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A Unifying Framework for Partial Volume
Segmentation of Brain MR Images

Koen Van Leemput*, Member, IEEE, Frederik Maes, Dirk Vandermeulen, and Paul Suetens, Member, IEEE

Abstract—Accurate brain tissue segmentation by inten-
sity-based voxel classification of magnetic resonance (MR) images
is complicated by partial volume (PV) voxels that contain a
mixture of two or more tissue types. In this paper, we present a
statistical framework for PV segmentation that encompasses and
extends existing techniques. We start from a commonly used para-
metric statistical image model in which each voxel belongs to one
single tissue type, and introduce an additional downsampling step
that causes partial voluming along the borders between tissues.
An expectation-maximization approach is used to simultaneously
estimate the parameters of the resulting model and perform a
PV classification. We present results on well-chosen simulated
images and on real MR images of the brain, and demonstrate
that the use of appropriate spatial prior knowledge not only
improves the classifications, but is often indispensable for robust
parameter estimation as well. We conclude that general robust PV
segmentation of MR brain images requires statistical models that
describe the spatial distribution of brain tissues more accurately
than currently available models.

Index Terms—Expectation–maximization, Markov random
field, Monte Carlo sampling, MRI, partial volume, segmentation.

I. INTRODUCTION

T
HE AUTOMATIC segmentation of medical images is a

research topic that has been one of the core problems in

medical image analysis for years. Especially, the classification

of magnetic resonance (MR) images of the brain, aiming to as-

sign each voxel to a specific tissue type, has received consider-

able attention. One of the most popular methods to tackle this

problem has been intensity-based tissue classification using the

expectation-maximization (EM) algorithm [1]. This approach

starts from a parametric statistical model for MR images of the

brain, typically using Gaussian intensity models for each of the

tissues considered, and estimates the tissue classification and the
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model parameters simultaneously by interleaving between these

two [2]–[4]. Explicit models for MR field inhomogeneities have

been included in the EM framework, allowing automated bias

field correction of MR images of the brain [5]–[7], and Markov

random field (MRF) models have been used to impose certain

spatial constraints on the classifications [8]–[12].

Whereas these techniques assign each voxel to a single tissue

type, the limited spatial resolution of MR imaging and the com-

plex shape of the tissue interfaces in the brain imply that a

large part of the voxels in MR brain images are so-called par-

tial volume (PV) voxels, i.e., voxels that contain not a single

tissue, but rather a mixture of two or more tissue types. Niessen

et al. [13] showed that consistently misplacing the tissue borders

in a 1 mm isotropic brain MR image with only a single pixel

in each slice resulted in volume errors of approximately 30%,

40%, and 60% for white matter, gray matter and cerebrospinal

fluid (CSF), respectively. The accuracy of methods assigning

these partial volumed borders to one single tissue type is, there-

fore, inherently limited, especially when lower resolution im-

ages are used.

In this paper, we, therefore, extend the EM approach by ex-

plicitly taking the PV effect into account. Starting from the

image model from previous work [10], where each voxel was

assumed to belong to only one single tissue type, we intro-

duce an additional downsampling step which causes partial vo-

luming along the borders between tissues. This is described in

Section II. We then derive in Section III an EM algorithm to si-

multaneously estimate the parameters of the resulting model and

perform a PV classification. Section IV describes experiments

and Section V presents results on a number of well-chosen simu-

lated images as well as on real brain MRI data. In Section VI, we

demonstrate that our approach provides a sound mathematical

framework for PV segmentation that extends and encompasses

the various existing techniques described in the literature. This

subsequently allows us to identify the remaining bottle necks

for general robust PV segmentation of MR images of the brain

and to formulate guidelines for further research.

II. IMAGE MODEL

We start from the image model used in our previous work

[10], with the exception of an explicit model for the MR bias

field, which we assume here not to be present for the sake of

simplicity. Let be a label image

with a total of voxels, where denotes the

one of nonmixed tissue types to which each voxel belongs.

These labels are assumed to be drawn according to some proba-

bility distribution with parameters to be specified

further that impose certain spatial constraints. Suppose that a

0278-0062/03$17.00 © 2003 IEEE
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Fig. 1. In the downsampling step, a number of voxels in the original image grid contribute to the intensity of each voxel in the resulting image grid.

nonmixed intensity image is gen-

erated from by drawing a sample from a probability distri-

bution parameterized by . We assume that the

intensity of a voxel is conditionally independent from the inten-

sity of other voxels given its tissue label, and that the intensity

of each tissue is normally distributed with mean and co-

variance , such that

and

with the zero-mean normal distribution with covariance

matrix .

Similar to the work of Wu et al. [14], now an extra step

is added where is not directly observed, but downsampled

by a factor of to yield a partial volumed MR image

with only voxels. The down-

sampling process is illustrated in Fig. 1. Let represent the

set of subvoxel indexes in the original image under-

lying the voxel at site in the downsampled image . It is as-

sumed that summating the original intensity of these subvoxels

results in the observed intensity in the downsampled image, i.e.,

. In voxels where not all subvoxels belong to the

same tissue type, this causes partial voluming.

The new image model is illustrated in Fig. 2 on a two-di-

mensional (2-D) example for two classes and

subvoxels per voxel. Let be a vector that contains the rela-

tive amount of each class in voxel i.e.,

, where denotes

the set of labels of the subvoxels underlying voxel . A value of

for some class means that all the subvoxels underlying

voxel belong to class , whereas a value of indicates

that does not contain class at all. In Appendix A, we show

that the observed intensity in a voxel with underlying set of

labels is governed by a normal distribution that only depends

on the voxel’s mixing proportions

(1)

with and .

Fig. 2(f) shows these normal distributions for each

mixture with

, weighted by the number of times each mixture oc-

curs in the image. The intensity distribution model for PV voxels

is given by the sum of the normal distributions of all nonpure

mixtures.

III. MAXIMUM-LIKELIHOOD PARAMETER ESTIMATION

Given an image , the aim is to reconstruct the subvoxel label

image or, more modestly, to estimate the tissue fractions

in each voxel. Before these issues can be addressed, the model

parameters need to be estimated somehow from

. If the underlying tissue labels and the original subvoxel

intensities were known, estimation of the model parameters

would be straightforward. However, only the image is directly

observed, whereas and are missing. It is, therefore, natural

to think of this problem as one involving missing data and the

EM algorithm [1] is an obvious candidate for model fitting.

A. Expectation-Maximization Algorithm

The EM algorithm tries to find the parameters that maxi-

mize the likelihood of the data

by iteratively maximizing the expected value of the log-likeli-

hood of the missing data , where the ex-

pectation is based on the observed data and the estimated pa-

rameters obtained during the previous iteration

Expectation step: find the function

Maximization step: find

It can be shown that this scheme provides a sequence of pa-

rameters values that increase the likelihood at each

iteration [15].

B. Spatial Prior

We now derive the EM algorithm for three different prior

models for the underlying label image . To restrict
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(a) (d)

(b) (e)

(c) (f)

Fig. 2. Illustration of the image model for the case of two tissue types. (a) First, a label image LLL is drawn according to some statistical model (in this example,
an MRF model was used; cf., further). (b) An intensity image YYY is obtained by adding tissue-specific normally distributed noise. (c) Finally, YYY is downsampled,
resulting in an image ~YYY that contains partial voluming. The underlying tissue fraction t = 1� t in each voxel i of ~YYY is shown in (d), the histogram of YYY along
with its underlying model in (e), and the histogram of ~YYY with its model in (f).

the numerical complexity, we only consider models that allow

maximum two different tissue types in a voxel at the same time.

To a first approximation, this assumption seems reasonable in

MR images of the brain, and is shared by most of the methods

described in the literature [16]–[22].

1) Model A: No Spatial Correlation: Consider a spatial

model defined on the observed voxels rather than on the un-

derlying subvoxels, whereby the mixing proportions of tissues

in a voxel has a prior probability that is independent of the

actual spatial position of the voxel in the image

if

if

otherwise

where denotes a unity vector whose th element is unity,

all other elements being zero. In other words, the prior prob-
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ability to have a voxel that is entirely tissue type is , and for

every mixing fraction between

two classes and this is . Voxels with more than

two tissue types at the same time are not allowed.

The expectation step of the EM algorithm involves evaluating

the probability of every possible mixing type in every voxel

with Bayes’ rule

(2)

The subsequent maximization step involves finding the pa-

rameters that maximize . Because

, the expectation function can be written

as

Maximization of the -term yields (see Appendix

B)

(3)

and (4), shown at the bottom of the page, with

To find the update of the parameters , we

have to maximize which yields

(5)

To summarize, the EM algorithm iteratively calculates a

statistical PV classification of the voxels based on the model

parameters of the previous iteration [see (2)], and updates

the parameters accordingly [see (3)–(5)]. The meaning of the

equations becomes more intuitive in the special case where

there is only subvoxel underlying each voxel , i.e.,

there is no downsampling. In that case, ,

meaning that each voxel belongs entirely to one single tissue

type without PV effect. This reduces (3) and (4) to the equations

shown at the bottom of the page, which are the well-known

EM equations for standard Gaussian mixture models without

PV model [2].

2) Model B: No Spatial Correlation and Uniform Prior: In

PV segmentation, it is common practice to assume that if two

tissues mix in a voxel, all mixing proportions are equally alike

[14], [17], [18]–[20], [22]. This can be imposed by explicitly

constraining

in model A. Equations (2)–(4) for the classification and the sub-

sequent calculation of the intensity parameters remain valid, but

the update of the spatial parameters is now

given by

(4)

and
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3) Model C: Markov Random Field: Finally, we investigate

a MRF model [23] for the label image , defined as

with

(6)

Here, evaluates to the unity value if the voxels

and belong to a different tissue type, and to zero otherwise;

the notation indicates that the summation is taken

over all couples of voxels that are nearest neighbors in

the image grid and that include voxel . The spatial model pa-

rameters consist of a that, when positive,

favors clusters of the same tissue , and of tissue-specific prior

costs that regulate how much of tissue is globally present

in the label image . In the case of tissue types, this

model is the well-known Ising model [24].

Unfortunately, the expectation step of the EM algorithm

poses practical problems with this model because the voxel

labels are not independent. We, therefore, resort to the so-called

Monte Carlo expectation-maximization algorithm [25] to

approximate the expectation over the labels by drawing

samples from the distribution

by Monte Carlo simulation.

The samples are drawn using a Metropolis sampler

[26]. Suppose that the subvoxel label configurations of all the

voxels except voxel , denoted as , are known. Then the

prior probability for subvoxel label configuration in voxel

is given by

(7)

and so the posterior is given by

To generate a sample starting from , the

sampler visits each voxel , proposes randomly a new label con-

figuration and replaces the old configuration with the new

one with probability

Starting from an initial label image, this scheme generates

samples from the distribution after a number

of so-called “warm up”-sweeps that are needed to bring the

sampler in its stationary regime [26].

Once samples are drawn, the maximization

step of the EM algorithm proceeds as follows. A classification

is obtained by summing the probabilities

of all the subvoxel configurations with the

same relative amounts of tissues , where

(8)

with the indicator function (valued 1 if , and 0 other-

wise). From this classification, (3) and (4) are used to update the

intensity parameters . The spatial parameters are updated

by maximizing that because of the Monte Carlo

simulation is approximated by

(9)

Because the denominator in the expression for [see

(6)] is impossible to calculate in practice, we call upon the

so-called pseudolikelihood approximation [27] which gives

finally

Because of (7), this approximation of is an

analytical function of the parameters from

which the first- and second-order derivatives can easily be cal-

culated. We, therefore, maximize with Newton’s

method, i.e., by iteratively approximating the objective function

locally by a quadratic model and calculating the maximum of

that model.

IV. EXPERIMENTS

We have implemented the method in 2-D for each of the three

different spatial models described in Section III, and applied

it to analyze simulated data sets as well as 2-D slices of real

MR data of the head. In each case, the iterative EM process was

started from an initial parameter set , and stopped when the

maximization step stops improving the parameters significantly

(see [28] for more details on the stop criterion). For model C,

the expectation step was approximated by drawing

Monte Carlo samples for simulated data, and sam-

ples for real data. In the first iteration, the label image was

randomly initialized and 100 “warm-up” Monte Carlo sweeps

were performed before the samples were used. During the fol-

lowing iterations, we simply took the last sample from the pre-

vious iteration as initialization and used the generated samples

immediately without “warm-up” phase.

To give an idea of the computation time, the segmentation

of a 2-D slice of a brain MR image took a couple of minutes

when spatial model B was used, whereas the extensive Monte

Carlo sampling of model C slowed the process down to 20 min

(Matlab code [29] on a PC running Linux with a 1.70-GHz

Pentium IV processor and 512-MB RAM). While this last time

figure may seem prohibitively slow when full three-dimen-

sional (3-D) images need to be analyzed, in reality the model
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 3. PV segmentation of synthetic multi-spectral data in which the tissue types show considerable intensity overlap. The first six panels depict the synthetic
data. The first channel and second channel of the 2-channel data ~YYY is shown in (a) and (b), respectively. The scatterplot of this data is shown in (c), together
with a semi-transparent 3-D envelope of the overall histogram model. Also shown are ellipses indicating a Mahalanobis distance of 2.5 in the underlying normal
distributions corresponding to the two pure tissue types. The true underlying fraction of tissue 2 in each voxel in ~YYY is depicted in (d), whereas the original label
imageLLL used to generate ~YYY is shown in (e). Finally, the parameters used for initializing the EM algorithm are indicated on the scatterplot in (f). The last six panels
show the result of the EM parameter estimation process for each of the three spatial models. The estimated parameters after model fitting and the expected fraction
of tissue 2 are shown in (g) and (h), (i) and (j), and (k) and (l) for spatial model A, model B, and model C, respectively. (g), (i), and (k) Need to be compared with
(c), and (h), (j), and (l) should be related to (d). See text for an interpretation.

parameter estimation for a 3-D image need not be more time

consuming than for a 2-D slice. Indeed, the stationarity of

model C implies that less samples are needed to estimate the

model parameters accurately when more voxels are available

in the image. Also, in our current implementation we generate

a whole new set of samples at each

iteration . Considerable speed-ups can be expected by

using the recently proposed Stochastic Approximation EM

algorithm [30] instead, in which simulated data from previous

iterations are re-used, gradually discounted with a certain for-

getting factor. Further speed-ups can be obtained by reducing

the number of samples in the first iterations where the gross

parameter adjustments are performed, but such optimization

issues fall outside the scope of this text.

A. Experiments on Simulated Data

In order to study the various model assumptions and their im-

pact on the behavior of the EM parameter estimation process, we

applied our algorithm on a number of synthetic images, using

each of the three spatial models described in Section III. To ob-

tain synthetic images in which the tissue types are spatially clus-

tered, we started by drawing a sample from our MRF model C

by starting from a random initialization and using 3000 sweeps

of the Metropolis algorithm. From this sample we subsequently

generated tissue-specific intensity and noise, resulting in , and

after downsampling, we finally obtained . In this fashion, we

generated synthetic data according to several sets of model pa-

rameters . Each data set represents a more or less realistic

situation encountered in real-world PV segmentation of brain



VAN LEEMPUT et al.: UNIFYING FRAMEWORK FOR PV SEGMENTATION OF BRAIN MR IMAGES 111

TABLE I
ERRORS IN VOLUME ESTIMATION ON SIMULATED MULTISPECTRAL PARTIAL

VOLUME DATA WITH VARYING INTENSITY OVERLAP BETWEEN THE TISSUES

FOR THREE DIFFERENT SPATIAL MODELS. HIGHER VALUES OF THE

PARAMETER r CORRESPOND TO MORE SEVERE INTENSITY OVERLAP

MR images, including multi-spectral data, data that contains far

more of one tissue than of another, and data in which one tissue

type has an intensity that is indiscernible from a mixture of two

other tissues.

For each data set, the EM algorithm was used to try to find

back the original model parameters underlying . This was

done for each of the three different spatial models, starting from

the same initialization. The mean values were initialized to

the ground-truth mean values perturbed with zero-mean nor-

mally distributed noise with covariance matrix equal to the av-

erage of the ground-truth covariance matrices. The covariance

matrices were all initialized as the average covariance ma-

trix multiplied by a factor of five. The spatial parameters were

initially set to values that make the prior probability for all pure

and mixing tissues equally alike. For model A, the were

initialized uniformly for all mixing fractions .

Since it is hard to interpret directly any differences between

the true model parameters used to synthesize the data and the

parameters estimated by the EM algorithm, we evaluated the

correctness of the parameter estimations by comparing the au-

tomatically estimated volume of every tissue type in the entire

image to the known ground-truth volume. Let denote the true

total volume of tissue , and the volume of a label

image estimated from . Since our algorithm does not pro-

duce a single label image , we compare the expected estimated

volume with its true value

where denotes the model parameters estimated by the

algorithm.

TABLE II
ERRORS IN VOLUME ESTIMATION ON SIMULATED DATA WITH VARYING

RELATIVE AMOUNTS OF PURE TISSUES. HIGHER VALUES OF THE PARAMETER

a CORRESPOND TO SMALLER AMOUNTS OF TISSUE TYPE 1

B. Experiments on Real MR Data

We also tested our algorithm on 2-D slices taken from real

MR images of the brain. Our current implementation of the

MRF of model C is only 2-D, i.e., the subvoxels are only sub-

voxels within the plane. This implies that borders are assumed

to be orthogonal to the image slice and, therefore, we have only

processed slices taken from the central part of the brain, where

this assumption is more or less valid. In a preprocessing step, the

images were automatically corrected for MR inhomogeneities

and segmented into white matter, gray matter, CSF, and non-

brain tissue without taking the PV effect into account using the

method described in [7]1 The resulting segmentations were used

to automatically define the intracranial volume, and the PV frac-

tion of white matter, gray matter, and CSF in each voxel of a

selected slice within that volume was subsequently estimated

with our new algorithm, using subvoxels per voxel.

Initial parameters and were calculated from the seg-

mentations obtained with the non-PV segmentation method, and

the spatial model parameters were initialized in the same way as

for the simulated data of Section IV-A.

V. RESULTS

A. Results on Simulated Data

1) Varying Intensity Overlap Between Tissues: In a first ex-

periment, we simulated two-channel data with unequal covari-

ance matrices whose size was varied in order to obtain a varying

intensity overlap between the tissues. We used two classes and

a 300 300 image grid that we downsampled by a factor of

three in each dimension so that we finally ended up with a 100

1Software publicly available at http://bilbo.esat.kuleuven.ac.be.
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(a) (b) (c)

(d) (e) (f)

Fig. 4. Model parameter estimation on synthetic data with considerable more amounts of one tissue type than of another. (a) Simulated data ~YYY ; (b) histogram of
~YYY with the underlying model superimposed; (c) initialization for the model estimation; (d) histogram fit after parameter estimation for model A, (e) model B, and
(f) model C.

100 image with subvoxels per voxel. The model

parameters used for the simulation were

with .

Fig. 3 shows the simulated data for the biggest intensity

overlap ( ) along with the initialization and the results

for the three spatial models. In the scatter plots, we have

indicated the shape of the normal distributions corresponding

to pure tissue voxels by drawing the ellipse corresponding to a

Mahalanobis distance of 2.5; note the considerable overlap in

intensity between the tissues. According to Fig. 3(g), (i), and

(k), all three methods seem to have found the correct model

parameters. This is confirmed by Table I, showing small errors

in total volume estimation for all models.

Nevertheless, the expected fraction of tissue 2 in each voxel

, depicted in Fig. 3(h), (j), and (l) for model

A, B, and C, respectively, clearly indicates that the MRF of

model C is better suited for estimating the relative amount of

each tissue type in individual voxels. This should not come as

a surprise, as the first two models classify each voxel inde-

pendently based on local intensity information alone, whereas

model C encourages exactly that type of spatial clustering that

was used to synthesize the data. Since the overall model param-

eters were correctly estimated for all models, however, the clas-

sification errors in individual voxels of model A and B do not

propagate into the total volume estimates of Table I because the

errors cancel out when averaged over all voxels in the image.

2) Varying Relative Amounts of Pure Tissues: In a second

experiment, we varied the relative amounts of tissues present in

the underlying label image by assigning different prior costs

to the classes. Again, two classes were used, the original

image grid was 300 300, and we downsampled three times

in each dimension so that . The simulation parameters

were

Table II shows the volume estimation errors for all models

and for every degree of asymmetry between tissue volumes.

Model C always provides accurate volume estimations, in con-

trast to the other models that show large volume errors for the

most asymmetric cases. This indicates that the parameters were

not correctly estimated by models A and B.

Fig. 4 clarifies these quantitative results for the case

. While the global histogram fit is good for model

A [Fig. 4(d)], the underlying model has been incorrectly esti-

mated. The model has set the weights of the pure tissue voxels

to zero, thereby not classifying any voxel in the image as

pure tissue. Since there is no restriction on the weights of

each mixing fraction , the method has simply adjusted these

to get a good histogram fit. With model B, shown in Fig. 4(e),

all the mixing fractions corresponding to nonpure tissues are

forced to have the same weight, i.e., , resulting in

the typical flat shape of the total intensity model for PV voxels

that is commonly used in the literature [14], [17], [18]–[20],

[22]. However, the true mixing fractions in this example are

not equal at all and, therefore, model B is condemned to fail.

Finally, Fig. 4(f) shows that only model C has succeeded in

retrieving the correct model parameters.
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TABLE III
ERRORS IN VOLUME ESTIMATION ON SIMULATED DATA WITH

VARYING AMOUNT OF PARTIAL VOLUME VOXELS. LOWER VALUES

OF THE PARAMETER � CORRESPOND TO LOWER AMOUNTS OF

VOXELS CONTAINING PURE TISSUE TYPES

3) Varying Partial Voluming: We also simulated data for

varying amounts of partial voluming, by varying the MRF

parameter . We used three classes and an original image grid

of 200 200 that was downsampled twice in each dimension

so that is a 100 100 image with subvoxels per

voxel. The simulation parameters were in this case

For the largest value of , 35% of the voxels were PV voxels,

and for the smallest value this was 63%. Because the intensity of

voxels mixing the tissues with the lowest and highest intensity

is similar to the intensity of pure voxels of the tissue type with

intermediate intensity, model A is severely underconstrained in

this case and was, therefore, not considered.

Table III summarizes the results for model B and model C.

As in Section V-A2, the MRF seems indispensable to obtain

accurate parameter estimates. Fig. 5 shows the graphical re-

sults for the case with the smallest amount of PV voxels (

). Clearly, the mixing fractions between tissue 1 and tissue

3 do not all have the same weight, which partly explains why

model C consistently performed better than model B in the re-

sults of Table III. However, the problem lies deeper than that.

Fig. 5(d)–(f) depicts the initialization, the fitted model B, and

the fitted model C, respectively. While the global histogram fit

is equally good for both models, the underlying parameter esti-

mates are only correct for model C.

To illustrate this problem further, we repeated the same ex-

periment but with another random initialization, the results of

which are shown in Fig. 5(g)–(i). Although the initialization was

very similar to that of Fig. 5(d), the parameters estimated for

model B are now completely different. In contrast to model C,

model B assumes statistical independence of the tissue propor-

tions between the voxels, which causes its parameter estimation

to be entirely based on the histogram. However, for this type of

“difficult” data with considerable amounts of partial voluming,

the histogram alone does not seem to provide enough informa-

tion for robustly estimating the underlying model parameters.

B. Results on Real MR Data

Fig. 6(a) shows an axial slice of a high-resolution 1 mm

isotropic T1-weighted image of the head (Siemens, 3-D

MP-RAGE, TR 9.7 ms and TE 4 ms). Its histogram with the

model parameter initialization overlaid is shown in Fig. 6(b).

As with the simulated data set of Fig. 5, model A cannot

be robustly applied because different tissue mixings map to

the same intensities and was, therefore, not considered. For

method B, the fitted model is shown in Fig. 6(c), and the

estimated fractions of white matter, gray matter, and CSF

are depicted in Fig. 6(d)–(f), respectively. At first sight, the

results seem satisfactory, although the separation between

white matter and gray matter is noisy. Fig. 6(g)–(i) shows

for each voxel the probability that it is considered as partial

voluming between white matter-gray matter, white matter-CSF,

and gray matter-CSF, respectively. Except for a ridge around

the ventricles, the voxels that are classified as partial voluming

between white matter and CSF lie far away from white matter.

This is clearly not correct.

Fig. 7 shows the result on the same data set when model C

was used. Because now also spatial information was used to

estimate the model parameters, the histogram fit is not as tight

as with model B. However, the MRF has reduced the noise in the

segmentations considerably, and the voxels mixing two tissues

are now lying on the border between the constituent tissues,

which is clearly a much better result than the one obtained with

method B. On the other hand, notice from Fig. 7(e) that the deep

gray matter structures—in reality a mixture of white and gray

matter—have been exclusively classified as gray matter, with

sharp borders. This, and other limitations that are intrinsic to our

MRF model, hampers its direct use in many practical situations

as will be discussed further in Section VI-C.

VI. DISCUSSION

A. Related Work

In the existing literature about PV segmentation of MR brain

images, two approaches have been followed that mainly differ in

the prior assumptions about the spatial distribution of the tissue

types in the images.

The first approach, initiated by Santago and Gage [18], [19],

discards all spatial dependence of the tissue fractions between

the voxels, and explicitly assumes a uniform prior probability

for all nonpure tissues. Under these assumptions, Santago and

Gage derived the intensity distribution for partial voluming be-

tween two normally distributed tissue types, and estimated the

parameters of the resulting model by minimizing the distance

between the histogram and the model. While Santago and Gage

only addressed the problem of estimating the total volume of

each tissue in an entire image, their work was extended by other

authors to estimate the amount of every tissue in each indi-

vidual voxel. Replacing Santago and Gage’s carefully derived

PV model by a new, independent distribution and fitting this
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 5. Results for simulated data with three tissue classes: (a) label imageLLL; (b) resulting partial volumed image ~YYY ; and (c) histogram of ~YYY with the ground-truth
model superimposed. (d)–(f) Model initialization, the histogram fit for model B, and the histogram fit for model C, respectively. (g)–(i) Same as (d)–(f), but starting
from a different initialization. Notice that the parameter estimations with model B are incorrect and different for different initializations.

simplified model to the histogram, Laidlaw et al. [20] used the

intensity of a voxel and that of its neighbors to determine the

mixing proportions in a voxel. However, because of their simpli-

fication of the PV distribution, they had to introduce an heuristic

division rule for voxels classified to this distribution that is not

further justified. In a similar vein, Ruan et al. [17] simply re-

placed the PV distributions with independent normal distribu-

tions. After fitting the model to the histogram, each voxel was

uniquely assigned to one single pure tissue type using a MRF

prior and a feature that is highly T1-specific, thereby loosing

all notion of partial voluming. Shattuck et al. [21] used Santago

and Gage’s PV model to classify T1-weighted brain MR images

based on a sequence of low-level operations.

The second approach is based on the notion that the mixing

proportions change “smoothly” over the voxels in real-world

images, where “smoothly” is imposed by a MRF model [31],

[32], [16]. Assuming that the noise in the images is tissue-in-

dependent and that the noise characteristics and the mean in-

tensities of the pure tissue types are known a priori, Choi et al.

[31] searched for the maximum a posteriori (MAP) PV segmen-

tation by iteratively looking for the best classification of every

voxel based on the intermediate classification of its neighbors.

They also described two heuristic ways to update the mean in-

tensities of the pure tissues, based on thresholds defining what

is pure tissue and what not. Pham and Prince [16] proposed a

single-channel method that is very similar, with a different MRF

and with an updating rule for the mean intensities that relies on

some heuristic prior. Finally, Nocera and Gee [32] used a gra-

dient-descent search algorithm to find the MAP segmentation;

they also allowed the mean intensities to vary spatially smoothly

to compensate for MR inhomogeneities.

B. A Unifying Framework

The method proposed in this paper tackles the problem of

PV segmentation of brain MR images from a different angle.

In a model-based EM framework, widely used to classify brain

MR images into pure tissue types, an additional downsampling

step was introduced that accounts for partial voluming along the

borders between tissues. The resulting segmentation algorithm

is a natural extension of the usual EM approach, estimating the

relative amounts of the various tissue types in each voxel rather

than simply assigning each voxel to one single tissue.

Remarkably, our EM approach provides a sound mathemat-

ical framework that encompasses the existing PV methods de-

scribed in Section VI-A, avoiding all heuristic steps and algo-

rithmic tuning. Indeed, our spatial model B describes exactly the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6. PV segmentation of an axial slice of a high-resolution T1-weighted image when spatial model B was used: (a) data ~YYY ; (b) histogram with the initialization
superimposed; (c) histogram fit after model estimation; (d) expected fraction of white matter, (e) gray matter, and (f) CSF; (g) estimated probability for partial
voluming between white matter-gray matter, (h) white matter-CSF, and (i) gray matter-CSF.

statistical independence of the tissue fractions between voxels

and the uniform prior probability for nonpure tissue types as-

sumed in the work of Santago and Gage [18], [19], Laidlaw

et al. [20] and Ruan et al. [17]. When model B is used, our

method offers an alternative parameter estimation technique for

these methods, optimizing the likelihood of the model instead

of its distance to the histogram. However, our EM approach

estimates the model parameters and the tissue classification at

the same time, rather than in two separate processing steps. As

will be discussed in Section VI-C, this offers the vital advantage

that spatial information can keep the model parameter estima-

tion well-determined in cases where the histogram alone does

not provide sufficient information to uniquely define the model

parameters.

With spatial model C, i.e., the MRF model, our algorithm en-

compasses the PV segmentation methods of Choi et al. [31],

Pham and Prince [16] and Nocera and Gee [32]. These methods

iteratively assign one single mixing type to each voxel based on

a MRF prior, and update the mean intensity of every pure tissue

type accordingly. Our approach extends these techniques by ad-

ditionally tackling the difficult problem of estimating tissue-de-

pendent intensity covariances as well. Also, there is a conceptual

difference between the tissue fractions, that are random vari-

ables in the model, and the mean intensities, that are model pa-

rameters. It is well known that optimizing both simultaneously

as in [31], [16], [32] may introduce severe biases in the model

parameter estimation [33]. Indeed, imagine that each voxel is

uniquely assigned to the normal distribution with the highest

probability for its intensity in Fig. 2(f). Because of the large

overlap between the normal distributions, this would produce a

set of rectangularly truncated regions of the histogram to which

the normal distributions are subsequently fitted, introducing se-

vere errors in the parameter estimation. In our approach, on the

contrary, all possible mixing types are considered and con-

tribute with a fraction to the parameter estimation.

This divides the histogram into overlapping normal distributions

ensuring that no bias is incurred on the subsequent model pa-

rameter estimation [33].
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 7. PV segmentation of the same MR slice as in Fig. 6, but when model C was used as a spatial prior instead. Subfigures (g)–(i) need to be compared to the
corresponding subfigures in Fig. 6; notice how much better the voxels mixing two tissues are now lying on the border between the constituent tissues.

C. Spatial Models

As we have shown, our approach presents a global framework

for PV segmentation in which various statistical spatial models

can be easily integrated. The selection of an appropriate spatial

model, however, turns out to be a difficult issue.

The most trivial choice is our model A, which simply assumes

statistical independence of the tissue proportions between the

voxels, without further premises concerning the overall amount

of specific mixing types. While this yields a very flexible model

that can describe virtually any kind of image, the lack of spatial

dependency between the voxels causes the parameter estimation

to be entirely based on the histogram. Because of the complexity

of the model, this leads to severely underconstrained estimation

problems, even in the simplest case where merely two tissue

types mix as in Fig. 4.

A popular way to decrease the abundant number of degrees

of freedom in the model, is to assume that all nonpure mixing

combinations between two tissue types are equally alike

[14], [17]–[20], [22]. This is our model B. However, such a

simple model is in contradiction with experimental evidence.

Röll et al. [34] showed that not all mixing proportions occur

equally frequently when spheres are sampled on a 3-D image

grid. Figs. 2(f) and 4(b) demonstrate that the same is true for

realizations of the Ising MRF model. Besides, the assumption

of a uniform prior for nonpure tissue types does not tackle the

underconstrained nature of the parameter estimation adequately

in cases with considerable amounts of partial voluming. In the

simulated data of Fig. 5, slight modifications in the initialization

resulted in very different estimated parameter sets with model

B that nevertheless all provided a close fit to the histogram.

Such situations also occur in real MR images of the brain with

a lower resolution than the isotropic 1 1 1 mm data

shown in Figs. 6 and 7. Fig. 8 shows the intracranial volume of

a T2-weighted image of the head (TR 3800 ms and TE 90 ms;

20 axial slices; pixel size: 1.18 1.18 mm ; slice thickness:

3 mm; and interslice gap: 3 mm), along with just a few of the

possible explanatory parameter sets overlaid on its histogram

when model B is used. Because high amounts of PV voxels

mask away the peaks corresponding to pure gray matter and
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(a) (b)

(c) (d)

Fig. 8. In lower resolution MR images of the brain, it is often impossible to estimate the model parameters from the histogram alone. This example shows the
intracranial volume of a T2-weighted MR scan with a slice thickness of 3 mm. (a) Shows an axial slice, whereas (b)–(d) depict the histogram with some of the
possible explanatory parameter sets overlaid when model B is used.

CSF, the histogram alone does not seem to provide enough

information to uniquely define the model parameters.

Clearly, a more intelligent way to make the parameter esti-

mation well-determined is needed. What discerns the desired

parameter set from other ones that model the histogram equally

well, is that it additionally provides a meaningful classification.

In Section V, we showed on simulated data that using a spatial

model that favors the desired type of classifications enables ro-

bust parameter estimation even in very difficult cases. In order

to come to general, robust PV segmentation of brain MRI, the

aim is, therefore, to construct spatial models that somehow de-

scribe the spatial distribution of tissues in the human brain.

Choi et al. [31] and Nocera and Gee [32] proposed a MRF

model that imposes similar brain tissue fractions over neigh-

boring voxels. However, their model is too simple as the optimal

solution is given by values of that mix all tissues in equal

amounts everywhere in the image, and extreme values for .

Indeed, some of the normal distributions that model PV voxels

are sufficient to provide a close histogram fit, very similar to the

situation shown in Fig. 4(d), and the MRF prior erroneously en-

courages this solution. Pham and Prince [16] used a MRF model

that besides imposing similar tissue types in neighboring voxels,

explicitly favors regions of pure tissue. However, they had to

introduce heuristics to prevent the means from taking extreme

values, indicating that the MRF problem might not have been

totally solved.

In contrast, our model C defines an Ising MRF model on sub-

voxels rather than directly on the voxels, thereby naturally im-

posing homogeneous regions of pure tissues bordered by PV

voxels. The advantage of this approach on real MR images of

the brain is clearly visible from Fig. 7. Unfortunately, however,

the model in its current form seems too simplistic to be gener-

ally applicable. Since it only allows PV voxels at the interface

between two tissues, it is not able to describe such structures

as the deep gray matter where white and gray matter truly mix

without interface (cf., Fig. 7). Also, the Ising model tempts to

minimize the boundary length between tissues [35], which dis-

courages classifications from accurately following the highly

convoluted shape of the complex human cortex. This effect is

amplified by the presence of large uniform regions of single

tissue types in brain images, which results in very high estimates

for the MRF class transition costs and, thus, a strong favor for

smooth boundaries. In contrast to high-resolution data, the in-

tensity information of lower resolution images with histograms

similar to Fig. 8(b) does not provide a suitable counterweight

for such a strong prior, resulting in seriously oversmoothed seg-

mentation results when model C is used. It is, however, exactly

in those difficult cases that the MRF has to play its crucial role

of providing the adequate spatial information.

While we have provided in this paper a sound mathematical

framework for PV segmentation of MR images of the brain, the

construction of a suitable spatial model to be used within this
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framework remains a challenging task for future research. A

nonstationary Ising model, with different parameters in uniform

regions of pure tissue than at places where tissues mix, might be

a promising starting point. Such a MRF may be guided by atlas

information, as suggested in [16]. We believe that research to

improved spatial models is the key to providing the indispens-

able prior information that is necessary for general robust PV

segmentation of MR images of the brain.

APPENDIX A

Here, we derive the expression for used in (1).

It can easily be shown that

(10)

where

and

Assume without loss of generality that the indexes of the sub-

voxels underlying voxel are given by

. Then

where (10) was used and the property that .

Applying the same technique times, we finally get

with

which explains (1).

APPENDIX B

The EM update for the intensity parameters are given

by maximization of

For , this yields (11) as shown at the bottom of the page,

where denotes the indicator function. Using the same nota-

tion as in Appendix A, we have

(11)



VAN LEEMPUT et al.: UNIFYING FRAMEWORK FOR PV SEGMENTATION OF BRAIN MR IMAGES 119

(12)

To come to the third-last equation, the same technique was ap-

plied as the one used in Appendix A, and the second-last equa-

tion is obtained by application of (10). Filling (12) in into (11)

finally yields (3).

The derivation of (4) for is analogous.
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