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Abstract – Most target tracking approaches either as-
sume that the number of targets is constant throughout the
time horizon of interest, or that information about target
existence (birth and death) is provided by some external
source. Here we show how target existence can be inte-
grated within the tracking framework in a rigorous way.
The notion of existence is not new, and has been considered
before in e.g. [1, 2]. We provide here a general probabilis-
tic treatment that impacts as little as possible on existing
tracking algorithms so that legacy tracking software (and
more generally target tracking architectures) can be reused.
We first show how the notion of existence can be incorpo-
rated into a single target tracking framework (retaining al-
gorithmic invariance). To place the probabilistic recursions
into context we relate this single target tracking architec-
ture to the Probabilistic Data Association [3, 4] filter. We
then extend the single target results to incorporate existence
for multi-target tracking and relate this to an importance
sampling implementation of the Joint Probabilistic Data
Association (JPDA) [5, 3, 6] framework. The treatment pre-
sented is entirely general and so facilitates implementation
with Kalman Filters, Extended/Unscented Kalman Filters,
Particle Filters, etc, i.e. the approach developed is invari-
ant to the filtering and data association mechanisms used,
and therein lies the novelty. We apply the proposed frame-
work to the difficult problem of tracking football players in
video sequences, where we adopt a mixture Kalman filter
implementation.

Keywords: Multi-target tracking, existence, data associa-
tion, mixture Kalman filter.

1 Introduction
Multi-target tracking involves the detection and recur-

sive localisation of targets within the observation range of a
sensing system. Many popular tracking algorithms (such
as Global Nearest Neighbour, JPDA, etc.) focus on the
state filtering and data association aspects of the problem,

and assume the number of targets to be constant over the
time horizon of interest. If information about target ap-
pearance and disappearance is available from some exter-
nal source, the algorithms are sometimes deterministically
reconfigured for the updated number of targets.

However, the birth and death of targets are themselves
uncertain events, and a deterministic reconfiguration of the
algorithms is likely to lead to errors in ambiguous situa-
tions. Ideally target existence should be treated jointly with
the target state and data association processes within a prob-
abilistic framework that can account for all the expected
ambiguities. To enable the deployment of the vast body
of existing multi-target tracking and data association algo-
rithms such a framework should impact as little as possible
on existing tracking architectures.

One way to achieve this is to associate with each target
a binary existence variable indicating whether the target is
active or not. A suitable prior process can then be specified
for the existence variables, facilitating joint inference with
the state and data association processes. The existence idea
is not new, and has been considered before in the context
of single [1] and multi-target tracking [2]. More recently
it has also been applied to the track-before-detect problem
using particle filters [7]1.

In this paper we attempt to establish a general unify-
ing framework for multi-target tracking and existence that
is independent of a specific implementation strategy. We
first consider the single target case, and for reference show
how existence can be combined with PDA based data as-
sociation. We then extend the results to the multi-target
setting and briefly discuss an importance sampling imple-
mentation of the framework within a JPDA setting. Both
the single and multi-target scenarios require enumeration of

1Whilst every effort has been made to provide a complete set of refer-
ences, it is the authors’ opinion that the framework provided here allows
all related publications to be unified; due to space constraints it has not
been possible to explicitly link our work to the plethora of excellent pub-
lications on this subject.
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all thejoint existence-association hypotheses. This quickly
becomes computationally infeasible for large numbers of
targets and measurements. To mitigate these problems we
consider a number of strategies to curb the exponential
growth and keep the algorithms practically feasible.

The proposed framework makes no assumption about the
implementation strategy. If the target state posteriors are to
be represented by Gaussian mixtures the individual mix-
ture components can be obtained by the Kalman filter for
linear Gaussian models, and by the extended [3] or un-
scented [8] Kalman filters for models that are non-linear
and/or non-Gaussian. For models of the latter kind it is of-
ten more effective to adopt a Monte Carlo representation
for the state posterior, and use sequential importance sam-
pling techniques [9] to perform the state filtering. This,
also, is feasible within the proposed framework. It is the
authors’ opinion that this generic exposition forms the nov-
elty within the paper, thus unifying the publications made
in the literature to date.

The remainder of the paper is organised as follows: we
outline the modelling assumptions in Section 2. Section 3
then shows how existence can be incorporated into a track-
ing framework for a single target, followed by the exten-
sion to multi-target tracking (within the JPDA) framework
in Section 4. In Section 5 we apply the proposed framework
to the difficult problem of tracking football players in video
sequences. We adopt a Gaussian mixture representation for
the target state, the components of which can be updated by
the Kalman filter. Finally, we conclude with some remarks
in Section 6.

2 Modelling Assumptions
For single target tracking we will be interested in recur-

sively estimating the target statext and existence variable
et ∈ {0, 1}, based on a sequence of observationsYt =
(y1 · · ·yt). At each timet the observations compriseMt

detections, which we will denote byyt = (y1
t , · · · ,yMt

t ).
These detections are unlabelled and may be due to the target
or clutter. Only one measurement at a time can be due to the
target, but the target may also go undetected. To represent
this uncertainty we introduce a target to measurement asso-
ciation variableat ∈ {0, 1 · · ·Mt}, whereat = j, j > 0
if the j-th observation is due to the target, andat = 0 if
the target is undetected. The complete set of unknowns at
time t is thus{xt, et, at}, for which we assume a Markov-
ian prior of the form

p(xt, et, at|xt−1, et−1, at−1) = p(at|et)
× p(xt|xt−1, et, et−1)p(et|et−1). (1)

We assume the existence variable to follow a discrete
Markov chain, parameterised by the target birth and death

probabilities,i.e.

Pb = p(Et|Et−1) (2)

Pd = p(Et|Et−1), (3)

wherewe have used the abbreviationsEt andEt to mean
et = 1 andet = 0, respectively. Conditional on the ex-
istence variables the Markov process for the target state is
specified by

p(xt|xt−1, et, et−1) =





δu(xt) if Et

p0(xt) if (Et, Et−1)
pD(xt|xt−1) if (Et, Et−1),

(4)
whereu is the consuming target state that corresponds to
the target not existing,p0 is the initial state distribution,
andpD is the target dynamic model. The association prior
is independent of previous temporal information. We will
discuss it in more detail shortly.

We will need two models for the measurements: one
for measurements originating from the target, and one for
those from clutter. We will denote these bypT (y∗t |xt) and
pC(y∗t ), respectively. Conditional on the state, existence
and association variables we will assume the measurements
to be independent.

In the case of multi-target tracking with a maximum
of K non-interacting targets the priors for the target state
and existence variables factorise over the individual tar-
gets. We will denote the prior for the joint associations by
p(a1:K

t |e1:K
t ), where the superscript denotes the range over

all the targets. We will make the common assumption that
this distribution is the product of a uniform distribution for
the association variablesa1:K

t , a binomial distribution for
the number of target detectionsMT

t , and a Poisson distri-
bution for the number of clutter measurementsMC

t . (Note
that such probabilistic assumptions can be relaxed; they are
chosen here to provide the general reader some familiar-
ity of the exposition.) For brevity we will continue to use
the compact notation, as above, and only explicitly intro-
duce the number of target detections and clutter measure-
ments where the context requires it. As pointed out in [6],
it is possible to partially factorise the association prior over
the targets, where the components in the factorisation ac-
count for both the uniform prior over the valid associations
and the binomial prior over the number of target detections.
Thus, the association prior can be written as

p(a1:K
t |e1:K

t ) = p(MC
t )

K∏

k=1

p(ak
t |a1:k−1

t , ek
t ), (5)

wherep(MC
t ) denotes the Poisson prior over the number

of clutter measurements. Note that the ordering of the tar-
gets in the factorisation is arbitrary, and may be chosen ran-
domly. We refer the reader to the reference above for the
specific forms of the association prior components.



3 Single Target Tracking and Exis-
tence

For single target tracking we are interested in recursively
estimating the joint posterior

p(xt, Et|Yt) = p(xt|Et,Yt)p(Et|Yt). (6)

For brevity we will use the notationPEt = p(Et|Yt). In
what follows we will first show how to compute the con-
ditional state posteriorp(xt|Et,Yt). We will then show
how to compute the joint posterior of the existence and as-
sociation variablesp(et, at|Yt). From this joint probability
measure the required marginals and conditionals are easily
obtained by summation.

3.1 State Filtering
By introducing the association variable and using the law

of total probability the target state posterior, also known as
the filtering distribution, can be expressed as

p(xt|Et,Yt) =
∑
at

p(at|Et,Yt)p(xt|Et, at,Yt), (7)

wherep(at|Et,Yt) is the posterior association probability,
andp(xt|Et, at,Yt) is the filtering distribution conditional
on the association. Using Bayes’ rule and the fact that the
measurements at a scan are independent conditional on the
target state, existence and association variables, the latter
distribution can be obtained as

p(xt|Et, at,Yt) =
pT (yat

t |xt)p(xt|Et,Yt−1)
p(yat

t |Et,Yt−1)
, (8)

wherethedenominator

p(y∗t |Et,Yt−1) =
∫

xt

pT (y∗t |xt)p(xt|Et,Yt−1)dxt (9)

is the measurement prediction distribution. By substituting
this result into (7) the filtering distribution can be expressed
as

p(xt|Et,Yt) =
Mt∑

j=0

βj
pT (yj

t |xt)p(xt|Et,Yt−1)
p(yj

t |Et,Yt−1)
, (10)

where we have introduced the notationβj = p(at =
j|Et,Yt). Note thatj = 0 implies that the target is unas-
signed, and with a slight abuse of notation we will take the
corresponding likelihood to bepT (y0

t |xt) ∝ 1.
The expressions for the filtering distribution in (10) and

the measurement prediction in (9) require the computation
of the state prediction distributionp(xt|Et,Yt−1). By in-
troducing the previous state and existence variables, and us-
ing the rule of total probability, the state prediction can be

expressed as

p(xt|Et,Yt−1) =
∑
et−1

p(et−1|Et,Yt−1)

×
∫

xt−1

p(xt|xt−1, Et, et−1)p(xt−1|et−1,Yt−1)dxt−1.

(11)

It is essentially a mixture of prediction distributions, where
the mixing terms follow from Bayes’ rule as

p(et−1|Et,Yt−1) =
p(Et|et−1)p(et−1|Yt−1)∑

ft−1
p(Et|ft−1)p(ft−1|Yt−1)

,

(12)
wherewe make the assumption thatp(Et|et−1,Yt−1) =
p(Et|et−1). By substituting from the prior description in
Section 2 the state prediction distribution finally follows as

p(xt|Et,Yt−1) =
1

Pb + PEt−1(1− Pb − Pd)

×
[
Pb(1−PEt−1)p0(xt)+(1−Pd)PEt−1ppred(xt|Yt−1)

]
,

(13)

with

ppred(xt|Yt−1) =
∫

xt−1

pD(xt|xt−1)p(xt−1|Et−1,Yt−1)dxt−1.

(14)
Note that both the state and measurement prediction dis-

tributions are mixtures, with one component for each of
the possible previous values of the existence variable. If
the previous state distributionp(xt−1|Et−1,Yt−1) is also
a mixture, the total number of mixture components in
the state and measurement distributions will exceed that
in p(xt−1|Et−1,Yt−1) by one. Thus, generally we can
rewrite the state and measurement prediction distributions
as

p(xt|Et,Yt−1) =
N∑

i=1

αipi(xt|Et,Yt−1) (15)

p(y∗t |Et,Yt−1) =
N∑

i=1

αipi(y∗t |Et,Yt−1), (16)

whereαi denotes the (generically defined) mixture compo-
nent weights, which result from the propagation (and thus
inclusion) of mixture components over time.

Substituting these expressions into (10) and rearranging
terms the filtering distribution can be finally obtained as

p(xt|Et,Yt) =
N∑

i=1

Mt∑

j=0

γijpij(xt|Et,Yt), (17)



with

pij(xt|Et,Yt) =
pT (yj

t |xt)pi(xt|Et,Yt−1)
pi(y

j
t |Et,Yt−1)

(18)

γij =
αiβjpi(y

j
t |Et,Yt−1)∑N

m=1 αmpm(yj
t |Et,Yt−1)

. (19)

Notethatthe filtering distribution is a mixture ofN(Mt+1)
components, one for each possible combination of a mea-
surement with a component of the state and measurement
prediction distributions. Over time the number of compo-
nents in this mixture will tend to grow exponentially, so that
mixture reduction techniques are required. One such strat-
egy for Gaussian mixtures is described in [10].

3.2 Existence and Association Posterior
From the discussion so far it is clear that we need the

marginal posterior of the existence variablep(Et|Yt), and
the conditional posterior of the association variableβj =
p(at = j|Et,Yt), j = 0, 1 · · ·Mt, to update the filtering
distribution. These are both features of the joint existence
and association posteriorp(et, at|Yt), and are easily ob-
tained by summation once the joint is known. In what fol-
lows we will show how this joint can be computed.

By introducing the target state and using Bayes’ rule the
joint posterior for the existence and association variables
can be expressed as

p(et, at|Yt) =
∫

xt

p(xt, et, at|Yt)dxt

∝ p(at|et)p(et|Yt−1)pC(yR(et,at)
t )p(yat

t |et,Yt−1),
(20)

whereR(et, at) is the set of indices of clutter measurements
under the joint existence-association hypothesis(et, at).
These measurements are all evaluated under the clutter
model. In the abovep(at|et) is the association prior,
p(et|Yt−1) is the prediction for the existence variable,
pC(yR(et,at)

t ) is the likelihood for the clutter measure-
ments, andp(yat

t |et,Yt−1) is the measurement prediction.
Note that the measurement prediction term disappears for
non-existing targets and missed detections,i.e. et = 0 and
at = 0. Thus, the only unknown is the prediction for the
existence variable, which can be obtained by introducing
the previous existence variable and using the law of total
probability,i.e.

p(et|Yt−1) =
∑
et−1

p(et|et−1)p(et−1|Yt−1). (21)

Substituting from the modelling equations this becomes

p(Et|Yt−1) = (1− Pb)(1− PEt−1) + PdPEt−1 (22)

p(Et|Yt−1) = Pb(1− PEt−1) + (1− Pd)PEt−1 . (23)

In practice it is necessary to enumerate all the valid
existence-association pairs, and evaluate the expression in
(20) for each of these pairs. The probabilities can then be
normalised by dividing each with the sum over all the valid
pairs. ForEt thereis only one possible association,i.e.
at = 0, so that all the observations are due to clutter. For
Et andMt measurements there areMt +1 possible associ-
ations,i.e. at = j, j = 0 · · ·Mt, with at = 0 if the target is
undetected, andat = j > 0 if the j-th measurement origi-
nated from the target. Once the joint existence-association
probabilities are computed the required marginal and con-
ditional probabilities can be straightforwardly obtained as

p(Et|Yt) =
Mt∑

j=0

p(Et, at = j|Yt) (24)

βj = p(at = j|Et,Yt) =
p(Et, at = j|Yt)

p(Et|Yt)
. (25)

3.3 A PDAF implementation
To conclude this section we present below an algorithmic

summary of the operations at timet of the single target PDA
tracking algorithm.

Algorithm 1: Single Target Tracking with Existence

• Input : p(xt−1|Et−1,Yt−1) and PEt−1 =
p(Et−1|Yt−1).

• Compute the state prediction distribution
p(xt|Et,Yt−1), as in (13).

• Compute the measurement prediction distribution
p(y∗t |Et,Yt−1), as in (9).

• Gate the measurements using the measurement predic-
tion distributionp(y∗t |Et,Yt−1).

• For the remaining measurements, enumerate all the
valid joint existence-association hypotheses{et, at}.

• For each of the valid joint hypotheses, evaluate the
joint posterior probabilityp(et, at|Yt), as in (20), and
normalise.

• Compute the marginal existence posteriorp(Et|Yt),
as in (24), and the conditional association posteriors
βj = p(at = j|Et,Yt), j = 0, 1 · · ·Mt, as in (25).

• Compute the updated filtering distribution
p(xt|Et,Yt). The general form for the update
is given in (10). For a mixture implementation the
general form becomes (17).

• Perform mixture reduction on the filtering distribution
to keep the number of components manageable.



• Output : p(xt|Et,Yt) andPEt = p(Et|Yt).

¥
As wehave stressed throughout this paper the framework

described is entirely general, and can be implemented in
many different ways. If, for example, the filtering distribu-
tion p(xt|Et,Yt) is to be represented by a Gaussian mix-
ture, the mixture components in (18) can be obtained by
the Kalman filter for linear Gaussian models, and by the
extended or unscented Kalman filters for non-linear and/or
non-Gaussian models. For models of the latter kind it may
sometimes be beneficial to adopt a particle representation,
and use sequential importance sampling techniques to up-
date the filtering distribution.

4 Multi-Target Tracking and Exis-
tence

For multi-target tracking the distribution of interest is the
joint posterior of all the target states and existence vari-
ables,i.e. p(x1:K

t , E1:K
t |Yt), whereK is the maximum

number of targets that can be tracked. In a senseK is the
number of “slots” available for tracked targets,i.e. when
a target is killed its slot may be arbitrarily reassigned to a
newly detected future target.

To avoid exploring the joint state-space for all the targets,
which increases exponentially in complexity with the num-
ber of targets, we will assume, like in the JPDA, that the
joint posterior factorises over the targets,i.e.

p(x1:K
t , E1:K

t |Yt) =
K∏

k=1

p(xk
t |Ek

t ,Yt)p(Ek
t |Yt), (26)

and it will be our objective to maintain these marginal dis-
tributions. For each individual target the state filtering pro-
ceeds in exactly the same manner as discussed in Section
3.1. However, the computation of the existence and as-
sociation probabilities cannot be done independently for
each of the targets. Since the origins of the measurements
are unknown the existence and association variables for
the individual targets are coupled, and have to be treated
jointly. Thus, we need to consider the joint posterior of
the existence and association variables for all the targets,
i.e. p(e1:K

t , a1:K
t |Yt). Once this joint is known the re-

quired marginals and conditionals for the individual targets
are easily obtained by summation.

Using computations similar to those leading to (20) the
required joint is easily shown to be

p(e1:K
t , a1:K

t |Yt) ∝ p(MC
t )pC(yR(e1:K

t ,a1:K
t )

t )

×
K∏

k=1

[
p(ak

t |a1:k−1
t , ek

t )p(ek
t |Yt−1)p(yak

t
t |ek

t ,Yt−1)
]
,

(27)

where we have made use of the factorised form of the asso-
ciation prior.

Again it is necessary to enumerate all the valid joint
existence-association hypotheses. Whereas this is tractable
for a single target, the computational complexity for a direct
enumeration of the joint hypotheses in the multi-target case
grows super-exponentially in the number of targets. For
K targets there are2K possibilities for the joint existence
variablee1:K

t . For each of these the number of association
hypotheses is factorial in the number of measurementsMt

and active targetsKt =
∑K

k=1 et. Thus, it is clear that more
efficient computational strategies are required.

Measurement gating is a crucial first step to reduce the
number of hypotheses. But for a large number of targets
and measurements gating alone is not sufficient. We will
briefly outline below three alternative strategies to compute
the joint existence-association probabilities without explic-
itly enumerating all the valid hypotheses.

4.1 Independent Groups
After gating it is possible to group targets such that tar-

gets in a particular group share measurements only with
other targets in the same group. Targets that are close in
the state-space will tend to be grouped together, whereas
a well-separated target will tend to form its own group. If
there areNG groups, withGi the set of indices of the targets
in the i-th group, the joint existence-association posterior
can be factorised as

p(e1:K
t , a1:K

t |Yt) =
NG∏

i=1

p(eGi
t , aGi

t |Yt), (28)

where each of the factors are of the form in (27). Thus,
groups can be treated independently, leading to substantial
computational savings if the maximum number of targets
in any group is sufficiently smaller than the total number of
targets.

4.2 Efficient Hypothesis Management
Efficient Hypothesis Management (EHM) has been intro-

duced in [11] as a method to efficiently compute the mar-
ginal association probabilities without explicitly enumerat-
ing the valid hypotheses, in the case where all the targets
are assumed to exist. It can be reasonably straightforwardly
extended to cope with the possibility of targets not existing.

EHM essentially ignores2 the first two terms in (27), and
then exploits the fact that the factorisation over the targets
can be represented by a tree, with one level for each target.
The number of children for a particular node in the tree is
determined by the number of valid associations for the tar-
get in the next level, given the associations for the path from
the root up to that node in the tree.

2It maybe possible to devise (approximate) strategies to somehow fac-
tor the prior for the number of clutter measurements and their likelihood
over the targets.



For a large number of targets the tree representation
contains many repeated sub-structures that can be com-
bined, leading to a compact graph representation. The mar-
ginal association probabilities can then be computed by an
upward-downward algorithm, leading to a very efficient
strategy that does not require the enumeration of the hy-
potheses.

4.3 An importance sampling implementation
We can use importance sampling to obtain a Monte

Carlo approximation for the existence-association posterior
in (27). If we constrain the importance distribution to take
the form

q(e1:K
t , a1:K

t |Yt) =
K∏

k=1

q(ek
t , ak

t |a1:k−1
t ,Yt), (29)

the samples can be generated sequentially. This is very ef-
ficient, since the support for each target in the above fac-
torisation is at most as large as that of a single target treated
independently. The importance weight associated with a
sample generated in this way should be set to

wt ∝ p(e1:K
t , a1:K

t |Yt)
q(e1:K

t , a1:K
t |Yt)

. (30)

Typically one would set the individual target proposals to

q(ek
t , ak

t |a1:k−1
t ,Yt) ∝ p(ak

t |a1:k−1
t , ek

t )

× p(ek
t |Yt−1)p(yak

t
t |ek

t ,Yt−1), (31)

so that the importance weight reduces to

wt ∝ p(MC
t )pC(yR(e1:K

t ,a1:K
t )

t ). (32)

With a sufficiently large number of these samples accurate
Monte Carlo estimates can be computed for the required
existence and association probabilities.

Note that the strategies proposed above are not mutu-
ally exclusive, but can be combined. More specifically, one
would generally first find the independent groups, and then
perform EHM or importance sampling on groups for which
the number of targets do not allow direct enumeration.

5 Application
In this section we demonstrate the performance of the

proposed framework on a challenging multi-target tracking
problem. Our objective is to track football players in video
sequences. Due to player and camera movement the num-
ber of targets (football players) in view varies continuously.

The measurement process involves a detector that scans
the images for plausible regions that may contain football
players. The detector returns a set of bounding boxes, one
for each plausible region, that are parameterised by their 2D

location in the image and their scale relative to a reference
bounding box. A full description of the detector is beyond
the scope of this paper. It basically performs a multi-scale
gridding of the image, and computes a matching score for
each grid location with a reference appearance model based
on colour and shape. Grid locations with a score above a
predefined threshold are deemed plausible regions, and are
further refined by Mean Shift optimisation [12].

Figure 1 depicts ten keyframes from a typical football se-
quence, along with the output of the detector. The objective
here is to track all the football players in white. It is clear
that the number of players in view changes at regular inter-
vals throughout the sequence. Note also that the detector is
not perfect,i.e. false positives (clutter measurements) and
missed detections are plentiful.

We define the state of each target as its 2D location and
scale in the image, along with the velocities of these quan-
tities. Thus, the relationship between the target state and
the detection is linear. For the target dynamics we adopt
a near constant velocity model [3] that is independent for
each of the state components, and we assume the measure-
ments to be corrupted by Gaussian noise that is independent
for each of the measurement components. This implies that
the state filtering distribution for each of the targets can be
represented by a Gaussian mixture, and that the update to
compute the new mixture components in (17) can be per-
formed by the Kalman filter.

We initialise the algorithm with no active targets. For
each frame new target are initialised on all measurements
that are not associated with any of the existing targets. The
initial state distribution is set to be a Gaussian centred on
the measurement and zero velocity, and the initial existence
probability is set to0.1. New targets are only verified to be
true targets once their corresponding existence probability
exceeds0.9. Thus, if the measurement was due to clutter
it is unlikely to be reinforced over time, and the existence
probability will not increase. True target measurements,
however, will tend to be persistent over time, which is soon
reflected by the existence probability increasing to a value
close to unity. When targets leave the scene measurements
disappear, and the existence probability decreases. Once
this probability falls below0.1 we deem the target to have
left the scene, and deactivate the corresponding tracker. For
active targets we perform mixture reduction using the strat-
egy described in [10], and we take target estimates to be the
MAP value of the resulting Gaussian mixture.

A summary of the tracking results is presented in Figures
2 to 4. The complete videos are also available at the URL
www-sigproc.eng.cam.ac.uk/∼jv211/videos/exist . Despite
the presence of clutter measurements and missed detections
the algorithm is able to successfully detect and track all the
football players for as long as they are in view of the camera
system. Even though targets are wrongly initialised on clut-
ter measurements they are never verified by the algorithm,
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Figure1: Keyframes and detections. The number of football players in view of the camera changes at regular intervals
over the sequence. False positives (clutter) and missed detections abound.
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Figure3: Existenceprobabilities. The existence probabil-
ities for true targets soon ramp up to unity, whereas those
for wrongly initialised targets fall to zero.

and the corresponding trackers are deactivated after a few
time steps. The algorithm is able to smooth the location and
scale estimates provided by the detector, and to bridge over
missed detections without losing track.

For the results above we have computed the joint
existence-association probabilities by first dividing the tar-
gets into independent groups, and then explicitly enumer-
ating all the hypotheses for each group. In the majority of
cases groups consisted of single targets. The other strate-
gies (full joint enumeration and importance sampling) gave
comparable results in terms of estimation accuracy, but dif-
fered in computational complexity. The comparative times,
averaged over ten runs for each strategy, are depicted in
Figure 5. From this figure the superiority of the indepen-
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Figure4: Number of targets. The estimate for the num-
ber of active targets accurately reflect the information in the
video sequence.
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Figure 5: Computation time in seconds. Independent
grouping is the superior strategy. Importance sampling will
outperform full enumeration for a larger number of targets.

dent grouping strategy is evident. Importance sampling (50
samples were used) was outperformed by full enumeration,
but this situation will be quickly reversed if the maximum
number of targets increases any further.

6 Conclusions
We have presented a unifying framework for the joint

treatment of target tracking and existence generalising a
plethora of publications within the tracking literature. The
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Figure2: Tracking results. The algorithm successfully detects and tracks all football players for as long as they remain
in view of the camera system.

framework is able to robustly deal with an unknown and
variable number of targets by efficiently computing the pos-
terior distribution of the target existence and association
variables by being invariant to the inference/data associa-
tion mechanism employed (thus allowing the “best tool for
the job at hand” to be utilised). We have applied the algo-
rithm to the difficult problem of detecting and tracking foot-
ball players in video sequences, where we have adopted a
mixture Kalman filter implementation of the general frame-
work. Despite a constantly changing number of targets and
a large number of missed detections and false positives the
algorithm was able to successfully detect and track all the
football players for as long as they are within the view of
the camera system. Future work will focus on implemen-
tations for different applications (for example the notion of
group existence, and then target within group existence),
and extensions to cope with a very large number of targets
and sensors.
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