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Abstract

How might one “reduce” a graph? That is, generate a smaller graph that preserves
the global structure at the expense of discarding local details? There has been
extensive work on both graph sparsification (removing edges) and graph coarsening
(merging nodes, often by edge contraction); however, these operations are currently
treated separately. Interestingly, for a planar graph, edge deletion corresponds to
edge contraction in its planar dual (and more generally, for a graphical matroid
and its dual). Moreover, with respect to the dynamics induced by the graph
Laplacian (e.g., diffusion), deletion and contraction are physical manifestations
of two reciprocal limits: edge weights of 0 and 1, respectively. In this work, we
provide a unifying framework that captures both of these operations, allowing one
to simultaneously sparsify and coarsen a graph while preserving its large-scale
structure. The limit of infinite edge weight is rarely considered, as many classical
notions of graph similarity diverge. However, its algebraic, geometric, and physical
interpretations are reflected in the Laplacian pseudoinverse L

†
, which remains finite

in this limit. Motivated by this insight, we provide a probabilistic algorithm that
reduces graphs while preserving L

†
, using an unbiased procedure that minimizes

its variance. We compare our algorithm with several existing sparsification and
coarsening algorithms using real-world datasets, and demonstrate that it more
accurately preserves the large-scale structure.

1 Motivation

Many complex structures and phenomena are naturally described as graphs (eg,1 brains, social
networks, the internet, etc). Indeed, graph-structured data are becoming increasingly relevant to
the field of machine learning [2, 3, 4]. These graphs are frequently massive, easily surpassing our
working memory, and often the computer’s relevant cache [5]. It is therefore essential to obtain
smaller approximate graphs to allow for more efficient computation.

Graphs are defined by a set of nodes V and a set of edges E ✓ V ⇥ V between them, and are often
represented as an adjacency matrix A with size |V |⇥ |V | and density / |E|. Reducing either of
these quantities is advantageous: graph “coarsening” focuses on the former, aggregating nodes while
respecting the overall structure, and graph “sparsification” on the latter, preferentially retaining the
important edges.

∗Both authors contributed equally to this work.
1The authors agree with the sentiment of the footnote on page xv of [1], viz, omitting superfluous full stops

to obtain a more efficient compression of, eg: videlicet, exempli gratia, etc.
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Spectral graph sparsification has revolutionized the field of numerical linear algebra and is used, eg, in
algorithms for solving linear systems with symmetric diagonally dominant matrices in nearly-linear
time [6, 7] (in contrast to the fastest known algorithm for solving general linear systems, taking
O(n!)-time, where ! ⇡ 2.373 is the matrix multiplication exponent [8]).

Graph coarsening appears in many computer science and machine learning applications, eg: as
primitives for graph partitioning [9] and visualization algorithms2 [10]; as layers in graph convolution
networks [3, 11]; for dimensionality reduction and hierarchical representation of graph-structured
data [12, 13]; and to speed up regularized least square problems on graphs [14], which arise in a
variety of problems such as ranking [15] and distributed synchronization of clocks [16].

A variety of algorithms, with different objectives, have been proposed for both sparsification and
coarsening. However, a frequently recurring theme is to consider the graph Laplacian L = D �A,
where D is the diagonal matrix of node degrees. Indeed, it appears in a wide range of applications,
eg: its spectral properties can be leveraged for graph clustering [17]; it can be used to efficiently solve
min-cut/max-flow problems [18]; and for undirected, positively weighted graphs (the focus of this
paper), it induces a natural quadratic form, which can be used, eg, to smoothly interpolate functions
over the nodes [19].

Work on spectral graph sparsification focuses on preserving the Laplacian quadratic form ~x>L~x, a
popular measure of spectral similarity suggested by Spielman & Teng [6]. A key result in this field is
that any dense graph can be sparsified to O(|V | log |V |) edges in nearly linear time using a simple
probabilistic algorithm [20]: start with an empty graph, include edges from the original graph with
probability proportional to their effective resistance, and appropriately reweight those edges so as to
preserve ~x>L~x within a reasonable factor.

In contrast to the firm theoretical footing of spectral sparsification, work on graph coarsening
has not reached a similar maturity; while a variety of spectral coarsening schemes have been
recently proposed, algorithms frequently rely on heuristics, and there is arguably no consensus. Eg:
Jin & Jaja [21] use k eigenvectors of the Laplacian as feature vectors to perform k-means clustering
of the nodes; Purohit et al. [22] aim to minimize the change in the largest eigenvalue of the adjacency
matrix; and Loukas & Vandergheynst [23] focuses on a “restricted” Laplacian quadratic form.

Although recent work has combined sparsification and coarsening [24], they used separate algorithmic
primitives, essentially analyzing the serial composition of the above algorithms. The primary contri-
bution of this work is to provide a unifying probabilistic framework that allows one to simultaneously
sparsify and coarsen a graph while preserving its global structure by using a single cost function that
preserves the Laplacian pseudoinverse L

†
.

Corollary contributions include: 1) Identifying the limit of infinite edge weight with edge contraction,
highlighting how its algebraic, geometric, and physical interpretations are reflected in L

†
, which

remains finite in this limit (Section 2); 2) Offering a way to quantitatively compare the effects
of edge deletion and edge contraction (Section 2 and 3); 3) Providing a probabilistic algorithm
that reduces graphs while preserving L

†
, using an unbiased procedure that minimizes its variance

(Sections 3 and 4); 4) Proposing a more sensitive measure of spectral similarity of graphs, inspired
by the Poincaré half-plane model of hyperbolic space (Section 5.3); and 5) Comparing our algorithm
with several existing sparsification and coarsening algorithms using synthetic and real-world datasets,
demonstrating that it more accurately preserves the large-scale structure (Section 5).

2 Why the Laplacian pseudoinverse

Many computations over graphs involve solving L~x = ~b for ~x [25]. Thus, the algebraically relevant
operator is arguably the Laplacian pseudoinverse L

†
. In fact, its connection with random walks

has been used to derive useful measures of distances on graphs, such as the well-known effective
resistance [26], and the recently proposed resistance perturbation distance [27]. Moreover, taking
the pseudoinverse of L leaves its eigenvectors unchanged, but inverts the nontrivial eigenvalues.
Thus, as the largest eigenpairs of L

†
are associated with global structure, preserving its action will

preferentially maintain the overall “shape” of the graph (see Appendix Section G for details). For
instance, the Fielder vector [17] (associated with the “algebraic connectivity” of a graph) will be

2For animated examples using our graph reduction algorithm, see the following link:
youtube.com/playlist?list=PLmfiQcz2q6d3sZutLri4ZAIDLqM_4K1p-.
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preferentially preserved. We now discuss in further detail why L
†

is well-suited for both graph
sparsification and coarsening.

Attention is often restricted to undirected, positively weighted graphs [28]. These graphs have
many convenient properties, eg, their Laplacians are positive semidefinite (~x>L~x � 0) and have a
well-understood kernel and cokernel (L~1 = ~1>L = ~0). The edge weights are defined as a mapping
W : E ! R>0. When the weights represent connection strength, it is generally understood that
we ! 0 is equivalent to removing edge e. However, the closure of the positive reals has a reciprocal
limit, namely we ! +1.

This limit is rarely considered, as many classical notions of graph similarity diverge. This includes
the standard notion of spectral similarity, where eG is a �-spectral approximation of G if it preserves
the Laplacian quadratic form ~x>L

G
~x to within a factor of � for all vectors ~x 2 R

|VG| [6]. Clearly, this
limit yields a graph that does not approximate the original for any choice of �: any ~x with different
values for the two nodes joined by the edge with infinite weight now yields an infinite quadratic form.
This suggests considering only vectors that have the same value for these two nodes, essentially
contracting them into a single “supernode”. Algebraically, this interpretation is reflected in L

†
, which

remains finite in this limit: the pair of rows (and columns) corresponding to the contracted nodes
become identical (see Appendix Section C).

Physically, consider the behavior of the heat equation @t~x+ L~x = ~0: as we ! +1, the values on
the two nodes immediately equilibrate between themselves, and remain tethered for the rest of the
evolution.3 Geometrically, the reciprocal limits of we ! 0 and we ! +1 have dual interpretations:
consider a planar graph and its planar dual; edge deletion in one graph corresponds to contraction in
the other, and vice versa. This naturally extends to nonplanar graphs via their graphical matroids and
their duals [29].

Finally, while the Laplacian operator is frequently considered in the graph sparsification and coarsen-
ing literature, its pseudoinverse also has many important applications in the field of machine learning
[30], eg: online learning over graphs [31]; similarity prediction of network data [32]; determining
important nodes [33]; providing a measure of network robustness to multiple failures [34]; extending
principal component analysis to graphs [35]; and collaborative recommendation systems [36]. Hence,
graph reduction algorithms that preserve L

†
would be useful to the machine learning community.

3 Our graph reduction framework

We now describe our framework for constructing probabilistic algorithms that generate a reduced
graph eG from an initial graph G, motivated by the following desiderata: 1) Reduce the number of
edges/nodes (Section 3.1); 2) Preserve L

†
in expectation (Section 3.2); and 3) Minimize the change

in L
†

(Section 3.3).

We first define these goals more formally. Then, in Section 3.4, we combine these requirements
to define our cost function and derive the optimal probabilistic action (ie, deletion, contraction, or
reweight) to perform to an edge.

3.1 Reducing edges and nodes

Depending on the application, it might be more important to reduce the number of nodes (eg,
coarsening a sparse network) or the number of edges (eg, sparsifying a dense network). Let r be
the number of prioritized items reduced during a particular iteration. When those items are nodes,
then r = 0 for a deletion, and r = 1 for a contraction. When those items are edges, then r = 1 for a
deletion, however r > 1 for a contraction is possible: if the contracted edge forms a triangle in the
original graph, then the other two edges will become parallel in the reduced graph (see Figure SI 3
in Appendix Section C). With respect to the Laplacian, this is equivalent to a single edge with
weight given by the sum of these now parallel edges. Thus, when edge reduction is prioritized, a
contraction will have r = 1 + ⌧e, where ⌧e is the number of triangles in the original graph G in which
the contracted edge e participates.

3In the spirit of another common analogy (edge weights as conductances of a network of resistors), breaking
a resistor is equivalent to deleting that edge, while contraction amounts to completely soldering over it.
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Note that, even when node reduction is prioritized, the number of edges will also necessarily decrease.
Conversely, when edge reduction is prioritized, contraction of an edge is also possible, thereby
reducing the number of nodes as well. For the case of simultaneously sparsifying and coarsening a
graph, we choose to prioritize edge reduction, although nodes could also be a sensible choice.

3.2 Preserving the Laplacian pseudoinverse

Consider perturbing the weight of a single edge e = (v1, v2) by ∆w. The change in the Laplacian is

LeG
� L

G
= ∆w~be

~b
>
e , (1)

where LeG
and L

G
are the perturbed and original Laplacians, respectively, and~be is the (arbitrarily)

signed incidence (column) vector associated with edge e, with entries

(be)i =

(
+1 i = v1
�1 i = v2
0 otherwise.

(2)

The change in L
†

is given by the Woodbury matrix identity4 [39]:

L
†
eG
� L

†

G
= �

∆w

1 +∆w~b>eL
†

G

~be
L

†

G

~be
~b
>
eL

†

G
. (3)

Note that this change can be expressed as a matrix that depends only on the choice of edge e,
multiplied by a scalar term that depends (nonlinearly) on the change to its weight:

∆L
† = f

⇣
∆w
we

, weΩe

⌘

| {z }
nonlinear scalar

⇥ Me

|{z}
constant matrix

, (4)

where

f = �
∆w
we

1 + ∆w
we

weΩe

, (5)

Me = weL
†

G

~be
~b
>
eL

†

G
, (6)

Ωe = ~b
>
eL

†

G

~be. (7)

Hence, if the probabilistic reweight of this edge is chosen such that E[f ] = 0, then we have
E[L†

eG
] = L

†

G
, as desired. Importantly, f remains finite in the following relevant limits:

deletion: ∆w
we

! �1, f ! (1� weΩe)
�1

contraction: ∆w
we

! +1, f ! � (weΩe)
�1

.
(8)

Note that f diverges when considering deletion of an edge with weΩe = 1 (ie, an edge cut). Indeed,
such an action would disconnect the graph and invalidate the use of equation 3 (see footnote 4).
However, this possibility is precluded by the requirement that E[f ] = 0.

3.3 Minimizing the error

Minimizing the magnitude of ∆L
†

requires a choice of matrix norm, which we take to be the sum of
the squares of its entries (ie, the square of the Frobenius norm). Our motivation is twofold. First, the
algebraically convenient fact that the Frobenius norm of a rank one matrix has a simple form, viz,

me ⌘ kMekF = we
~b
>
eL

†

G
L

†

G

~be. (9)

Second, the square of this norm behaves as a variance; to the extent that the Meassociated to different
edges can be treated as (entrywise) uncorrelated one can decompose multiple perturbations as follows:

E

���
X

∆L
†
���
2

F

�
⇡
X

E

h��∆L
†
��2

F

i
, (10)

4This expression is only officially applicable when the initial and final matrices are full-rank; additional care
must be taken when they are not. However, for the case of changing the edge weights of a graph Laplacian, the
original formula remains unchanged [37, 38] (so long as the graph remains connected), provided one uses the
definitions in Section 3.5 (see also Appendix Sections C and F).
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which allows the single-edge results from Section 3.4 to be iteratively applied to our reduction
algorithm, which has multiple reductions (Section 4). In Appendix Section A, we empirically validate
this approximation using synthetic and real-world networks, showing that this approximation is either
nearly exact or a conservative estimate.

For subtleties associated with edge contraction (see Appendix Section F, in particular equation 39).

3.4 A cost function for spectral graph reduction

Combining the discussed desiderata, we choose to minimize the following cost function:

C = E

h��∆L
†
��2

F

i
� �2

E[r] , (11)

subject to

E
⇥
∆L

†
⇤
= 0 , (12)

where the parameter � controls the tradeoff between number of prioritized items reduced r and error
incurred in L

†
. This cost function naturally arises when minimizing the expected squared error for a

given expected amount of reduction (or equivalently maximizing the expected number of reductions
for a given expected squared error).

We desire to minimize this cost function over all possible reduced graphs. As, when reducing
multiple edges, E[r] is additive and the expected squared error is empirically additive, we are able
to decompose this objective into a sequence of minimizations applied to individual edges. Thus,
minimization of this cost function for each edge acted upon can be seen as a probabilistic greedy
algorithm for minimizing the cost function for the final reduced graph.

Here, we describe the analytic solution for the optimal action (ie, probabilistically choosing to delete,
contract, or reweight) to be applied to a single edge. We provide the solution in Figure 1, and a
detailed derivation in Appendix Section B.

For a given edge e, the values of me, weΩe, and ⌧e are fixed, and minimizing the cost function (11)
(given (12)) results in a piecewise solution with three regimes, depending on the value of �: 1) When
� < �1(me, weΩe, ⌧e) = min(�1d,�1c), � is small compared with the error that would be incurred
by acting on this edge, thus it should not be changed; 2) When � > �2(me, weΩe, ⌧e), � is large for
this edge, and the optimal solution is to probabilistically delete or contract this edge (pd + pc = 1;
no reweight is required); and 3) In the intermediate case (�1 < � < �2), there are two possibilities,
depending on the edge and the choice of prioritized items: if �1d < �1c, the edge is either deleted or
reweighted, and if �1c < �1d, the edge is either contracted or reweighted.

β < β1 pd = 0, pc = 0,
∆w

we
= 0

β
1
<

β
<

β
2

β
1
d
<

β
1
c

pd = 1−
me

(1−weΩe)β
, pc = 0,

∆w

we
=

⇣

1−
pd

1−weΩe

⌘

−1

− 1

β
1
c
<

β
1
d

pd = 0, pc = 1−
me

weΩeβ
√

1+τe
,

∆w

we
= −

pc
weΩe

β > β2 pd = 1− weΩe, pc = weΩe

prioritizing edges prioritizing nodes

β1d
me

1−weΩe
∞

β1c
me

weΩe

1
√

1+τe

me

weΩe

β2
me

weΩe(1−weΩe)
1

1+
√

1+τe

me

weΩe(1−weΩe)

Figure 1: Left: Minimizing C for a single edge e. There are three regimes for the solution, depending on the
value of �. When node reduction is prioritized, set ⌧e = 0. Right: Values of � dividing the three regimes.
Note that when edge reduction is prioritized, the number of triangles enters the expressions, and when node
reduction is prioritized, there is no deletion in the intermediate regime. However, for either choice, both deletion
and contraction can have finite probability, and the algorithm does not exclusively reduce one or the other. Thus,
when simultaneously sparsifying and coarsening a graph, the prioritized items may be chosen to be either edges
or nodes. We remark that the values of �1d, �1c, and �2 might be of independent interest as measures of edge
importance for analyzing connections in real-world networks.
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3.5 Node-weighted Laplacian

When nodes are merged, one often represents the connectivity of the resulting graph eG by a matrix
of smaller size. To properly compare the spectral properties of eG with those of the original graph
G, one must keep track of the number of original nodes that comprise these “supernodes” and
assign them proportional weights. The appropriate reduced Laplacian LeG

(of size |VeG|⇥ |VeG|) is then
W

�1

n B
>
WeB , where the W are the diagonal matrices of the node weights5 and the edge weights of

eG, respectively, and B is its signed incidence matrix with columns given by (2).

Moreover, one must be careful to choose the appropriate pseudoinverse of LeG
, which is given by

L
†
eG
=
�
LeG

+ J
��1

� J , (13)

J =
1

~1>~wn

~1~w>

n , (14)

where ~wn 2 R
|VG|
>0

is the vector of node weights. Note that L
†
eG
LeG

= LeG
L

†
eG
= I � J , the appropriate

node-weighted projection matrix.

To compare the action of the original and reduced Laplacians on a vector ~x 2 R
|VG| over the nodes

of the original graph, one must “lift” LeG
to operate on the same space as L

G
. We thus define the

mapping from original to coarsened nodes as a |VeG|⇥ |VG| matrix C , with entries

cij =
n
1 node j in supernode i
0 otherwise. (15)

The appropriate lifted Laplacian is LeG,l
= C

>
LeG

W
�1

n C . Likewise, the lifted Laplacian pseudoin-
verse is L

†
eG,l
= C

>
L

†
eG
W

�1

n C (see Appendix Section C for a detailed rationale of these definitions).

4 Our graph reduction algorithm

Using this framework, we now describe our graph reduction algorithm. Similar to many graph
coarsening methods [41, 42], we obtain the reduced graph by acting on the initial graph (as opposed
to adding edges to an empty graph, as is frequently done in sparsification [43, 44]).

Care must be taken, however, as simultaneous deletions/contractions may result in undesirable
behavior. Eg, while any edge that is itself a cut-set will never be deleted (as weΩe = 1), a collection
of edges that together make a cut-set might all have finite deletion probability. Hence, if multiple
edges are simultaneously deleted, the graph could become disconnected. In addition, the single-edge
analysis could underestimate the change in L

†
associated with simultaneous contractions. Eg, consider

two highly-connected nodes that are each the center of a different community, and a third auxiliary
node that happens to be connected to both: contracting the auxiliary node into either of the other two
would be sensible, but performing both contractions would merge the two communities.

Algorithm 1 describes our graph reduction scheme. Its inputs are: G, the original graph; q, the
fraction of sampled edges to act upon per iteration; d, the minimum expected decrease in prioritized
items per edge acted upon; and StopCriterion, a user-defined function. With these inputs, we
implicitly select �. Let �?,e be the minimum � such that E[r] � d for edge e. For each iteration, we
compute �?,e for all sampled edges, and choose a � such that a fraction q of them have �?,e < �.
We then apply the corresponding probabilistic actions to these edges. The appropriate choice of
StopCriterion depends on the application. Eg, if one desires to bound the accuracy of an algorithm
that uses graph reduction as a primitive, limiting the Frobenius error in L

†
is a sensible choice (it is

trivial to keep a running total of the estimated error, see Appendix Section A). On the other hand, if
one would like the reduced graph to be no larger than a certain size, then one can simply continue
reducing until this point. While both criteria may also be implicitly implemented via an upper bound
on �, the relationship is nontrivial and depends on the structure of the graph.

The aforementioned problems associated with simultaneous deletions/contractions can be eliminated
by taking a conservative approach: acting on only a single edge per iteration. However, this results
in an algorithm that does not scale favorably for large graphs. A more scalable solution involves

5
Wn is often referred to as the “mass matrix” [40]. We note that the use of the random walk matrix D

−1
L

can be seen as using the node degrees as a surrogate for the node weights.
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Algorithm 1 ReduceGraph

1: Inputs: graph G, fraction of sampled edges to act upon q, minimum E[r] per edge acted upon d, and a
StopCriterion

2: Initialize eG0 ← G, t ← 0, stop ← False
3: while not (stop) do
4: Sample an independent edge set
5: for (edge e) in (sampled edges) do
6: Compute Ωe, me (see equations (7) and (9))
7: Evaluate �?e, according to d (see Tables in Figure 1)
8: end for
9: Choose � such that a fraction q of the sampled edges (those with the lowest �?e) are acted upon

10: Probabilistically choose to reweight, delete, or contract these edges
11: Perform reweights and deletions to eGt

12: Perform contractions to eGt

13: eGt+1 ← eGt, t ← t+ 1
14: stop ← StopCriterion( eGt)
15: end while
16: return reduced graph eGt

carefully sampling the candidate set of edges. In particular, we are able to significantly ameliorate
these issues by sampling the candidate edges such that they do not have any nodes in common (ie,
the sampled edges form an independent edge set). Not only does this eliminate the possibility of
“accidental” contractions, but, empirically, it also suppresses the occurrence of graph disconnections
(the small fraction that become disconnected are restarted). At each iteration, our algorithm finds a
random maximal independent edge set in O(|V |) time using a simple greedy algorithm.6 In practice,
the size of such a set scales as O(|V |) (although it is easy to find families for which this scaling does
not hold, eg, star graphs). Our algorithm then computes the Ωe and me of these sampled edges, and
acts on the fraction q with the lowest �?e.

The main computational bottleneck of our algorithm is computing Ωe and me (equation (9)). However,
we can draw on the work of [20], which describes a method for efficiently computing "-approximate
values of Ωe for all edges, requiring eO(|E| log |V |/✏2) time. With minimal changes, this procedure
can also be used to compute approximate values of me with similar efficiency (in Appendix Section F,
we discuss the details of how to efficiently compute approximations of me). As we must compute
these quantities for each iteration, we multiply the running time by the expected number of iterations,
O(|E|/qd|V |). Empirically, we find that one is able to set q ⇠ 1/16 and d ⇠ 1/4 with minimal loss
in reduction quality (see Appendix Section E). Thus, we expect that our algorithm could have a
running time of eO(hki|E|), where hki is the average degree. However, in the following results, we
have used a naive implementation: computing L

†
at the onset, and updating it using the Woodbury

matrix identity.

5 Experimental results

In this section, we empirically validate our framework and compare it with existing algorithms.
We consider two cases of our general framework, namely graph sparsification (excluding regimes
involving edge contraction), and graph coarsening (prioritizing reduction of nodes). In addition,
as graph reduction is often used in graph visualization, we generated videos of our algorithm
simultaneously sparsifying and coarsening several real-world datasets (see footnote 2 and Appendix
Section I).

5.1 Hyperbolic interlude

When comparing a graph G with its reduced approximation eG, it is natural to consider how relevant
linear operators treat the same input vector. If the vector LeG,l

~x is aligned with L
G
~x, the fractional error

in the quadratic form ~x>L~x is a natural quantity to consider, as it corresponds to the relative change in
the magnitude of these vectors. However, it is not so clear how to compare output vectors that have

6Specifically, randomly permute the nodes, and sequentially pair them with a random available neighbor (if
there is one). The obtained set contains at least half as many edges as the maximum matching [45].
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an angular difference. Here, we describe a natural extension of this notion of fractional error, which
draws intuition from the Poincaré half-plane model of hyperbolic geometry. In particular, we choose
the boundary of the half-plane to be perpendicular to ~x and compute the geodesic distance between
L

G
~x and LeG,l

~x, viz,

d~x(L0,L1)
def
= arccosh

 
1 +

��(L0 � L1)~x
��2
2

��~x
��2
2

2
�
~x>L0~x

��
~x>L1~x

�
!
, (16)

where L0 and L1 are positive definite matrices (for now).

We define the hyperbolic distance between these matrices as

dh(L0,L1)
def
= sup

~x

d~x(L0,L1) . (17)

This dimensionless quantity inherits the following standard desirable features of a dis-
tance: symmetry and non-negativity, dh(L0,L1) = dh(L1,L0) � 0; identity of indiscernibles,
dh(L0,L1) = 0 () L0 = L1; and subadditivity, dh(L0,L2)  dh(L0,L1) + dh(L1,L2). In ad-
dition, we note that dh(cL0, cL1) = dh(L0,L1) 8c 2 R\{0}, emphasizing its interpretation as a
fractional error.

This notion naturally extends to (positive semidefinite) graph Laplacians if one considers only vectors

~x that are orthogonal to their kernels (ie, require that ~1>~x = 0 when taking the supremum in (17)).
With this modification, the connection with the spectral graph sparsification can be stated as follows:

Theorem 1. If dh
�
L

G
,LeG

�
 ln(�), then eG is a �-spectral approximation of G.

Here, the notion of �-spectral approximation is the same as in Spielman & Teng [6] (see Section 2),
and thus is restricted to sparsification only. The proof is provided in Appendix Section D.

As d~x is analogous to the ratio of quadratic forms with ~x, dh is likewise analogous to the notion of a
�-spectral approximation. Moreover, as d~x and dh also consider angular differences between L

G
~x

and LeG,l
~x, they serve as more sensitive measures of graph similarity.

In the following sections, we compare our algorithm with other graph reduction methods using d~x,
where we choose ~x to be eigenvectors of the original graph Laplacian. In Appendix Section H, we
replicate our results using more standard measures (eg, quadratic forms and eigenvalues).

5.2 Comparison with spectral graph sparsification

Figure 2 compares our algorithm (prioritizing edge reduction, and excluding the possibility of
contraction) with the standard spectral sparsification algorithm of Spielman & Srivastava [20] using
three real-world datasets. We choose to compare with this particular sparsification method because it
directly aims to optimally preserve the Laplacian. To the best of our knowledge, other sparsification
methods either do not explicitly preserve properties associated with the Laplacian [46, 47], or share
the same spirit as Spielman & Srivastava’s algorithm [48] (often considering other settings, such
as distributed [49] or streaming [50] computation). The results in Figure 2 show that our algorithm

better preserves L
†

and preferentially preserves its action on eigenvectors associated with global
structure.

5.3 Comparison with graph coarsening algorithms

Figure 3 compares our algorithm (prioritizing node reduction) with several existing coarsening
algorithms using three more real-world datasets. In order to make a fair comparison with these
existing methods, after contracting their prescribed groups of nodes, we appropriately lift the resulting
reduced L

†
eG

(see Appendix Section C). We find that our algorithm more accurately preserves global
structure.

6 Conclusion

In this work, we unify spectral graph sparsification and coarsening through the use of a single cost
function that preserves the Laplacian pseudoinverse L

†
. We describe a probabilistic algorithm for

8



graph reduction that employs edge deletion, contraction, and reweighting to keep E
⇥
L

†
eG

⇤
= L

†

G
, and

uses a new measure of edge importance (�?) to minimize its variance. Using synthetic and real-world
datasets, we demonstrate that our algorithm more accurately preserves global structure compared to
existing algorithms. We hope that our framework (or some perturbation of it) will serve as a useful
tool for graph algorithms, numerical linear algebra, and machine learning.
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Figure 2: Our sparsification algorithm preferentially preserves global structure. We applied our algorithm
without contraction (Ours) and compare with that of Spielman & Srivastava [20] (Spielman et al) using three
datasets: Left: a collaboration network of Jazz musicians (198 nodes and 2742 edges) from [51]; Middle:
the C. elegans posterior nervous system connectome (269 nodes and 2902 edges) from [52]; and Right: a
weighted social network of face-to-face interactions between primary school students, with initial edge weights
proportional to the number of interactions between pairs of students (236 nodes and 5899 edges) from [53]. For
the two algorithms, we compute the hyperbolic distance d~x (fractional error) between L

†

G
~x and L

†
eG
~x at different

levels of sparsification for two choices of ~x: the smallest non-trivial eigenvector of the original Laplacian (dark
shading), which is associated with global structure; and the median eigenvector (light shading). Shading denotes
one standard deviation about the mean for 16 runs of the algorithms. The curves end at the minimum edge
density for which the sparsified graph is connected.
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Figure 3: Our algorithm preserves global structure more accurately than other coarsening algorithms.
We compare our algorithm (prioritizing node reduction) (Ours) to several existing coarsening algorithms: two
classical methods for graph coarsening (heavy-edge matching (HEM) [54] and heavy-clique matching (HCM)
[54]), and two recently proposed spectral coarsening algorithms (local variation by Loukas [55] (LV) and the k-
means method by Jin & Jaja [21] (KMeans)). We ran the comparisons using three datasets: Left: a transportation
network of European cities and roads between them (1039 nodes and 1305 edges) from [56]; Middle: a triangular
mesh of the text “NeurIPS” (567 nodes and 1408 edges); and Right: a weighted social network of face-to-face
interactions during an exhibition on infectious diseases, with initial edge weights proportional to the number of
interactions between pairs of people (410 nodes and 2765 edges) from [57]. For all algorithms considered, we
compute the hyperbolic distance d~x (fractional error) between L

†

G
~x and L

†
eG,l
~x, where ~x is the smallest non-trivial

eigenvector of the original Laplacian (associated with global structure). To provide a baseline, we plot their mean
fractional error normalized by that obtained by random matching (RM) [54] for the same level of coarsening.
Shading denotes one standard deviation about the mean for 16 runs of the algorithms.
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