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Abstract — Most target tracking approaches either asand assume the number of targets to be constant over the
sume that the number of targets is constant throughout ttime horizon of interest. If information about target ap-
time horizon of interest, or that information about targepearance and disappearance is available from some exter-
existence (birth and death) is provided by some extern@dl source, the algorithms are sometimes deterministically
source. Here we show how target existence can be inteconfigured for the updated number of targets.

grated within the tracking framework in a rigorous way. However, the birth and death of targets are themselves
The notion of existence is not new, and has been considegedertain events, and a deterministic reconfiguration of the
before in e.g. [1, 2]. We provide here a general probabilisalgorithms is likely to lead to errors in ambiguous situa-
tic treatment that impacts as little as possible on existingbns. Ideally target existence should be treated jointly with
tracking algorithms so that legacy tracking software (anghe target state and data association processes within a prob-
more generally target tracking architectures) can be reusegbilistic framework that can account for all the expected
We first show how the notion of existence can be inCOI’Qanbiguities_ To enable the deployment of the vast body
rated into a single target tracking framework (retaining alof existing multi-target tracking and data association algo-
gorithmic invariance). To place the probabilistic recursiongithms such a framework should impact as little as possible
into context we relate this single target tracking architecon existing tracking architectures.

ture to the Probabilistic Data Association [3, 4] filter. We  one way to achieve this is to associate with each target
then extend the single target results to incorporate existeng@inary existence variable indicating whether the target is
for multi-target tracking and relate this to an importancective or not. A suitable prior process can then be specified
sampling implementation of the Joint Probabilistic Datgor the existence variables, facilitating joint inference with
Association (JPDA) [5, 3, 6] framework. The treatment prehe state and data association processes. The existence idea
sented is entirely general and so facilitates implementatig§ not new, and has been considered before in the context
with Kalman Filters, Extended/Unscented Kalman Filters single [1] and multi-target tracking [2]. More recently

Particle Filters, etc, i.e. the approach developed is invarit has also been applied to the track-before-detect problem
ant to the filtering and data association mechanisms usgghing particle filters [7,

and therein lies the novelty. We apply the proposed frame-|, this paper we attempt to establish a general unify-

work to the difficult problem of tracking football players in, g framework for multi-target tracking and existence that
video sequences, where we adopt a mixture Kalman filigfi,qenendent of a specific implementation strategy. We

implementation. first consider the single target case, and for reference show
) . . . . how existence can be combined with PDA based data as-
Keywords: Multi-target tracking, existence, data associa-_ . .
. . . sociation. We then extend the results to the multi-target
tion, mixture Kalman filter. . . . . o

setting and briefly discuss an importance sampling imple-

. mentation of the framework within a JPDA setting. Both
1 Introduction the single and multi-target scenarios require enumeration of
Multi-target tracking involves the detection and recur-
sive localisation of targets within the observation range of a *Whilst efhery effr?rt has been mhadehtOfprovide akcomplgrtes1 shet of rﬁrfer-
H H H ces, it is the authors’ opiniont at the framewor pI’OVi e ere allows
sensing system. Many pOpU|ar tracklng algorlthms (Sugﬁ related publications to be unified; due to space constraints it has not

as Global Nearest Neighbour, JPDA, etc.) focus on tiige, possible to explicitly link our work to the plethora of excellent pub-

state filtering and data association aspects of the probleiaagions on this subject.
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all thejoint existence-association hypotheses. This quickprobabilities;i.e.
becomes computationally infeasible for large humbers of _
targets and measurements. To mitigate these problems we Py = p(Ei| Er—1) (2)
consider a number of strategies to curb the exponential Py =p(E|Ei_1), (3)
growth and keep the algorithms practically feasible.

The proposed framework makes no assumption about mgerewe have used the abt_arewaﬂoEs ‘?‘.”d E; to mean
o= 1 ande; = 0, respectively. Conditional on the ex-

implementation strategy. If the target state posteriors are . .
be represented by Gaussian mixtures the individual mi§_ten_c_e variables the Markov process for the target state is
ture components can be obtained by the Kalman filter fBPeC'f'eo' by

linear Gaussian models, and by the extended [3] or un- Su(xe) it &,

scented [8] Kalman filters for models that are non-linear _ . —
and/or non-Gaussian. For models of the latter kind it is of-P <t Xt=12 €t €e-1) = 4 po(xt) ?f (Er, By 1)
ten more effective to adopt a Monte Carlo representation po(X¢[xi—1) if (B, i),

for the state posterior, and use sequential importance sam- ) ) (4)
pling techniques [9] to perform the state filtering. This‘{"hereu is the consuming target state that corresponds to

also, is feasible within the proposed framework. It is th&'€ target not existingp, is the initial state distribution,
authors’ opinion that this generic exposition forms the no@"dpp is the target dynamic model. The association prior

elty within the paper, thus unifying the publications mad indepquent of prev_ious temporal information. We will
in the literature to date. discuss it in more detail shortly.

The remainder of the paper is organised as follows: v¥eWe will need :WO _m_od?_Is f?r theihmetasurtemegts: o?e
outline the modelling assumptions in Section 2. Section %r mefasurerln?tn S\(/)Vngm_ﬁ (ljng rton:h N arge; an or:je or
then shows how existence can be incorporated into a tra&kgse* rom clutter. We will genote these by(yi|x:) an
ing framework for a single target, followed by the exten?C(¥i): respectively. Conditional on the state, existence
sion to multi-target tracking (withi’n the JPDA) framewor nd association variables we will assume the measurements
in Section 4. In Section 5 we apply the proposed framewo ‘I)(Fet'ﬁdepende?t' it ¢ tracki ith .
to the difficult problem of tracking football players in video n the case of muili-target tracking with a maximum

sequences. We adopt a Gaussian mixture representationolfof( hon-interacting targets the priors for the target state

the target state, the components of which can be updateoa%f existence variables factorise over the individual tar-

the Kalman filter. Finally, we conclude with some remark$ f.‘KW?.IV(V'” denote the prior for' the joint associations by
in Section 6 p(a; ™ |e; ™), where the superscript denotes the range over

all the targets. We will make the common assumption that
this distribution is the product of a uniform distribution for
. . the association variableg:’, a binomial distribution for
2 MOde”mg Assumptlons the number of target detectiods;”, and a Poisson distri-

For single target tracking we will be interested in recufution for the number of clutter measurement§’. (Note
sively estimating the target state and existence variable that such probabilistic assumptions can be relaxed; they are
e, € {0,1}, based on a sequence of observatiafis= chosen here to provide the general reader some familiar-
(y1---y¢). Ateach timet the observations comprise/, ity of the exposition.) For brevity we will continue to use
detections, which we will denote by, = (y}!,---,yMt). the compact notation, as above, and only explicitly intro-
These detections are unlabelled and may be due to the tafljtge the number of target detections and clutter measure-
or clutter. Only one measurement at a time can be due to fRénts where the context requires it. As pointed out in [6],
target, but the target may also go undetected. To represéift possible to partially factorise the association prior over

this uncertainty we introduce a target to measurement aste targets, where the components in the factorisation ac-
ciation variablea, € {0,1---M,}, wherea, = j, j > 0 countfor both the uniform prior over the valid associations

if the j-th observation is due to the target, amd= 0 if and the binomial prior over the number of target detections.
the target is undetected. The complete set of unknownsT&us, the association prior can be written as
timet is thus{x;, e;, a; }, for which we assume a Markov-

K
lan prior of the frm p(at 1o ) = p(f) [T plalaf* o ch). (8)
k=1
p(Xts er, ar|xe—1, et—1,a:-1) = p(at|er) wherep(M) denotes the Poisson prior over the number

X p(x¢|x¢—1, €, e—1)p(ecles—1). (1)  of clutter measurements. Note that the ordering of the tar-

gets in the factorisation is arbitrary, and may be chosen ran-

We assume the existence variable to follow a discretemly. We refer the reader to the reference above for the
Markov chain, parameterised by the target birth and deatpecific forms of the association prior components.



3 Single Target Tracking and EXisS- expressed as

tence

For single target tracking we are interested in recursivelyp(
estimating the joint posterior

Xt|Et7Yt_1) = Z p(et71|EtaYt_1)

€t—1
X/ p(xe|xi—1, Bty er—1)p(xe—1ler—1, Y )dx, 1.
(6) X1
(11)

p(xe, Be|Y"') = p(x¢| By, YO)p(E YY),

For brevity we will use the notatios, = p(E:[Y?). In

what follows we will first show how to compute the condt is essentially a mixture of prediction distributions, where
ditional state posteriop(x;|E;, Yt). We will then show the mixing terms follow from Bayes’ rule as

how to compute the joint posterior of the existence and as-

sociation variableg(e;, a;[Y*"). From this joint probability (er 1 [Fp Y1) = p(E¢les_1)ple_1| Y1)

measure the required marginals and conditionals are easify*“*~1*’ > DB fr)p(fea[YEY)

obtained by summation. (12)
_ _ wherewe make the assumption thatFy|e;—1,Y:—1) =
3.1 State Filtering p(Ey|e;_1). By substituting from the prior description in

By introducing the association variable and using the lamection 2 the state prediction distribution finally follows as

of total probability the target state posterior, also known as

the filtering distribution, can be expressed as .Yt 1) — 1
Pl B, ) Py+ Pg,_,(1 = P, — Py)

t\ t t
p(Xt|Et7Y)—Zp(at‘Et7Y)p(Xt‘Etaath)a (7) X{pb(l_PEt_l)po(xt)+(1_Pd)PEt_1ppred(xt|Yt_1)],
t (13)

wherep(a;|E;, Y?) is the posterior association probability,

andp(x;|E;, a;, Y') is the filtering distribution conditional With

on the association. Using Bayes'’ rule and the fact that the

measurements at a scan are independent conditional onpt,;;g,(xt\Yt—l) = / po(Xe|x:—1)p(x¢1|EBp—1, Y Hdx, 1.
target state, existence and association variables, the latter x (14)

distribution can be obtained as Al )
Note that both the state and measurement prediction dis-
pr(y it |xe)p(xe| B, Y1) tributions are mixtures, with one component for each of

t—1

ty _

POt Br g, Y7) = p(y ™| By, Y1) @) e possible previous values of the existence variable. If
the previous state distributignx; _1|E;_1, Y!™!) is also

wherethe denominator a mixture, the total number of mixture components in

the state and measurement distributions will exceed that
p(yi|E, YY) :/ pr(yi|x)p(x:| By, Y Ydx, (9) in p(x¢_1|E;—1,Y!"!) by one. Thus, generally we can
X rewrite the state and measurement prediction distributions

is the measurement prediction distribution. By substitutinagS

this result into (7) the filtering distribution can be expressed N

as p(xe| By, Y1) = Z aipi (x| B, Y (15)
. i=1

yilx)p(xe| B, Y

Z P . (10)
p(Yt|Et>Y )

M, (
i, Y =3 57T

=0

N
pYIEY ) =Y aipi(yi|EL YY), (16)

i=1

\{v%ereth\/e klllave |tr11trqdiJcOe d thf nor:atmfj = plar = \yhereq, denotes the (generically defined) mixture compo-
3! 6 YY), ot_et atj_ = 0 implies that t_ N target_ls unas-nant weights, which result from the propagation (and thus
signed, and with a slight abuse of notation we will take tnﬁclusion) of mixture components over time

ina likeli 0
corresponding likelihood to bey (y;[x¢) o 1. Substituting these expressions into (10) and rearranging

The expressions for _the_z f||t_er|ng d'Str'_bUt'On in (10) ar!ijerms the filtering distribution can be finally obtained as
the measurement prediction in (9) require the computation

of the state prediction distribution(x;|F;, Y!~!). By in- N M,
troducing the previous state and existence variables, and us- p(xi| By, YY) = Z Z Yi;pij (xe| B, Y1), (17)

ing the rule of total probability, the state prediction can be iz1 j=0



with In practice it is necessary to enumerate all the valid
; i existence-association pairs, and evaluate the expression in
pij (xe| Br, Y1) = pr(yilxe)pi(xe| B, Y'7) (18) (20) for each of these pairs. The probabilities can then be

pi(y7|Ee, Y1) normalised by dividing each with the sum over all the valid
aiBipi (vl | By, Y1) pairs. ForE; thereis only one_possible associatione.
Yij = = 3 P (19) 4, = 0, so that all the observations are due to clutter. For
2 om=1 OmPm (7| E, Y1) E; andM; measurements there alé + 1 possible associ-

Notethatthe filtering distribution is a mixture a¥ (M, +1) ationsi.e.a; = j,j = 0--- M, with a, = 0if the target is
components, one for each possible combination of a méiidetected, and, = j > 0 if the j-th measurement origi-

surement with a component of the state and measurem@fed from the target. Once the joint existence-association

prediction distributions. Over time the number of compd2robabilities are computed the required marginal and con-
itional probabilities can be straightforwardly obtained as

nents in this mixture will tend to grow exponentially, so thaq
mixture reduction techniques are required. One such strat- M,

egy for Gaussian mixtures is described in [10]. p(E[Y?) = ZP(Eta a = j[Y?) (24)
3.2 Existence and Association Posterior J=0

From the discussion so far it is clear that we need the g, = p(a; = j|E;, Y') =
marginal posterior of the existence variaplg?Z;|Y*), and
the conditional posterior of the association variable= . .
pla; = j|E;, YY), 5 = 0,1--- M, to update the filt}ering 3.3 A PDAF implementation
distribution. These are both features of the joint existenceTo conclude this section we present below an algorithmic
and association posterigie;, a;|Y?), and are easily ob- summary of the operations at timef the single target PDA
tained by summation once the joint is known. In what foltracking algorithm.
lows we will show how this joint can be computed.

By introducing the target state and using Bayes’ rule th
joint posterior for the existence and association variabl
can be expressed as

(B, ar = jIYY)

P(EYY) (@3)

orithm 1: Single Target Tracking with Existence

e Input: p(x4—1|Ei—1, YY) and Pg,_, =

p(EBi_ 1Yt ).
p(et,at|Yt):/ p(xtvetaat|Yt)dXt
Xt e Compute the state prediction distribution
o plarlec)pled Y pe (v )plyilen Y1), p(xe| B, YY), asin (13).

20
(20) e Compute the measurement prediction distribution
whereR(e;, a;) is the set of indices of clutter measurements ~ P(¥{|E:, Y1), asin (9).
under the joint existence-association hypothdsisa).
These measurements are all evaluated under the clutte?
model. In the abovep(a:|e;) is the association prior,

P(et\gt_l) is the prediction for the existence variable, o For the remaining measurements, enumerate all the
pe(y o)) is the likelihood for the clutter measure- valid joint existence-association hypotheses a; }.

ments, angh(y{*|e;, YI~1) is the measurement prediction.
Note that the measurement prediction term disappears fo® For each of the valid joint hypotheses, evaluate the
non-existing targets and missed detectioms,e; = 0 and joint posterior probability(e;, a,[Y"), as in (20), and

a; = 0. Thus, the only unknown is the prediction for the ~ normalise.

existence variable, which can be obtained by introducing
the previous existence variable and using the law of total®
probability,i.e.

Gate the measurements using the measurement predic-
tion distributionp(y; |E;, Y™ 1).

Compute the marginal existence postenoE;|Y*),
as in (24), and the conditional association posteriors
ﬁj = p(at = j|Et,Yt),j = O, 1 e Mt, as in (25)

t—1\ __ t—1
pleY'77) = Zp(et‘et—l)p(et—lw )- (21) e Compute the updated filtering distribution
et—1 p(x¢|E;, Y'). The general form for the update

Substituting from the modelling equations this becomes is given in (10). For a mixture implementation the
general form becomes (17).

p(E Y™ =(1—P)(1—Pg,_,)+PsPp,_, (22)

1 o Perform mixture reduction on the filtering distribution
P(ENY™ ) = Py(1 = Pp, ) + (1 = Pa)Pg, . (23)

to keep the number of components manageable.



e Output: p(x¢|E¢, Y') and Pg, = p(E:|Y?). where we have made use of the factorised form of the asso-
ciation prior.
u Again it is necessary to enumerate all the valid joint
As we have stressed throughout this paper the framewaskistence-association hypotheses. Whereas this is tractable
described is entirely general, and can be implementedfiit a single target, the computational complexity for a direct
many different ways. If, for example, the filtering distribuenumeration of the joint hypotheses in the multi-target case
tion p(x¢|E;, Y") is to be represented by a Gaussian migyrows super-exponentially in the number of targets. For
ture, the mixture components in (18) can be obtained By targets there ar2X possibilities for the joint existence
the Kalman filter for linear Gaussian models, and by theariablee} . For each of these the number of association
extended or unscented Kalman filters for non-linear and/eypotheses is factorial in the number of measuremafits
non-Gaussian models. For models of the latter kind it mayd active target&’, = Zlff:l e;. Thus, itis clear that more
sometimes be beneficial to adopt a particle representatiefficient computational strategies are required.
and use sequential importance sampling techniques to upMeasurement gating is a crucial first step to reduce the
date the filtering distribution. number of hypotheses. But for a large number of targets
. . . and measurements gating alone is not sufficient. We will
4 Multi-Target Tracking and EXiS- briefly outline below three alternative strategies to compute
tence the joint existence-association probabilities without explic-

i ) o ) ~itly enumerating all the valid hypotheses.
For multi-target tracking the distribution of interest is the

joint posterior of all the target states and existence vaf-1 Independent Groups

ables,i.e. p(x;™, Ef*|Y"), where K is the maximum  After gating it is possible to group targets such that tar-

number of targets that can be tracked. In a seiise the gets in a particular group share measurements only with

number of “slots” available for tracked target®. when other targets in the same group. Targets that are close in

a target is killed its slot may be arbitrarily reassigned toe state-space will tend to be grouped together, whereas

newly detected future target. a well-separated target will tend to form its own group. If
To avoid exploring the joint state-space for all the targetghere areV,; groups, with, the set of indices of the targets

which increases exponentially in complexity with the numn the i-th group, the joint existence-association posterior
ber of targets, we will assume, like in the JPDA, that thegn be factorised as

joint posterior factorises over the targets,

YY), (28)

Nga
K plet™,ay K Y') = [[ et af"
poxt ™ BENIYY) = T p(xf|EF, Y )p(EF[YY), (26) i=1
k=1 where each of the factors are of the form in (27). Thus,
and it will be our objective to maintain these marginal di€foUPS can be treated independently, leading to substantial

tributions. For each individual target the state filtering prg°0Mputational savings if the maximum number of targets
ceeds in exactly the same manner as discussed in SeclibAny group is sufficiently smaller than the total number of

3.1. However, the computation of the existence and &/9€ts.

sociation probabilities cannot be done independently far>  Efficient Hypothesis Management
each of the targets. Since the origins of the measurements

are unknown the existence and association variables fofTicient Hypothesis Management (EHM) has been intro-

the individual targets are coupled, and have to be treafdédced in [11] as a method to efficiently compute the mar-
jointly. Thus, we need to consider the joint posterior Jjinal association probabilities without explicitly enumerat-

the existence and association variables for all the targdfd the valid hypotheses, in the case where all the targets
ie. p(elX, a|Y*). Once this joint is known the re- are assumed to exist. It can be reasonably straightforwardly

quired marginals and conditionals for the individual targef{€nded to cope with the possibility of targets not existing.
are easily obtained by summation. EHM essentially ignoresthe first two terms in (27), and

Using computations similar to those leading to (20) tHifen exploits the fact that the fa_ctorisation over the targets
required joint is easily shown to be can be represente_d by a tree, wnh one level f(_Jr each target.
The number of children for a particular node in the tree is
determined by the number of valid associations for the tar-
getin the next level, given the associations for the path from
the root up to that node in the tree.

R(e}:K,(L%:K))

pler™, a; ™ [Y") oc p(M )pe(y,

K
k
x TT [plaflad™ =, ebyplet Y p(yi lef, Y1),
k=1

(27)

2|t maybe possible to devise (approximate) strategies to somehow fac-
tor the prior for the number of clutter measurements and their likelihood
over the targets.



For a large number of targets the tree representatitotation in the image and their scale relative to a reference
contains many repeated sub-structures that can be cdmunding box. A full description of the detector is beyond
bined, leading to a compact graph representation. The midue scope of this paper. It basically performs a multi-scale
ginal association probabilities can then be computed by grnidding of the image, and computes a matching score for
upward-downward algorithm, leading to a very efficientach grid location with a reference appearance model based
strategy that does not require the enumeration of the hyn colour and shape. Grid locations with a score above a
potheses. predefined threshold are deemed plausible regions, and are

43 Ani ling imol . further refined by Mean Shift optimisation [12].
) nimportance sampling implementation Figure 1 depicts ten keyframes from a typical football se-

We can use importance sampling to obtain a Montgience, along with the output of the detector. The objective
Carlo approximation for the existence-association posterigére is to track all the football players in white. It is clear
in (27). If we constrain the importance distribution to takehat the number of players in view changes at regular inter-
the form vals throughout the sequence. Note also that the detector is
K not perfect,.e. false positives (clutter measurements) and
(e K aFE Yt = H q(eF, akla* =1 YY), (29) missed d(_etectlons are plentiful. _ _
hel We define the state of each target as its 2D location and
) o scale in the image, along with the velocities of these quan-
the samples can be generated sequentially. This is veryfes. Thus, the relationship between the target state and
ficient, since the support for each target in the above fage detection is linear. For the target dynamics we adopt
torisation is at most as large as that of a single target treateflear constant velocity model [3] that is independent for
independently. The importance weight associated withe@ch of the state components, and we assume the measure-
sample generated in this way should be set to ments to be corrupted by Gaussian noise that is independent
LE - LKI~rt for each of the measurement components. This implies that
w' (30) the state filtering distribution for each of the targets can be
qlet ™, a; *Y?) represented by a Gaussian mixture, and that the update to
compute the new mixture components in (17) can be per-
formed by the Kalman filter.
g(ek, af|a 1 Yt) o p(aFlal® L, eb) We initialise the algorithm y\(ith no active targets. For
. each frame new target are initialised on all measurements
x p(eF [ Y Dp(yit|eF, Y1), (31) that are not associated with any of the existing targets. The
initial state distribution is set to be a Gaussian centred on

Wy

Typically one would set the individual target proposals to

so that the importance weight reduces to the measurement and zero velocity, and the initial existence
R alK) probability is set td).1. New targets are only verified to be
wy o< p(M )pe(y, ). (32) true targets once their corresponding existence probability

exceedd).9. Thus, if the measurement was due to clutter
With a sufficiently large number of these samples accuratgs unlikely to be reinforced over time, and the existence
Monte Carlo estimates can be computed for the requirggbpability will not increase. True target measurements,
existence and association probabilities. however, will tend to be persistent over time, which is soon
Note that the strategies proposed above are not mugdfiected by the existence probability increasing to a value
ally exclusive, but can be combined. More specifically, ongose to unity. When targets leave the scene measurements
would generally first find the independent groups, and thgfsappear, and the existence probability decreases. Once
perform EHM or importance sampling on groups for whickhjs probability falls below).1 we deem the target to have
the number of targets do not allow direct enumeration. |eft the scene, and deactivate the corresponding tracker. For
) ) active targets we perform mixture reduction using the strat-
5 Application egy described in [10], and we take target estimates to be the

In this section we demonstrate the performance of théAP value of the resulting Gaussian mixture.
proposed framework on a challenging multi-target tracking A summary of the tracking results is presented in Figures
problem. Our objective is to track football players in vide@ to 4. The complete videos are also available at the URL
sequences. Due to player and camera movement the numav-sigproc.eng.cam.ac.uk/~jv211/videos/exist . Despite
ber of targets (football players) in view varies continuouslyhe presence of clutter measurements and missed detections

The measurement process involves a detector that scdresalgorithm is able to successfully detect and track all the
the images for plausible regions that may contain footbddiotball players for as long as they are in view of the camera
players. The detector returns a set of bounding boxes, @ystem. Even though targets are wrongly initialised on clut-
for each plausible region, that are parameterised by their 28 measurements they are never verified by the algorithm,
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Figurel: Keyframes and detections. The number of football players in view of the camera changes at regular intervals
over the sequence. False positives (clutter) and missed detections abound.

m— 10 20 30 40 50 60 70 80 90 100

I \ Figure4: Number of targets. The estimate for the num-
4 ber of active targets accurately reflect the information in the

M video sequence.
i ] 0.7 T
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Figure3: Existenceprobabilities. The existence probabil- Zz
ities for true targets soon ramp up to unity, whereas thocgei
for wrongly initialised targets fall to zero. ‘

0
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dth di K d , d aft tFi ure 5: Computation time in seconds Independent
and the corresponding trackers are deactivated after a uping is the superior strategy. Importance sampling will

time step;. The algor_lthm is able to smooth the Ioce_mon a ﬂtperform full enumeration for a larger number of targets.
scale estimates provided by the detector, and to bridge over
missed detections without losing track.

For the results above we have computed the joident grouping strategy is evident. Importance sampling (50
existence-association probabilities by first dividing the tasamples were used) was outperformed by full enumeration,
gets into independent groups, and then explicitly enumdadt this situation will be quickly reversed if the maximum
ating all the hypotheses for each group. In the majority oumber of targets increases any further.
cases groups consisted of single targets. The other strate-
gies (full joint enumeration and importance sampling) ga .
comparable results in terms of estimation accuracy, but (;6 Conclusions
fered in computational complexity. The comparative times, We have presented a unifying framework for the joint
averaged over ten runs for each strategy, are depictedrizatment of target tracking and existence generalising a
Figure 5. From this figure the superiority of the indeperplethora of publications within the tracking literature. The
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Figure2: Tracking results. The algorithm successfully detects and tracks all football players for as long as they remain
in view of the camera system.

framework is able to robustly deal with an unknown and the Fifth International Conference on Information Fu-
variable number of targets by efficiently computing the pos-  sion, volume 2, pages 1120-1125, 2002.

terior distribution of the target existence and association

variables by being invariant to the inference/data associd3] Y. Bar-Shalom and T. E. FortmannTracking and
tion mechanism employed (thus allowing the “best tool for ~ Data AssociationAcademic Press, 1988.
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