(ǫ, δ) be the KWIK bound of an algorithm A for a hypothesis class

H. If δ < 1, then B(ǫ, δ) ≥ dims(H, ǫ).

Lemma 14 There are problems where dims(H) = |H| − 1. So enumeration is optimal

in some cases.

Lemma 15 There are problems where dims(H) = |X |. So memorization is optimal in

some cases.

Lemma 16 In the deterministic linear regression problem defined in §5.2.3, dims(H) =

n, implying optimality of the deterministic linear-regression algorithm.

Unfortunately, dims(H) cannot be used to derive KWIK upper bounds, even if we

ignore computational limitations. The following example shows that there is a hypoth-

esis class H with a small dims(H) but cannot be KWIK-learned by any algorithm.

Example 12 Let X = [0, 1], Y = Z = B, and H = {h | h(x) = I(x ≥ θ), θ ∈ [0, 1]}.

So, the hypothesis class contains all step functions defined on X . Observations are

deterministic. Suppose the target function uses θ = 1; that is, h∗(x) = I(x ≥ 1). Fur-

thermore, the sequence of inputs are xt = 1− 1/t. If ǫ < 1, then any KWIK algorithm

must predict ⊥ for all inputs, and the KWIK bound is ∞. However, dims(H) = 2.

5.6 Proofs

This section provides detailed proofs of all technical lemmas used in this chapter.
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5.6.1 Proof of Lemma 12

Proof. Let x ∼ N (µ, σ2). For all p ∈ N, Lemma 60 states that

E
[

|x− µ|2p
]

=
(2p)!σ2p

2pp!
. (5.14)

Notice that

(2p)!

2pp!
=

(2p) · (2p− 1) · (2p− 2) · (2p− 3) · · · 3 · 2 · 1
(2p) · (2(p− 1)) · (2(p− 2)) · · · (2 · 3) · (2 · 2) · (2 · 1)

≤ (2p) · (2p) · (2p− 2) · (2p− 2) · · · 3 · 2 · 1
(2p) · (2(p− 1)) · (2(p− 2)) · · · (2 · 3) · (2 · 2) · (2 · 1)

= (2p) · (2(p− 1)) · (2(p− 2)) · · · (2 · 3) · (2 · 2) · (2 · 1)

= 2pp!.

Therefore,

2pp! ≥
√

(2p)!, (5.15)

implying that

E
[

|x− µ|2p
]

=
(2p)!σ2p

2pp!
≤ 2pp!σ2p ≤

(√
2σ
)2p√

(2p)!.

We have thus proved the lemma for even k.

For odd k, we will need the Cauchy-Schwarz inequality (Lemma 67). Specifically,

E
[

|x− µ|k
]

≤
√

E
[

|x− µ|2k
]

=

√

(2k)!σ2k

2kk!
≤ σk

√
2kk!,

where the first step applies Lemma 67 with u = |x− µ|k and v = 1, the second uses

Equation 5.14, and the last uses Equation 5.15. We have thus proved the lemma also

for odd k, and the proof is complete. �
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Chapter 6

Combining KWIK Learners

This section provides examples of how KWIK learners can be combined to provide

learning guarantees for more complex hypothesis classes. In all cases, we are given a

collection of k KWIK problems with respective input, output, observation, and hypoth-

esis sets, together with corresponding KWIK algorithms for these problems. Each of

these algorithms is referred to a sub-algorithm. The goal here is to create a master al-

gorithm, which makes use of the sub-algorithms, for solving a new KWIK problem that

is defined using the k KWIK problems in various ways. Applications of these master

algorithms in PAC-MDP reinforcement learning are the topic of Part III.

6.1 Input Partition

We first consider a variant of memorization that combines learners across disjoint input

sets. Let X1, . . . ,Xk be a set of disjoint input sets (Xi ∩ Xj = ∅ if i 6= j) and Y be

an output set. Let H1, . . . ,Hk be a set of KWIK-learnable hypothesis classes with

KWIK bounds of B1(ǫ, δ), . . . , Bk(ǫ, δ) where Hi ⊆ YXi . The input-partition algorithm

(Algorithm 18) can be used to KWIK-learn the hypothesis class

H def
= H1 × · · · × Hk ⊆ YX1∪···∪Xk .

Note that input-partition applies both in deterministic and in stochastic problems.

Input-partition runs a sub-algorithm, denoted Ai, for each subclass Hi. When it

receives an input xt ∈ Xi at timestep t, it queries Ai and returns its response ŷt. If

ŷt = ⊥, an observation is obtained and input-partition informs Ai of this observation to

allow it to learn. Otherwise, ŷt is ǫ-accurate with high probability, since Ai is a KWIK

algorithm for Hi. The total number of ⊥s is the sum of the number of ⊥s returned by
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Algorithm 18 Input-partition.

0: Inputs: X1, . . . ,Xk,Y,Z,H1, . . . ,Hk, ǫ, δ,A1, . . . ,Ak.
1: Each sub-algorithm Ai is run using parameters ǫ and δ/k.
2: for t = 1, 2, . . . do

3: Observe xt ∈ X def
= X1 ∪ · · · ∪ Xk and find i such that xt ∈ Xi.

4: Run Ai with input xt and make ŷt the return of Ai on xt.
5: if ŷt = ⊥ then
6: Observe zt and feed it to Ai to allow it to learn.
7: end if
8: end for

all sub-algorithms Ai. To achieve 1 − δ certainty, it insists on 1 − δ/k certainty from

each of the sub-algorithms. By a union bound, the overall failure probability is at most

the sum of the failure probabilities of the sub-algorithms, which is k · δ/k = δ. We have

thus proved the main result in this section.

Theorem 14 Input-partition can KWIK-learn the hypothesis class, H def
= H1×· · ·×Hk

with a KWIK bound of:

Binput-partition(ǫ, δ) =

k
∑

i=1

Bi

(

ǫ,
δ

k

)

.

Example 13 Let X = Y = R. Define H to be a set of piecewise linear functions:

H = {f | f(x) = px if x ≥ 0, f(x) = mx otherwise, p ∈ R,m ∈ R} .

Using Algorithm 13, we can KWIK-learn the class of linear functions over two input

sets, X− = (−∞, 0) and X+ = [0,∞), each requiring a KWIK bound of 1. Note that

{X−,X+} is a partition of the entire input set: X− ∪ X+ = X and X− ∩ X+ = ∅. We

can use Algorithm 18 to KWIK-learn H with a KWIK bound of 1 + 1 = 2. The two

KWIK learners are called A− and A+, respectively.

Assume the first input is x1 = 2, which is in X+. Input-partition queries A+ with

input x1. Since A+ has no idea about y1, it returns ⊥. Hence, input-partition reports

ŷ1 = ⊥, and y1 = 4 is observed. Learner A+ can now infer with certainty that p =

y1/x1 = 2, and we can now predict f(x) for all x ∈ X+. The next input is x2 = 0.5 ∈

X+, which is again presented to A+, resulting in ŷ2 = px2 = 1. The third input is

x3 = −1 ∈ X−. The algorithm queries A− with input x3 and receives ⊥ since A−
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does not have enough information to predict y3. The algorithm then predicts ⊥ for the

second time and sees y3 = 3. Learner A− can now determine m = y3/x3 = −3, and

the target function is completely identified:

f(x) =















2x if x ≥ 0

−3x otherwise.

6.2 Output Combination

A similar approach applies to the output set Y when it is a cross product of k sets:

Y = Y1 × · · · × Yk. Since the accuracy requirement in Definition 11 depends on the

output set as well as the interpretation of the discrepancy metric |·|, it is necessary

to make certain assumptions to relate the discrepancy metric in Y to those in Yi. A

natural choice, which we will use in §7, is to assume the existence of some α ∈ R+ such

that for any ǫ ∈ (0, 1) and any yi, ŷi ∈ Yi, if |ŷi − yi| < αǫ for all i = 1, 2, . . . , k, then

|ŷ − y| < ǫ, where y = (y1, . . . , yk) and ŷ = (ŷ1, . . . , ŷk). For example, if we use the

ℓ1, ℓ2, or ℓ∞ norms in the output spaces Y and Yi, then α can be 1/k, 1/
√
k, and 1,

respectively.

Let X be an input set and Y1, . . . ,Yk be a collection of output sets. Let

H1, . . . ,Hk be a set of KWIK-learnable hypothesis classes with KWIK bounds of

B1(ǫ, δ), . . . , Bk(ǫ, δ) where Hi ⊆ YX
i . The output-combination algorithm can be used

to KWIK-learn the hypothesis class for the composite output set, Y def
= Y1 × · · · × Yk:

H def
= H1 × · · · × Hk ⊆ (Y1 × · · · × Yk)

X .

Note that ouptut-combination applies both in deterministic and in stochastic problems.

Output-combination works by running each sub-algorithm, Ai, simultaneously with

parameters αǫ and δ/k. Given an input xt ∈ X , it collects the returns of all sub-

algorithms. If any one of them returns ⊥, output-combination also returns ⊥ to acquire

an observation zt to allow the sub-algorithms to learn. Otherwise, it simply combines

the k component predictions and returns the assembled prediction ŷt. Since each com-

ponent prediction is αǫ-accurate, the combined prediction must be ǫ-accurate. Further-

more, the total number of ⊥s returned by output-combination is the sum of ⊥s returned
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Algorithm 19 Output-combination.

0: Inputs: X ,Y1, . . . ,Yk,Z,H1, . . . ,Hk, ǫ, δ,A1, . . . ,Ak.
1: Each sub-algorithm Ai is run using parameters αǫ and δ/k.
2: for t = 1, 2, . . . do
3: Observe xt ∈ X .
4: for all i ∈ {1, 2, . . . , k} do
5: Run Ai with input xt, and let ŷi

t be the sub-algorithm’s return.
6: end for
7: if ŷi

t = ⊥ for any i then
8: Predict ŷt = ⊥ and observe zt.
9: Feed zt to all Ai with ŷi

t = ⊥ to allow them to learn.
10: else
11: Predict ŷt = (ŷ1

t , ŷ
2
t , . . . , ŷ

k
t ).

12: end if
13: end for

by the sub-algorithms. Finally, a union bound implies the overall failure probability is

at most the sum of the failure probabilities of the sub-algorithms, which is k · δ/k = δ.

We have thus proved the main result of this section.

Theorem 15 Output-combination can KWIK-learn the hypothesis class H def
= H1×· · ·×

Hk with a KWIK bound of

Boutput-combination(ǫ, δ) =

k
∑

i=1

Bi

(

αǫ,
δ

k

)

.

6.3 Cross Product

The next algorithm generalizes the previous algorithm by combining both the input

and output sets. Let X1, . . . ,Xk and Y1, . . . ,Yk be a set of input and output sets and

H1, . . . ,Hk be a collection of KWIK-learnable hypothesis classes with KWIK bounds

of B1(ǫ, δ), . . . , Bk(ǫ, δ) on these sets. That is, Hi ⊆ YXi

i . Let X def
= X1 × · · · × Xk

and Y def
= Y1 × · · · × Yk be the composite input and output sets, respectively. The

cross-product algorithm (Algorithm 20) can learn the hypothesis class

H def
= H1 × · · · × Hk ⊆ (Y1 × · · · × Yk)

X1×···×Xk .

Note that cross-product applies both in deterministic and stochastic problems.

Here, each input consists of a vector of inputs from each of the sets X1, . . . ,Xk and

outputs are vectors of outputs from Y1, . . . ,Yk. Like Algorithm 19, each component
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Algorithm 20 Cross-product.

0: Inputs: X1, . . . ,Xk,Y1, . . . ,Yk,Z1, . . . ,Zk,H1, . . . ,Hk, ǫ, δ,A1, . . . ,Ak.
1: Each sub-algorithm Ai is run using parameters αǫ and δ/k.
2: for t = 1, 2, . . . do
3: Observe xt = (x1

t , . . . , x
k
t ) ∈ X1 × · · · × Xk.

4: Run Ai with input xi
t for all i. Denote their returns by ŷi

t.
5: if ŷi

t = ⊥ for any i then
6: Predict ŷt = ⊥ and observe zt = (z1

t , . . . , z
k
t ) ∈ Z1 × · · · × Zk.

7: Feed zi
t to all Ai with ŷi

t = ⊥ to allow them to learn.
8: else
9: Predict ŷt = (ŷ1

t , ŷ
2
t , . . . , ŷ

k
t ).

10: end if
11: end for

of the output vector can be learned independently via the corresponding algorithm.

Each is learned to within an accuracy of αǫ and confidence 1 − δ/k. Any time any

component returns ⊥, cross-product returns ⊥. Since each ⊥ returned can be traced to

one of the sub-algorithms, the total is bounded as described above. By a union bound,

total failure probability is no more than k × δ/k = δ. We have thus proved the main

result of this section.

Theorem 16 Cross-product can KWIK-learn the composite hypothesis class H def
= H1×

· · · × Hk with a KWIK bound of

Bcross-product(ǫ, δ) =
∑

i

Bi

(

αǫ,
δ

k

)

.

We note that Algorithm 19 is a degenerate case of this algorithm where Xi = Xj for

all i, j and every input tuple xt = (x, . . . , x) for some x ∈ X1.

6.4 Union

The previous two algorithms concern combinations of input or output sets and apply

to both deterministic and noisy observations. We next provide an intuitive algorithm

for the deterministic case that combines learners for different hypothesis classes. Let

H1, . . . ,Hk ∈ YX be a set of KWIK-learnable hypothesis classes with KWIK bounds

of B1(ǫ, δ), . . . , Bk(ǫ, δ). That is, all the hypothesis classes share the same input and

output sets. The union algorithm (Algorithm 21) can be used to KWIK-learn the joint
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hypothesis class

H def
=

k
⋃

i=1

Hi.

Algorithm 21 Union for deterministic problems.

0: Inputs: X ,Y,H1, . . . ,Hk,A1, . . . ,Ak, ǫ, δ.
1: Each sub-algorithm Ai is run with parameters ǫ/2 and δ/k.
2: Â← {1, 2, · · · , k}.
3: for t = 1, 2, . . . do
4: Observe xt ∈ X
5: Run each Ai in Â to obtain their predictions, ŷti.
6: L← {ŷti | i ∈ Â}.
7: if ⊥ ∈ L then
8: Predict ŷt = ⊥ and observe yt ∈ Y
9: Send yt to all sub-algorithms Ai with ŷti = ⊥

10: else if there exists some y0 ∈ Y such that maxy∈L |y0 − y| < ǫ/2 then
11: Predict ŷt = y0

12: else
13: Predict ŷt = ⊥ and observe yt ∈ Y
14: Â← Â \ {i | |ŷti − yt| ≥ ǫ/2}
15: end if
16: end for

One can think of Union as a higher-level version of enumeration. It maintains a set

of active sub-algorithms Â, one for each hypothesis class; Â is initialized to {1, . . . , k}.

Given an input xt at timestep t, the union algorithm queries each sub-algorithm i ∈ Â

to obtain a prediction ŷti. Let L̂ = {ŷti | i ∈ Â}.

If ⊥ ∈ L̂, the union algorithm reports ⊥ and obtains the correct output yt. Any

algorithm i for which ŷti = ⊥ is then sent the correct output yt to allow it to learn.

Below, we assume ⊥ /∈ L̂.

If all predictions in L̂ are sufficiently consistent, as defined in Line 10 of Algo-

rithm 21, then the prediction made in Line 11 must be ǫ-accurate because

|ŷt − yt| ≤ |ŷt − ŷti∗ |+ |ŷti∗ − yt| ≤
ǫ

2
+
ǫ

2
= ǫ,

where i∗ denotes which hypothesis class the (unknown) target hypothesis lies in: h∗ ∈

Hi∗ . With high probability, i∗ ∈ Â during the whole run of union, since predictions by

Ai∗ must be ǫ
2 -accurate.

If the consistency condition in Line 10 is not satisfied, the algorithm is not able

to make an ǫ-accurate prediction and so returns ⊥. Using the correct output yt, any
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algorithm that incurred a prediction error greater than or equal to ǫ/2 is “killed”;

that is, it is removed from the active set, as done in Line 14. Clearly, at least one

sub-algorithm becomes inactive.

On each input xt for which union reports⊥, either one of the sub-algorithms reported

⊥ (at most
∑

iBi(ǫ/2, δ/k) times), or these sub-algorithms disagreed and at least one

was removed from Â (at most k − 1 times). Finally, the total failure probability is δ,

by a union bound. We have thus proved the main result of this section.

Theorem 17 Union can KWIK-learn the joint hypothesis class H def
=
⋃k

i=1Hi with a

KWIK bound of

Bunion(ǫ, δ) = (k − 1) +

k
∑

i=1

Bi

(

ǫ

2
,
δ

k

)

.

Example 14 Let X = Y = R. Now, define H1 = {f | f(x) = |x− c|, c ∈ R}. That is,

each function in H1 maps x to its distance from some unknown point c. We can learn

H1 with a KWIK bound of 2 using a 1-dimensional version of distance-learning. Next,

define H2 = {f | f(x) = mx+ b,m ∈ R, b ∈ R}. That is, H2 is the set of lines. We can

learn H2 with a KWIK bound of 2 using deterministic linear-regression. Finally, define

H = H1∪H2, the union of these two classes. We can use Algorithm 21 to KWIK-learn

H with a KWIK bound no greater than 2 + 2 + (2− 1) = 5.

Assume the first input is x1 = 2. The union algorithm queries the learners for

H1 and H2 with x1 as input and neither has any idea, so it returns ⊥ and receives

the feedback y1 = 2, which it passes to the sub-algorithms. The next input is x2 = 8.

The learners for H1 and H2 still lack enough information, so it returns ⊥ and sees

y2 = 4, which it passes to the sub-algorithms. Next, x3 = 1. Now, the learner for H1

unambiguously computes c = 4, because that’s the only interpretation consistent with

the first two examples (|2 − 4| = 2, |8 − 4| = 4), so it returns |1 − 4| = 3. On the

other hand, the learner for H2 unambiguously computes m = 1/3 and b = 4/3, because

that’s the only interpretation consistent with the first two examples (2× 1/3 + 4/3 = 2,

8 × 1/3 + 4/3 = 4), so it returns 1 × 1/3 + 4/3 = 5/3. Since the two sub-algorithms

disagree, the union algorithm returns ⊥ one last time and finds out that y3 = 3. It

makes all future predictions (accurately) using the algorithm for H1. The total number
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of ⊥s returned is 3.

6.5 Noisy Union

In this section, we provide a powerful and general algorithm that extends union to

work with noisy observations as well. In a stochastic problem, we cannot eliminate a

candidate hypothesis simply based on a single mistake it makes (as we did in union).

Instead, we use a scoring function to measure the cumulative error of each hypothesis,

which gets eliminated from the version space when its cumulative error becomes too

large. A similar technique is used for hypothesis testing by Kearns and Schapire [1994],

who consider a PAC -style learning model for probabilistic concepts.

Let X be the input set, Y = [0, 1] be the output set, Z = B a binary observation set,

and H1, . . . ,Hk be a set of KWIK-learnable hypothesis classes with KWIK bounds of

B1(ǫ, δ), . . . , Bk(ǫ, δ) where Hi ⊆ YX for all i. That is, all the hypothesis classes share

the same input and output sets. The noisy union algorithm (Algorithm 22) can be used

to KWIK-learn the joint hypothesis class H def
=
⋃

iHi with a KWIK bound of

Bnoisy union(ǫ, δ) = O
(

k

ǫ2
ln
k

δ

)

+

k
∑

i=1

Bi

(

ǫ

8
,

δ

k + 1

)

.

Furthermore, we provide a lemma at the end of the section showing that noisy union is

optimal up to a constant factor.

We first sketch the special case of k = 2 to explain the intuition of noisy union, and

then extend the analysis to the general case. This algorithm is similar to the union

algorithm, except that it has to deal with noisy observations. The algorithm proceeds

by running the KWIK sub-algorithms, denoted A1 and A2, using parameters (ǫ0, δ0),

as sub-algorithms for each of the Hi hypothesis classes, where ǫ0 = ǫ/4 and δ0 = δ/3.

Given an input xt in timestep t, it queries each sub-algorithm Ai to obtain a prediction

ŷti. Let L̂t = {ŷt1, ŷt2} be the set of predictions.

If ⊥ ∈ L̂t, noisy union reports ⊥, obtains an observation zt ∈ Z, and sends it to sub-

algorithms i if ŷti = ⊥ to allow it to learn. In the following, we focus on the remaining

cases where ⊥ /∈ L̂t.
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If |ŷt1 − ŷt2| ≤ 4ǫ0, then these two predictions are sufficiently consistent, so with

high probability the prediction p̂t = (ŷt1 + ŷt2)/2 is ǫ-close to yt = Pr(zt = 1). The

reason is that, since one of the predictions, say ŷt1, deviates from yt by at most ǫ0 with

probability at least 1− δ/3, and so the triangle inequality implies

|p̂t − yt| ≤ |p̂t − ŷt1|+ |ŷt1 − ŷt| =
|ŷt1 − ŷt2|

2
+ |ŷt1 − ŷt| ≤ 2ǫ0 + ǫ0 < ǫ.

If |ŷt1 − ŷt2| > 4ǫ0, then the individual predictions are not sufficiently consistent

for noisy union to make an ǫ-accurate prediction. Thus, it reports ⊥ and needs to

know which sub-algorithm provided an inaccurate response. But, since the observations

are noisy in this problem, it cannot eliminate hi on the basis of a single observation.

Instead, it maintains the total squared prediction error for every sub-algorithm i: ei =
∑

t∈D (ŷti − zt)2, where D = {t | |ŷt1 − ŷt2| > 4ǫ0} is the set of trials in which the sub-

algorithms gave inconsistent predictions. It can be shown using simple algebra that

E[e1] < E[e2] if h∗ ∈ H1, and vice versa. Our last step is to show ei provides a robust

measure for eliminating invalid predictors when |D| is sufficiently large.

Using Hoeffding’s inequality and some algebra, we find

Pr (ℓ1 > ℓ2) ≤ exp

(

−
∑

t∈D |ŷt1 − ŷt2|2
8

)

≤ exp
(

−2ǫ20 |D|
)

.

Setting the righthand side to be δ/3 and solving for |D|, we have

|D| = 1

2ǫ20
ln

3

δ
= O

(

1

ǫ2
ln

1

δ

)

.

Since each Ai succeeds with probability 1− δ/3, and the comparison of e1 and e2 also

succeeds with probability 1−δ/3, a union bound implies that the noisy union algorithm

succeeds with probability at least 1 − δ. All ⊥s are either from a sub-algorithm (at

most
∑

iBi(ǫ0, δ0)) or from the noisy union algorithm itself (O(1/ǫ2 ln(1/δ))).

The general case where k > 2 can be reduced to the k = 2 case by pairing the k

learners and running noisy union described above on each pair. Here, each sub-algorithm

is run with parameters ǫ/8 and δ/(k + 1). The algorithm is formally described in

Algorithm 22. Although there are
(

k
2

)

= O(k2) pairs, a similar but more careful analysis

can reduce the dependence of the KWIK bound on k from quadratic to linearithmic,

leading to Theorem 18.
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Algorithm 22 Noisy union

0: Inputs: X ,Y,Z,H1, . . . ,Hk,A1, . . . ,Ak, ǫ, δ,m.
1: Run each sub-algorithm Ai with parameters ǫ/8 and δ/(k + 1).
2: R← {1, 2, · · · , k} {version space of hypothesis classes}
3: for all 1 ≤ i < j ≤ k do
4: cij ← 0
5: ∆ij ← 0
6: end for
7: for timestep t = 1, 2, . . . do
8: Observe xt ∈ X
9: Run each Ai to obtain its prediction, ŷti

10: if ŷti = ⊥ for some i ∈ R then
11: Predict ŷt = ⊥ and observe zt ∈ Z
12: Send zt to all sub-algorithms Ai with ŷti = ⊥
13: else
14: if |ŷti − ŷtj | < ǫ for all i, j ∈ R then
15: Predict the midpoint of the predictions: ŷt = (maxi∈R ŷti + mini∈R ŷti)/2
16: else
17: Predict ŷt = ⊥ and observe zt ∈ Z
18: for all i, j ∈ R such that i < j and |ŷti − ŷtj | ≥ ǫ/2 do
19: cij ← cij + 1
20: ∆ij ← ∆ij + (ŷti − zt)2 − (ŷtj − zt)2
21: if cij = m then
22: R← R \ {I} where I = i if ∆ij > 0 and I = j otherwise.
23: end if
24: end for
25: end if
26: end if
27: end for

Theorem 18 Noisy union can KWIK-learn the combined hypothesis class H def
= H1 ∪

· · · ∪ Hk with a KWIK bound of

Bnoisy union(ǫ, δ) = O
(

k

ǫ2
ln
k

δ

)

+

m
∑

i=1

Bi

(

ǫ

8
,

δ

k + 1

)

when the parameter m is set appropriately:

m = O
(

1

ǫ2
ln
k

δ

)

.

Example 15 [Li et al. 2009b] There are k meteorologists in a town. Every morning,

each of them makes a prediction about the chances of rain of that day. At the end

of the day, we observe and record whether it rained or not. Such historical data may

be used by noisy union to identify an accurate meteorologist (assuming he exists) after

polynomially many days.
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Finally, we provide a lower bound showing the optimality of noisy union for com-

bining hypothesis classes. To simplify exposition, we separate the KWIK bounds of

sub-algorithms from the KWIK bound used to select the right sub-algorithm in noisy

union. To do so, we assume Bi(ǫ, δ) are all zero in order to show the optimality of noisy

union in terms of combining hypothesis classes. The proof is left in §6.7.2.

Theorem 19 Suppose all sub-algorithms have been KWIK-learned beforehand; that is,

Bi(ǫ, δ) = 0. Then, a KWIK lower bound for the noisy union is

Ω

(

k

ǫ2
ln
k

δ

)

.

6.6 Case Study: Multivariate Normal Learning

In this section, we give a non-trivial study of KWIK-learning multivariate normal dis-

tributions to illustrate some of the combination techniques presented in previous sec-

tions. This section extends and generalizes a number of previous results in the litera-

ture [Abbeel and Ng 2005; Strehl and Littman 2008b; Brunskill et al. 2008].

Recall that a multivariate normal distribution, N (µµµ,Σ), has the following probabil-

ity density function: for any x ∈ R
n,

ϕ(x)
def
=

1

(2π)n/2
√

det Σ
exp

(

−1

2
(x−µµµ)⊤Σ−1(x−µµµ)

)

,

where µµµ = [µi]i ∈ R
n is the mean vector, and Σ = [σij ]ij ∈ R

n×n is the covariance

matrix. We assume Σ is non-singular. The problem of KWIK-learning a multivariate

normal distribution can be formulated by defining the following: the input set X is a

singleton indicating there is a single normal distribution to learn,

Y = H = {(µµµ,Σ)} ⊆ R
n × R

n×n,

Z = R
n,

and the discrepancy function is defined as the total variation, as usual:

|N (µµµ1,Σ1),N (µµµ2,Σ2)| = dvar (N (µµµ1,Σ1),N (µµµ2,Σ2)).

The normal-learning algorithm (Algorithm 23) is very intuitive. Before making pre-

dictions, it simply outputs ⊥ to collect a sufficient amount of samples to obtain highly
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accurate maximum-likelihood predictions of the mean vector and the covariance matrix.

It is not difficult to show that, after m observations, the estimate of the normal distri-

bution computed by Algorithm 23 coincides with the maximum-likelihood estimate:

µ̂µµ =
1

m

m
∑

t=1

zt

Σ̂ =
1

m

m
∑

t=1

(zt − µ̂µµ)(zt − µ̂µµ)⊤.

The algorithm has O(n2) per-step computational complexity and space complexity.

Algorithm 23 Normal-learning.

0: Inputs: X ,Y,Z,H, ǫ, δ,m.
1: µ̂µµ← 0n, Σ̂← On×n.
2: for t = 1, 2, . . . do
3: Observe xt ∈ X .
4: if t ≤ m then
5: Predict ŷt = ⊥ to observe zt ∈ Z.
6: µ̂µµ← µ̂µµ+ zt.
7: Σ̂← Σ̂ + ztz

⊤
t .

8: if t = m then
9: µ̂µµ← µ̂µµ/m.

10: Σ̂← Σ̂/m− µ̂µµµ̂µµ⊤.
11: end if
12: else
13: Predict ŷt = (µ̂µµ, Σ̂).
14: end if
15: end for

To simplify notation, in the rest of this section as well as §6.7.3 and §6.7.4, we

suppress the timestep t in our notation, and use zi to denote the i-th component in

vector z. The (i, j)-entries of Σ and Σ̂ are denoted σij and σ̂ij , respectively.

In §5.3.3, we discuss how to KWIK-learn µµµ when n = 1 and Σ is known. In the

general learning problem defined above, a few challenges arise:

• How can the learner robustly learn µµµ to a desired precision?

• How can the learner robustly learn Σ to a desired precision?

• How can the learner translate prediction errors in µµµ and Σ to the total variation

defined above?

The first two questions are relatively easy to solve given the tools we have developed

so far, while the last is rather difficult, requiring simplifying assumptions in previous
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work: Abbeel and Ng [2005] and Strehl and Littman [2008b] assume that Σ = σ2In for

some known σ2 and identity matrix In; Brunskill et al. [2008] assume Σ is diagonal.

Here, we replace all these assumptions by a mild one that is satisfied in most reasonable

applications. In particular, we assume that there exists a constant, B ≥ 1, such that

max
i,j
|σij | ≤ B.

Although our analysis below is complicated, it reduces to essentially the same bounds

(modulo constant factors) of Abbeel and Ng [2005] and Brunskill et al. [2008] under

respective assumptions.

The three challenges above are addressed by three lemmas (17–19), respectively.

We should point out that there are opportunities to prove tightened bounds than those

given below, but the main point here is to illustrate how we may guarantee polynomial

KWIK bounds by combining individual KWIK learners in a non-trivial example, and

how one may link discrepancy in individual output spaces to the joint output spaces

(c.f., Lemma 19). A refined analysis is left for future investigation.

Lemma 17 It suffices to set

m =
2n2B

ǫ2δ
= O

(

n2B

ǫ2δ

)

.

to guarantee ‖µ̂µµ−µµµ‖2 ≤ ǫ with probability at least 1− δ/2.

Proof. A straightforward application of output combination to Equation 5.5 using

α = 1/
√
n. Note that we have made use of the assumption that Var[zi] = σii ≤ B. �

Lemma 18 Assume maxi |µ̂i − µi| ≤ ǫ for ǫ < 1/3. Then, it suffices to set

m =
8n2B2

ǫ2δ
= O

(

n2B2

ǫ2δ

)

.

to guarantee |σ̂ij − σij | ≤ ǫ for all i, j with probability at least 1− δ/2.

Proof. The proof is again a straightforward application of output combination to

Lemma 54 using α = 1. Specifically, we may KWIK-learn each element in the matrix Σ

to within ǫ-accuracy, and then use a union bound to KWIK-learn all elements in Σ. The



128

only difficult step is to get an upper bound of the variance of the maximum-likelihood

estimate of σij , which is solved by Lemma 27 in §6.7.3. �

The last lemma relates the discrepancy metrics for µµµ and Σ to the total variation

of normal distributions. Its proof is rather complicated, to which §6.7.4 is devoted.

Lemma 19 Assume ‖µ̂µµ−µµµ‖2 ≤ ǫ1, maxi,j |σ̂ij − σij | ≤ ǫ2, and nǫ2
∥

∥Σ−1
∥

∥

1
< 1. Then,

dvar

(

N (µ̂µµ, Σ̂),N (µµµ,Σ)
)

≤ ǫ1√
λn

+

√

n2ǫ2
λn

+
2n3Bǫ2

λ2
n − n3/2λnǫ2

,

where λ1 ≥ λ2 ≥ · · · ≥ λn > 0 are the n eigenvalues of the covariance matrix Σ. Note

that ǫ2 ≤ λnn
−3/2 suffices to guarantee nǫ2

∥

∥Σ−1
∥

∥

1
< 1 due to Lemma 28.

Putting all these three pieces together, we may prove the following KWIK bound

for Algorithm 23:

Theorem 20 Algorithm 23 has the following KWIK bound:

Bnormal-learning(ǫ, δ) = O
(

n8B4

λ4
nǫ

4δ

)

,

where λn > 0 is the smallest eigenvalue of the covariance matrix Σ.

Proof. To guarantee dvar

(

N (µ̂µµ, Σ̂),N (µµµ,Σ)
)

≤ ǫ, it follows from Lemma 19 that it

suffices to have

ǫ

2
≥ ǫ1√

λn

ǫ2

8
≥ n2ǫ2

λn

ǫ2

8
≥ n3Bǫ2

λ2
n − n3/2λnǫ2

.

Solving the three inequalities for ǫ1 and ǫ2, we obtain

ǫ1 ≤
√
λnǫ

2
(6.1)

ǫ2 ≤ λnǫ
2

8n2
(6.2)

ǫ2 ≤ λ2
nǫ

2

8n3B + n3/2λnǫ2
. (6.3)
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Equations 6.2 and 6.3 imply that

ǫ2 ≤ min

{

λnǫ
2

8n2
,

λ2
nǫ

2

8n3B + n3/2λnǫ2

}

=
λ2

nǫ
2

8n3B + n3/2λnǫ2
, (6.4)

where equality holds because λn ≤ B (c.f., Lemma 28). We now apply Lemma 17 and

Lemma 18 to Equation 6.1 and Equation 6.4 to obtain

m = max

{

16n2B

λnǫ2δ
,
8n2B2(8n3B + n3/2λnǫ

2)2

λ4
nǫ

4δ

}

= O
(

n8B4

λ4
nǫ

4δ

)

.

Finally, a straightforward application of the union bound implies that the probability

of failing to guarantee ǫ-KL-divergence is at most δ/2+δ/2 = δ, which proves the desired

KWIK bound. �

6.7 Proofs

This section provides detailed proofs of all technical lemmas used in this chapter.

6.7.1 Proof of Theorem 18

Without loss of generality, assume h∗ ∈ H1, and so |ŷt1 − yt| ≤ ǫ/8 whenever ŷt1 6= ⊥.

The following lemma says the accuracy requirement of Definition 11 is satisfied.

Lemma 20 If ŷt 6= ⊥, then |ŷt − yt| < ǫ.

Proof. By assumption, |ŷt1 − yt| ≤ ǫ/8. Since the midpoint prediction ŷt differs from

ŷt1 by at most ǫ/2, the prediction error can be bounded using the triangle inequality:

|ŷt − yt| ≤ |ŷt − ŷt1|+ |ŷt1 − yt| ≤
ǫ

2
+
ǫ

8
< ǫ.

�

We next show that the sample-complexity requirement of Definition 11 is also sat-

isfied. Note that the total number of ⊥s returned by noisy union is the number of

timesteps Lines 11 and 17 of Algorithm 22 are executed. Since Line 11 can be executed

at most
∑

iB(ǫ/8, δ/(k+ 1)) times, all that remains is to show that Line 17 cannot be

executed many times. To do this, we first prove the following three lemmas.
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Lemma 21 Whenever Line 17 is executed, c1i and ∆1i will be updated for at least one

i in {2, 3, · · · , k}. Consequently, Line 17 is executed on at most m(k − 1) timesteps.

Proof. Suppose at timestep t noisy union predicts ŷt = ⊥ because |ŷti − ŷtj | ≥ ǫ for

some 1 ≤ i < j ≤ k. Then, by the triangle inequality |a| + |b| ≥ |a− b|, we have that

|ŷt1 − ŷti| + |ŷt1 − ŷtj | ≥ |ŷti − ŷtj | ≥ ǫ, which implies at least one of |ŷt1 − ŷti| ≥ ǫ/2

or |ŷt1 − ŷtj | ≥ ǫ/2 is true. Hence, either c1i and ∆1i, or c1j and ∆1j , or both, are

updated. �

We next turn to decide an appropriate value of m to guarantee that the correct

hypothesis is not ruled out with high probability.

Lemma 22 Let i be the index given in the Lemma 21 such that |ŷt1 − ŷti| ≥ ǫ/2. On

average, ∆1i is decremented by at least ǫ2/8.

Proof. By definition and simple algebra, the expected increment of ∆1i is:

Ezt∼yt

[

(ŷt1 − zt)2 − (ŷti − zt)2
]

= Ezt∼yt [(ŷt1 − ŷti)(ŷt1 + ŷti − 2zt)]

= yt(ŷt1 − ŷti)(ŷt1 + ŷti − 2) + (1− yt)(ŷt1 − ŷti)(ŷt1 + ŷti)

= −(ŷt1 − ŷti)
2 + 2(ŷt1 − ŷti)(ŷt1 − yt)

≤ −(ŷt1 − ŷti)
2 + 2 |(ŷt1 − ŷti)(ŷt1 − yt)|

= −(ŷt1 − ŷti)
2 + 2 |ŷt1 − ŷti| |ŷt1 − yt|

≤ −(ŷt1 − ŷti)
2 +

ǫ

4
|ŷt1 − ŷti|

= |ŷt1 − ŷti|
(

− |ŷt1 − ŷti|+
ǫ

4

)

≤ ǫ

2

(

− ǫ
2

+
ǫ

4

)

= −ǫ
2

8
.

�

Lemma 23 Each change of ∆1i in Line 20 is at most 2 |ŷt1 − ŷti|.

Proof. Using simple algebra, we have

∣

∣(ŷt1 − zt)2 − (ŷti − zt)2
∣

∣ = |(ŷt1 − ŷti)(ŷt1 + ŷti − 2zt)| = |ŷt1 − ŷti| |ŷt1 + ŷti − 2zt| .
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It can be verified that |ŷt1 + ŷti − 2zt| < 2 for zt ∈ {0, 1}, and the lemma follows. �

Based on Lemma 22 and 23, we can decide the value of m. To simplify notation,

assume without loss of generality that |ŷt1 − ŷti| ≥ ǫ/2 for the first m timesteps; namely,

∆1i changes in every timestep until one of A1 and Ai is eliminated in Line 22 at the

end of timestep m. Applying Hoeffding’s inequality to the martingale ∆1i, we have at

the end of timestep m that

Pr (∆1i ≥ 0) ≤ Pr

(

∆1i −E[∆1i] ≥
m
∑

t=1

ǫ2t
2

)

≤ exp

(

−
(
∑m

t=1 ǫ
2
t /2
)2

2
∑⊤

t=1(2ǫt)
2

)

= exp

(

−
∑m

t=1 ǫ
2
t

32

)

≤ exp

(

−mǫ
2

128

)

where the first inequality is due to Lemma 22, the second due to Hoeffding’s inequality

and Lemma 23, and the last due to the fact that ǫt ≥ ǫ/2. Setting the last expression

to δ/k2, we can solve for m:

m =
128

ǫ2
ln
k2

δ
.

By the union bound, we have that

Pr (∆1i > 0 for any i ∈ {2, 3, . . . , k}) ≤ (k − 1)
δ

k2
<

δ

k + 1
.

That is, the probability that the noisy union algorithm ends up with an incorrect hy-

pothesis is tiny if every sub-algorithm succeeds. Applying the union bound again with

the k sub-algorithms, Ai, each failing with probability at most δ/(k + 1), we conclude

that the total failure probability of noisy union is at most δ.

Using the m value derived above and Lemma 21, the KWIK bound of noisy union is

m(k − 1) +
m
∑

i=1

Bi

(

ǫ

8
,

δ

k + 1

)

=
128(k − 1)

ǫ2
ln
k2

δ
+

m
∑

i=1

Bi

(

ǫ

8
,

δ

k + 1

)

6.7.2 Proof of Theorem 19

The proof is through a reduction to the multi-armed bandit problem (c.f., §4.3.1). In

particular, we will construct a problem such that a KWIK learner for H def
=
⋃k

i=1Hi
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has to solve k − 1 instances of two-armed bandit problems, each of which requires a

sample complexity lower bound in Lemma 11.

Let A be a hypothetical KWIK algorithm that solves the k-meteorologist problem

with a sample complexity B(ǫ, δ). Given any ǫ and δ, we define the following KWIK

problem: X = {1, 2, . . . , k − 1},Y = [0, 1],Z = B, and Hi = {hi} for i = 1, 2, . . . , k.

The target function h∗ = hk. The set of k meteorologists are defined by

hi(j)
def
= 1− ǫ+ 2ǫ · I(i ≤ j).

In other words, the set of meteorologists are constructed such that hi makes accurate

predictions for inputs x ∈ {i + 1, i + 2, . . . , k − 1}, and non-ǫ-accurate predictions for

inputs x ∈ {1, 2, . . . , i}. We now construct a sequence of inputs in the following way:

fix a constant τ ∈ N, and let

x1 = x2 = · · · = xτ = 1

xτ+1 = xτ+2 = · · · = x2τ = 2

· · ·

x(k−2)τ+1 = x(k−2)τ+2 = · · · = k − 1.

That is, the inputs consists of k − 1 blocks of the same inputs. As h∗ is the target

function, we always have zt = 1 with probability 1 + ǫ and 0 with probability 1− ǫ.

Without loss of generality, we may assume that, for each input block, A returns ⊥

for a while and then switches to non-⊥ predictions. As long as τ > ζ(ǫ, δ), A should

make non-⊥ predictions at the end of each input block.

In the i-th input block where inputs are always i, the algorithm should, with high

probability, eventually discover hi is not ǫ-correct. Note that the two-armed bandit

problem used by Mannor and Tsitsiklis [2004] can be reduced to the problem of finding

out whether E[zt] equals 1 − ǫ or 1 + ǫ; in this reduction, the sample complexity for

the two-armed bandit becomes the number of ⊥s returned by A. Thus, the same lower

bound in Lemma 11 applies to A, with which we can prove the following lemma.

Lemma 24 After returning ⊥ for mi times on input i ∈ X , the probability that A fails
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to discover the non-ǫ-accuracy of hi is at least

p(mi)
def
= c2 exp

(

−c1miǫ
2
)

,

for some constants c1, c2 ∈ R+.

Proof. Lemma 11 implies a lower bound of the number of samples to discover the

non-ǫ-optimality of hi with probability 1− δi:

mi ≥
1

c1ǫ2
ln
c2
δi

for some constants c1, c2 ∈ R+. Reorganizing terms to solve for δi gives the desired

result. �

Given the lower bound for any individual input x ∈ X , the remaining question is

how to get a KWIK lower bound for the whole run of A. Recall that δ is the probability

of failing on any input:

δ = Pr(A fails to eliminate hi for some i < k)

= 1− Pr(A eliminates hi for all i < k)

= 1−
k−1
∏

i=1

Pr(A eliminates hi)

= 1−
k−1
∏

i=1

(1− Pr(A fails to eliminate hi))

≥ 1−
k−1
∏

i=1

(1− p(mi)) ,

where the third equality is due to the statistical independence between input blocks,

and the last inequality is due to Lemma 24.

Two technical lemmas (Lemmas 25 and 26 below) are needed to further lower bound

the last expression above, which in turn lower-bounds δ and allows one to infer a lower

bound of B(ǫ, δ) = m1 +m2 + · · ·+mk−1. Specifically, we apply Lemma 25 with c = c2

and ∆ = exp(−c1ǫ2) and obtain1

δ ≥ 1−
(

1− c2 exp

(

−c1B(ǫ, δ)ǫ2

k − 1

))k−1

.

1If c2 ≥ 1, we can always replace it with another constant c′2 < 1 without violating Lemma 11.
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The theorem then follows immediately from Lemma 26 using N = k − 1 and η = ǫ2.

We now state and prove the two technical lemmas.

Lemma 25 Let c and ∆ be constants in (0, 1). Under the constraints
∑

imi ≤ ζ and

mi > 0 for all i, the function

f(m1,m2, . . . ,mN ) = 1−
N
∏

i=1

(1− c∆mi)

is minimized when m1 = m2 = · · · = mN = ζ
N . Therefore,

f(m1,m2, . . . ,mN ) ≥ 1− (1− c∆ ζ
N )N .

Proof. Since f(m1, . . . ,mN ) ∈ (0, 1), finding the minimum of f is equivalent to finding

the maximum of the following function:

g(m1,m2, . . . ,mN ) = ln(1− f(m1,m2, . . . ,mN )) =
N
∑

i=1

ln(1− c∆mi),

under the same constraints. Due to the concavity of ln(·), we have

g(m1,m2, . . . ,mN ) ≤ N ln

(

1

N

N
∑

i=1

(1− c∆mi)

)

= N ln

(

1− c

N

N
∑

i=1

∆mi

)

.

Finally, we use the fact that the arithmetic mean is no less than the geometric mean

to further simplify the upper bound of g:

g(m1,m2, . . . ,mN ) ≤ N ln
(

1− c∆ 1

N

∑N
i=1

mi

)

≤ N ln(1− c∆ ζ
N ).

Equality holds in both inequalities above when m1 = m2 = · · · = mN = ζ
N . �

Lemma 26 If

δ ≥ 1−
(

1− c2 exp

(

−c1ζη
N

))N

(6.5)

for some constants c1, c2 ∈ R+, then

ζ = Ω

(

N

η
ln
N

δ

)

.
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Proof. Reorganizing terms in Equation 6.5 gives

1− c2 exp

(

−c1ζη
N

)

≥ (1− δ) 1

N .

The function (1 − δ)1/δ is a decreasing function of δ for 0 < δ < 1, and limδ→0+(1 −

δ)1/δ = 1/e. Therefore, as long as δ is less than some constant c3 ∈ (0, 1), we will have

(1− δ) 1

N =
(

(1− δ) 1

δ

) δ
N ≥ (c4)

δ
N = exp

(

−c5δ
N

)

,

where c4 = (1− c3)1/c3 ∈
(

0, 1
e

)

and c5 = ln 1
c4
∈ (1,∞) are two constants. It is

important to note that c3 (and thus c4 and c5) does not depend on ǫ or N or A. Now,

apply the inequality ex ≥ 1 + x for x = −c5δ/N ∈ R to get exp (−c5δ/N) ≥ 1− c5δ/N .

The above chain of inequalities results in:

1− c2 exp

(

−c1ζη
N

)

≥ 1− c5δ

N
.

Solving this inequality for ζ yields the desired lower bound:

ζ ≥ N

c1η
ln
c2N

c5δ
.

�

6.7.3 Proof of Lemma 27

Lemma 27 Let µ̂i and µ̂j be ǫ-accurate estimates of µi and µj in a multivariate normal

distribution, N (µ,Σ), from which z is drawn. Define sij
def
= (zi−µ̂i)(zj−µ̂j) and assume

ǫ < 1/3. Then,

Var[sij ] ≤ 4B2.

Proof. We first upper bound Var[sij ] by a well-known fact in probability theory:

Var[sij ] = E[s2ij ]− (E[sij ])
2 ≤ E[s2ij ].
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We next show E[s2ij ] is bounded by 4B2:

E[s2ij ] = E
[

(zi − µ̂i)
2(zj − µ̂j)

2
]

≤
√

E
[

(zi − µ̂i)
4
]

√

E
[

(zj − µ̂j)
4
]

≤
√

(µi − µ̂i)4 + 6(µi − µ̂i)2σii + 3σ2
ii ·
√

(µj − µ̂j)4 + 6(µj − µ̂j)2σjj + 3σ2
jj

≤ ǫ4 + 6ǫ2B + 3B2

≤ 4B2,

where the first step is by definition, the second by the Cauchy-Schwarz inequality

(Lemma 67), the third due to Lemma 59, the fourth due to our assumption that

|µ̂i − µi| ≤ ǫ, |µ̂j − µj | ≤ ǫ, and maxij σij ≤ B, and the last is because ǫ < 1/3

and B ≥ 1. �

6.7.4 Proof of Lemma 19

We first derive an upper bound of the total variation between two multivariate normal

distributions:

dvar

(

N (µµµ,Σ),N (µ̂µµ, Σ̂)
)

≤ dvar (N (µµµ,Σ),N (µ̂µµ,Σ)) + dvar

(

N (µ̂µµ,Σ),N (µ̂µµ, Σ̂)
)

≤
√

2dKL (N (µµµ,Σ),N (µ̂µµ,Σ)) +

√

2dKL

(

N (µ̂µµ,Σ),N (µ̂µµ, Σ̂)
)

=
√

(µµµ− µ̂µµ)⊤Σ−1(µµµ− µ̂µµ) +

√

ln
det Σ̂

det Σ
+ tr

(

Σ̂⊤Σ
)

− n, (6.6)

where the first step is due to the triangle inequality, the second uses Lemma 58, and

the last uses Lemma 62. The rest of our proof relies on bounding each term of the

right-hand side above.

To simplify the final expression, we will bound some characteristics of the covariance

matrix Σ. Let λ1 ≥ . . . ≥ λn > 0 be the singular values of the non-singular covariance

matrix Σ, and Σ−1 its inverse. Since Σ is symmetric and positive definite, λis are also

its eigenvalues. Also recall that we assume Σ is bounded by −B and B component-wise.
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Lemma 28 Using the notation and assumption above, we have:

tr (Σ) ≤ nB

λn ≤ max
i
σii ≤ B

∥

∥Σ−1
∥

∥

1
≤ √

n
∥

∥Σ−1
∥

∥

2
=

√
n

λn
.

Proof. We prove the three upper bounds one by one:

1. The first follows from the fact that every element in Σ is between −B and B.

2. The second follows almost immediately from Lemma 64:

λn ≤
1

n

n
∑

i=1

λi =
tr (Σ)

n
≤ B.

3. It is known that ‖A‖1 ≤
√
n ‖A‖2 for any n×nmatrix A (see, e.g., Theorem 5.6.18

of Horn and Johnson [1986]). On the other hand,
∥

∥Σ−1
∥

∥

2
equals the largest

singular value of Σ−1, which is 1/λn.

�

We now start with bounding the first term in Equation 6.6:

Lemma 29 Using the notation and assumptions above, we have:

(µµµ− µ̂µµ)⊤Σ−1(µµµ− µ̂µµ) ≤ 1

λn
‖µµµ− µ̂µµ‖22 .

Proof. First note that, since Σ−1 is symmetric, the ratio

(µµµ− µ̂µµ)⊤Σ−1(µµµ− µ̂µµ)

‖µµµ− µ̂µµ‖22
is a Rayleigh quotient, which is upper-bounded by the largest singular value of Σ−1,

which is λ−1
n . �

We then move to bounding the second term in Equation 6.6:

Lemma 30 Using the notation and assumptions above, if maxi,j |σij − σ̂ij | ≤ ǫ, then

ln
det Σ̂

det Σ
≤ nǫ

(

1

λ1
+

1

λ2
+ · · ·+ 1

λn

)

≤ n2ǫ

λn
.
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Proof. Define E = [eij ]ij = Σ̂ − Σ. Clearly, E is symmetric since both Σ and Σ̂ are.

Its eigenvalues are denoted by ψ1 ≥ ψ2 ≥ · · · ≥ ψn, which are real (but can be negative

or positive or zero). According to Lemma 64,

ln
det Σ̂

det Σ
= ln

n
∏

i=1

λ̂i

λi
=

n
∑

i=1

ln
λ̂i

λi
.

By Geršgorin’s theorem [Horn and Johnson 1986, Theorem 6.1.1], the eigenvalues

of E must be small as the elements of E are small. Specifically, any ψi must lie in one

of the n Geršgorin discs Dj (j = 1, 2, . . . , n):

Dj
def
=







x ∈ R | |x− ejj | ≤
∑

j′ 6=j

∣

∣ejj′
∣

∣







.

It follows for all i that

|ψi| ≤ max
j

n
∑

j′=1

∣

∣ejj′
∣

∣ ≤ nǫ

as every component in E lies in the range [−ǫ, ǫ].

On the other hand, from Weyl’s theorem [Horn and Johnson 1986, Theorem 4.3.1],

we have

ψ1 ≥ λ̂i − λi ≥ ψn.

We have just proved that both |ψ1| and |ψn| are at most nǫ, and thus

∣

∣

∣
λ̂i − λi

∣

∣

∣
≤ nǫ.

Consequently,

λ̂i

λi
≤ λi + nǫ

λi
= 1 +

nǫ

λi
.

Finally, by putting all pieces together, we have

ln
det Σ̂

det Σ
=

n
∑

i=1

ln
λ̂i

λi
≤

n
∑

i=1

ln

(

1 +
nǫ

λi

)

≤
n
∑

i=1

nǫ

λi
≤ n2ǫ

λn
,

where the second-to-last inequality uses the inequality ln(1 + x) ≤ x for x ≥ 0. �

Now, we bound the third term of Equation 6.6:

Lemma 31 Using the notation and assumption above, if maxi,j |σij − σ̂ij | ≤ ǫ and

nǫ
∥

∥Σ−1
∥

∥

1
< 1, then

tr
(

Σ̂−1Σ
)

− n ≤ 2n3ǫB

λ2
n − n3/2λnǫ

.

Note that ǫ ≤ λnn
−3/2 suffices to guarantee nǫ

∥

∥Σ−1
∥

∥

1
< 1 due to Lemma 28.



139

Proof. The i-th row (or column) of Σ−1 is the solution to the system of linear equa-

tions: Σz = ei where ei has n − 1 zero components except a 1 in the i-th component.

Similarly, the i-th row (or column) of Σ̂−1 is the solution to Σ̂ẑ = ei. Since Σ and Σ̂

differ by at most ǫ in every component, we have

∥

∥

∥
Σ− Σ̂

∥

∥

∥

1

‖Σ‖1
≤ nǫ

‖Σ‖1
.

For convenience, denote the right-hand side by ǫ′. It follows from a standard perturba-

tion result in numerical analysis (Lemma 65) that

‖z− ẑ‖1 ≤
2ǫ′κ1(Σ) ‖z‖1
1− ǫ′κ1(Σ)

,

where the condition number κ1(·) is defined by

κ1(Σ)
def
= ‖Σ‖1

∥

∥Σ−1
∥

∥

1
.

The above inequality holds for all n possible ei vectors. Note that ‖z− ẑ‖1 is the

absolute sum of the i-th row (or column) of Σ−1 − Σ̂−1 if ei is used in the system of

linear equations. Let ψ1 ≥ ψ2 ≥ · · · ≥ ψN ≥ 0 be the singular values of Σ−1 − Σ̂−1.

These singular values are in general different from the eigenvalues of Σ−1−Σ̂−1, but they

coincide with the absolute values of the eigenvalues of the symmetric matrix Σ−1−Σ̂−1.

It follows from this fact, the interpretation of ‖z‖1 above, and Geršgorin’s theorem that

for all i,

ψi ≤ max
ei

‖z− ẑ‖1 ≤
2ǫ′κ1(Σ)

1− ǫ′κ1(Σ)
max
ei

‖z‖1 =
2ǫ′κ1(Σ)

1− ǫ′κ1(Σ)

∥

∥Σ−1
∥

∥

1
.
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We can now finish the proof:

tr
(

Σ̂−1Σ
)

− n = tr
(

(Σ̂−1 − Σ−1)Σ
)

≤
n
∑

i=1

ψiλi

≤
2ǫ′κ1(Σ)

∥

∥Σ−1
∥

∥

1

1− ǫ′κ1(Σ)

n
∑

i=1

λi

=
2ǫ′κ1(Σ)

∥

∥Σ−1
∥

∥

1

1− ǫ′κ1(Σ)
tr (Σ)

=
2nǫ

∥

∥Σ−1
∥

∥

2

1

1− nǫ ‖Σ−1‖1
tr (Σ)

≤
2n2Bǫ

∥

∥Σ−1
∥

∥

2

1

1− nǫ ‖Σ−1‖1
,

≤ 2n3ǫB

λ2
n − n3/2λnǫ

,

where the first equality is due to the identity tr
(

Σ−1Σ
)

= tr (In) = n, the first inequality

is a direct application of von Neumann’s inequality (Lemma 66), the second inequality

makes use of the upper bound for ψi that we have proved earlier, the second equality

is due to Lemma 64, and the third equality is obtained by the definitions of ǫ′ and

κ1(Σ), and the last two inequalities are due to the upper bounds on tr (Σ) and
∥

∥Σ−1
∥

∥

1

provided in Lemma 28. �

Combining Equation 6.6 with Lemmas 29–31, we can complete the proof.
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Chapter 7

Model-based Approaches

This chapter studies model-based PAC-MDP algorithms. A new algorithm called

KWIK-Rmax is proposed that unifies existing PAC-MDP algorithms in the literature.

Novel PAC-MDP algorithms are also developed using tools from the KWIK learning

framework. As case studies, we present two experiments showing KWIK-Rmax is effec-

tive in practice, in addition to its strong theoretical guarantee.

7.1 A Generic Model-based PAC-MDP Algorithm

Recall that a model-based RL algorithm often learns a model of the unknown MDP and

then computes an optimal policy according to the learned model. These algorithms are

often considered more sample efficient. In fact, the earliest PAC-MDP algorithms are

both model based [Kearns and Singh 2002; Brafman and Tennenholtz 2002]. At the

core of all existing model-based PAC-MDP algorithms lies the idea of distinguishing

between known states—states where the transition distribution and rewards can be

accurately inferred from observed transitions—and unknown states.

As an example, consider the Rmax algorithm (Algorithm 24) for finite MDPs. At

the beginning of learning, the algorithm initializes its internal MDP model, M̂ , to an

optimistic one that assigns Vmax value to all states. It then follows an optimal policy

in M̂ to collect observations about the true MDP’s dynamics through the standard

online-interaction protocol. When some state–action pair, (s, a), has been experienced

m times, the algorithm updates its internal model using maximum-likelihood estimates

from observations for that pair. Now, observe that the transition probabilities, T (· |

s, a), and reward function, R(s, a), can be learned using a small number of samples to

within arbitrary precision with high probability, using tools developed in §5. Therefore,
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as long as m is large enough, the estimated transition and function functions in (s, a)

are accurate. Furthermore, we may guarantee that Rmax either explores (by visiting an

unknown state–action pair) or exploits (by following a near-optimal policy in the true

MDP), and the number of exploration steps is bounded by a polynomial, as shown by

Kakade [2003]. These results together show that Rmax is PAC-MDP.

Algorithm 24 Rmax

0: Inputs: S,A, γ, ǫ, δ,m.
1: Initialize counter c(s, a)← 0 for all s ∈ S and a ∈ A.
2: Initialize the empirical known state–action MDP M̂ = 〈S,A, T̂ , R̂, γ〉:

T̂ (s′ | s, a) = I(s′ = s), R̂(s, a) = Vmax(1− γ).

3: for all timesteps t = 1, 2, 3, . . . do
4: Compute an optimal policy πt of M̂ using any exact planning algorithms in §3.1.

5: Observe the current state st, take action at = πt(st), receive reward rt, and
transition to the next state st+1.

6: c(st, at)← c(st, at) + 1
7: if c(st, at) = m then
8: Change T̂ (· | st, at) and R̂(st, at) using maximum-likelihood estimates (c.f.,

Equations 4.2 and 4.3) based on the m observed transitions.
9: end if

10: end for

A key observation, which is the focus of this section, is that, if a class of MDPs

can be KWIK-learned, then there exists an Rmax-style algorithm that is PAC-MDP for

this class of MDPs. This idea is formalized in Theorem 21, which is proved through

construction of the KWIK-Rmax algorithm (Algorithm 25). The proof relies on a form

of the simulation lemma (Lemma 33), which relates value-function approximation error

to model approximation error, and on a generic PAC-MDP theorem in §4.4.4.

Definition 13 Fix the state space S, action space A, and discount factor γ.

1. Define X = S×A, YT ⊆ PS , and ZT = S. Let HT ⊆ XYT be the set of transition

functions of an MDP. HT is (efficiently) KWIK-learnable (when the observation

set is ZT ) if in the accuracy requirement of Definition 11,
∣

∣

∣T̂ (· | s, a)− T (· | s, a)
∣

∣

∣
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is interpreted as the ℓ1-distance:

∣

∣

∣T̂ (· | s, a)− T (· | s, a)
∣

∣

∣

def
=















∑

s′∈S

∣

∣

∣T̂ (s′ | s, a)− T (s′ | s, a)
∣

∣

∣ if S is countable

∫

s′∈S

∣

∣

∣
T̂ (s′ | s, a)− T (s′ | s, a)

∣

∣

∣
ds′ otherwise.

2. Define X = S × A and YR = ZR = [0, 1]. Let HR ⊆ (YR)X be the set of reward

functions of an MDP. HR is (efficiently) KWIK-learnable (when the observation

set is ZR) if in the accuracy requirement of Definition 11, |R̂(s, a) − R(s, a)| is

interpreted as the absolute value.

3. Let M = {M = 〈S,A, T,R, γ〉 | T ∈ HT , R ∈ HR} be a class of MDPs. M is

(efficiently) KWIK-learnable if both HT and HR are (efficiently) KWIK-learnable.

Theorem 21 LetM be a class of MDPs with state space S and action space A. IfM

can be (efficiently) KWIK-learned by algorithms AT (for transition functions) and AR

(for reward functions), then KWIK-Rmax is PAC-MDP. In particular, if the following

parameters are used,

ǫT = Θ(ǫ(1− γ)2), ǫR = Θ(ǫ(1− γ)), ǫP = Θ(ǫ(1− γ)), δT = δR = Θ(δ),

then the sample complexity of exploration of KWIK-Rmax is

O
(

Vmax

ǫ(1− γ)

(

BT (ǫ(1− γ)/Vmax, δ) +BR(ǫ(1− γ), δ) + ln
1

δ

)

ln
1

ǫ(1− γ)

)

. (7.1)

The algorithm KWIK-Rmax (Algorithm 25) relies on two KWIK algorithms, AT

(using parameters ǫT , δT ) and AR (using parameters ǫR, δR), for KWIK-learning the

MDP’s transition and reward functions, respectively, and maintains an estimate of the

MDP called the empirical known state–action MDP. The estimate distinguishes two

types of state–actions: for state–actions where both AT and AR can make valid predic-

tions, the predictions must be accurate with high probability (thanks to the accuracy

requirement for KWIK algorithms) and thus their dynamics are known; for other state–

actions, their transition and reward functions cannot be accurately estimated and thus

they are unknown. By assigning the largest possible value (which is Vmax) to all un-

known state–actions, the agent is encouraged to explore these state–actions, unless the
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Algorithm 25 KWIK-Rmax

0: Inputs: S,A, γ,AT ,AR, ǫT , δR, ǫR, δR, ǫP .
1: Run AT with parameters ǫT and δT .
2: Run AR with parameters ǫR and δR.
3: for all timesteps t = 1, 2, 3, . . . do
4: Update the empirical known state–action MDP M̂ = 〈S,A, T̂ , R̂, γ〉
5: for all (s, a) ∈ S ×A do
6: if AT (s, a) = ⊥ or AR(s, a) = ⊥ then

7: T̂ (s′ | s, a) =

{

1 if s′ = s

0 otherwise
and R̂(s, a) = Vmax(1− γ).

8: else
9: T̂ (· | s, a) = AT (s, a) and R̂(s, a) = AR(s, a).

10: end if
11: end for
12: Compute a near-optimal value functionQt of M̂ such that

∣

∣

∣Qt(s, a)−Q∗
M̂

(s, a)
∣

∣

∣ ≤
ǫP for all (s, a), where Q∗

M̂
is the optimal state–action value function of M̂ .

13: Observe the current state st, take action at = arg maxa∈AQt(st, a), receive reward
rt, and transition to the next state st+1.

14: if AT (st, at) = ⊥ then
15: Inform AT of the sample (st, at)→ st+1.
16: end if
17: if AR(st, at) = ⊥ then
18: Inform AR of the sample st → rt.
19: end if
20: end for

probability of reaching them is too small, in which case the policy is near-optimal. Since

the number of visits to an unknown state–action is polynomial in the relevant quantities

(the sample complexity requirement for KWIK algorithms), the number of timesteps

the algorithm does not behave near-optimally is also a polynomial. This intuition is

exactly the basic idea of our PAC-MDP proof in §7.4.1.

A few caveats are in order regarding practical issues when instantiating and imple-

menting Algorithm 25:

1. The definitions of T̂ and R̂ given in Algorithm 25 are conceptual rather than oper-

ational. For finite MDPs, one may represent T̂ by a matrix of size O(|S|2 |A|) and

R̂ by a vector of size O(|S| |A|). For structured MDPs, more compact represen-

tations are possible. For instance, MDPs for some linear dynamical systems can

be represented by matrices of finite dimension (§7.2.2 and §7.2.3), and factored
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MDPs can be represented by a dynamic Bayes net (§7.2.4 and §7.2.5).

2. It is unnecessary to update T̂ and R̂ and recompute Qt for every timestep t. The

known state–action MDP M̂ (and thus Q∗
M̂

and Qt) remains unchanged unless

some unknown state–action becomes known. Therefore, one may update M̂ and

Qt only when AT or AR obtain new samples in lines 13 or 16.

3. It is unnecessary to compute Q∗
M̂

for all (s, a). In fact, it suffices to guarantee

that Qt is ǫP -accurate in state st:
∣

∣

∣
Qt(st, a)−Q∗

M̂
(st, a)

∣

∣

∣
< ǫP for all a ∈ A. This

kind of local planning often requires significantly less computation than global

planning (c.f., §3.3). However, to make use of Theorem 4, it has to be guaranteed

that Qt changes at most a polynomial number of times.

4. Given the approximate MDP M̂ and the current state st, the algorithm computes

a near-optimal action for st. This step can be done efficiently using dynamic

programming for finite MDPs. In general, however, doing so is computationally

expensive [Chow and Tsitsiklis 1989]. Fortunately, recent advances in approxi-

mate local planning have made it possible for large-scale problems [Kearns et al.

2002; Kocsis and Szepesvári 2006].

The remaining sections consider various subclasses of MDPs and unify most ex-

isting PAC-MDP algorithms using the KWIK framework developed in previous sec-

tions. §7.2.1 considers finite MDPs without considering generalization across states,

while §§7.2.2—7.2.4 show how generalization can be combined with KWIK to make

use of structural assumptions of corresponding MDP classes to obtain more efficient

RL algorithms. Finally, §7.2.5 shows how we may obtain a PAC-MDP algorithm for

factored-state MDPs with unknown factorization structures by streamlining four KWIK

algorithms we have developed, resulting in a novel algorithm that is significantly better

than the state-of-the-art result. In all these cases, we focus on learning the transition

function and assume the reward function is known. The extension to KWIK-learning

reward functions is straightforward.
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7.2 KWIK-Learnable MDP Classes

In this section, we examine several classes of MDPs and show they can be KWIK-learned

by techniques studied in Part II. The KWIK bounds and relevant KWIK algorithms

are summarized in Table 7.1. In light of Theorem 21, these KWIK bounds imply

corresponding sample complexity of exploration bounds for KWIK-Rmax running on

these MDPs. We also note a few others KWIK-learnable MDPs which are not covered

in detail here, including [Diuk et al. 2008] [Asmuth et al. 2008] [Leffler et al. 2007]

[Walsh et al. 2009b].

Case Subalgorithms KWIK Bound

Finite input-partition
← dice-learning

O
(

n2m
ǫ2 ln

nm
δ

)

Linear
Dynamics

output-
combination
← noisy linear-
regression

Õ
(

n2
Sn
ǫ4

)

Normal
Offset

input-partition
← output-
combination
← coin-learning

O
(

n8n2
τm

2

λ2
min

ǫ4δ

)

Factored
with
Known P

cross-product
← input-partition
← dice-learning

O
(

n3mDND+1

ǫ2 ln
nmN
δ

)

Factored
with
Unknown
P

output-
combination
← noisy union
← input-partition
← dice-learning

O
(

nD+3mDND+1

ǫ2 ln
nmN
δ

)

Table 7.1: KWIK bounds and the component KWIK algorithms for a number of promi-
nent MDP classes. Refer to the text for definitions of the quantities in the KWIK
bounds.
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7.2.1 Finite MDPs

Finite MDPs have received the bulk of the attention in the literature because of their

mathematical simplicity and generality. A finite MDP M = 〈S,A, T,R, γ〉 consists of

n = |S| states and m = |A| actions. For each combination of state (s) and action (a)

and next state (s′), the transition function returns a probability, denoted T (s′ | s, a).

As the reinforcement-learning agent moves around in the state space, it observes state–

action–next-state transitions and must predict the probabilities for transitions it has not

yet observed. In the model-based setting, an algorithm learns a mapping from the size

nm input set of state–action combinations to multinomial distributions over the next

states via multinomial observations. Thus, the problem of learning the model can be

solved via input-partition over a set of individual probabilities learned via dice-learning.

The resulting KWIK bound is:

Bfinite MDP(ǫ, δ) =
∑

(s,a)∈S×A
Bdice-learning

(

ǫ,
δ

nm

)

= nm O
(

n

ǫ2
ln
n2m

δ

)

= O
(

n2m

ǫ2
ln
nm

δ

)

,

where the KWIK bounds of input-partition and dice-learning are used in the first two

equalities.

This approach is precisely what is found in almost all sample-efficient RL algorithms

in the literature for finite MDPs [Kearns and Singh 2002; Brafman and Tennenholtz

2002; Kakade 2003; Strehl et al. 2006a]. Applying Theorem 21 with the KWIK bound

Bfinite MDP, we recover essentially the same sample complexity of exploration found by

Kakade [2003]:1

O
(

n2mVmax
3

ǫ3(1− γ)3 ln
nm

δ
ln

1

ǫ(1− γ)

)

= Õ
(

n2mVmax
3

ǫ3(1− γ)3
)

.

A few notes are in places regarding extensions of the two-level algorithm for KWIK-

learning finite MDPs above:

1Our bound is tighter than the bound by Kakade [2003] due to a slightly more careful analysis. But
the basic idea of the proofs are the same.
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• In many problems, taking an action in a state can often land the agent to a small

number of next states. Classic examples are the various gridworlds [Sutton and

Barto 1998], in which there are at most five possible next states from any (s, a)

pair: s itself, and the states to the north, east, south, and west of s. Formally,

we may assume the number of next states from any state–action pair is upper

bounded by some number k ∈ N:

k ≥ max
(s,a)∈S×A

∣

∣{s′ ∈ S | T (s′ | s, a) > 0}
∣

∣ ,

and k ≪ n. In such MDPs, we may use the same algorithm above, but the KWIK

bound for each dice-learning component can be tightened, yielding an improved

KWIK bound of

O
(

nmk

ǫ2
ln
nm

δ

)

.

This bound is linearithmic in n when k is a constant.

• A similar algorithm can KWIK-learn an MDP with an infinite state space, pro-

vided that the MDP satisfy a local modeling assumption [Kakade et al. 2003].

Roughly speaking, this assumption requires the following: for any (s, a) pair, if

we have k IID samples, D = {(s1, a, r1, s′1), . . . , (sk, a, rk, s
′
k)}, such that every si

is in a small enough neighborhood of s, then we can accurately infer the unknown

dynamics, R(s, a) and T (· | s, a), from D with high confidence. The KWIK bound

for learning this type of MDP is in general (at least) linear in a quantity known

as the covering number, which may be finite and much less than |S|.

• For an MDP with intractably large a state space, if there is a model-irrelevance

abstraction (§3.2.1) such that the corresponding abstract MDP has finitely many

abstract states, then we can apply the two-level algorithm to KWIK-learn the

abstract MDP. The resulting KWIK bound depends on
∣

∣S̄
∣

∣ instead of |S|.

• Finally, interested readers are referred to a similar analysis in finite MDPs where

the outcomes of a transition, including the reward and next state, are not ob-

served by the agent immediately, but will be delayed for a constant timesteps

K [Walsh et al. 2007; 2009a]. Such delayed-observation MDPs can be turned

into a regular MDP, called the “augmented MDP”, with exponentially (in K)
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many states [Katsikopoulos and Engelbrecht 2003]. Fortunately, we may exploit

a special structure (thanks to the constant observation delay) in the augmented

MDP’s dynamics, and to learn the MDP with a polynomial KWIK bound.

Before closing this subsection, it is appropriate to mention an algorithm similar

to Rmax (namely, KWIK-Rmax in finite MDPs), which uses an incremental planning

algorithm to solve the known-state MDP and thus enjoys a much lower computational

complexity. The algorithm, RTDP-Rmax [Strehl et al. 2006a], maintains a known-state

MDP like Rmax, but then uses RTDP (§3.1.2) to refine its Q-function incrementally.

Surprisingly, this algorithm’s sample complexity of exploration is the same as Rmax’s

(ignoring logarithmic factors), despite the laziness nature of its planning component.

Two related algorithms are analyzed in §8.1.

In a real-time system, an RL agent may have to decide what action to take in a

given time period. This time period may be too short to solve the known-state MDP

completely (as in Rmax), but may be large enough to afford more than one Bellman

backup (as in RTDP-Rmax). A natural idea is for the agent to perform as many Bellman

backups as possible within the given time period. Motivated by this observation, Strehl

[2007b] combines prioritized sweeping with RTDP-Rmax and argue that the resulting

algorithm, which we call PS-Rmax, remains PAC-MDP. PS-Rmax contains RTDP-Rmax

as a special case in which only one Bellman backup is allowed per timestep. On the

other extreme, the asymptotic convergence results established in §3.1.2 imply that PS-

Rmax approaches Rmax when more and more Bellman backups are affordable in each

timestep.

7.2.2 MDPs with Linear Dynamics

In many robotics and control applications, the systems being manipulated possess in-

finite state spaces and action spaces, but their dynamics are governed by a system of

linear equations (see, e.g., Sontag [1998]). Our model formulation is based on Strehl

and Littman [2008b], and is similar to Abbeel and Ng [2005]. Here, S ⊆ R
nS and

A ⊆ R
nA are the state and action spaces, respectively. The transition function T is a
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multivariate normal distribution:

T (· | s, a) = N
(

Fφφφ(s, a), σ2I
)

,

where φφφ ∈ (Rn)R
nS+nA

is a basis function satisfying ‖φφφ(s, a)‖2 ≤ 1 for all (s, a), F ∈

R
nS×n is a fixed but unknown matrix, σ2 is some positive number, and I ∈ R

nS×nS is

the identity matrix. We assume φφφ and σ2 are given, but F is unknown.

For such linearly parameterized transition functions, the expectation of each com-

ponent of the next state is linear in the feature of the current state–action pair, and the

coefficients correspond to the numbers in the corresponding rows in F . To guarantee ǫT

ℓ1-distance between T̂ and T as required by Theorem 21, it follows from Proposition 7

of Abbeel and Ng [2005] that we only need to guarantee the mean vector, Fφφφ(s, a), is

predicted to within
√

π/2σǫT in the ℓ2-norm. Now the transition function of the class

of linearly parameterized MDPs can be KWIK-learned via output-combination over the

nS state components using α = 1/
√
nS , each of which can be KWIK-learned by noisy

linear-regression. The resulting KWIK bound is

Blinear MDP(ǫ, δ) = Bnoisy linear-regression

(

√

π/2σǫ√
nS

,
δ

nS

)

= Õ
(

n2
Sn

σ4ǫ4

)

,

where the first step applies Proposition 7 of Abbeel and Ng [2005] and the KWIK bound

of output-combination, and the second uses the recent result of Walsh et al. [2009b].

Combining Bliner MDP with Theorem 21, we obtain the following sample complexity of

exploration upper bound of KWIK-Rmax in linear MDPs:

Õ
(

n2
SnVmax

5

σ4ǫ5(1− γ)5
)

.

7.2.3 Typed MDPs with Normal Offset Dynamics

The linear transition model above is a class of parameterized transition functions for

continuous MDPs. A related class is called typed dynamics (see, e.g., Leffler et al.

[2007]), where the transition functions depends on a type τ(s) assigned to each state s

and action a.

Here, we consider a specific subset of this class, adopted from Brunskill et al. [2008],

where S ⊆ R
n and the next state distribution is given by the following multivariate
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normal distribution:

T (· | s, a) ∼ N
(

s+ µτ(s)a,Στ(s)a

)

,

where µτ(s)a ∈ R
n and Στ(s)a ∈ R

n×n are the mean and covariance matrix of the normal

distribution for the type–action pair (τ(s), a). In other words, the offset of states is

normally distributed. We assume the number of actions, denoted m = |A|, and the

number of types, denoted nτ = |{τ(s) | s ∈ S}|, are both finite.

An example domain where such dynamics may arise is robot navigation across vary-

ing terrain. The distribution of the offset of the robot’s position after taking an action

(such as turn-left or go-forward) depends on this action as well as the type of the ter-

rain (such as sand, wood, or ice, etc.). In many real-world applications, the number

of types is often small although the number of states can be astronomically large or

even infinite. Typed offset dynamics, therefore, provide a compact way to represent the

MDP. A robot navigation example is considered in §7.3.2, while more motivations and

experiments are found in Brunskill et al. [2009].

For each type–action pair (τ, a), the components in µτa and Στa can be interpreted as

means of observations. For instance, assume that we have acquired a sample transition,

(s, a, r, s′), then by definition

µτ(s)a[i] = Es′∼T (·|s,a)

[

s′[i]− s[i]
]

for all i = 1, 2, . . . , n. Therefore, we may decompose the problem of KWIK-learning

the offset means using input-partition over all type–action pairs. For each (τ, a) pair,

learning the corresponding normal distribution can be done by Algorithm 23. The

KWIK bound for learning typed, normally offset MDPs is thus

Btyped, normal-offset MDP(ǫ, δ) =
∑

(τ,a)

Bnormal learning

(

ǫ,
δ

nτm

)

= O
(

n8n2
τm

2

λ2
minǫ

4δ

)

,

where λmin is the smallest eigenvalue (or singular value) of the covariance matrix, Στa,

over all (τ, a) pair. The resulting sample complexity of exploration of KWIK-Rmax in

this class of MDPs is

Õ
(

n8n2
τm

2Vmax
5

λ4
minǫ

5(1− γ)5δ

)

.
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The large exponent in the KWIK bound above is due to the need for learning the

covariance matrices, Στa. If only the mean vector in the offset dynamics are unknown

and the covariance matrix is assumed to be στaIn for the type–action pair (τ, a), as

assumed by Abbeel and Ng [2005], then applying input-partition to the KWIK bound

in Equation 5.6 yields the following KWIK bound for learning this class of MDPs,

O
(nmτ

ǫ2δ

)

,

and the sample complexity of exploration of KWIK-Rmax is

Õ
(

nmnτVmax
3

ǫ3(1− γ)3δ

)

.

7.2.4 Factored-State MDPs with Known Structure

In many applications, the MDP’s state space is most naturally represented as the cross

product of subspaces, each of which corresponds to a state variable. Under such con-

ditions, dynamic programming and reinforcement learning often face the “curse of di-

mensionality” [Bellman 1957], which says that the number of states in the MDP is

exponential in the number of state variables, rendering most finite MDP-based learn-

ing/optimization algorithms intractable. Factored-state representations [Boutilier et al.

1999] are compact representations of MDPs that avoid explicitly enumerating all states

when defining an MDP. Although planning in factored-state MDPs remains hard in the

worst case [Littman 1997], their compact structure can reduce the sample complexity of

learning significantly since the number of parameters needed to specify a factored-state

MDP can be exponentially smaller than in the unstructured case.

In a factored-state MDP, let m = |A| be the number of actions; every state is a

vector consisting of n component: s = (s[1], s[2], . . . , s[n]) ∈ S. Each component s[i] is

called a state variable and can take values in a finite set Si. The whole state space S

is thus S1 × · · · × Sn. Without loss of generality, assume N = |Si| for all i and thus

|S| = Nn. The transition function is factored into the product of n transition functions,

one for each state variable:

T (s′ | s, a) =
n
∏

i=1

Ti(s
′[i] | s, a).
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In other words, the values of all the next state variables are independent of each other,

conditioned on the current state–action pair (s, a). Furthermore, we assume that the

distribution Ti(· | s, a) depends on a small subset of {s[1], s[2], . . . , s[n]}, denoted P(i).

This assumption is valid in many real-life applications and and essential in most work

in graphical models (e.g., Abbeel et al. [2006a]). Let D be the largest size of Pi:

D = maxi |Pi|. Although we treat D as a constant, we include D explicitly in the

KWIK bounds to show how D affects learning efficiency.

Using the quantities defined above, the transition function can be rewritten as

T (s′ | s, a) =
n
∏

i=1

Ti(s
′[i] | P(i), a).

An advantage of this succinct representation is that, instead of representing the com-

plete conditional probability table, Ti(· | s, a), which has Nnm entries, we only need

to use the smaller Ti(· | P(i), a), which has at most NDm entries. If D ≪ n, we are

able to achieve an exponentially more compact representation. These kinds of transi-

tion functions can be represented as dynamic Bayesian networks or DBNs [Dean and

Kanazawa 1989]. Here, we consider the case where the structure (namely, P(i) for all

i) is known a priori and show how to relax this assumption in §7.2.5.

The reward function can be represented in a similar way as the sum of local reward

functions. We assume, for simplicity, that R(s, a) is known and focus on KWIK-learning

the transition functions. Our algorithm and insights still apply when the reward func-

tion is unknown.

Transitions in a factored-state MDP can be thought of as mappings from vectors

(s[1], s[2], . . . , s[n], a) to vectors (s′[1], s′[2], . . . , s′[n]). Given known dependencies, cross-

product with α = 1/n can be used to learn each component of the transition function

to guarantee that the combined transition distribution differs from the true transition

distribution by ǫ in terms of ℓ1 distribution:

Lemma 32 Let P and Q be two probability distributions over the same finite sample
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space Ωn, which are factored: for any ω = (ω1, . . . , ωn) ∈ Ωn,

P (ω) =
n
∏

i=1

Pi(ωi),

Q(ω) =
n
∏

i=1

Qi(ωi),

for some probability distributions Pi and Qi over Ω. Then,

|P −Q| ≤
n
∑

i=1

|Pi −Qi| .

The proof is in §7.4.2. Each component transition probability function Ti(· | ·, ·) can

be learned by input-partition applied to dice-learning. This three-level KWIK algorithm

provides an approach to learn the transition function of a factored-state MDP with the

following KWIK bound:

Bfactored-state MDP(ǫ, δ) =
n
∑

i=1

Binput-partition

(

ǫ

n
,
δ

n

)

= nNDm ·Bdice−learning

(

ǫ

n
,

δ

nNDm

)

=
n3mND+1

ǫ2
ln
nND+1m

δ

= O
(

n3mDND+1

ǫ2
ln
nmN

δ

)

,

where the first equality applies output-combination with α = 1/n; the second equality

applies input-partition to all possible (s, a) pairs, ignoring non-parent variables, and

there are NDm many of them; the third equality simply uses the KWIK bound of

dice-learning.

Combined with Theorem 21, the KWIK bound above results in the following sample

complexity of exploration of KWIK-Rmax:

O
(

n3mDND+1Vmax
3

ǫ3(1− γ)3 ln
nmN

δ
ln

1

ǫ(1− γ)

)

= Õ
(

n3mDND+1Vmax
3

ǫ3(1− γ)3
)

.

This insight can be used to derive the factored-state-MDP learning algorithm proposed

by Kearns and Koller [1999].

7.2.5 Factored-State MDPs with Unknown Structures

Without known structural dependencies of the DBN, learning a factored-state MDP is

more challenging. Strehl et al. [2007] showed that each possible dependence structure



156

can be viewed as a separate hypothesis and provided an algorithm for learning the

dependencies in a factored-state MDP while learning the transition probabilities. The

resulting KWIK bound is super-quadratic in k = Θ(2D), where D, as before, is the

maximum in-degree of the true DBN.

We can construct a conceptually simpler algorithm for this problem using compo-

nents introduced throughout this paper. The key idea is to insert a noisy union com-

ponent between cross-product and input-partition in the three-leval algorithm in §7.2.4.

As a whole, the algorithm has four levels with a cross-product at the top to decompose

the transitions for the separate components of the factored-state representation, as in

§7.2.4. Each of these n individual factor transitions is learned using a separate copy

of the noisy union algorithm. Within each of these copies, a union is performed over

the k =
(

n
D

)

= O(nD) possible parent sets for the given state component. As in the

known-structure case, an input-partition algorithm is used for each of those possible

configurations to handle the different combinations of parent values and action, and

finally dice-learning is used to learn the individual transition probabilities themselves.

The resulting KWIK bound is:

Bfactored-state MDP =

n
∑

i=1

Bnoisy−union

(

ǫ

n
,
δ

n

)

= O
(

n

(

kn2

ǫ2
ln
kn

δ
+

k
∑

i=1

Binput−partition

(

ǫ

8n
,

δ

n(k + 1)

)

))

= O
(

kn3

ǫ2
ln
kn

δ
+ nkNDm ·Bdice−learning

(

ǫ

8n
,

δ

n(k + 1)mND

))

= O
(

kn3

ǫ2
ln
kn

δ
+ nmkND · Nn

2

ǫ2
ln
nmkND+1

δ

)

= O
(

nD+3mDND+1

ǫ2
ln
nmN

δ

)

,

where the first equality applies output-combination with α = 1/n; the second equality

uses noisy-union; the third equality applies input-partition to all possible (s, a) pairs, ig-

noring non-parent variables, and there are NDm many of them; and the fourth equality

simply uses the KWIK bound of dice-learning.

The resulting sample complexity of exploration of KWIK-Rmax is thus

Õ
(

nD+3mDND+1Vmax
2

ǫ2(1− γ)2
)

.
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Note that our noisy union component is conceptually simpler, significantly more

efficient (k ln k vs. k2 ln k dependence on k =
(

n
D

)

), and more generally applicable than

the similar procedure employed by Strehl et al. [2007]. Thus, our improvement is

exponential in D and polynomial in n. Empirical studies in §7.3.1 show that the new

algorithm works much better in practice.

7.3 Case Studies

We have covered a number of special classes of MDPs that are KWIK-learnable and

thus can apply KWIK-Rmax to explore efficiently in such MDPs. This section shows the

resulting algorithms demonstrate significant performance improvements over previous

methods in the literature, in addition to their theoretical contributions. Two represen-

tative examples are chosen: (ii) system administrator for factored-state MDP without

known DBN structure, and (ii) robotics navigation with unknown, typed, normal offset;

detailed descriptions and more results for these two problems are found in Diuk et al.

[2009] and Brunskill et al. [2008], respectively. Interested readers are referred to more

empirical studies in other papers [Walsh et al. 2009a; Leffler et al. 2007].

7.3.1 System Administrator

In the system-administrator problem [Guestrin et al. 2003], an agent (the system ad-

ministrator) attempts to maintain a network of n computers, each of which is connected

to some other computers. For instance, the machines may be connected as a ring or a

star (Figure 7.1). The working status of a computer is encoded as a binary number: 0

for failed and 1 for working. The reward received by the agent at any timestep is pro-

portional to the number of working machines. If a machine fails, the agent may reboot

it so that its status is very likely to be working in the next timestep. If a machine is

not rebooted, its status in the next timestep depends stochastically on the status of its

parents (namely, the machines that are connected to it). In every timestep, the agent

can reboot at most one machine.

This problem can be formulated as an MDP as follows. The state space S = B
n
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(a) “Ring” topology (b) “Star” topology

Figure 7.1: Example network topologies in the system administrator problem.

contains all possible joint statuses of the set of n machines. The action set A =

{0, 1, · · · , n} contains n+ 1 actions, including the option of rebooting no machines and

the options of rebooting any one of the n machines. The reward function is

R(s, a)
def
= Kr

n
∑

i=1

s[i],

for some constant Kr > 0. The transition function is factored:

T (s′ | s, a) def
=

n
∏

i=1

Ti(s
′[i] | P(i), a),

where P(i) is the set of computers connected to machine i, and Ti(s
′[i] | P(i), a) specifies

the “local” transition probabilities of machine i:

• Rebooting machine i at timestep t always guarantees its status to be 1 (working)

at timestep t+ 1;

• If machine i is down at timestep t and is not rebooted, it remains down at timestep

t+ 1;

• If machine i is working at timestep t, the probability of its status being 0 at

timestep t+1 is min{1,K0+K1
∑

j∈P(i)(1−s[j])} for some constants K0,K1 > 0.

That is, if all neighboring machines are working, there is a positive probability K0

for machine i to fail. With more and more neighboring machines having failed,

the probability of failing machine i also increases. There are of course other ways

to define transition probabilities.

The ring network (Figure 7.1) with n = 8 was chosen for experiments. Therefore,

the in-degree D of the DBN of this MDP was always 3, including two neighbors and
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the machine itself. Parameters were set by: Kr = 1, K0 = 0.05, and K1 = 0.3. We

compared three algorithms:

• Factored-Rmax [Strehl 2007a] is the three-layer instantiation of KWIK-Rmax de-

scribed in §7.2.4. The structure of the DBN is given to the algorithm as input,

so there is no need for structure discovery.

• SLF-Rmax [Strehl et al. 2007] is similar to Factored-Rmax but does not require

a known DBN structure. It uses a subroutine to discovery the structure of the

DBN.

• Met-Rmax [Diuk et al. 2009] is the four-layer instantiation of KWIK-Rmax de-

scribed in §7.2.5. It is similar to SLF-Rmax but uses a different approach (i.e.,

noisy union) to discover the DBN structure.

All three algorithms require the “knownness parameter” m, and SLF-Rmax requires an

additional parameter ǫ1 in structure discovery. A parameter search was performed for

the three algorithms to optimize them: m = 30 for factored-Rmax, m = 30 and ǫ1 = 0.2

for SLF-Rmax, and m = 50 for met-Rmax.

Figure 7.2 shows the results. As expected, Factored-Rmax was the fastest as it had

access to the information of DBN structure, which was unavailable to the other two

algorithms. Met-Rmax is able to discover the underlying DBN structure like SLF-Rmax

but at a much faster rate, which is consistent with our analysis in §7.2.5.

7.3.2 Robotics Navigation

The second experiment is in a real-life robotic environment involving a navigation task

where a robotic car must traverse multiple surface types to reach a goal location. This

experiment is to demonstrate the noisy offset dynamics described in §7.2.3 can provide

a sufficiently good representation of real-world dynamics to allow a robot to learn good

navigation policies.

Previous study has demonstrated the benefits of using types of states [Leffler et al.

2005; 2007]. Specifically, Leffler et al. [2007] proposes the RAM-Rmax algorithm—a

variant of Rmax that is able to make use of state types and enjoys a smaller sample

complexity that depends on the number of types, which can be much smaller than the
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Figure 7.2: Cumulative reward on each timestep for the three algorithms on the SysAd-
min domain: factored-Rmax (with given DBN structure), met-Rmax and SLF-Rmax.

number of states. However, RAM-Rmax is for finite MDPs. Applying it in continuous

MDPs requires a pre-processing step of discretization. Here, we assume the state offset

in this robotics navigation task follows the typed normal distributions defined in §7.2.3

(a common and reasonable assumption in many robotics applications), and compared

an algorithm called CORL [Brunskill et al. 2008] to RAM-Rmax. CORL stands for

“Continuous-state Offset-dynamics Reinforcement Learner”, and is an instantiation of

KWIK-Rmax for the class of MDPs with typed, normal offsets. It works directly with

continuous-valued states, thus removing the need for discretization.

A LEGO R© Mindstorms NXT robot (Figure 7.3(a)) was run on a maze-like environ-

ment with two types of surface (Figure 7.3(b)): rocks embedded in wax and a carpeted

area. The task of the robot was to navigate in this environment from the start state to

the goal state without going outside the environment’s boundaries. A tracking pattern

was placed on the top of the robot and an overhead camera was used to determine the

robot’s current position and orientation. The tracking pattern was used to avoid the

complications of robot localization (see, e.g., Thrun et al. [2001]), and to allow us to

focus on how well the algorithms explores in this (approximately) Markovian problem.
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(a) A LEGO R© robot. (b) Image of the environment: the
start location and orientation is
marked with an arrow, and the goal
location is indicated by the circle.

Figure 7.3: Robot in the navigation experiment.

The state space has three components: the x-coordinate, the y-coordinate, and the

orientation θ. The reward function assigns −1 for going out of boundaries, +1 for

reaching the goal, and −0.01 for taking an action. The reward function was known to

both algorithms, and so the only target to learn was the transition dynamics. Reaching

the goal and going out of boundaries would terminate the current episode and the robot

was moved back to the start location and orientation for a new episode. Three actions

were allowed: going forward, turning left, and turning right. The discount factor γ = 1

was used since this task is episodic.

In our experiments, RAM-Rmax used value iteration over the finite, discretized state

space, while CORL used fitted value iteration (§3.3.2) whose prototypical points are the

same as the discretized states used by RAM-Rmax. Both algorithms used an EDISON

image segmentation system to uniquely identify the current surface type. Parameters

needed by both algorithms were hand-tuned.

Figure 7.4(a) shows the average reward with standard deviation for each of the

algorithms over three runs. Both algorithms are able to receive near-optimal reward

on a consistent basis, choosing similar paths to the goal. This result indicates our

dynamics representation is sufficient to allow our algorithm to learn well in this real-life

environment. Combined with previous study by Leffler et al. [2007], it suggests that:

• Rmax-style exploration not only possesses strong theoretical guarantees, but can
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also find near-optimal policies faster than popular exploration heuristics in prac-

tice; and

• Rmax-style exploration can be further improved by the use of generalization, either

via types or via making structural assumptions about the MDP’s dynamics.

In addition, a compact parametric representation may also lead to computational

benefits, as shown in Figure 7.4(b). The computational time per episode was roughly

constant for CORL, but grew with the number of episodes in RAM-Rmax (as a result of

its dynamics model representation).

Finally, we note that the type function in our experiments was assumed to be

known, which may not always be true in other applications. A preliminary study on

type discovery was recently done by Diuk et al. [2009] using noisy union in §6.5.

7.4 Proofs

This section provides detailed proofs of all technical lemmas used in this chapter.

7.4.1 Proof of Theorem 21

The proof relies on a general PAC-MDP result in Theorem 4, in which the set Kt of

state–action pairs is defined as follows.

Definition 14 Let M = 〈S,A, T,R, γ〉 be an MDP. At timestep t of KWIK-Rmax (Al-

gorithm 25), define the set of known state–actions with respect to AT and AR by

KAT ,AR

def
= {(s, a) ∈ S ×A | AT (s, a) 6= ⊥,AR(s, a) 6= ⊥}.

In other words, KAT ,AR
consists of state–action pairs where both KWIK algorithms,

AT and AR, are able to make valid predictions.

We first provide a version of the simulation lemma (Lemma 33), and then verify the

three conditions in Theorem 4 in Lemmas 34–36 to show KWIK-Rmax is PAC-MDP.

We choose the five parameters by

ǫR =
ǫ(1− γ)

20
, ǫT =

ǫ(1− γ)
20γVmax

, ǫP =
ǫ(1− γ)

20
, δT = δR =

δ

4
. (7.2)
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Lemma 33 (Simulation Lemma) Let M1 = 〈S,A, T1, R1, γ〉 and M2 =

〈S,A, T2, R2, γ〉 be two MDPs with the same state/action spaces and discount factor.

Let Q∗
1 and Q∗

2 (V ∗
1 and V ∗

2 ) be their optimal state–action value (state-value) functions,

respectively. Assume the two transition functions and reward functions are close in the

following sense: there exist two constants, ǫT and ǫR, such that for every (s, a),

|T1(· | s, a)− T2(· | s, a)| ≤ ǫT

|R1(s, a)−R2(s, a)| ≤ ǫR,

where |T1(· | s, a)− T2(· | s, a)| is defined in Definition 13. Then, for any s ∈ S and

a ∈ A:

|Q∗
1(s, a)−Q∗

2(s, a)| ≤
ǫR + γVmaxǫT

1− γ
|V ∗

1 (s)− V ∗
2 (s)| ≤ ǫR + γVmaxǫT

1− γ .

Proof. We will prove the case where S is uncountable; the other case is similar. Define

the Bellman operators, B1 and B2, for M1 and M2, respectively: for i = 1, 2 and any

state–action value function Q ∈ R
S×A,

BiQ(s, a)
def
= Ri(s, a) + γ

∫

s′∈S
Ti(s

′ | s, a) sup
a′∈A

Q(s′, a′)ds′.

It is known that Q∗
i is the fixed point of Bi: BiQ

∗
i = Q∗

i . Define two errors:

the ℓ∞ approximation error e = ‖Q∗
1 −Q∗

2‖∞ and the ℓ∞ Bellman backup error

b = ‖B1Q
∗
2 −B2Q

∗
2‖∞. Then,

e = ‖B1Q
∗
1 −B2Q

∗
2‖∞

≤ ‖B1Q
∗
1 −B1Q

∗
2‖∞ + ‖B1Q

∗
2 −B2Q

∗
2‖∞

≤ γ ‖Q∗
1 −Q∗

2‖∞ + ‖B1Q
∗
2 −B2Q

∗
2‖∞

= γe+ b,

where the first step is due to the fixed-point property of Bi, the second due to the

triangle inequality, the third due to the contraction property of Bi (Lemma 5), and the

last due to the definitions of e and b. It follows immediately that (1− γ)e ≤ b, and so

e ≤ b

1− γ . (7.3)
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We now give an upper bound for b:

b = sup
s,a
|B1Q

∗
2(s, a)−B2Q

∗
2(s, a)|

= sup
s,a

∣

∣

∣

∣

(R1(s, a)−R2(s, a)) + γ

∫

S

(

T1(s
′ | s, a)− T2(s

′ | s, a)
)

sup
a′
Q∗

2(s
′, a′)ds′

∣

∣

∣

∣

≤ sup
s,a
|R1(s, a)−R2(s, a)|+ γ sup

s,a

∣

∣

∣

∣

∫

S

(

T1(s
′ | s, a)− T2(s

′ | s, a)
)

sup
a′
Q∗

2(s
′, a′)ds′

∣

∣

∣

∣

≤ ǫR + γ sup
s,a

∫

S

∣

∣T1(s
′ | s, a)− T2(s

′ | s, a)
∣

∣ sup
a′

∣

∣Q∗
2(s

′, a′)
∣

∣ ds′

≤ ǫR + γVmax sup
s,a

∫

S

∣

∣T1(s
′ | s, a)− T2(s

′ | s, a)
∣

∣ ds′

≤ ǫR + γVmaxǫT ,

where the first inequality is due to the triangle inequality and the fact that supx{f1(x)+

f2(x)} ≤ supx f1(x) + supx f2(x) for all real-valued functions f1 and f2, the second due

to the Cauchy-Schwartz inequality, the third due to ‖Q∗
2‖∞ ≤ Vmax by assumption

(§2.2). Combining this result with Equation 7.3, we have for all (s, a) that

|Q∗
1(s, a)−Q∗

2(s, a)| ≤ e ≤
b

1− γ ≤
ǫR + γVmaxǫT

1− γ .

The second part of the lemma follows immediately from the following relation between

optimal state–action value functions and optimal state-value functions: for any s ∈ S,

|V ∗
1 (s)− V ∗

2 (s)| =
∣

∣

∣

∣

sup
a
Q∗

1(s, a)− sup
a
Q∗

2(s, a)

∣

∣

∣

∣

≤ sup
a
|Q∗

1(s, a)−Q∗
2(s, a)| .

�

Lemma 34 With probability at least 1 − δ/2, Qt(s, a) ≥ Q∗(s, a) − ǫ/4 for all t and

(s, a).

Proof. Since the algorithm computes an ǫP -accurate Qt function, we have

Qt(s, a)−Q∗(s, a) ≥ Q∗
M̂

(s, a)− ǫP −Q∗(s, a).

We next bound Q∗
M̂

(s, a)−Q∗(s, a). Let MKt be the known state–action MDP, where

Kt is given in Definition 14. The transition and reward functions in MKt agree with M̂

in unknown state–actions and with M in known state–actions. Since the transition and
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reward functions of M̂ are accurate (with failure probability at most δR + δT = δ/2),

Lemma 33 yields
∣

∣

∣Q∗
M̂

(s, a)−Q∗
MK

(s, a)
∣

∣

∣ ≤ ǫR + γVmaxǫT
1− γ .

On the other hand, since MKt is identical to M except in unknown state–actions to

which the largest possible values are assigned, its optimal state–action value function

must be optimistic: Q∗
MK

(s, a) ≥ Q∗(s, a) for all (s, a). Combining these inequalities,

we have

Qt(s, a)−Q∗(s, a) ≥ Q∗
M̂

(s, a)− ǫP −Q∗(s, a)

≥ Q∗
MK

(s, a)− ǫR + γVmaxǫT
1− γ − ǫP −Q∗(s, a)

≥ −ǫR + γVmaxǫT
1− γ − ǫP .

The lemma follows by the parameters given in Equation 7.2. �

Lemma 35 With probability at least 1 − δ/2, Vt(st) − V πt

MK
(st) ≤ ǫ/4, where Vt(s) =

maxaQt(s, a), and πt is the policy computed by KWIK-Rmax at timestep t.

Proof. If Qt is ǫP -accurate, then Vt is also ǫP -accurate:

∣

∣

∣Vt(s)− V ∗
M̂

(s)
∣

∣

∣ =

∣

∣

∣

∣

sup
a
Qt(s, a)− sup

a
Q∗

M̂
(s, a)

∣

∣

∣

∣

≤ sup
a

∣

∣

∣Qt(s, a)−Q∗
M̂

(s, a)
∣

∣

∣ ≤ ǫP .

Consequently,

Vt(s)− V πt

MK
(s) ≤ Vt(s)− V πt

M̂
(s) +

ǫR + γVmaxǫT
1− γ

≤ V ∗
M̂

(s) + ǫP − V πt

M̂
(s) +

ǫR + γVmaxǫT
1− γ

≤ 2ǫP
1− γ + ǫP +

ǫR + γVmaxǫT
1− γ

≤ ǫ

4
,

where the first step is from Lemma 33, and the second from the ǫP -accuracy of Vt in

MDP M̂ , the third is due to an inequality of Singh and Yee [1994],2, and the last is

2Although Singh and Yee [1994] consider finite MDPs only, their proof is also valid for arbitrary
MDPs as long as the value functions and state occupation distributions used in the proof are all well-
defined in a continuous-state MDP.



166

due to Equation 7.2. The only failure probability is in the use of Lemma 33, where the

KWIK learners, AT or AR, may fail to return accurate prediction in some state–actions;

this failure probability is at most δT + δR = δ/2, by a union bound. �

Lemma 36 The total number of timesteps in which Qt changes or an unknown state

is visited, denoted by ζ(ǫ, δ), is at most BT (ǫT , δT ) +BR(ǫR, δR).

Proof. Since Qt (and also M̂) is unchanged unless Kt changes (as a result of experi-

encing some unknown (st, at)), we may only bound the number of timesteps in which

an unknown state–action pair is experienced, which is BT (ǫT , δT ) +BR(ǫR, δR). �

We can now complete the proof of Theorem 21 by the previous lemmas and Theo-

rem 4, yielding the desired sample complexity of exploration in Equation 7.1.

7.4.2 Proof of Lemma 32

Proof (of Lemma 32). For j = 0, 1, 2, . . . , n, define the following factored distribution

over Ωn: for any ω = (ω1, . . . , ωn) ∈ Ωn,

Q(j)(ω) =

j
∏

i=1

Qi(ωi)
n
∏

i=j+1

Pi(ωi).

Therefore, Q(0) = P , and Q(n) = Q. Furthermore, Q(j−1) and Q(j) only differ in the

transition in the j-th factor. For any j = 0, 1, . . . , n− 1, we have

∣

∣

∣Q(j) −Q(j+1)
∣

∣

∣ =
∑

ω1,...,ωn∈Ω

∣

∣

∣Q(j)((ω1, . . . , ωn))−Q(j+1)((ω1, . . . , ωn))
∣

∣

∣

=
∑

ω1,...,ωn∈Ω

Q1(ω1) · · ·Qj(ωj)Pj+2(ωj+2) · · ·Pn(ωn) |Pj+1(ωj+1)−Qj+1(ωj+1)|

=
∑

ω1∈Ω

Q1(ω1) · · ·
∑

ωj∈Ω

Qj(ωj)
∑

ωj+2∈Ω

Pj+2(ωj+2) · · ·
∑

ωn∈Ω

Pn(ωn)

·
∑

ωj+1∈Ω

|Pj+1(ωj+1)−Qj+1(ωj+1)|

=
∑

ωj+1∈Ω

|Pj+1(ωj+1)−Qj+1(ωj+1)|

= |Pj+1 −Qj+1| ,

where the first equality is by the definition of the ℓ1-distance, the second is by the

definition of Q(j), and the last follows from the fact that Pi and Qi defines a marginal

distribution over variable ωi.
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Applying this equation for j = 0, 1, . . . , n− 1 and the triangle inequality, we have

|P −Q| =
∣

∣

∣Q(0) −Q(n)
∣

∣

∣

=
∣

∣

∣
Q(0) −Q(1) +Q(1) − · · · −Q(n−1) +Q(n−1) −Q(n)

∣

∣

∣

≤
∣

∣

∣Q(0) −Q(1)
∣

∣

∣+
∣

∣

∣Q(1) −Q(2)
∣

∣

∣+ · · ·+
∣

∣

∣Q(n−1) −Q(n)
∣

∣

∣

= |P1 −Q1|+ |P2 −Q2|+ · · ·+ |Pn −Qn| .

and finish the proof of the lemma. �
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Chapter 8

Model-free Approaches

This chapter studies model-free PAC-MDP algorithms. Although it is difficult to give

a generic algorithmic scheme (like KWIK-Rmax in §7) for model-free algorithms due to

technical difficulties in their analysis, we devise PAC-MDP model-free algorithms for

certain types of MDPs and show the asymptotic optimality of one of them through a

new lower bound for the sample complexity of exploration.

Most of the algorithms investigated in this chapter can be viewed as using KWIK

techniques to approximate Bellman backups in a robust way to allow a polynomial

sample complexity of exploration, including algorithms for finite MDPs in §§8.1–8.2

and an algorithm for finite-horizon MDPs with linear value-function approximation in

§8.4. In §8.3, we also study an algorithm that is motivated by Rmax and generalizes it to

the case where approximate policy iteration with linear value-function approximation

is used for planning.

8.1 Approximate Real-Time Dynamic Programming

When an explicit description of an MDP model is available, asynchronous value iteration

methods such as real-time dynamic programming can be used to compute the optimal

value function (§3.1.2). In this and the next sections, we consider approximate real-time

dynamic programming algorithms for finite MDPs, in which an approximate Bellman

operator is repeatedly applied to refine the agent’s state–action value function estimate

in state–actions it visits online. Algorithms in these two sections can be shown to be

PAC-MDP in a similar way based on the general PAC-MDP result (Theorem 4) and a

key lemma given in §8.1.1.

In this section, we will assume that the agent is given an approximate MDP model
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(§8.1.2) or a generative model (§8.1.3), with which approximate Bellman backups can

be performed. Although these assumptions are not satisfied in many reinforcement-

learning problems, these algorithms’ analyses are instructive and can highlight the key

components of the more complicated PAC-MDP analysis for the online reinforcement-

learning algorithm studied in the next section. Furthermore, the PAC-MDP results

in this section yield useful online performance guarantees for such learning real-time

heuristic search algorithms that include real-time learning A∗ [Korf 1990] as a special

case. Interested readers are referred to two variants of adaptive RTDP [Strehl et al.

2006a] that can be analyzed in a similar manner.

Unfortunately, approximate asynchronous value iteration is much harder to analyze

than the model-based approaches considered in §7. In fact, its convergence is guaran-

teed only for finite MDPs and a few restricted cases when function approximation is

used [Bertsekas and Tsitsiklis 1996]. We therefore focus on finite MDPs in this and the

next sections. However, we note that generalization from finite MDPs to MDPs with

state abstraction is possible, as is discussed in more detail in §8.2.3.

8.1.1 General Analysis

A common line of reasoning is adopted for the PAC-MDP analysis of the approxi-

mate real-time dynamic programming algorithms considered here and in the next section.

These algorithms start with an optimistic state–action value function,

∀(s, a) : Q1(s, a)← Vmax,

and repeatedly apply an approximate Bellman operator to refine the Q-function in

visited state–action pairs. Our analysis consists of three major steps that correspond

to the three conditions in Theorem 4:

1. If the approximate Bellman backup is sufficiently accurate, say, using KWIK tech-

niques described in §5 to estimate the Bellman backup values, we can guarantee

that the value function remains optimistic after a Bellman backup, and thus sat-

isfy the optimism condition of Theorem 4. For instance, the randomized RTDP

and delayed Q-learning algorithms in §8.1.3 and §8.2 use KWIK algorithms and
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analyses in §5.3.1 and §5.3.4, respectively.

2. The lemma given in this subsection is used to guarantee the accuracy condition

of Theorem 4, and plays a role analogous to the simulation lemma for model-

based algorithms. It makes use of a new notion of known state–actions based on

Bellman errors, rather than on model prediction errors as in §7. This result is

very general and can be applied to MDPs with infinite states.

3. Finally, we verify the bounded-surprises condition by bounding two terms: (i)

the number of changes to the value function during a whole run of the algorithm,

which relies on a “large-update” trick, and (ii) the number of visits to unknown

states, which relies on the KWIK bound of estimating a Bellman backup value.

The second step is our focus here, while the other two are algorithm-specific and thus

are left to their respective sections.

In model-based algorithms such as KWIK-Rmax, we define known state–actions to

be those where accurate predictions about the transition and reward functions can be

made with high confidence. The simulation lemma is then used to show that, if an

agent follows a near-optimal policy in this known state–action MDP and has a small

probability of reaching unknown state–actions, then the policy must be near-optimal

in the true MDP.

In model-free algorithms such as Q-learning, a different notion of known state–actions

is needed, because these algorithms do not explicitly estimate transition and reward

functions of the MDP. Usually, model-free algorithms maintain an estimate of the op-

timal state–action value function, whose Bellman errors can be computed by Equa-

tion 2.14 and used to define known state–actions. Recall that the Bellman error of a

value function in a state–action pair measures local consistency of this function. Be-

low, known state–actions are defined to be those whose Bellman errors are essentially

non-negative.

Definition 15 Let Q be a state–action value function of an MDP M = 〈S,A, T,R, γ〉,

B the Bellman operator defined by Equation 2.10, and ε ∈ R+ a parameter, the set of
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known state–actions with respect to Q and ε is defined by

KQ(ε)
def
= {(s, a) ∈ S ×A | BQ(s, a)−Q(s, a) ≥ −ε} .

With Definition 15, an important lemma can be stated and proved that is useful for

analyzing model-free algorithms.

Lemma 37 Using the notation in Theorem 4 and Definition 15, we define

Kt
def
= KQt (ǫ(1− γ)/4). Then, the accuracy condition in Theorem 4 is satisfied.

Proof. For convenience, denote ǫ1 = ǫ(1−γ)/4. Due to the construction of the known

state–action MDP, we have

BMK ,πtQt(s, a)−Qt(s, a)















≥ −ǫ1, if (s, a) ∈ Kt

0, otherwise

where BMK ,πt is the Bellman operator defined using MK and policy πt:

BMK ,πtQt(s, a)
def
=















R(s, a) + γ
∑

s′∈S
(

T (s′ | s, a)Qt(s
′, πt(s

′))
)

, if (s, a) ∈ Kt

Qt(s, a)(1− γ) + γQt(s, a), otherwise.

Therefore, Qt ≤ BMK ,πtQt + ǫ1. Due to the two properties of the Bellman operator

given in Lemmas 4 and 6, applying the operator to the inequality above repeatedly

yields, for every (s, a), that

Qt(s, a) ≤ B
2
MK ,πt

Qt(s, a) + γǫ1 + ǫ1

≤ B
3
MK ,πt

Qt(s, a) + γ2ǫ1 + γǫ1 + ǫ1

≤ · · ·

≤ B
∞
MK ,πt

Qt(s, a) + ǫ1(1 + γ + γ2 + · · · )

≤ Qπt

MK
(s, a) +

ǫ1
1− γ

= Qπt

MK
(s, a) +

ǫ

4
.

Hence,

Vt(st) = max
a∈A

Qt(st, a) = Qt(st, at) ≤ Qπt

MK
(st, at) +

ǫ

4
= V πt

MK
(st) +

ǫ

4
,

where we have used the fact that at = πt(st) = argmaxa∈AQt(st, a). �
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8.1.2 Modified RTDP

As a simple application of Theorem 4 and Lemma 37, this section provides online

performance guarantees of a variant of RTDP that only has access to an approximate

MDP model, instead of an exact model. Our analysis results in useful theoretical

insights of such learning real-time algorithms within the PAC-MDP framework. In

some sense, our results provide polynomial mistake-bound results for such learning

real-time heuristic search algorithms, where a “mistake” occurs when the algorithm’s

policy is not ǫ-optimal (c.f., §4.4.4).

Algorithm 26 Modified RTDP.

0: Inputs: S,A, γ, B̂, ǫ1 ∈ R+.
1: Initialize Q(s, a)← Vmax for all (s, a) ∈ S ×A.
2: Initialize the first state s1 ∈ S.
3: for t = 1, 2, 3, . . . do
4: Choose the greedy action at ← argmaxa∈AQ(st, a).
5: Compute an attempted backup value: q ← B̂Q(st, at).
6: if q ≤ Q(st, at)− ǫ1 then
7: Q(st, at)← q.
8: end if
9: Observe the next state st+1 ∼ T (· | st, at).

10: end for

Algorithm 26 gives the modified RTDP algorithm, which requires as input an oracle

B̂ for performing approximate Bellman backups. The algorithm differs from RTDP

in that it only updates a state–action’s Q-value when the value decreases at least by

ǫ1 after the approximate Bellman backup, as required in Line 6; in other words, only

“large” updates are allowed. Since rewards are non-negative, the value function must be

non-negative as well. The modification to disallow small updates in the value function

guarantees that the state–action value function can be updated a finite number of times,

a condition required by Theorem 4. This fact permits us to show modified RTDP’s

polynomial sample complexity of exploration.

Theorem 22 Assume ǫ1 = ǫ(1 − γ)/8 and
∥

∥

∥
B̂Q−BQ

∥

∥

∥

∞
≤ ǫ1 for all Q(·, ·) such

that 0 ≤ Q(s, a) ≤ Vmax, then modified RTDP is PAC-MDP with the following sample
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complexity of exploration:

O
(

Vmax

ǫ(1− γ)

( |S| |A|Vmax

ǫ(1− γ) + ln
1

δ

)

ln
1

ǫ(1− γ)

)

.

The proof relies on Theorem 4 by verifying that three conditions hold. The optimism

condition is verified by the following lemma, whose proof is given in the appendix.

Lemma 38 In modified RTDP, we have at all timesteps t that

Qt(s, a) ≥ Q∗(s, a)− ǫ1
1− γ = Q∗(s, a)− ǫ

8
.

Proof (of Theorem 22). The optimism and accuracy conditions of Theorem 4 are

verified by Lemma 38 and Lemma 37, respectively. For Condition 3, first observe that

every visit to a state–action outside Kt results in an update of the state–action value.

To see why, observe that the attempted Bellman backup value, q, computed in Line 5

of Algorithm 26 is small enough to trigger an update:

q−Q(st, at) = B̂Q(st, at)−Q(st, at) ≤ BQ(st, at)−Q(st, at)+ǫ1 ≤ −
ǫ(1− γ)

4
+ǫ1 = −ǫ1.

Therefore, the number of surprises coincides with the number of updates to the value

function. Now, observe that each update of the state–action value results in a reduction

of at least ǫ1 and that the initial state–action value is at most Vmax. So, the number

of updates in each state–action value is at most κ
def
= Vmax/ǫ1, and the total number

of updates in all state–action values is at most |S| |A|κ. Hence, the bounded-surprises

condition of Theorem 4 is satisfied with

ζ(ǫ, δ) = |S| |A|κ =
|S| |A|Vmax

ǫ1
=

8 |S| |A|Vmax

ǫ(1− γ) .

�

8.1.3 Randomized RTDP

In computing a Bellman backup as in RTDP, the per-timestep sample complexity is

linear in the number of states in the worst case. In randomized RTDP, the complexity

is weakly dependent on the number of states when a generative model O is available.

This improvement is achieved by replacing the exact Bellman operator by a randomized
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approximate Bellman operator, which draws m samples from a generative model and

then averages the m sample backup values. Clearly, such a Monte Carlo approximation

gives an unbiased estimate of the true Bellman backup, and thus Hoeffding’s inequality

can be used to quantify the value of m required to guarantee low approximation error.

However, since each such randomized approximation step has some non-zero proba-

bility of failing to compute an accurate backup value, the algorithm employs additional

mechanism to force the total number of approximations to be bounded, and so we

may use a union bound to bound the total failure probability of the whole algorithm.

This goal is achieved by introducing a timestamp for each state–action pair to avoid

unnecessary Bellman backups. The complete algorithm, which we describe in Algo-

rithm 27, is slightly simplified to get rid of an unnecessary exploration bonus in the

original presentation by Strehl et al. [2006b].

Algorithm 27 Randomized RTDP.

0: Inputs: S,A, γ,O, ǫ1 ∈ R+,m ∈ N.
1: for all (s, a) ∈ S ×A do
2: Q(s, a)← Vmax {optimistic initialization of state–action values}
3: A(s, a)← 0 {timestamp of last attempted update}
4: end for
5: t∗ ← 0 {timestamp of most recent Q-value change}
6: for t = 1, 2, 3, . . . do
7: Observe the current state st, take action at ← argmaxa∈AQ(st, a), obtain reward

rt, and transition to a next state st+1.
8: if A(s, a) ≤ t∗ then
9: Sample m independent transitions from the generative model O: D =

{(rt1, s′t1), (rt2, s′t2), . . . , (rtm, s′tm)} and compute an attempted update:

q ← 1

m

m
∑

i=1

(

rti + γmax
a∈A

Q(s′ti, a)
)

.

10: if q ≤ Q(st, at)− ǫ1 then
11: Q(st, at)← q.
12: t∗ ← t
13: end if
14: A(s, a)← t.
15: end if
16: end for
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Theorem 23 [Strehl et al. 2006b] When ǫ1 = ǫ(1− γ)/8, and

m = O
(

(γVmax + 1)2

ǫ2(1− γ)2 ln
|S| |A|
ǫ(1− γ)δ

)

,

randomized RTDP is PAC-MDP with the following sample complexity of exploration:

O
(

Vmax

ǫ(1− γ)

( |S| |A|Vmax

ǫ(1− γ) + ln
1

δ

)

ln
1

ǫ(1− γ)

)

.

The proof of the theorem follows a similar line of reasoning to that of Theorem 22.

We will need the following definitions and lemmas, which are helpful for understanding

the behavior of randomized RTDP as well. Proofs for the lemmas are found in §8.5.2.

Definition 16 In the execution of randomized RTDP, an attempted update occurs

when Line 9 of Algorithm 27 is executed. A successful update occurs at timestep t when

the state–action value function changes in Line 11, namely, when q ≤ Qt(st, at)− ǫ1.

Definition 17 We define ARTDP as the event that the following holds for all timesteps

t, in which an attempted update occurs:

|q −BQt(st, at)| ≤ ǫ1. (8.1)

Lemma 39 During an entire execution of randomized RTDP, there are at most

κs
def
=
|S| |A|Vmax

ǫ1

successful updates and

κa
def
= |S| |A| (1 + κs)

attempted updates.

Lemma 40 It suffices to set

m =
(γVmax + 1)2

2ǫ21
ln

4κa

δ

to guarantee that event ARTDP holds with probability at least 1− δ/2.

Lemma 41 Assuming event ARTDP holds, then the following holds true for an entire

execution of randomized RTDP: If an attempted update occurs at timestep t and (st, at) /∈

Kt, then the update will be successful.
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Lemma 42 Assuming event ARTDP holds, then we have at all timesteps t that

Qt(s, a) ≥ Q∗(s, a)− ǫ1
1− γ = Q∗(s, a)− ǫ

8
.

We are now ready to prove the main theorem of this subsection.

Proof (of Theorem 23). The proof relies on Theorem 4 by verifying that three con-

ditions hold. First, assume ARTDP holds. The optimism and accuracy conditions are

verified by Lemmas 42 and 37, respectively. The bounded-surprises condition also

holds with ζ(ǫ, δ) = κs, because (i) Lemma 41 guarantees that a successful update

occurs whenever a state–action pair outside Kt is experienced, and (ii) any change in

the value function coincides, by definition, to successful updates.

If, on the other hand, ARTDP fails, then the three conditions may not be satisfied.

However, the probability that ARTDP fails is at most δ/2, according to Lemma 40,

which completes the proof. �

8.2 Delayed Q-learning

Delayed Q-learning [Strehl et al. 2006c] is the first model-free PAC-MDP algorithm for

general finite MDPs. It generalizes earlier results for deterministic finite MDPs [Koenig

and Simmons 1996] and bears a number of similarities to randomized RTDP. Some of

its variants are developed by Strehl [2007b], which use techniques such as interval

estimation. This section presents a slightly improved version that does not use the

somewhat unnatural exploration bonus from the original description by Strehl et al.

[2006c], and shows the algorithm is PAC-MDP using Theorem 4 and Lemma 37.

8.2.1 Algorithm

Delayed Q-learning may be viewed as a modified version of randomized RTDP that does

not require a generative model. Instead, the agent only observes one sample transition

for the action it takes in the current state, as described in the online interaction protocol

(Definition 1). This challenge calls for corresponding changes in the algorithm. A com-

plete pseudocode description is in Algorithm 28. Below, we give informal explanations

for why the algorithm is PAC-MDP. A formal analysis is given in the next subsection.
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First, like randomized RTDP, delayed Q-learning uses optimistic initialization of the

value function, and waits until m transitions from (s, a) are gathered before considering

an update ofQ(s, a). Whenm is sufficiently large (but is still bounded by a polynomial),

the new value of Q(s, a) is still optimistic (modulo a small gap of Θ(ǫ)), based on the

sample-complexity result for the subinterval prediction problem in §5.3.4. Thus, the

optimism condition in Theorem 4 is satisfied.

Second, we use Definition 15 for the known state–action set, Kt, similar to the anal-

ysis of randomized RTDP. By virtue of Lemma 37, the accuracy condition of Theorem 4

is automatically satisfied.

Third, delayed Q-learning maintains a learning flag for each state–action pair that

is TRUE when this pair does not belong to the set Kt. However, an unsuccessful at-

tempted update in Q(s, a) at timestep t does not necessarily imply with high probability

that (s, a) /∈ Kt, which is different from randomized RTDP. The reason is that the state–

action value function may change during the collection of the m samples; consequently,

it is possible that (s, a) ∈ Kk1
but (s, a) /∈ Kkm

, where k1 < k2 < · · · < km are the m

most recent timesteps in which (s, a) is experienced. Luckily, by using a slightly more

complicated learning-flag mechanism, we can still bound the total number of attempted

updates and consequently the total number of changes in Kt. This fact is used to satisfy

the bounded-surprises condition of Theorem 4.

Finally, we note that the batch update achieved by averaging m samples is equiva-

lent to performing stochastic gradient descent using these samples with a sequence of

learning rates: 1, 1
2 , . . . ,

1
m , assuming updates on Q(s, a) do not affect the sequence of

samples. This observation justifies the name of the algorithm, emphasizing both the

relation to Q-learning with the harmonic learning rates above and the batch nature of

the updates.

8.2.2 Sample Complexity of Exploration

The main result of this section is the following theorem, which says that delayed Q-

learning is PAC-MDP.
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Algorithm 28 Delayed Q-learning

0: Inputs: S,A, γ,m ∈ N, ǫ1 ∈ R+

1: for all (s, a) ∈ S ×A do
2: Q(s, a)← Vmax {optimistic initialization of state–action values}
3: U(s, a)← 0 {used for attempted updates of the value in (s, a)}
4: B(s, a)← 0 {beginning timestep of attempted update in (s, a)}
5: C(s, a)← 0 {counter for (s, a)}
6: L(s, a)← TRUE {the learning flag}
7: end for
8: t∗ ← 0 {timestamp of most recent state–action value change}
9: for t = 1, 2, 3, · · · do

10: Observe the current state st, take action at ← argmaxa∈AQ(st, a), receive reward
rt ∈ [0, 1], and transition to a next state st+1.

11: if B(st, at) ≤ t∗ then
12: L(st, at)← TRUE
13: end if
14: if L(st, at) = TRUE then
15: if C(st, at) = 0 then
16: B(st, at)← t
17: end if
18: C(st, at)← C(st, at) + 1
19: U(st, at)← U(st, at) + rt + γmaxa∈AQ(st+1, a)
20: if C(st, at) = m then
21: q ← U(st, at)/m
22: if Q(st, at)− q ≥ ǫ1 then
23: Q(st, at)← q
24: t∗ ← t
25: else if B(st, at) > t∗ then
26: L(st, at)← FALSE
27: end if
28: U(st, at)← 0
29: C(st, at)← 0
30: end if
31: end if
32: end for



180

Theorem 24 In delayed Q-learning, if parameters are set by

m = O
(

Vmax
2

ǫ2(1− γ)2 ln
|S| |A|
ǫδ(1− γ)

)

,

and

ǫ1 =
ǫ(1− γ)

8
,

then the algorithm is PAC-MDP with the following sample complexity of exploration:

O
( |S| |A|Vmax

4

ǫ4(1− γ)4 ln
1

ǫ(1− γ) ln
|S| |A|
ǫδ(1− γ)

)

.

The proof of this theorem slightly improves the original one by Strehl et al. [2006c].

We will need a modified version of Definition 16 and a few technical lemmas, whose

proofs are found in §8.5.3.

Definition 18 In the execution of delayed Q-learning, an attempted update occurs

when the condition in Line 20 of Algorithm 28 is true (and thus Lines 21–29 are exe-

cuted). A successful update occurs when the state–action value function is changed in

Line 23. An attempted update that is not successful is called an unsuccessful update.

Lemma 43 During an entire execution of delayed Q-learning, there are at most

κs
def
=
|S| |A|Vmax

ǫ1
.

successful updates and

κa
def
= |S| |A| (1 + κs) .

attempted updates.

Definition 19 We define ADQL as the following event: for all timesteps t in which an

attempted update occurs, if (st, at) /∈ Kk1
, then the update will succeed, where k1 < k2 <

· · · < km = t are the m last timesteps during which (st, at) is experienced.

Lemma 44 It suffices to set

m =
(1 + γVmax)

2

2ǫ12
ln

3κa

δ
(8.2)

in delayed Q-learning to guarantee event ADQL holds with probability at least 1− δ/3.
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The next lemma states that, with high probability, delayed Q-learning will maintain

an optimistic value function.

Lemma 45 During execution of delayed Q-learning, if m satisfies Equation 8.2, then

Qt(s, a) ≥ Q∗(s, a) − ǫ1/(1 − γ) holds for all timesteps t and state–action pairs (s, a),

with probability at least 1− δ/3.

Lemma 46 If event ADQL occurs, then the following holds: If an unsuccessful update

occurs at time t and L(st, at) is set to FALSE, then (st, at) ∈ Kt+1.

The following lemma bounds the number of timesteps t in which a state–action pair

(s, a) 6∈ Kt is experienced.

Lemma 47 If event ADQL occurs, then the number of timesteps t such that (st, at) /∈ Kt

is at most

2mVmax |S| |A|
ǫ1

.

Proof (of Theorem 24). The proof relies on Theorem 4 by verifying that three con-

ditions hold. We have shown, with high probability that, the optimism, accuracy, and

bounded-surprises conditions hold in Lemmas 45, 37, and 47, respectively. Using a

union bound, the total probability that any of them fails to hold is at most δ, thus

completing the proof. �

8.2.3 An Extension to State Abstractions

Delayed Q-learning is stated for finite MDPs and the sample complexity bound in The-

orem 24 is in terms of the number of states and actions. However, it is possible to

extend the algorithm and analysis to infinite-state MDPs when a certain type of state

abstraction (§3.2.1) is used.

In MDP state abstractions, a function φ is used to aggregate “similar” states into one

abstract state. Recall that the Q∗-irrelevance abstraction, φQ∗ , aggregates states with

the same optimal Q-values. In the context of our discussion, we can relax the notion

a little by allowing a small gap in the abstraction. We call an abstraction function φ
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a Q∗-irrelevance abstraction with gap ε if the following holds: for all s1, s2 ∈ S and

a ∈ A: φ(s1) = φ(s2) implies |Q∗(s1, a)−Q∗(s2, a)| ≤ ε. Given such an abstraction

function φ, the original MDP can be turned into an abstract MDP, M̄ = 〈S̄,A, T̄ , R̄, γ〉.1

Furthermore, we assume that
∣

∣S̄
∣

∣ is finite.

The modification to the algorithm is straightforward. We simply run delayed Q-

learning on the abstract MDP M̄ and estimate the optimal abstract Q-function, Q̄∗(s̄, a),

for s̄ ∈ S̄. Thus, even if S is infinitely large, we may still represent Q̄∗(s, a) by a finite-

entry table.

To analyze the sample complexity of exploration, we shall assume the abstract Q-

function allows a sufficiently accurate representation of the true Q-function; otherwise,

a policy derived from the abstract Q-function may be poor in the true MDP. Specif-

ically, we assume that φ is a Q∗-irrelevance abstraction with gap ε = O(ǫ(1 − γ)).

Consequently, every attempted update value (i.e., the quantity q computed in Line 21

of Algorithm 28) may introduce an additional error term on the order of O(ǫ(1− γ)),2

which in turn translates into an additional O(ǫ) gap on the right-hand side of the

bound in Lemma 45. This additional term does not violate the accuracy requirement

in Theorem 4 if we re-scale the error parameter ǫ, and so the same asymptotic sample

complexity of exploration holds. The rest of the analysis in §8.2.2 remains unchanged.

Thus, we have proved the following corollary of Theorem 24.

Corollary 1 When provided with a Q∗-irrelevance abstraction φ with gap O(ǫ(1− γ)),

delayed Q-learning is PAC-MDP with the following sample complexity of exploration:

O
(
∣

∣S̄
∣

∣ |A|Vmax
4

ǫ4(1− γ)4 ln
1

ǫ(1− γ) ln

∣

∣S̄
∣

∣ |A|
ǫδ(1− γ)

)

.

8.2.4 Optimality of Delayed Q-learning

The main result of this section (Theorem 25) is an improvement on previous sample

complexity of exploration lower bounds for reinforcement learning in MDPs. Existing

1In defining the abstract MDP, any well-defined weighting function can be used (c.f., Definition 4).

2Equivalently, every attempted update involves solving an agnostic version of the subinterval-
prediction problem, in which the best prediction has an error of O(ǫ(1 − γ)).
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Figure 8.1: The difficult-to-learn MDPs used to show an improved lower bound of
sample complexity of exploration.

results [Kakade 2003] show a linear dependence on |S| and ǫ, but we find that a lin-

earithmic dependence on |S| and a quadratic dependence on ǫ are necessary for any

deterministic reinforcement-learning algorithm. We note that our analysis has some

similarity to the lower-bound analysis of Leffler et al. [2005], although their result is for

a different learning model.

Theorem 25 For any deterministic reinforcement-learning algorithm A, there is an

MDP M = 〈S,A, T,R, γ〉 such that the sample complexity of exploration of A in M is

Ω

( |S| |A|
ǫ2

ln
|S|
δ

)

. (8.3)

To prove this theorem, consider the family of MDPs depicted in Figure 8.1. Each

MDP in this family has N +2 states: S = {1, 2, . . . , N,+,−}, and A = |A| actions. For

convenience, denote by [N ] the set {1, 2, . . . , N}. Transitions from each state i ∈ [N ]

are the same, so only the transitions from state 1 are depicted. One of the actions (the

solid one) deterministically transports the agent to state + with reward 0.5 + ǫ. Let a

be any of the other A− 1 actions (the dashed ones). From any state i ∈ [N ], taking a

will cause a transition to + with reward 1 and probability pia, and to − with reward 0

otherwise, where pia ∈ {0.5, 0.5 + 2ǫ} is a number very close to 0.5 + ǫ. Furthermore,

for each i ∈ [N ], there is at most one action a such that pia = 0.5 + 2ǫ. Transitions

from states + and − are identical: they simply reset the agent to one of the states in

[N ] uniformly at random.
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In fact, the MDP defined above can be viewed as N copies of a multi-armed bandit

problem where the states + and − are dummy states for resetting the agent to the next

“real” state. Therefore, the optimal action in a state i is independent of the optimal

action in any other state: it is the solid action if pia = 0.5 for all dashed actions a;

otherwise, it is the dashed action a for which pia = 0.5 + 2ǫ. Intuitively, this MDP is

hard to learn for exactly the same reason that a biased coin is hard to learn if the bias

(that is, the probability of head after a coin toss) is close to 0.5.

The lemma below follows from a sample-complexity lower bound stated in

Lemma 11. Its proof is in the appendix.

Lemma 48 There exists constants c1, c2 ∈ (0, 1) such that during a whole run of A,

for any state i ∈ [N ], the probability (with respect to the randomness of the MDP) that

sub-optimal actions are taken in i more than mi times is at least

p(mi) := c2 exp

(

−miǫ
2

c1A

)

.

With this lemma, we are ready to prove the main theorem.

Proof (of Theorem 25). Let ζ(ǫ, δ) be an upper bound of the sample complexity of

any PAC-MDP algorithm A with probability at least 1− δ. Let sub-optimal actions be

taken mi times in state i ∈ [N ] during a whole run of A. Consequently,

δ ≥ Pr

(

N
∑

i=1

mi > ζ(ǫ, δ)

)

= 1− Pr

(

N
∑

i=1

mi ≤ ζ(ǫ, δ)
)

,

where the first step is because the actual sample complexity is at least
∑

imi—every

timestep in which a suboptimal action is taken counts towards the sample complexity.

We wish to find a lower bound for the last expression above by optimizing the values

of mis subject to the constraint:
∑

imi ≤ ζ(ǫ, δ). Due to the statistical independence

of what states i ∈ [N ] are visited by the algorithm,3 we can factor the probability above

to obtain

δ ≥ 1− max
m1,...,mN ;

∑
i mi≤ζ(ǫ,δ)

N
∏

i=1

(1− p(mi)) .

3It does not help for the algorithm to base its policy in one state on samples collected in other states,
due to the independence of states in this MDP. If an algorithm attempts to do so, an adversary can
make use of this fact to assign pia to even increase the failure probability of the algorithm.
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where Lemma 48 is applied.

We now use Lemma 25 to obtain a lower bound of the last expression above, which

in turn lower-bounds δ. Applying this lemma with c = c2 and ∆ = exp(− ǫ2

c1A) gives

δ ≥ 1−
(

1− c2 exp

(

−ζ(ǫ, δ)ǫ
2

c1NA

))N

. (8.4)

The theorem then follows immediately from Lemma 26 with η = ǫ2/A using the fact

that N = |S| − 2. �

8.3 LSPI-Rmax

In this section, we illustrate how theoretical insights in provably PAC-MDP analysis

may result in more practical algorithms with good empirical performance in balancing

exploration and exploitation. Specifically, we describe a variant of the model-free LSPI

algorithm (§4.2.3) that is motivated by ideas in KWIK-Rmax and is thus called LSPI-

Rmax [Li et al. 2009a]. Although the algorithm shares some similarity to Rmax-style

algorithms and is reduced to exactly Rmax in a special case, we view it as a model-free

algorithm since the MDP model is not estimated explicitly in general in LSPI-Rmax.

8.3.1 Algorithm

The algorithm uses linear function approximation (§3.2.2) to represent a value function:

Qw(s, a)
def
= w⊤φφφ(s, a),

where w ∈ R
k is a k-vector and φφφ :

(

R
k
)S×A

consists of k predefined features.

As a first step toward combining LSPI with Rmax-style exploration, we extend the

concept of known state–action pairs as used by KWIK-Rmax to continuous state spaces.

Our approach relies on the intuition that the dynamics of a state–action pair can be

reliably predicted with sufficient sample transitions from its neighbor state–actions,

similar to the idea in locally weighted regression [Atkeson et al. 1997a]. Formally, the

algorithm requires a distance function that computes the dissimilarity (or distance)

between two state–action pairs: d : (S ×A)2 → R+.
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Definition 20 Let ε > 0 and m > 0 be two predefined constants. Given a set of sample

transitions D = {(si, ai, ri, s
′
i)}, a state–action pair (s, a) is called (ε,m)-known if

∣

∣{(si, ai, ri, s
′
i) ∈ D | d(s, a, si, ai) ≤ ε}

∣

∣ ≥ m.

In other words, D contains at least m samples that are ε-close to (s, a). Furthermore,

a state s is called (ε,m)-known if (s, a) is (ε,m)-known for all actions a.

Using this notion, we are now ready to present LSTDQ-Rmax (Algorithm 29), a

variant of LSTDQ (c.f., §4.2.3) that assigns Vmax to unknown states and unknown

state–actions. Let (s, a, r, s′) be a sample in D, and consider the following cases:

• If both (s, a) and s′ are (ε,m)-known, LSTDQ-Rmax operates exactly like LSTDQ,

as in Lines 7—9 of Algorithm 29.

• If (s, a) is (ε,m)-known but s′ is not, then we pretend s′ is a goal state whose

value is the largest possible, Vmax. Therefore, the return of (s, a) is the sum

of the immediate reward, r, and the pretended discounted value of s′, γVmax;

this corresponds to Lines 10—12 that encourage the agent to further explore the

neighborhood of s′.

• Similarly, when (s, a) is not (ε,m)-known, the return of this state–action pair is

treated as Vmax, which results in Lines 15—16.

• Finally, since solutions found by LSTDQ-Rmax are biased by the sample distribu-

tion in the input sample set D, Lines 18—21 add artificial samples to (s, a′) pairs

so that untried actions a′ in s are preferred when a nearby state is visited in the

future. These state–action pairs also have the largest possible value, Vmax.

With LSTDQ-Rmax as a building block, we can give a generic form of the full online

learning algorithm, LSPI-Rmax, in Algorithm 30. In this algorithm, the agent always

chooses greedy actions with respect to its current value-function estimate. When new

training samples are added to the sample setD, it runs LSPI to update its value function,

in which it uses LSTDQ-Rmax instead of LSTDQ to evaluate value functions.

To summarize: LSTDQ-Rmax is just like LSTDQ, except that it assigns maximum

value, Vmax, to states and state–action pairs that are not (ε,m)-known; LSTDQ-Rmax
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becomes LSTDQ when m = 0. LSPI-Rmax is just an online version of LSPI that uses

LSTDQ-Rmax instead of LSTDQ to approximate the policy-evaluation step.

Algorithm 29 LSTDQ-Rmax

1: Input: D, π,φφφ, k, γ, ε,m.
2: Output: weight vector w so that Qw ≈ Qπ

3: A← Ok×k (the k × k zero matrix)
4: b← 0k (the k × 1 zero column-vector)
5: for all (s, a, r, s′) ∈ D do
6: if (s, a) is (ε,m)-known then
7: if s′ is (ε,m)-known then

8: A← A+φφφ(s, a) ·
(

φφφ(s, a)− γφφφ(s′, π(s′))
)⊤

9: b← b +φφφ(s, a) · r
10: else
11: A← A+φφφ(s, a) ·φφφ(s, a)⊤

12: b← b +φφφ(s, a) · (r + γVmax)
13: end if
14: else
15: A← A+φφφ(s, a) ·φφφ(s, a)⊤

16: b← b +φφφ(s, a) · Vmax

17: end if
18: for all a′ ∈ A \ {a} where (s, a′) is not (ε,m)-known do
19: A← A+φφφ(s, a′) ·φφφ(s, a′)⊤

20: b← b +φφφ(s, a′) · Vmax

21: end for
22: end for
23: Return w = A−1b

Algorithm 30 LSPI-Rmax

1: Input: φφφ, k, γ, ε,m.
2: Initialize w, s1, and set D ← ∅
3: for t = 1, 2, 3, · · · do
4: Choose the greedy action at in st with respect to Qw, observe reward rt and st+1

5: D ← D ∪ {(st, at, rt, st+1)}
6: Update w by running LSPI with LSTDQ-Rmax instead of LSTDQ.
7: end for

8.3.2 Implementation Issues

While we have given the generic form of LSPI-Rmax, a number of implementation issues

remain open. We describe our solutions to these problems, but note that other solutions

do exist and might work better in some situations.
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The first natural question is how to decide whether a state–action pair is (ε,m)-

known or not. A straightforward algorithm would be to search over all samples in

D and count the number of nearest neighbors within ε distance. However, when D

is large, even this O(|D|)-time algorithm is far too expensive. A better way is to

employ smarter nearest-neighbor search techniques such as kd-trees [Friedman et al.

1977] whose time complexity is sub-linear in |D|, but still is prohibitively expensive

in high dimension state spaces. Therefore, it might be worthwhile to sacrifice exact

counting for faster computation. In our implementation, we coarsely discretize S × A

into bins, and the number of nearest neighbors is approximated by counting how many

samples in D fall in the same bin. Thus, all samples in a bin are simultaneously known

or simultaneously unknown under this approximation.4 By maintaining a counter for

each bin, we are able to achieve a much lower computational complexity that is linear

in the state dimension. Therefore, this binning implementation can be viewed as a

computationally efficient approximation to the exact nearest-neighbor search procedure

such as kd-tree algorithms. We note that better choices for identifying known state–

actions are possible in the presence of domain knowledge, and the number of bins may

grow sub-exponentially. Another useful idea is to use variable-resolution bins, such as

those used by Nouri and Littman [2009].

It is important to note that the discretization procedure we use here should not be

confused with discretization for solving large MDPs. Discretization there directly de-

cides the complexity of value functions being considered, and solving a discretized model

often requires repeated access to the whole model (e.g., in the dynamic-programming

algorithms surveyed in §3.1). Here, in contrast, discretization is used only to indicate

whether enough samples have been observed in a local region, that is, whether a state–

action pair is known. Thus, the class of value functions under consideration and the

computational complexity mostly depend on the number of features, rather than num-

ber of bins used by LSPI-Rmax. These differences make our approach less prone to the

curse of dimensionality than discretization methods.

4This implementation also has a desired side-effect of smoothing the optimal value function of the
known-state MDP, which makes it easier to learn the optimal value function and policy for the known-
state MDP.
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A second problem is that D keeps growing without limit as time goes on. However,

if the MDP dynamics are smooth5 (which is often the case in practice), it is unnecessary

to keep all samples in D if many of them are close to each other. Thus, we have chosen to

avoid adding a sample to D if the corresponding bin size reaches a predefined capacity,

which varied between 50 and 100 in our experiments in §8.3.4. Excluding samples has

the effect of making the sample distribution in D more uniform, which is often preferred

for the policy-improvement step of LSPI in practice [Lagoudakis and Parr 2003a].

Third, Lines 18—21 ensure that untried actions a′ in s are preferred when a nearby

state is visited in the future by using artificial samples. Empirically, it is desirable to

avoid adding too many such artificial samples, which may overwhelm the real ones.

There are many ways to do so—in our implementation, an artificial sample is used only

when the bin corresponding to (s, a′) is empty. This choice has the desired property

that if the local region of (s, a′) is underrepresented, the artificial sample has the effect

of increasing the value of a′ in s so as to encourage exploration of a′ in the neighborhood

of s; on the other hand, if a′ has been tried in nearby states of s′, the algorithm will

use those real samples and does not use artificial ones.

Finally, LSPI is invoked in each step in Algorithm 30. Since LSPI is rather expensive

(the complexity of each iteration is on the order of O(k3)) and adding a sample to the

training setD usually has small effects on the value function it finds, our implementation

calls LSPI (Line 6 in Algorithm 30) only after a certain number of samples are added

to D.

8.3.3 Relation to Rmax

Because LSPI-Rmax’s root is in Rmax, it is natural to consider the relation between

them. Given a finite MDP, Rmax estimates Q(s, a) for each (s, a). If we view this tab-

ular representation as a linear function approximation with indicator features (§3.2.2),

then LSPI-Rmax precisely duplicates Rmax with ε = 0. (Note that Rmax has a similar

parameter m.) In fact, what LSTDQ-Rmax solves for is the state–action value function

5Nearby states have similar transition and reward functions if the MDP’s dynamics are smooth.
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of policy π on the empirical known state–state MDP M̂K maintained by Rmax. Conse-

quently, Line 6 of Algorithm 30 becomes exact policy iteration and returns the optimal

state–action value function of M̂K .

This connection to Rmax serves as a sanity check of the plausibility of our approach.

We can make this similarity formal. A thorough analysis of LSPI-Rmax is difficult,

since a nontrivial performance guarantee for LSPI itself is open except in limited sit-

uations [Lagoudakis and Parr 2003a; Antos et al. 2008]. Our preliminary analysis is

specific to the bin-based implementation described in the previous section. Similar

to known states, we call a bin to be known if every action has been tried at least m

times in states in this bin. Suppose the state space is partitioned into C disjoint bins.

Let K ⊆ {1, 2, · · · , C} be the subset of known bins, then the known-bin MDP can be

defined by MK
def
= 〈S,A, TK , RK , γ〉 where

RK(s, a)
def
=















R(s, a) if s is in a known bin

1 otherwise,

TK(s, a, s′) def
=















T (s, a, s′) if s is in a known bin

I(s = s′) otherwise.

Assumption 3 below asserts that LSPI, when using a sufficiently good feature func-

tion φφφ, is able to return a near-optimal policy in known-bin MDP.

Assumption 3 Let ǫ, δ ∈ (0, 1) be given. Let m = m(ǫ, δ) be some positive constant

depending on ǫ and δ. We call C a cover number of the MDP if the state space S can

be partitioned into C disjoint bins: S = S1∪S2∪ · · ·∪SC , such that, with probability at

least 1 − δ, LSPI with the given features φφφ returns an ǫ-accurate value function in the

known-state MDP MK for any K ⊆ {1, 2, . . . , C}.

This assumption allows one to show a bound on the sample complexity of explo-

ration stated in Theorem 26, whose proof follows similar steps as the sample complexity

proof for KWIK-Rmax. Although it is hard to verify Assumption 3 in practice, the the-

orem serves as a best-case sanity check that the algorithm does employ the exploration
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Figure 8.2: Problems used in experiments. Left: ContCombLock. Middle: Moun-

tainCar (adapted from Sutton and Barto [1998]). Right: ExpressWorld (adapted
from Boyan and Moore [1995]).

efficiency of Rmax. An important open question is to generalize the analysis to broader

classes of linear function approximation.

Theorem 26 When it is implemented using bins S1, . . . , SC that are defined in As-

sumption 3, LSPI-Rmax’s sample complexity of exploration is

O
(

Vmax

ǫ(1− γ)

(

CAm(ǫ(1− γ), δ/(CA)) + ln
1

δ

)

1

ǫ(1− γ)

)

.

LSPI-Rmax is similar to metric E3 in the sense that they both depend on some kind

of smoothness assumption. The notation of (ε,m)-known state–actions plays a similar

role to the local modeling assumption. Metric E3 estimates the model explicitly based on

samples and then employs a hypothetical planner to get the desired policy. In contrast,

LSTDQ-Rmax builds a compressed empirical model implicitly [Boyan 2002; Parr et al.

2008] and approximate policy iteration is then used to solve the planning problem. The

near-optimality part in Assumption 3 is roughly the analog of the approximate planner

assumption made in metric E3. Since LSPI does not make a clean distinction between

learning and planning, it is not clear how to use the same assumptions that applied to

metric E3 to analyze LSPI-Rmax.

8.3.4 Experiments

This section reports experimental results on four continuous, episodic domains ordered

by increasing difficulty of exploration. We did not try to optimize features, which is an
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important problem. Further investigation is needed to study the effect of features on

exploration.

Domains

MountainCar [Sutton and Barto 1998] is a problem in which the agent tries to drive a

car to a hilltop (Figure 8.2(a)). To do so, the agent has to reverse the car to move away

from the goal and then apply full throttle until it reaches the hilltop. This problem

has two continuous state variables and three actions. Every step gives rise to a reward

of −1, and the state transition is governed by a system of nonlinear equations [Sutton

and Barto 1998]. We used CMAC features consisting of 3 layers of 4× 4 tilings, which

are then repeated for each of the three actions, leading to a total of 3× 3× 4× 4 = 144

features. The same approach of repeating features for every action was adopted in the

other problems.

Bicycle is the problem of balancing a simulated bicycle. We used the deterministic

version of bicycle [Randløv and Alstrøm 1998] (i.e., the noise in the displacement action

is always zero) to illustrate how LSPI-Rmax works in a challenging, high dimensional

problem, although the problem is somewhat easier than the original, stochastic one.

There are six continuous state variables and two continuous action variables. Each

balancing step leads to a reward of +1, and an episode terminates when the bicycle

falls. We used the same set of hand-coded features and the same discretization in the

continuous action space as in the original LSPI paper [Lagoudakis and Parr 2003a]; that

is, there were 100 features and 5 actions.

ExpressWorld is adapted from PuddleWorld [Sutton 1996]. In Puddle-

World, the state space is a two-dimensional continuous grid world in which the agent

can move along four directions (N, E, S, and W) to reach the goal region in the north-

east corner while trying to avoid two puddles (Figure 8.2(b)). Each step yields a −1

reward plus a penalty for entering the puddle region. To make exploration more im-

portant in this task, we add an “express lane” 0.15 units wide—if the agent moves

within this lane, every immediate reward is −0.5 instead of −1. Start states are drawn

randomly from the left half plane so that the agent has to learn how to avoid puddles,
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as well as to explore actively to discover the goal as well as the express lane. We have

found empirically that this exploration task is quite challenging. Partly because the

reward function that has sharp changes in the puddle region, it is not easy to find good

features for this problem. Therefore, we simply used a 6× 6 discretization of the state

space and treated it as a CMAC feature with one layer of gridding, which resulted in a

total of 4× 6× 6 = 144 features.

The last problem, ContCombLock, is a continuous version of combination lock,

which was designed to require a smart exploration strategy [Koenig and Simmons 1996].

The state space is a segment [0, 1] with a fixed start state 0 (Figure 8.2(c)). There are

two actions: left always takes the agent back to the start state 0; the other action

right takes the agent from state x to a new state y = x+0.02+∆, where ∆ is generated

via Gaussian noise with mean 0 and standard deviation 0.005. If the agent reaches a

state x > 0.98, the episode terminates. Every step results in a −1 reward. Therefore,

the optimal policy is to always choose right, and on average each episode takes about

50 steps to finish. We used CMAC features that have 3 layers of grids, each dividing

the state space into 6 pieces. Hence, 2× 3× 6 = 36 features were used.

For Bicycle, the agent was allowed to run 2000 episodes, each of which was at

most 72000 steps long; in the other problems, the agent had to run up to 200 episodes,

each of which was at most 300 steps long. The discount factor was set to 0.99 for all

four problems.

In the experiments, the capacity of a bin was set to 100 except in Bicycle where

it was 50 (since this problem’s state space is larger). We invoked LSPI in LSPI-Rmax

every time 100 new samples were added to D, except in ContCombLock where LSPI

was invoked immediately after a new sample was added.

We compared LSPI-Rmax against LSPI with ǫ-greedy and counter-based exploration.

For each of them, we have tried different exploration parameters and report the best

result. Since all problems are continuous, we had to modify the counter-based method

to use the same trick as LSPI-Rmax (cf., §8.3.2), and maintained a counter for each bin.
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Results

Figure 8.3 shows the learning curves for cumulative reward of LSPI with different explo-

ration rules in all four problems, where the y-axis is the cumulative rewards, averaged

over 30 runs. The slope of a curve corresponds to per-episode reward. In Mountain-

Car and Bicycle, all three exploration rules had similar cumulative rewards for the

first dozen episodes, but LSPI-Rmax quickly showed its advantage over the other two

and converged to a much better policy. It is also observed that ǫ-greedy and counter-

based exploration rules can be better than the other, depending on specific problems.

In ContCombLock, LSPI-Rmax was the only one that succeeded.

The learning curve for ExpressWorld probably best illustrates the way LSPI-Rmax

works. At the beginning of learning, LSPI-Rmax actually receives much less cumulative

rewards since it attempts to visit different parts of the state space and thus receives a

lot of penalty for entering puddles. However, after about 10 episodes, it has obtained

a better policy, which finally compensates the cost of exploration at the beginning. In

contrast, LSPI with ǫ-greedy and counter-based exploration converged to suboptimal

policies (visible in the graph as their reward slopes).

The success of LSPI-Rmax comes from the fact that the agent actively explores the

state space. This claim is supported by Figure 8.4, which plots the states visited by

the three agents in ExpressWorld for the first three episodes during a typical run.

(We chose this domain for demonstration because it is easier to visualize its 2D state

space). Observe that all three agents failed to reach the goal for the first three episodes.

However, the LSPI-Rmax agent apparently behaves more intelligently by experiencing

novel parts of the state space, while the other two agents had difficulty getting far away

from the start states on the left half plane.

Finally, we study the effect of parameter m on cumulative rewards in LSPI-Rmax.

Figure 8.5 plots the average per-episode reward, as well as standard deviation, of LSPI-

Rmax during the entire 30 runs in ExpressWorld with different threshold m values.

The results demonstrate how m controls the exploration-exploitation tradeoff. When

m is small, the agent tries to exploit sooner, but risks at ending up with less effective
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Figure 8.3: Learning curves for cumulative rewards with three exploration strategies.
All results are averaged over 30 independent runs. In the last two figures, the curves
for ǫ-greedy and counter-based exploration almost overlap.
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Figure 8.4: State visitation of the first three episodes of a typical run in Express-

World. The goal state was not reached with any exploration rules within the first
three episodes.
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Figure 8.5: Effect of exploration threshold m on average per-episode reward in Ex-

pressWorld.

policies, which explains the large variance in the average per-episode reward. When

m gets larger, the agent becomes more conservative and tends to explore more before

exploiting. Consequently, learning is more robust and the variance is small. However,

being conservative comes with costs as the algorithm delays exploitation while explor-

ing. In between, medium m values work best. Similar patterns are observed in other

problems.

8.4 REKWIRE

In this section, we explore a simpler setting of reinforcement learning than what the

other parts of the dissertation focus on. In particular, we consider finite-horizon MDPs

with a fixed distribution of start states [Fiechter 1994]. This type of MDP is useful

for episodic problems such as ExpressWorld in the previous section as well as real-

istic problems like navigation (c.f., §7.3.2), etc. Meanwhile, exploration in these MDPs

appears easier than in other MDPs where the agent follows a continuous trajectory

without termination (which is the focus of most of the dissertation).

In the following, we first give notation for finite-horizon MDPs, which has a number

of similarities to that for infinite-horizon MDPs in §2. Then, we present a a model-free
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algorithm with linear value-function approximation. By relating the algorithm to the

problem of KWIK linear regression, we can perform a formal analysis for its sample

complexity of exploration. Finally, proof-of-concept experiments are discussed.

8.4.1 Preliminaries

In this section, environments are modeled by finite-horizon MDPs which can be de-

scribed by a six-tuple, M = 〈S,A, T,R,H, µ0〉, where: S, A, T , and R are the state

space, action space, transition function, and reward function, similar to the infinite-

horizon MDP defined in §2.1; H ∈ N is the horizon; and µ0 ∈ PS is a start-state

distribution. In general, an H-horizon MDP may have transition probabilities and

reward function dependent on the stage. We choose a simpler definition for ease of

exposition. The results and analysis in this section may be extended to the general

case with minor modifications.

An episode is a sequence of H state transitions: 〈s1, a1, r1, s2, · · · , sH , aH , rH , sH+1〉,

where s1 ∼ µ0, sH+1 is a terminal state, and rewards and next states are random vari-

ables according to the transition and reward functions of the MDP. An agent repeatedly

chooses actions until the current episode terminates, and then a new episode starts over

again from a start state picked randomly according to µ0. For convenience, define the

set of stages by [H] = {1, 2, · · · , H}.

A deterministic, stationary policy maps states and stages to actions: π ∈ AS×[H].

Specifically, π(s, h) ∈ A is the action the agent will take if s is the current state at

stage h. Given a policy π, we define the state-value function, V π
h (s), as the expected

cumulative reward received by executing π starting from state s at stage h until the

episode terminates at stage H. Similarly, the state–action value function, Qπ
h(s, a), is

the expected cumulative reward received by taking action a in state s at stage h and

following π until the episode terminates at stage H. A reinforcement-learning agent

attempts to learn an optimal policy π∗ whose value functions at stage h are denoted by

V ∗
h (s) and Q∗

h(s, a), respectively. It is known that V ∗
h = maxπ V

π
h and Q∗

h = maxπ Q
π
h.

A greedy policy at stage h, denoted πQh
, with respect to a value function Qh is one

that selects actions with maximum Q-values; namely, πQh
(s, h) = arg maxaQh(s, a).
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The greedy policy with respect to Q∗
h is optimal for stage h. As in infinite-horizon,

discounted MDPs, the Bellman equation plays a central role to many RL algorithms

including the one we will describe: for any s ∈ S, a ∈ A, h ∈ [H],

Q∗
h(s, a) = R(s, a) +

∑

s′∈S

(

T (s′ | s, a) max
a′∈A

Q∗
h+1(s

′, a′)
)

(8.5)

where Q∗
H+1 is understood to be the zero function.

Given the complete model of a finite MDP (i.e., the six-tuple), standard algorithms

exist for finding the optimal value function and the optimal policies [Puterman 1994];

these methods are straightforward modifications to many algorithms surveyed in §3. If

the transition and/or reward functions are unknown, the agent has to learn the optimal

value function or policy by interacting with the environment.

8.4.2 KWIK Online Linear Regression

In this subsection, we propose an algorithm, REKWIRE (REinforcement learning based

on KWIk online REgression), for H-horizon reinforcement-learning problems in which a

linear value function is used. The key idea of the algorithm is to reduce the RL problem

into a sequence of H instances of KWIK online linear regression problems. A KWIK

online linear regression problem is the same as the noisy linear regression problem

defined in §5.3.5, except that we do not require the target function to be exactly linear

in the input vectors, but that the target function is “almost” linear in the input vectors.

This setting is what we call the semi-linearity assumption (Assumption 4). As in §5.3.5,

we define X ⊆ R
k and Y = Z = R, where k is the dimension of inputs.

Assumption 4 We make the following assumptions for the KWIK online linear re-

gression problem:

A. (Bounded-input assumption) ‖xt‖2 ≤ 1 for all t.

B. (Semi-linearity assumption) There exist some (unknown) vector w∗ ∈ R
k and a

small number ξ ∈ [0, 1) such that ‖w∗‖2 ≤ 1 and |E[zt|xt]−w∗ · xt| ≤ ξ for all t.

We call the quantity ξ the slack value.

Another assumption is needed for the foundation of our algorithm.
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Assumption 5 Under certain conditions C on the process generating the samples

[〈xt, yt〉]t∈N, there exists a KWIK online linear regression algorithm A0 with a KWIK

bound B0(k,
1
ǫ ,

1
δ ) and a per-step computation complexity τ0(k,

1
ǫ ,

1
δ ).

Before ending this section, we give an example to shed some light on what C might

look like. Some notation is in order. Let zt = [y1, y2, · · · , yt]
⊤ and Xt ∈ R

t×k be the

design matrix up to time t: Xt = [x1,x2, · · · ,xt]
⊤. Then, ȳt+1 = a⊤

t+1zt gives the least-

squares prediction of yt+1, where at+1 = Xt(X
⊤
t Xt)

†xt+1, M
⊤ and M † denotes the

transpose and pseudo-inverse of matrix M , respectively. Define et
def
= [ǫ∗1, ǫ

∗
2, · · · , ǫ∗t ]⊤.

Since |ǫ∗i | ≤ ξ for all i (Assumption 4B), we have
∣

∣a⊤
t et

∣

∣ ≤ ξ ‖at‖1. This inequality is

tight when the signs of components of at and et coincide (or are completely opposite). It

turns out that if the error ǫ∗t “mixes quickly” with at over time, then we have admissible

KWIK online linear regression algorithms:

Theorem 27 If
∣

∣a⊤
t et

∣

∣ = O (t−αξ) as t → ∞ for some constant α > 0, then noisy

linear-regression (Algorithm 16) is a KWIK algorithm under Assumption 4.

We conjecture that this sufficient condition is reasonable in some natural problems

of practical interest, and thus will use noisy linear-regression as A0 in the experiments.

8.4.3 Algorithm

We assume a set of d features are predefined: φφφ : S × A → [−1, 1]k. A Q-function

can then be represented compactly by a weight vector wh ∈ R
k for each h ∈ [H]:

Q̂h(s, a) = wh ·φφφ(s, a). We make a semi-linearity assumption for the value function at

every stage. Remember that outputs in the KWIK online regression are in [−1, 1]; we

need to re-scale the value function to the same range by dividing Q∗
h by H:

Assumption 6 (Semi-linearity assumption of the optimal value function) For every

stage h ∈ [H], there exists some (unknown) vector w∗
h ∈ R

k and a small number ξh > 0

such that ‖w∗
h‖2 ≤ 1 and

∣

∣

∣

∣

Q∗
h(s, a)

H
−w∗

h ·φφφ(s, a)

∣

∣

∣

∣

≤ ξh (8.6)
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for all s and a. Whether it is required to know ξh depends on whether such information

is needed by A0.

Algorithm 8.4.3 gives a formal description of REKWIRE. Basically, the algorithm

learns the optimal value functions Q∗
h by treating them as H related KWIK online

linear regression problems. It runs H copies of the base algorithm A0 to update the

weight vector wh for stage h. By the Equation 8.5, the Q-function at stage h is defined

recursively as the sum of immediate reward at stage h and the expected optimal Q-value

of the next states. Therefore, the algorithm improves its value-function estimates by

performing Bellman-backup-style updates. A central idea behind the efficiency of the

reduction is that we only use a backup value when it is “known”. A backup value is

“known” when the prediction made by A0 is valid, and thus by Assumption 5 must be

near-accurate. Figure 8.6 gives a simple H-horizon example for H = 3 and illustrates

how REKWIRE chooses actions and computes backup values.

A quick observation about REKWIRE is that, if the per-step computation complexity

of A0 is τ0, then the per-step computation complexity of REKWIRE is O(|A| τ0), when

execution of Lines 17–21 are amortized to every timestep. So, the per-step computa-

tion complexity scales nicely from regression problems to sequential decision making in

MDPs, in contrast to algorithms such as state-space discretization [Chow and Tsitsik-

lis 1989] that scales exponentially in the dimension of S and sparse sampling [Kearns

et al. 2002] that scales exponentially in the horizon H. We next turn to the more

difficult questions of bounding the sample complexity of exploration and value-function

approximation error.

8.4.4 Analysis

The first main result in this section is the following theorem.

Theorem 28 Suppose Assumption 6 holds. If A
(h)
0 is run with parameters ǫh and δh

in REKWIRE, then:
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S1

S2

S3

S4

Stage h = 2:

(w2 is used to compute q2,L and q2,R)

(3) choose greedy a2 = R since both

q2,L and q2,R are valid

(4) use r1 +q2,a2
to update w1 as this

backup value is “trusted”

Stage h = 1:

(w1 is used to compute q1,L and q1,R)

(1) choose exploratory a1 = L since

q1,L = Ξ

(2) no backup is needed as this is the

first horizon

Stage h = 3:

(w3 is used to compute q3,L and q3,R)

(5) choose exploratory a3 = R since

q3,R = Ξ

(6) do not use r2+q3,a3
to update w2

as this value is “unknown”

(7) use r3 to update w3 as this

backup value is always “trusted”

Episode terminates in state s4.

q1,L = Ξ q1,R = 2.5

q2,L = 1.3 q2,R = 1.7

q3,L = 0.8 q3,R = Ξ

r1 = 0.3

r2 = 0.9

r3 = 0.1

Figure 8.6: An illustration of the operations of REKWIRE in a 3-horizon MDP. Two
actions are allowed in every state: {L,R}. The same notation as in Algorithm 8.4.3 is
used.

I. The number of ⊥s outputted in stage h ∈ [H] is at most

H
∑

l=h

B0

(

k,
1

ǫl
,

1

δl

)

;

II. The total number of ⊥s outputted during the whole run of REKWIRE in all stages

is at most
H
∑

h=1

(

hB0

(

k,
1

ǫh
,

1

δh

))

;

III. With probability at least 1−∑H
l=1 δl, all valid Q-value predictions at stage h differ

from the true values by at most

H

H
∑

l=h

(ǫl + ξl) .
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0: Inputs: S, A, H, φφφ, ǫh, and δh for h ∈ [H].
1: Initialize H copies of A0, one for each h ∈ [H]. The copy at stage h is run with

parameters ǫh and ξh, and is denoted by A
(h)
0 .

2: for episode i = 1, 2, 3, · · · do
3: for stage h = 1, 2, 3, · · · , H do
4: Observe state sh.
5: for all a ∈ A do
6: Use A

(h)
0 to compute qh,a ∈ [0, H]∪ {⊥} as a prediction for Q∗

h(sh, a). Here,

if A
(h)
0 gives a valid prediction, then this prediction has to be multiplied by

H to obtain qh,a due to the normalization (Equation 8.6) we have used.
7: end for
8: if qh,a = ⊥ for some a ∈ A then
9: ah ← a {do exploration}

10: Lh ← FALSE {Q∗
h(sh, ah) is “unknown”}

11: else
12: ah ← arg maxa qh,a {do exploitation}
13: Lh ← TRUE {Q∗

h(sh, ah) is “known” and qh,a is “trusted”}
14: end if
15: Take action ah and observe reward rh.
16: end for
17: for h = 2, 3, · · · , H do
18: if Lh = TRUE then

19: Use
(

φφφ(sh−1, ah−1),
rh−1+qh,ah

H

)

as an example for A
(h−1)
0 to update wh−1.

20: end if
21: end for
22: Use

(

φφφ(sH , aH), rH

H

)

as an example for A
(H)
0 to update wH . {terminating

rewards are always “trusted”}
23: end for

The following corollary, which follows immediately from Theorem 28, indicates that

the KWIK bound and error bound of the KWIK online linear regression algorithm

A0 scale nicely to the analogous quantities in the more complicated, H-horizon RL

problem.

Corollary 2 If ǫh = ǫ0, δh = δ0, and ξh = ξ0 for all h ∈ [H] in Theorem 28, then:

I. The number of ⊥s outputted at stage h is

O
(

HB0

(

k,
1

ǫ0
,

1

δ0

))

;

II. The total number of ⊥s outputted during a whole run of REKWIRE in all stages is

O
(

H2B0

(

k,
1

ǫ0
,

1

δ0

))

;
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III. With probability at least 1 − Hδ0, all valid Q-value predictions at stage h differ

from the true values by at most

H(H − h+ 1) (ǫ0 + ξ0) = O
(

H2 (ǫ0 + ξ0)
)

.

Using Corollary 2, we can prove the following theorem about the sample complex-

ity of exploration of REKWIRE. Our focus is to provide the first polynomial sample

complexity bound, although improved bounds are possible with a more careful analysis.

Theorem 29 Given any ǫ, δ > 0 and k features that satisfy Assumption 6 with ξh =

O
(

ǫ
H3

)

, if we run A
(h)
0 with ǫh = O

(

ǫ
H3

)

and δh = O
(

δ
H

)

in REKWIRE, then the policy

used by the agent is ǫ-optimal except in

O
(

H3

ǫ
·B0

(

k,
H3

ǫ
,
H

δ

)

· ln 1

δ

)

episodes, with probability at least 1− δ.

8.4.5 An Extension to the Discounted Case

While we have focused on finite-horizon RL problems in this section, it is sometimes

easier to model environments by infinite-horizon MDPs with a discount factor, as is

defined in §2.1. Changes in notation and terminology are necessary since there is no

notion of horizon in this setting. Specifically, we only need to consider policies that

maps states to actions: π ∈ AS . The value functions, such as Qπ(s, a) and Q∗(s, a),

are defined as the expected γ-discounted cumulative reward. These are what we have

focused on in the rest of the dissertation.

In light of Lemma 2, we may convert a γ-discounted, infinite-horizon MDP Mγ into

an H-horizon MDP MH so that the optimal value functions of MH and Mγ differ by

at most ǫ, provided

H >
1

1− γ ln
1

ǫ(1− γ) .

It is worth mentioning that even if the optimal value function Q∗
γ of Mγ is semi-

linear, the value functions in MH , Q∗
h, need not be semi-linear. We note that this

problem may be resolved by using different sets of features at different stages. That
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is, we require features φφφh : S × A → [−1, 1]d at stage h, and assume that Q∗
h satisfies

Assumption 6 with small slack ξh. REKWIRE can then be applied.

8.4.6 Related Work

Our work is most relevant to the original KWIK online linear regression framework

proposed by Strehl and Littman [2008b]. The only difference in problem formulation

is that we make a semi-linearity assumption while they assume exact linearity. This

change is necessary if we allow Bellman-backup-style updates on the value functions

since the backup value (i.e.,
rh−1+qh,ah

H in Line 19 of Algorithm 8.4.3) is unavoidably

biased and it is unreasonable to assume the target function at stage h−1 remains linear

for all possible biases introduced in stage h.

The second significant difference is how KWIK online linear regression is applied to

RL problems. Strehl and Littman [2008b] adopt a model-based approach: they assume

the MDP state transitions are governed by a set of linear equations with Gaussian white

noise and apply KWIK online linear regression to learn the transition matrices, finally

solving the learned MDP model to obtain a policy that either explores or exploits. Even

if an MDP can be accurately modeled as a linear system, solving a continuous MDP

remains a challenging task [Chow and Tsitsiklis 1989; Kearns et al. 2002]. A similar

problem arises in the metric E3 algorithm [Kakade et al. 2003]. In contrast, the model-

free approach taken in this paper avoids this problem completely by learning the value

function directly. With a learned linear value function, finding the greedy action takes

only O(|A| τ0) time per step.

The KWIK online linear regression framework we described is related to the online

learning model of linear functions (e.g., Cesa-Bianchi et al. [1996]). In this model,

like ours, input data are not assumed to be i.i.d. Cumulative absolute and squared

prediction error bounds are developed under various assumptions. The main difference

between that model and ours is that we require the learner to be aware of its prediction

accuracy.

Our algorithm shares some similarity with the grow-support algorithm by Boyan

and Moore [1995] in that we both use value-function estimates for backups when the
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estimates are “trusted”. But grow-support assumes complete knowledge about the MDP

model and thus focuses on stability issues when combining function approximation and

dynamic programming. In contrast, REKWIRE is a learning algorithm and has to

explore in the MDP to gather information needed for computing the optimal policy.

Finally, Peters and Schaal [2007] proposed an interesting reduction from RL to

reward-weighted regression. While they consider the specific task of following a given

trajectory in rigid-body systems whose dynamics are governed by a set of equations

with unknown parameters, this paper focuses on learning in general MDPs where the

learner is not provided with such target trajectories.

8.4.7 Experiments

We demonstrate REKWIRE on a few benchmark problems as a proof of concept. Noisy

linear-regression was used as the base algorithm A0. Sarsa(0) with ǫ-greedy and Boltz-

mann exploration rules were used for comparison.

Setup

The same three finite-horizon problems in Figure 8.2 were used. In ContCombLock,

the left action always resets the agent to the start state s1, and the right action takes the

agent from state s to a new state s′ = s+0.05+∆ where ∆ ∼ N (0, 0.0125) is Gaussian

noise. If the agent reaches a state s > 0.95, the episode terminates. Every step results

in a −1 reward, as before. Therefore, the optimal policy is to always choose right,

and on average each episode takes about 19 to 20 steps to finish. We set H = 25. To

separate the issue of exploration from that of feature selection, we used φh(s, left) =

Qh(s, left) · [1, 0, n1, n2]
⊤ and φh(s,right) = Qh(s,right) · [0, 10, n1, n2]

⊤, where n1

and n2 were noisy values uniformly distributed in [−0.5, 0.5], and Qh(s, a) ≈ Q∗
h(s, a)

was computed by the Bellman equation (Equation 8.5) on the discretized MDP. Clearly,

wh = [1, 0.1, 0, 0]⊤ yields a quite accurate linear approximation to Q∗
h, and the noise

was added to make the problem more interesting.

In MountainCar, the start state is s1 = [0, 0] and we set H = 75. As before,

φh(s, a) = Qh(s, a) · [1, n1, n2]
⊤, and hence wh = [1, 0, 0]⊤ yields a quite accurate linear
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Figure 8.7: Probabilities of reaching the goal states in ContCombLock (top), Moun-

tainCar (middle), and per-episode rewards in PuddleWorld (bottom). All results
are averaged over 20 runs.
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approximation to Q∗
h.

In ExpressWorld, we set H = 45. As before, φh(s, a) = Q̂h(s, a) · [1, n1, n2]
⊤, and

hence wh = [1, 0, 0]⊤ yields a quite accurate linear approximation to Q∗
h.

Results

Figure 8.7 summarizes the results on all three problems. We picked parameters that

seemed to work best for each algorithm. Since the number of steps to the goal states

is very close to H in ContCombLock and MountainCar, we instead plotted the

probabilities of reaching the goal within H steps. In contrast, we evaluated per-episode

reward in ExpressWorld as it is necessary to distinguish whether the agent discovers

the express lane or not.

It is observed that our algorithm consistently solved all three problems, while ǫ-

greedy and Boltzmann rules worked satisfactorily for some and failed for others. For

example, ǫ-greedy was inefficient in ContCombLock, as expected; the Boltzmann

rule failed to converge to the optimal policy in ExpressWorld although it quickly

learned a good policy early on. Our algorithm, however, seemed too conservative and

converged more slowly. A partial explanation is that it learned H weight vectors, while

Sarsa learned only one weight vector and used it to compute a policy in all stages. It

remains an interesting open question how we may avoid representing the value function

using H weights in REKWIRE, which is particularly important when it is applied to

discounted problems.

We next take a closer look at REKWIRE in ContCombLock, whose value functions

can be easily visualized. To make the problem more interesting, we ran REKWIRE with

RBF features with 4 RBF centers located evenly in the state space [0, 1]. Figure 8.8

plots the probability of reaching the goal within H = 25 steps for our algorithm, which

is consistently high after around 25, 000 episodes.6 In contrast, both ǫ-greedy and

Boltzmann rules failed this task in our experiments.

6Since the feature vector has 10 dimensions (1 constant feature plus 4 RBF centers per action) and
H = 25, each parameter required about 1000 data to estimate.
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Figure 8.8: Probability of reaching the goal within H = 25 steps in ContCombLock

when RBF features were used. The results were computed based on a typical run and
the probabilities were computed using every other block of 100 episodes.

Figure 8.9 gives a few snapshots of the value function V̂h(s) = maxa Q̂h(s, a) com-

puted by REKWIRE: V̂h(s, a) is a valid prediction only when Q̂h(s, a) is valid for both

actions; otherwise, V̂h(s, a) = ⊥ and the value is not plotted in the figure. At the begin-

ning of learning, most states’ values are unknown. The algorithm has to work backwards

by learning Q∗
h from larger h to smaller h, as shown in the plots. The plots show that

the “known” region essentially stopped growing after about 25000 episodes, and the

policy stablized after that, which is consistent with the learning curve in Figure 8.8.

Comparing to the true value function, we found that the value function computed by

REKWIRE was indeed very close to the true value for “known” regions, exactly as we

would expect.

8.5 Proofs

This section provides detailed proofs of all technical lemmas used in this chapter.
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8.5.1 Proofs of Lemmas for Theorem 22

Proof (of Lemma 38). The proof is by mathematical induction. For t = 1 and any

(s, a), Q1(s, a) = Vmax ≥ Q∗ due to Line 2 of Algorithm 27, and thus Q1(s, a) ≥

Q∗(s, a)− ǫ1/(1− γ). Assume Qt(s, a) ≥ Q∗(s, a)− ǫ1/(1− γ) for some t and all (s, a),

and a successful update occurs in timestep t on (st, at). Then,

Qt+1(st, at) ≥ BQt(st, at)− ǫ1 ≥ BQ∗(st, at)−
γǫ1

1− γ − ǫ1 = Q∗(st, at)−
ǫ1

1− γ

where the first step is due to the assumption that B̂ is an ǫ1-approximation of B, the

second due to Lemma 4 and the inductive hypothesis, and the last due to the fixed-point

property of Q∗. Also observe that Qt+1(s, a) = Qt(s, a) for all (s, a) 6= (st, at), and thus

the optimism condition continues to hold for these unaffected state–action pairs. �

8.5.2 Proofs of Lemmas for Theorem 23

Proof (of Lemma 39). Note that each time a successful update occurs for (st, at) at

timestep t, Qt(st, at) decreases by at least ǫ1. Since Q1(s, a) = Vmax and Qt(s, a) ≥ 0

for all t, at most Vmax/ǫ1 successful updates can happen. Hence, the total number

of successful updates during the whole run of randomized RTDP is bounded by κs =

|S| |A|Vmax/ǫ1. Now, note that when a state-action pair, (s, a), is first experienced, it

will always perform an attempted update. Next, another attempted update of (s, a)

will occur only when at least the Q-value of some state–action pair has been successfully

updated (due to Line 8 of Algorithm 27) since the last attempted update of (s, a). Thus,

the total number of attempted updates is bounded by κa. �

Proof (of Lemma 40). Let t be an arbitrary timestep when an attempted update occurs

on Qt(st, at), and let {(rt1, s′t1), (rt2, s′t2), . . . , (rtm, s′tm)} be the m sampled transitions.

Define m random variables as follows: for i = 1, 2, . . . ,m,

xi
def
= rti + γmax

a∈A
Qt(s

′
ti, a).

Since rti ∈ [0, 1] and Qt(s, a) ∈ [0, Vmax], we have xi ∈ [0, γVmax + 1]. Furthermore,

E[xi] = BQt(st, at) by definition. It follows immediately from Lemma 52 that for any
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δ1 ∈ (0, 1), the following holds with probability at least 1− δ1: |q −BQt(st, at)| ≤ ǫ1, if

m =
(γVmax + 1)2

2ǫ21
ln

2

δ1

Since there are at most κa attempted updates, due to Lemma 39, the lemma is proved

by setting δ1 = δ
2κa

and a union bound. �

Proof (of Lemma 41). According to Lemma 40, with probability at least 1 − δ/2,

Equation 8.1 holds for all timesteps t when an attempted update occurs. Therefore,

with probability at least 1 − δ/2, in an entire run of randomized RTDP, if (st, at) /∈

Kt
def
= KQt(ǫ(1− γ)/4), the attempted update will be successful because

q −Qt(st, at) < BQt(st, at)−Qt(st, at) + ǫ1 ≤ −
ǫ(1− γ)

4
+ ǫ1 = −ǫ1.

We have used the fact that ǫ1 = ǫ(1− γ)/8. �

Proof (of Lemma 42). Equation 8.1 guarantees that every sampling-based approxi-

mate Bellman backup performed in Line 9 is an ǫ1-approximation of the true Bellman

backup, and thus the proof parallels that of Lemma 38. �

8.5.3 Proofs of Lemmas for Theorem 24

Proof (of Lemma 43). Consider a fixed state–action pair (s, a). Its associated action–

value estimate is initialized to Vmax and cannot be negative during the whole run of the

algorithm. Each time Q(s, a) is successfully updated, it decreases by at least ǫ1. Thus,

Q(s, a) cannot be updated more than Vmax/ǫ1 times, and thus at most κs successful

updates are possible.

Consider a fixed state–action pair (s, a). Once (s, a) is experienced for them-th time,

an attempted update will occur. Suppose that an attempted update of (s, a) occurs

during timestep t. Afterward, for another attempted update to occur during some later

timestep t′, it must be the case that a successful update of some state–action pair (not

necessarily (s, a)) has occurred on or after timestep t and before timestep t′. Therefore,

there are at most 1 + κs attempted updates of (s, a), and thus κa attempted updates

are possible. �

Proof (of Lemma 44). Fix any timestep k1 (and the complete history of the agent

up to k1) such that (sk1
, ak1

) /∈ Kk1
, L(sk1

, ak1
) = TRUE, and C(sk1

, ak1
) = 0. In
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other words, if (sk1
, ak1

) is experienced m − 1 more times after timestep k1, then an

attempted update will occur.

Let D = {(s[1], r[1]), . . . , (s[m], r[m])} ∈ (S×R)m be any sequence ofm independent

next state and immediate reward tuples for (sk1
, ak1

). Due to the Markov assumption,

whenever the agent is in state sk1
and chooses action ak1

, the resulting next state

and immediate reward are chosen independently of the history of the agent. Thus,

the probability that (sk1
, ak1

) is experienced m − 1 more times and that the resulting

next state and immediate reward sequence equals D is at most the probability that D

is obtained by m independent draws from the transition and reward distributions for

(sk1
, ak1

). Therefore, it suffices to prove this lemma by showing that the probability

that a random sequence D could cause an unsuccessful update of (sk1
, ak1

) is at most

δ/3. We prove this statement next.

Given the random sequence in D, we may formulate the problem of approximat-

ing a Bellman backup while maintaining an optimistic value function as a subin-

terval prediction problem studied in §5.3.4. Specifically, the i-th output/interval is

[BQki
(st, at),BQk1

(st, at)], the i-th observation is r[i]+γVki
(s[i]) whose expectation is

BQki
(st, at). If we run coin-learning and make the first valid prediction after observing

m samples, then Theorem 12 guarantees that the new Q-value is still optimistic with

probability at least 1− δ
3κa

when m is set by Equation 8.2.

Finally, using a union bound over all possible timesteps k1 satisfying the condition

above, which is at most κa, we complete the proof. �

Proof (of Lemma 45). It can be shown, by a similar argument as in the proof of

Lemma 44, that at all timesteps t where an attempted update occurs, we have with

probability at least 1 − δ/3 that q −BQt(st, at) > −ǫ1, where q = U(st, at)/m is the

attempted update value. Now assume the inequality above is true for all attempted

updates, and then the proof proceeds by mathematical induction in a similar manner

as in the proof of Lemma 42. �

Proof (of Lemma 46). The proof is by contradiction. Suppose an unsuccessful update

occurs at timestep t, Lt+1(st, at) = FALSE, and (st, at) /∈ Kt+1. Let k1 < k2 < · · · <

km = t be the most recent m timesteps in which (st, at) is experienced. Because of
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event ADQL, we have (st, at) ∈ Kk1
. Since the update is unsuccessful on timestep t,

we have that Kt = Kt+1, which in turn implies (s, a) /∈ Kt. Therefore, there must

exist some timestep t′ (so that t > t′ > k1) in which a successful update occurs. Thus,

Lt+1(st, at) = TRUE since it is set so at timestep t′ in Line 12 of Algorithm 28, which

contradicts our assumption. �

Proof (of Lemma 47). First, observe that Q(s, a) cannot be updated more than

Vmax/ǫ1 times since every update will decrease the value by at least ǫ1, and the value

is non-negative.

Suppose at some timestep t, (st, at) /∈ Kt and L(st, at) = FALSE (implying the last

attempted update was unsuccessful). By Lemma 46, we have that (st, at) ∈ Kt′+1 where

t′ was the time of the last attempted update of (s, a). Thus, some successful update

has occurred since timestep t′ + 1. By the rules of Algorithm 28, we have that L(st, at)

will be set to TRUE and, by event ADQL, the next attempted update will succeed.

Now, suppose at timestep t, (st, at) /∈ Kt and l(st, at) = TRUE. Within at most m

more experiences of (st, at), an attempted update of Q(st, at) will occur. Suppose this

attempted update takes place at time t′′ > t and that the m most recent experiences of

(st, at) happened at times k1 < k2 < · · · < km = t′′. By event ADQL, if (st, at) /∈ Kk1
,

the update will be successful. Otherwise, if (st, at) ∈ Kk1
, then some successful update

must have occurred between times k1 and t (since Kk1
6= Kt). Hence, even if the

update is unsuccessful, L(st, at) remains TRUE, (st, at) /∈ Kt′′+1 will hold, and the

next attempted update of (st, at) will be successful.

In either case, if (st, at) /∈ Kt, then within at most 2m more experiences of (st, at),

a successful update of Q(st, at) will occur. This observation concludes the proof of

the lemma together with the previous observation that every state–action value can be

changed at most Vmax/ǫ1 times. �

8.5.4 Proof of Theorem 25

Proof. (of Lemma 48) If we treat decision making in each state as an A-arm bandit

problem, finding the optimal action for that state becomes one of finding an ǫ-optimal

action in the bandit problem. This bandit problem is the one used by Mannor and
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Tsitsiklis [2004] to establish a sample complexity lower bound (Lemma 11) in the PAC

model.

By construction of the MDP in Figure 8.1, there is at most one optimal action in

each state i ∈ [N ]. Thus, if any bandit algorithm A′ can guarantee with probability at

least 1− δi that at most mi sub-optimal actions are taken in a whole run, then we can

turn it into a bandit algorithm with a PAC sample complexity of 2mi + 1: we simply

run A′ for 2mi +1 steps and the majority action must be ǫ-optimal with probability at

least 1− δi. In other words, the lower bound above for PAC sample complexity results

immediately in a lower bound for the total number of sub-optimal actions taken by A′,

and thus

mi ≥
c1A

ǫ2
ln
c2
δi

for appropriately chosen constants c1 and c2. Reorganizing terms gives the desired

result. �

8.5.5 Proof of Theorem 27

If ŷt is valid, the agent does not see yt, and thus we can assume without loss of generality

that ŷt is unknown for t = 1, 2, · · · up to some indefinite T . Let ȳt+1 = a⊤
t+1zt be the

least-squares prediction of yt+1, where at+1 = Xt

(

X⊤
t Xt

)†
xt+1. Then,

|E[ȳt+1]− yt+1| =
∣

∣

∣
E[a⊤

t+1zt]− yt+1

∣

∣

∣

≤
∣

∣

∣E[a⊤
t+1zt]−w⊤

∗ xt+1

∣

∣

∣+
∣

∣

∣w⊤
∗ xt+1 − yt+1

∣

∣

∣

=
∣

∣

∣
E[a⊤

t+1zt]−w∗X⊤
t at+1

∣

∣

∣
+
∣

∣

∣
w⊤

∗ xt+1 − yt+1

∣

∣

∣

≤
∣

∣

∣
E[a⊤

t+1zt]−w∗X⊤
t at+1

∣

∣

∣
+ ξ

≤
∣

∣

∣

∣

∣

t
∑

τ=1

at+1,τ

(

E[yτ ]−w⊤
∗ xt

)

∣

∣

∣

∣

∣

+ ξ

=

∣

∣

∣

∣

∣

t
∑

τ=1

a⊤
t+1,τeτ

∣

∣

∣

∣

∣

+ ξ

=
∣

∣

∣a⊤
t+1et

∣

∣

∣+ ξ,

where the first inequality follows from the triangle inequality, the second in-

equality from Assumption 4B, and the second equality from the fact X⊤
t at+1 =
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X⊤
t Xt

(

X⊤
t Xt

)†
xt+1 = xt+1.

By the assumption made in the theorem statement,
∣

∣a⊤
t+1et

∣

∣ decreases to 0 quickly

at the rate of O(t−α), which means t = Ω(ǫ−1/α) will be large enough to guarantee
∣

∣a⊤
t+1et

∣

∣ ≤ ǫ/2. This fact indicates that when t is large enough (but still is polynomial

in 1
ǫ , the least-squares prediction ȳt+1 has a prediction bias of ξ + ǫ/2. This argument

essentially converts the problem into one where the errors e∗t = 0, and the theorem

follows from a similar analysis to Strehl and Littman [2008b].

8.5.6 Proof of Theorem 28

Before proving the sample complexity of exploration bound, we first provide two useful

lemmas.

Lemma 49 Let f1 and f2 be two real-valued functions on the same finite domain X;

namely, fi : X 7→ R, for i = 1, 2. If maxx∈X |f1(x)− f2(x)| ≤ ∆ for some ∆ > 0, then

|maxx∈X f1(x)−maxx∈X f2(x)| ≤ ∆.

Proof. Define xi = arg maxx∈X fi(x) for i = 1, 2, and then maxx∈X f1(x) −

maxx∈X f2(x) = f1(x1)− f2(x2). On the one hand, we have

f1(x1)− f2(x2) ≥ f1(x2)− f2(x2) ≥ −∆;

on the other hand, we have

f1(x1)− f2(x2) ≤ f1(x1)− f2(x1) ≤ ∆;

The lemma is proved by combining these two inequalities. �

Lemma 50 Let π be a policy for an H-horizon MDP. Let s1 be a fixed start state of

an episode, and sh be the state visited at stage h of this episode. Then,

V ∗
1 (s1)− V π

1 (s1) = Eπ

[

H
∑

h=1

(

Q∗
h(sh, π

∗(sh, h))−Q∗
h(sh, π(sh, h))

)

]

,

where Eπ stands for the expectation with respect to the probability distributions of tra-

jectories ρ = [s1, s2, · · · , sH , sH+1] generated by policy π.
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Proof. We let rh denote the reward received at stage h by following π. Note that

both sh and rh are random variables whose distributions are completely determined by

policy π as s1 is fixed. Then,

V ∗
1 (s1) = Q∗

1(s1, π
∗(s1, 1))

= Q∗
1(s1, π(s1, 1)) +

(

Q∗
1(s1, π

∗(s1, 1))−Q∗
1(s1, π(s1, 1))

)

= Eπ [r1 + V ∗
2 (s2)] +

(

Q∗
1(s1, π

∗(s1, 1))−Q∗
1(s1, π(s1, 1))

)

.

We apply the derivation above for V ∗
h (sh) recursively up to stage H, and obtain

V ∗
1 (s1) = Eπ[r1 + r2 + · · ·+ rH ] + Eπ

[

H
∑

h=1

(

Q∗
h(sh, π

∗(sh, h))−Q∗
h(sh, π(sh, h))

)

]

.

By definition, V π
1 (s1) = Eπ[r1 + r2 + · · ·+ rH ], which completes the proof. �

We are now ready to prove Theorem 28 by mathematical induction. For h = H,

the theorem is ensured by Assumption 5. For the induction step, assume the theorem

holds for all stages l > h where h < H and we consider stage h. Due to operations of

Algorithm 8.4.3, the transitions from sh to sh+1 in all episodes can be categorized into

two groups: (i) Lh+1 = TRUE, and (ii) Lh+1 = FALSE.

Transitions belonging to case (i) consist of a stream of data for A
(h)
0 to run according

to the KWIK online regression protocol, and Assumption 5 guarantees that there are

at most B0(d, 1/ǫh, 1/δh) timesteps for which ⊥ is outputted. On the other hand,

by the induction hypothesis, case (ii) happens at most
∑H

l=h+1B0(d, 1/ǫl, 1/δl) times.

Therefore, the total number of ⊥ outputted in stage h is at most

B0(d, 1/ǫh, 1/δh) +
H
∑

l=h+1

B0(d, 1/ǫl, 1/δl),

which is what we desire to prove for part I.

Part II follows directly from part I.

For part III, the target function to learn at stage h is given by

Q̃h(s, a) = R(s, a) +
∑

s′∈S

T (s, a, s′) max
a′∈A

Q̂h+1(s
′, a′),
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where Q̂h+1 is the function learned by REKWIRE in stage h + 1.7 By the induction

hypothesis, we have
∣

∣

∣Q̂h+1(s
′, a′)−Q∗

h+1(s
′, a′)

∣

∣

∣ ≤ H
∑H

l=h+1(ǫl + ξl) for all (s′, a′)

whenever ⊥ is not outputted. Let Q̂h be the function A
(h)
0 learns, then for any (s, a)

we have
∣

∣

∣
Q̂h(s, a)− Q̃h(s, a)

∣

∣

∣
≤ H(ǫh + ξh) due to Assumptions 5 and 6. Combining all

these facts, we have for any (s, a):

∣

∣

∣Q̂h(s, a)−Q∗
h(s, a)

∣

∣

∣ ≤
∣

∣

∣Q̂h(s, a)− Q̃h(s, a)
∣

∣

∣+
∣

∣

∣Q̃h(s, a)−Q∗
h(s, a)

∣

∣

∣

≤ H (ǫh + ξh) +

∣

∣

∣

∣

∣

∑

s′∈S

T (s, a, s′)
(

max
a′∈A

Q̂h+1(s
′, a′)−max

a′∈A
Q∗

h+1(s
′, a′)

)

∣

∣

∣

∣

∣

≤ H(ǫh + ξh) + max
s′∈S

∣

∣

∣

∣

max
a′∈A

Q̂h+1(s
′, a′)−max

a′∈A
Q∗

h+1(s
′, a′)

∣

∣

∣

∣

≤ H(ǫh + ξh) +H
H
∑

l=h+1

(ǫl + ξl)

= H
H
∑

l=h

(ǫl + ξl),

where the last inequality is due to Lemma 49.

8.5.7 Proof of Theorem 29

For episode i, let pi be the probability of entering some state s for which ⊥ is outputted,

when start states are drawn from µ0. Denote by πi the policy used by REKWIRE in

episode i. Let Q̂h be the value-function estimate of the algorithm for stage h.

Consider any state trajectory ρ = [s1, s2, · · · , sH , sH+1] generated by policy πi. Two

situations can occur: (i) ⊥ is outputted (maybe multiple times) in ρ, and (ii) ⊥ is not

outputted in ρ. The probabilities of cases (i) and (ii) are p and 1 − p, respectively.

When case (ii) happens, with probability at least 1−∑H
h=1 δh = 1− δ

2 , we have for each

7Strictly speaking, Q̂h+1 may change over time and thus Q̃h is not a stationary learning target. But,
this fact does not affect our analysis as long as Q̂h+1 is always bounded between Q∗

h+1−H
∑H

l=h+1
(ǫl+ξl)

and Q∗
h+1 + H

∑H

l=h+1
(ǫl + ξl).
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h,

Q∗
h(sh, π

∗(sh, h))−Q∗
h(sh, πi(sh, h))

≤ Q∗
h(s, π∗(sh, h))− Q̂h(sh, πi(sh, h)) +O

(

H2(ǫh + ξh)
)

= Q∗
h(s, π∗(sh, h))− Q̂h(sh, πi(sh, h)) +O

( ǫ

H

)

≤ Q∗
h(s, π∗(sh, h))− Q̂h(sh, π

∗(sh, h)) +O
( ǫ

H

)

≤ O
(

H2(ǫh + ξh)
)

+O
( ǫ

H

)

= O
( ǫ

H

)

, (8.7)

where the first and last inequalities are due to Corollary 2(III), and the second due to

the fact that πi is greedy with respect to Q̂h when no ⊥ is outputted.

For any fixed start state s1, Lemma 50 asserts that

V ∗
1 (s1)− V πi

1 (s1) = Eπi

[

H
∑

h=1

(

Q∗
h(sh, π

∗(sh, h))−Q∗
h(sh, πi(sh, h))

)

]

.

Combined with Equation (8.7) and the fact that case (i) happens with probability pi, the

equality above implies V ∗
1 (s1)−V πi

1 (s1) = O(ǫ+Hpi). When pi ≤ p0 for some threshold

p0 = O( ǫ
H ), we have V ∗

1 (s1) − V πi

1 (s1) = O(ǫ) and also Es1∼µ0
[V ∗(s1)− V πi(s1)] =

O(ǫ), indicating that the policy πi is indeed O(ǫ)-optimal.

We claim that with high probability pi > p0 will hold only a polynomial number

of episodes. Specifically, Corollary 2 asserts that ⊥ is outputted O(H2B0(d,
H3

ǫ ,
H
δ ))

times. Using the inequality of Hoeffding [1963], with probability at least 1 − δ
2 , the

number of episodes i with pi > p0 is

O
(

H2B0(d,
H3

ǫ ,
H
δ )

p0
ln

1

δ

)

.

Substituting p0 = O( ǫ
H ) and applying the union bound to the two cases (pi > p0 and

pi ≤ p0) gives the lemma.
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Figure 8.9: Value function evolution when RBF features are used. The bottom-right
plot gives the true V ∗ function.
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Chapter 9

Conclusions

This chapter revisits the contributions of the dissertation, and then explains how they

can be used to address the three challenges in reinforcement learning that are defined at

the beginning of the dissertation. A number of open problems and possible extensions

are discussed briefly.

9.1 Contributions Revisited

As mentioned in the introduction, the dissertation studies provably efficient exploration

in sequential decision making problems where function approximation can be used.

Here, we review the major contributions in the context of the three challenges defined

in §1.2 and discuss how they help address these challenges.

First, the KWIK framework is developed to facilitate analyzing and developing al-

gorithms for learning problems where active exploration can impact the training data

the learner is exposed to. One of the key features in a KWIK learner is the option of

explicitly saying “I don’t know” (instead of making a normal prediction), which signals

a need for exploration. This feature is essential for sequential decision making problems

like reinforcement learning, in which a sub-optimal decision at one timestep may take

a long time to recover from. This effect is best illustrated in the simple combination-

lock example (§4.3.3), where a sub-optimal action can take Θ(|S|) steps to recover

from, and the uninformative, random-walk-like ǫ-greedy rule ends up being exponen-

tially inefficient in exploring this problem. Furthermore, KWIK is flexible enough to

allow generalization between input–output pairs, thus providing opportunities to tackle

large-scale problems. For instance, met-Rmax (§7.3.1) results in an exponential reduc-

tion in the sample complexity of exploration compared to Rmax by using a factored
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representation to generalize over different states. As another example, CORL (§7.3.2)

KWIK-learns a multivariate normal distribution and thus explores an infinitely large

MDP with provably small sample complexity.

Second, the KWIK framework provides a unifying language for analyzing PAC-MDP

algorithms. This tool is particularly helpful in the family of model-based algorithms,

where the KWIK-Rmax algorithm (§7.1) unifies essentially all model-based PAC-MDP

algorithms in the literature as well as the analyses of their sample complexity of explo-

ration. Specifically, these include finite MDPs [Kearns and Singh 2002; Brafman and

Tennenholtz 2002; Kakade 2003; Strehl et al. 2006a], metric MDPs [Kakade et al. 2003],

factored-state MDPs [Kearns and Koller 1999; Strehl 2007a; Strehl et al. 2007; Diuk

et al. 2009], MDPs with relocatable action models [Leffler et al. 2007], MDPs with linear

dynamics [Strehl and Littman 2008b], MDPs with normal offsets [Brunskill et al. 2008],

relational MDPs with object-oriented representations [Diuk et al. 2008], and MDPs with

delayed observations [Walsh et al. 2009a]. We expect more KWIK-learnable classes of

MDPs with practical interest can be found and treated in this algorithmic framework.

Third, KWIK-based PAC-MDP algorithms can also suggest algorithmic ideas for

efficient exploration in existing algorithms, even if they are not PAC-MDP in general.

The LSPI-Rmax algorithm combines ideas from Rmax with the powerful LSPI algorithm,

and so tends to explore efficiently while using linear function approximation to avoid

the curse of dimensionality. Similarly, one of the key features in delayed Q-learning is

that it acts greedily with respect to an optimistic value function at all time. It may be

interesting to investigate heuristics for making the value function optimistic in regular

Q-learning and Sarsa, which has not been investigated in this dissertation.

Finally, delayed Q-learning and the matching lower bound of sample complexity

proved in §8.2.4 sheds some light on the long-standing question of in what way esti-

mating a model may help reinforcement learning. Our new lower bound is tight for

the factors |S|, 1/ǫ, and 1/δ, in the weaker parallel sampling model [Kearns and Singh

1999] (c.f., §2.4). This finding suggests that a worse dependence on 1/ǫ is possible only
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in MDPs with slow mixing rates.1 In both the parallel-sampling model and the MDP

used to prove the lower bound in §8.2.4, the distribution of states being sampled/visited

mixes extremely fast (in one and two timesteps, respectively). The slower the mixing

rate, the more difficult is the temporal credit assignment problem [Sutton and Barto

1998]. In other words, a worse dependence on 1/ǫ seems to require the construction of

an MDP where deep planning is necessary.

Another important lesson learned from the study of delayed Q-learning is that it is

unnecessary to learn an accurate model to explore efficiently in online reinforcement

learning. Here, the sample complexity of exploration in this algorithm, Õ(|S|), is smaller

than the number of parameters needed to represent a transition probability function,

O(|S|2). In contrast, all existing model-based PAC-MDP algorithms rely on accurately

learning the MDP model, a process that can be expensive and difficult in practice.

9.2 Open Problems

We briefly discuss a few important open problems, some of which are motivated by the

limitations of the work in this dissertation.

9.2.1 Issues in the KWIK Framework

Despite our focus on reinforcement learning here, the KWIK framework might find

applications in other areas of machine learning. An in-depth study is interesting and

may follow a similar line of study of the PAC and MB models.

An extremely important open problem is agnostic KWIK, which undoubtedly is

difficult in general (c.f., §5.5). This finding is not surprising, given the hardness results

in agnostic PAC learning [Kearns et al. 1994], but the goal may be achievable in special

situations.

1There are many ways to define a mixing rate. Roughly speaking, it measures how fast the distribu-
tion of states an agent reaches becomes independent of the initial state and the policy being followed.
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Another open problem is to find a dimensionality measure for characterizing com-

plexity of hypothesis classes that is useful in the KWIK context. A number of dimen-

sionality measures have been developed in the literature [Angluin 2004] but do not

appear to be directly usable in KWIK.

Last, but not least, it is useful to investigate techniques for converting a KWIK

algorithm in deterministic problems to stochastic problems. Moving from the deter-

ministic setting to the stochastic one, for example, the KWIK bound changes from

O(k) to O(k ln k/ǫ2) for union (§6.5), and from O(n) to Õ(n/ǫ4) for linear regression.

Are there general-purpose conversion techniques?

9.2.2 Issues in Reinforcement Learning

Following the discussion of KWIK in the previous subsection, a natural question to

ask in the reinforcement-learning context is: is KWIK necessary for provably efficient

reinforcement learning? Either proving or disproving this statement require a careful

formulation of the problem.

Second, it would be interesting to develop an KWIK-based, model-free algorithm

that can be instantiated to different algorithms when different function approximations

are used. Our result in §8.1 applies to finite MDPs and special cases of abstract-state

MDPs only.

Third, we note that the main results in this dissertation are worst-case results:

we consider the most-difficult-to-solve MDPs and devise conservative algorithms to

handle such worse cases even if they may rarely happen in reality. In practice, however,

this kind of exploration is inefficient and risky. Prior knowledge may step in and

help. One form of prior knowledge is a non-trivial optimistic initialization of value

functions, as is done by Asmuth et al. [2008] and Strehl et al. [2009]. Another form is a

Bayesian prior distribution of possible world models, which has shown some benefits in

balancing conservative (but provably efficient) exploration and prior knowledge about

the model [Asmuth et al. 2009].

Finally, we note that the KWIK model we use here requires a hard separation

between known and unknown labels. It is possible to extend many ideas to “soft”
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version of knownness using techniques such as interval estimation [Strehl and Littman

2005; 2008a].

9.3 Concluding Remarks

Reinforcement learning possesses a unique combination of challenges that are fundamen-

tal to artificial intelligence and machine learning, including: exploration/exploitation

tradeoff, sequential decision making, and generalization, among others. The present

dissertation studies a novel computational learning framework, and uses it to ana-

lyze, unify, and create provably efficient algorithms that addresses these challenges. I

hope this framework can provide a solid foundation for formal studies of reinforcement-

learning algorithms, which eventually leads to creation of powerful, highly intelligent

agents and practically useful solutions for real-life problems.
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Appendix A

Notation

This section summarizes the notation used frequently in the dissertation.

A.1 Fonts

In general, we use different fonts for different types of objects, as is summarized by

Table A.1. However, we allow a few exceptions for compliance with convention. These

exceptions are defined in the next sections.

Object Type Font Examples

action slanted TurnRight

algorithm bold-face, upper case A,Ai

algorithm name sans-serif KWIK-Rmax, delayed Q-learning

domain small capitals Dialer, Bycicle

function italic, lower case f , gi

matrix italic, upper case A,Bt,Σ, Σ̂

operator frankfurt, upper case A,B

scalar italic, lower case a, i, j, t, x, y, z

set calligraphic, upper case D,X ,Y,Z,H
vector bold-face, lower case x,xt,w,µµµ

vector component italic, lower case w/subscript xi, xtj , wk, µl

Table A.1: Fonts used in the dissertation for various objects.

A.2 Mathematical Notation

Table A.2 summarizes the notation for mathematics used in the dissertation. For com-

pleteness, we give precise definitions for some of the more important ones:

1. I(·) is the indicator function: I(E) = 1 if event E happens, and 0 otherwise.



228

Symbol Meaning

∅ empty set

B set of binary numbers {0, 1}
N set of natural numbers

R set of real numbers

R+ set of non-negative real numbers

R− set of non-positive real numbers

PX set of probability distributions over some set X
YX set of functions mapping X to Y
[at]t∈N a sequence whose t-th element is at

A = [aij ]ij matrix whose elements is aij in the (i,j)-entry

0n the n-dimensional zero vector

In the n× n identity matrix

Onm the n×m zero matrix

I(·) set-indicator function

detA determinant of a square matrix A

tr (A) trace of a square matrix A (i.e., the sum of its diagonal elements)

dKL (·, ·) Kullback-Leibler (KL) divergence between two distributions

dvar (·, ·) total variation between two distributions

E[·] expectation of a random variable

Var[·] variance of a random variable

‖·‖p vector or matrix ℓp-norm

Table A.2: Mathematical notation.

2. ‖·‖p (for p > 0) is the ℓp-norm that may be used for a vector x ∈ R
n, a matrix

A ∈ R
n×m, or a real-valued function f ∈ R

X :

‖x‖p
def
=

(

n
∑

i=1

|xi|p
)1/p

‖A‖p
def
= max

y∈Rm,‖y‖p=1
‖Ay‖p

‖f‖p
def
=

(∫

x∈X
|f(x)|p dx

)1/p

,

assuming the integral above is well-defined. The ℓ2-norm is sometimes called the

Euclidean norm.

3. Asymptotic notation: Let f, g be two positive-valued functions defined on positive

reals, then
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(a) f = O(g) if there exist positive constants c and X such that one of the

following happens (depending on which case is of interest): (i) f(x) ≤ cg(x)

for all x > X, or (ii) f(x) ≤ cg(x) for x ∈ (0, X);

(b) f = o(g) if g = O(f);

(c) f = Θ(g) if both f = O(g) and g = O(f); and

(d) f = Ω(g) if there exist positive constants c and X such that one of the

following happens (depending on which case is of interest): (i) f(x) ≥ cg(x)

for all x > X, or (ii) f(x) ≥ cg(x) for x ∈ (0, X);

A.3 Machine Learning and Reinforcement Learning Notation

Table A.3 summarizes notation used for machine learning and reinforcement learning

in the dissertation.

Symbol Meaning

X input set of a supervised-learning problem

Y output set of a supervised-learning problem

Z observation set of a supervised-learning problem

H ⊆ YX hypothesis class of a supervised-learning problem

f̂ estimate of an (unknown) quantity f

A set of actions in a Markov decision process

a, at actions in a Markov decision process

A approximation operator

B,Ba Bellman operators

γ ∈ [0, 1] discount factor in a Markov decision process

M , M̂ Markov decision process

π ∈ AS a deterministic policy

π ∈ (PA)S a stochastic policy

R ∈ R
S×A reward function in a Markov decision process

S set of states in a Markov decision process

s, st ∈ S states in a Markov decision process

T ∈ (PS)S×A transition probabilities in a Markov decision process

Table A.3: Notation for machine learning and reinforcement learning.
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Appendix B

Some Mathematical Facts

This chapter lists a number of mathematical facts that are used in the dissertation.

B.1 Statistics

Lemma 51 (Union bound; Boole’s inequality) If event Ei happens with probability pi ∈

[0, 1], for i = 1, 2, . . ., then the probability that at least one of these events happens is

Pr

( ∞
⋃

i=1

Ai

)

≤
∞
∑

i=1

pi,

and the probability that none of these events happens is

Pr

( ∞
⋂

i=1

Ai

)

≥ 1−
∞
∑

i=1

pi,

where Ai denotes the complement of event Ai.

In Lemmas 52–55, a sequence of m random variables, [xi]1≤i≤m, are involved. We

use µ̂ to denote the empirical average:

µ̂
def
=

1

m

m
∑

i=1

xi,

Lemma 52 [Hoeffding 1963] Let x1, x2, . . . , xm be m independent random variables

such that Li ≤ xi ≤ Ui and E[xi] = µi for all i. The expectation of the empirical

average, µ̂, is

µ
def
= E [µ̂] =

1

m

m
∑

i=1

µi.

Then,

Pr (µ̂− µ ≥ ǫ) ≤ exp

(

− 2m2ǫ2
∑m

i=1(Ui − Li)2

)

,

Pr (µ̂− µ ≤ −ǫ) ≤ exp

(

− 2m2ǫ2
∑m

i=1(Ui − Li)2

)

.
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It is important to note that the sequence of random variables in Lemma 52 can in

fact be martingales instead of independent random variables [Azuma 1967]. Such a fact

is used in the dissertation.

A similar inequality concentration is given by the next lemma. It is sometimes called

a multiplicative form of Chernoff’s inequality.

Lemma 53 [Chernoff 1952] Let x1, x2, . . . , xm ∈ B be m independent Bernoulli trials,

each with a success probability µ: E[xi] = µ for all i = 1, 2, . . . ,m. Then for any

α ∈ [0, 1], we have

Pr (µ̂ > (1 + α)µ) ≤ exp

(

−mµα
2

3

)

,

Pr (µ̂ < (1− α)µ) ≤ exp

(

−mµα
2

2

)

.

Lemma 54 (Chebyshev’s Inequality) Let x1, x2, . . . , xm be m independent random vari-

ables such that Var[xi] = σ2 and E[xi] = µ for all i. Then

Pr (|µ̂− µ| ≥ ǫ) ≤ σ2

mǫ2
.

Lemma 55 (Bernstein’s Inequality) Let x1, x2, . . . , xm be m independent random vari-

ables such that for all i, E[xi] = µ, Var(xi) = σ2, and

E
[

|xi − µ|k
]

≤ σ2k!ck−2

2
(B.1)

for some constant c ∈ R+ and all k > 3. Then

Pr (|µ̂− µ| ≥ ǫ) ≤ exp

(

− mǫ2

2(σ2 + cǫ)

)

.

The next lemma is derived from Lemma 53 and improves a previous result [Strehl

2007b, Lemma 1]. The dissertation uses this improved result to get tighter analyses for

many algorithms.

Lemma 56 Let x1, x2, x3, . . . ∈ B be a sequence of m independent Bernoulli trials,

each with a success probability at least µ: E[xi] ≥ µ, for some constant µ > 0. Then

for any k ∈ N and δ ∈ (0, 1), with probability at least 1− δ, x1 + x2 + · · ·+ xm ≥ k if

m ≥ 2

µ

(

k + ln
1

δ

)

. (B.2)
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Proof. Lemma 53 implies

Pr

(

m
∑

i=1

xi < k

)

≤ exp

(

−mµα
2

2

)

,

where k
def
= (1− α)mµ, and so α = 1− k

mµ . To guarante the failure probability on the

left-hand side is less than δ, it suffices to set m so that the right-hand side is no greater

than δ, resulting in

m ≥ 2

µα2
ln

1

δ
=

2 ln 1
δ

µ
(

1− k
mµ

)2 . (B.3)

We want to find a large enough value for m to satisfy the inequality above. Using

simple algebra, the inequality above can be rewritten as

m−
√

2m

µ
ln

1

δ
− k

µ
≥ 0.

Solving this quadratic equation for the unknown value
√
m gives

√
m ≥

√

1

2µ
ln

1

δ
+

√

1

2µ
ln

1

δ
+
k

µ
.

Finally, using the elementary inequality, (x+ y)2 ≤ 2(x2 + y2), we find the value of m

given in Equation B.2 suffices to gaurantee Equation B.3. �

Lemma 57 (Multidimensional Chebyshev’s Inequality) Let x ∼ R
n be a random vector

such that E[xi] = µ ∈ R
n and E[(x− µ)(x− µ)⊤] = Σ ∈ R

n×n. Then

Pr

(

√

(x− µ)⊤Σ(x− µ) ≥ ǫ
)

≤ n

ǫ2
.

Lemma 58 [Kullback 1967] Let p1 and p2 be two probability density functions defined

over a space X . Define X+ = {x ∈ X | p1(x) ≥ p2(x)}. If p1 and p2 are both measurable

over X+, then

dKL (p1, p2) ≥
1

8
‖p1 − p2‖21 =

1

2
(dvar (p1, p2))

2 .

B.2 Normal Distributions

We have used the following technical lemmas in the analysis of normal-learning (§6.6).

While some of the facts are known (such as from the Wikipedia pages for normal
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distributions1 and multivariate normal distributions2), it is not easy to find a citation

or a proof for them. Thus, we also provide complete proofs here. We start with a simple

lemma involving the first four moments of a univariate normal distribution.

Lemma 59 Let x ∼ N (µ, σ2) be drawn from a univariate normal distribution. Then,

E
[

x2
]

= σ2 + µ2

E
[

x3
]

= µ3 + 3µσ2

E
[

x4
]

= µ4 + 6µ2σ2 + 3σ4.

Proof. The proof is a direct calculation through repeated applications of the

integration-by-parts technique. The second moment is easy to compute from a well-

known fact in probability theory:

E
[

x2
]

= Var[x] + (E[x])2 = σ2 + µ2.

For the third moment, we have:

E
[

x3
]

=
1√
2πσ

∫

R

x3 exp

(

−(x− µ)2

2σ2

)

dx

=
1√
2πσ

∫

R

x2(x− µ) exp

(

−(x− µ)2

2σ2

)

dx+
µ√
2πσ

∫

R

x2 exp

(

−(x− µ)2

2σ2

)

dx

=

[ −σ2

√
2πσ

x2 exp

(

−(x− µ)2

2σ2

)]∞

−∞
+

2σ2

√
2πσ

∫

R

x exp

(

−(x− µ)2

2σ2

)

dx+ µE
[

x2
]

= 0 + 2σ2E[x] + µE
[

x2
]

= µ3 + 3µσ2,

Similarly,

E
[

x4
]

=
1√
2πσ

∫

R

x4 exp

(

−(x− µ)2

2σ2

)

dx

=
1√
2πσ

∫

R

x3(x− µ) exp

(

−(x− µ)2

2σ2

)

dx+
µ√
2πσ

∫

R

x3 exp

(

−(x− µ)2

2σ2

)

dx

=

[ −σ2

√
2πσ

x3 exp

(

−(x− µ)2

2σ2

)]∞

−∞
+

3σ2

√
2πσ

∫

R

x2 exp

(

−(x− µ)2

2σ2

)

dx+ µE
[

x3
]

= 0 + 3σ2E
[

x2
]

+ µE
[

x3
]

= µ4 + 6µ2σ2 + 3σ4.

1http://en.wikipedia.org/wiki/Normal distribution.

2http://en.wikipedia.org/wiki/Multivariate normal distribution.
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Lemma 60 Let x ∼ N (µ, σ2) be drawn from a univariate normal distribution. Then,

for any p ∈ N,

E
[

|x− µ|2p
]

=
(2p)!σ2p

2pp!
.

Proof. Using the change-of-variable technique with y = (x− µ)/σ, we have

E
[

|x− µ|2p
]

=
1√
2πσ

∫

R

|x− µ|2p exp

(

−(x− µ)2

2σ2

)

dx

=
σ2p

√
2π

∫

R

y2p exp

(

−y
2

2

)

dy. (B.4)

Define

f(p)
def
=

1√
2π

∫

R

y2p exp

(

−y
2

2

)

dy.

Using the integration-by-parts technique, we may compute f(p) by

f(p) =

[

−y
2p−1

√
2π

exp

(

−y
2

2

)]∞

−∞
+

2p− 1√
2π

∫

R

y2(p−1) exp

(

−y
2

2

)

dy

= (2p− 1)f(p− 1).

Applying the above equality recursively, we have

f(p) = (2p− 1)f(p− 1) = · · · = (2p− 1)(2p− 3) · · · 5 · 3 · f(1).

Observe that f(1) is in fact the second moment of the normally distributed random

variable, y, and thus Lemma 59 implies f(1) = 1. Consequently,

f(p) = (2p− 1)(2p− 3) · · · 5 · 3 · 1

=
(2p)(2p− 1)(2p− 2)(2p− 3) · · · 3 · 2 · 1

(2p)(2p− 2) · · · 4 · 2

=
(2p)!

2pp!
.

The lemma follows immediately by substituting the above formula of f(p) in Equa-

tion B.4. �

Lemma 61 Let N (0, In) be an n-dimensional multivariate normal distribution, and

Σ = [σij ]ij ∈ R
n×n a matrix. Then,

Ex∼N (0,In)

[

x⊤Σx
]

= tr (Σ).
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Proof. Denote x = [x1,x2, . . . ,xn]⊤. Then

Ex∼N (0,In)

[

x⊤Σx
]

=
1

(2π)n/2

∫

Rn

x⊤Σx exp

(

−x⊤x

2

)

dx

=
1

(2π)n/2

∫

Rn

n
∑

i=1

n
∑

j=1

σijxixj exp

(

−x⊤x

2

)

dx

=
1

(2π)n/2

n
∑

i=1

n
∑

j=1

σij

∫

Rn

xixj exp

(

−x⊤x

2

)

dx

=
1

2π

n
∑

i=1

∑

j 6=i

σij

∫

R2

xixj exp

(

−
x2

i + x2
j

2

)

dxidxj

+
1√
2π

n
∑

i=1

σii

∫

R

x2
i exp

(

−x2
i

2

)

dxi.

The first term above must be 0, as for all i 6= j:

∫

R2

xixj exp

(

−
x2

i + x2
j

2

)

dxidxj =

∫

R

xi exp

(

−x2
i

2

)

dxi

∫

R

xj exp

(

−
x2

j

2

)

dxj = 0.

We can now complete the proof:

Ex∼N (0,In)

[

x⊤Σx
]

=
1√
2π

n
∑

i=1

σii

∫

R

x2
i exp

(

−x2
i

2

)

dxi =

n
∑

i=1

σii = tr (Σ),

where we have used Lemma 59 on individual normally distributed variable xi. �

Lemma 62 Given two n-dimensional multivariate normal distributions, N (µ,Σ) and

N (µ̂, Σ̂), such that Σ and Σ̂ are non-singular, then

dKL

(

N (µ,Σ),N (µ̂, Σ̂)
)

=
1

2

(

(µ− µ̂)⊤Σ̂−1(µ− µ̂) + ln
det Σ̂

det Σ
+ tr

(

Σ̂−1Σ
)

− n
)

.
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Proof. The proof is a direct calculation of the KL-divergence between these two

normal distributions.

dKL

(

N (µ,Σ),N (µ̂, Σ̂)
)

=
1

(2π)n/2
√

det Σ

∫

Rn

exp

(

−(x− µ)⊤Σ−1(x− µ)

2

)

· ln





√

det Σ̂

det Σ
exp

(

(x− µ̂)⊤Σ̂−1(x− µ̂)− (x− µ)⊤Σ−1(x− µ)

2

)



dx

=
1

2
ln

det Σ̂

det Σ

1

(2π)n/2
√

det Σ

∫

Rn

exp

(

−(x− µ)⊤Σ−1(x− µ)

2

)

dx

− 1

2(2π)n/2
√

det Σ

∫

Rn

(x− µ)⊤Σ−1(x− µ) exp

(

−(x− µ)⊤Σ−1(x− µ)

2

)

dx

+
1

2(2π)n/2
√

det Σ

∫

Rn

(x− µ̂)⊤Σ̂−1(x− µ̂) exp

(

−(x− µ)⊤Σ−1(x− µ)

2

)

dx.

Denote the three terms above by t1, t2 and t3. Then, dKL

(

N (µ,Σ),N (µ̂, Σ̂)
)

= t1 −

t2 + t3. First, it is easy to see that

t1 =
1

2
ln

det Σ̂

det Σ
.

Second, we may change the variable by x = Σ1/2y + µ and rewrite t2 by

t2 =
1

2(2π)n/2

∫

Rn

y⊤y exp

(

−y⊤y

2

)

dy =
1

2
tr (In) =

n

2
,

where Lemma 61 is used. Third, we use the same change of variable and rewrite t3:

t3 =
1

2(2π)n/2

∫

Rn

y⊤y exp

(

−y⊤Σ1/2Σ̂−1Σ1/2y

2

)

dy =
1

2
tr
(

Σ1/2Σ̂−1Σ1/2
)

,

where we use Lemma 61 again. Using Lemma 63, we have

t3 =
1

2
tr
(

Σ1/2(Σ̂−1Σ1/2)
)

=
1

2
tr
(

(Σ̂−1Σ1/2)Σ1/2
)

=
1

2
tr
(

Σ̂−1Σ
)

.

Combining the values of t1, t2, and t3, we complete the proof of the lemma. �

B.3 Linear Algebra

Here, we list a few lemmas from linear algebra that are useful in the dissertation.
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Lemma 63 For any matrix A = [aij ]ij ∈ R
n×m and matrix B = [bij ]ij ∈ R

m×n, the

following is valid:

tr (AB) = tr (BA).

Proof. Using the definition of matrix trace and after simple algebra, we may see

tr (AB) =

n
∑

i=1

m
∑

j=1

aijbji = tr (BA).

�

Lemma 64 [Horn and Johnson 1986, Theorem 1.2.12] For any matrix M ∈ R
n×n, let

ψ1, ψ2, . . . , ψn be its eigenvalues, then:

tr (A) = ψ1 + ψ2 + · · ·+ ψn,

detA = ψ1ψ2 · · ·ψn.

Lemma 65 [Golub and Van Loan 1996, Lemma 2.7.1, Theorem 2.7.2] Suppose Ax = b

and (A + ∆A)y = b + ∆b with ‖∆A‖ ≤ ǫ ‖A‖ and ‖∆b‖ ≤ ǫ ‖b‖. If ǫκ(A) < 1, then

A+ ∆A is nonsingular, and

‖y − x‖
‖x‖ ≤ 2ǫκ(A)

1− ǫκ(A)
,

where ‖·‖ can be any ℓp matrix/vector norm, and κ(A) = ‖A‖
∥

∥A−1
∥

∥ is the correspond-

ing condition number.

Lemma 66 [von Neumann 1937] Let A,B ∈ R
n×n be two symmetric matrices, whose

singular values are a1 ≥ a2 ≥ · · · ≥ an ≥ 0 and b1 ≥ b2 ≥ · · · ≥ bn ≥ 0, respectively.

Then,

|tr (AB)| ≤
n
∑

i=1

aibi.

B.4 Miscellaneous

Lemma 67 (Cauchy-Schwarz Inequality) Let u and v be two real-valued random vari-

ables. Their marginal and joint probability distributions are denoted by Pu, Pv, and

Puv, respectively. Then

Eu,v∼Pxy |uv| ≤
√

Eu∼Puu
2
√

Ev∼Pvv
2.
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