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��������—We present a prescriptive framework for the
eventtriggered control of nonlinear systems. Rather than clos
ing the loop periodically, as traditionally done in digital control,
in eventtriggered implementations the loop is closed according
to a statedependent criterion. Eventtriggered control is espe
cially well suited for embedded systems and networked control
systems since it reduces the amount of resources needed for
control such as communication bandwidth. By modeling the
eventtriggered implementations as hybrid systems, we provide
Lyapunovbased conditions to guarantee the stability of the
resulting closedloop system and explain how they can be

utilized to synthesize eventtriggering rules. We illustrate the
generality of the approach by showing how it encompasses
several existing eventtriggering policies and by developing
new strategies which further reduce the resources needed for
control.

I. INTRODUCTION

The implementation of controllers on shared digital plat"

forms offers a number of advantages in terms of cost,

ease of maintenance and flexibility compared to classical

dedicated control structures. However, it also poses several

implementation problems, in particular we need to know

when the control loop has to be closed to ensure stability and

performance. In traditional setups, this is done periodically,

independently of the current state of the plant. Although this

approach is appealing from the analysis and implementa"

tion point of view, it often leads to unnecessary resource

usage (e.g. communication bandwidth, computation time).

An alternative implementation, known as event"triggered

control, consists in closing the loop according to a rule that

depends on the current state of the plant. A number of works

addressed this topic, e.g. [2], [4], [6], [8], [15], [19], [20]. In

[19], a simple strategy is proposed for nonlinear systems.

The idea is the following. Assuming the continuous"time

closed"loop system is input"to"state stable (ISS) with respect

to measurement errors, a triggering condition is derived to
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guarantee that the Lyapunov function for the continuous"

time system always decreases at a given rate when control

tasks are executed at discrete time instants. It is shown that

there does exist a constant minimal time interval between

executions that reinforces the idea that event"triggered con"

trol is expected to generate larger inter"event intervals than

periodic rules. This translates into a lower usage of the

communication bandwidth and the computational resources.

Noting that the monotonic decrease of is not necessary

to guarantee asymptotic stability for the obtained hybrid

systems, a triggering rule is developed in [20] to ensure that

appropriately decreases at each transmission instant. This

method was shown to potentially exhibit larger inter"event

intervals compared to [19].

In this paper, we present a prescriptive framework for the

event"triggered control of nonlinear systems. We model the

problem as a hybrid system using the formalism of [7], as in

[6]. We start by identifying the key features of the strategy

in [19] in terms of a hybrid Lyapunov function and use them

to introduce the main idea of our approach. The proposed

framework relies on Lyapunov"based conditions that can

be used to synthesize event"triggering rules to guarantee

asymptotic stability properties. Our approach encompasses

the strategies in [19], [20] for which we propose new stability

analyses and relax some of the required conditions. We

also develop a family of new triggering rules inspired by

[20] which allows us to trade performance for longer inter"

event times. In the companion paper [17], we show how this

framework can be applied to distributed networked control

systems subject to scheduling.

The paper is organized as follows. Notation and prelimi"

nary definitions are presented in Section II. The problem is

stated in Section III where we show how the work in [19] can

be analysed using a hybrid Lyapunov function. In Section IV,

we develop our framework and provide guidelines on how

to use it. Afterwards, we show how the work in [20] can

be interpreted using our approach in Section V and propose

new triggering rules. An illustrative example is provided in

Section VI. The proofs are provided in the Appendix.

II. NOTATION AND DEFINITIONS

Let , , ,

, . A function

is of class if it is continuous, zero at zero

and strictly increasing, and it is of class if in addition

it is unbounded. A continuous function

is of class if for each , is of class

, and, for each , is decreasing to zero.



Additionally, a function is of class ,

if and for any . For

, the notation stands for .

The distance of a vector to a set is denoted by

.

We will consider locally Lipschitz Lyapunov functions

(that are not necessarily differentiable everywhere), therefore

we will use the Clarke derivative which is defined as follows

for : ,

that corresponds to the usual derivative when is contin"

uously differentiable. We define the generalized gradient of

at as:

, that matches the classical notion of

gradient when is differentiable.

We will write hybrid systems using the models proposed

in [7], that are of the form:

(1)

where is the state and are respectively

the flow and the jump sets. Hence, any hybrid system

is defined by a tuple . The solutions of (1)

are defined on so"called hybrid time"domains. A set

is called a compact hybrid time domain if

for some finite sequence of

times . is a hybrid time domain

if for all , is a

compact hybrid time domain. A hybrid signal is a function

defined on a hybrid time domain. A hybrid arc is a function

defined on a hybrid time domain dom , and such that

is locally absolutely continuous for each . A hybrid

arc dom is a solution to (1) if:

(1) For all and almost all such that

dom we have: ,

.

(2) For dom such that dom , we

have , .

Assuming and are continuous and are closed,

system (1) possesses solutions that may be non"unique, see

[7]. We are interested in the following stability definition.

Definition 1. The closed set is ��	
�������

���	���
����� ������ ������� for system (1) if for any

there exists such that for any solution

to (1) with :

for all dom .

Remark 1. It is shown for continuous�time systems in

Proposition 3.4 in [1] that a closed set is S�GAS if and

only if it is globally asymptotically stable. We note that the

stability bound in Definition 1 does not imply forward com�

pleteness and this is referred to as pre�asymptotic stability

according to [5].

We will show that two successive jumps (that will cor"

respond to data transmissions in our study) are always

separated by a certain uniform amount of time as long as

the solution is not in the stable set .

Definition 2. For any forward invariant set1 for

system (1), we say that ����
�� � ��� ���� � ��	
�����

����� �
	� � if, for any , there exists

such that for any solution to (1) with

, :

(2)

where dom .

III. PROBLEM STATEMENT

A. System models

Consider the following plant:

(3)

where is the plant state, the control input

for which a stabilizing dynamic state"feedback controller is

designed:

(4)

where is the controller state. On digital platforms,

transmission between the sensors, the controller and the

actuators only occur at some transmission instants ,

. The problem can then be modeled as follows:

(5)

where and denote the variables respectively generated

from the most recently transmitted plant state and control

input. They are usually kept constant between two transmis"

sion instants i.e. and

for that corresponds to and

. However, other implementations are possible. At each

transmission instant, the controller receives , updates

, sends the control input and the

actuators update . We suppose that this process

occurs in a synchronized manner and leave the study of the

effects of the eventual induced delays for future work.

Traditionally, the sequence of , , is periodic, i.e.

where . The stability of system (5)

is then guaranteed by selecting sufficiently small, see [3],

[10], [13] to mention a few. In this study, we abandon this

paradigm and implicitly define the transmission instants by a

rule based on the states of system (5). Rewriting the problem

using the hybrid formalism in [7], similar to Section II.C in

[6], we obtain:

(6)

1A set is forward invariant for system (1), if for any solution
to (1) with we have for all dom .



where , denotes

the sampling"induced error with , .

The sets and are closed and respectively denote the

flow and the jump sets, they are defined according to the

triggering condition. Typically, the system flows on and

experiences a jump on where the triggering condition is

satisfied. When , the system can either jump or

flow, the latter only if flowing keeps in . Functions

and are defined as (where we can replace by ):

(7)

and are assumed to be continuous.

Remark 2. Our assumptions allow for triggering rules

that depend both on and . However, the specific choice

of triggering rule needs to be done according to the im�

plementation scenario. In the case of dynamic controllers,

a triggering rule depending on requires continuous

communication between the sensors and the controller. This

is difficult to achieve in practice since sensors do not have, in

general, access to the state of the controller. We have chosen

to present the problem in a general setting because it allows

to recover as particular cases the stabilization using a static

controller (as in Sections III�B, V�A for example) and the

cases where only the plant states or the inputs are sampled.

The main problem addressed in this paper is to define

the triggering condition, i.e. the flow and jump sets and

in (6), in order to minimize the resource usage while

ensuring asymptotic stability properties. We now introduce

the main idea of the framework presented hereafter in Section

IV by interpreting the work in [19] using a hybrid Lyapunov

function.

B. Main idea

We first revisit the work in [19] where a static controller

is assumed to render the closed"loop system

(3) input"to"state stable (ISS) with respect to the sampling"

induced errors (that can be considered as measurement errors

at this stage since, when the controller is static, the sampling"

induced error can be seen to be only due to the sampling of

the measurements, i.e. ). This is equivalent to the

following assumption (see Theorem 1 in [18]) where

(as the controller is static).

Assumption 1. There exists a smooth Lyapunov function

and such that for all

:

(8)

and for all :

(9)

Since zero"order"hold devices are used in [19], we have

in (7) and the model (6) is here:

(10)

From (9), we deduce that with

implies:

(11)

In that way, the triggering rule in [19] can be written as

, that we rewrite as:

(12)

At each transmission instant, is reset to , so we have

and decreases monotonically

according to (11). The next transmission occurs as soon as

(12) is satisfied. The flow and the jump sets in (10) can be

defined as follows:

(13)

To guarantee the existence of a minimum interval of time

between two transmissions when , the following

conditions are used in [19].

Assumption 2. For any compact set , there

exist such that for all :

(14)

(15)

The stability analysis of system (10) can be done using

the following Lyapunov function (assuming is locally

Lipschitz): . Indeed,

Property (a): is positive definite and radially un"

bounded in view of (8) and since .

Property (b): decreases on according to (11).

Property (c): does not increase at jumps since

and .

Property (d): it was shown in [19] using Assumption

2 that there does exist a uniform minimal time interval

between two successive transmission instants (as long

as ) for solutions that start in a compact set

that contains the origin. In other words, solutions to (10)

have a semiglobal dwell time on according

to Definition 2.

We show in Section IV that these four properties guarantee

asymptotic stability properties for system (10) and that they

can be used to build up other event"triggering conditions.

Note that similar ingredients are used to prove the stability

of other types of hybrid systems in [13], [14] for example.

IV. A LYAPUNOV"BASED FRAMEWORK

Before stating the main result of this section, it is impor"

tant to note that auxiliary variables may be introduced to

define the triggering condition. Indeed, it is common in the

hybrid literature to introduce additional variables like clocks

to ensure or analyse the stability e.g. [5], [13]. We will see



in Section V"A that the strategy in [20] can be interpreted

using our framework by making use of an additional variable

which is employed to build up a decreasing threshold on

the known Lyapunov function for the system in the absence

of sampling. We also show in Section V"B that the event"

triggered policy in Section III"B can be redesigned to exhibit

larger inter"event intervals thanks to the use of an auxiliary

variable. Therefore, we denote by a single vector variable

the additional variables which may be needed for

describing the system that are neither nor .

In that way, to define a triggering condition ensuring de"

sired stability properties for the overall system is tantamount

to defining appropriate flow and jump sets and for the

following hybrid system:

(16)

where , are continuous and are

closed subsets of . We use and to

denote (16).

The stability of system (16) can be guaranteed by means

of the following theorem. It can be seen as a variation of the

results in [5].

Theorem 1. Consider system (16) and suppose

and that there exist a locally Lipschitz function

and a continuous function

with such that the following conditions hold.

(i) There exist such that for any ,

.

(ii) There exists such that for all :

.

(iii) For all , .

(iv) Solutions to (16) have a semiglobal dwell time on

, where .

Then the set is S�GAS.

Theorem 1 provides a Lyapunov"based prescriptive frame"

work for developing event"triggered control strategies for

nonlinear systems as we show in Section V. Other triggering

rules may be derived by following the guidelines below for

instance. We illustrate each item with the example of Section

III"B for the sake of clarity.

1) Select a locally Lipschitz function that

satisfies item (i) of Theorem 1. Usually, is built using

a known Lyapunov function for the continuous"

time system (3)"(4) in the absence of sampling and

a positive definite radially unbounded function

that has to be designed. Typically, is chosen by

investigating the robustness property of the closed"loop

system with respect to that is assumed to

hold. The sets and have not been defined so far

but item (i) of Theorem 1 needs to hold on .

This apparent contradiction is overcome as follows.

When there is no variable , as it is the case so far, we

typically have and we do not need

to know and to verify item (i) of Theorem 1.

Section III�B: we took where

is defined in (12) that is deduced from the ISS prop�

erty stated in Assumption 1. We considered

with , that does satisfy

item (i) of Theorem 1 on . This corresponds to

Property (a).

2) Choose for item (ii) of Theorem 1. Obvi"

ously, if , the decreasing rate will

have to be less than the decreasing rate of in order

to allow some flow before entering the set .

Section III�B: we have taken

for , since .

3) Define the flow and the jump sets to be closed

and such that items (i)"(iii) of Theorem 1 hold and

. For instance, when items (i)

and (iii) of Theorem 1 are satisfied for all

, we can directly take the following sets:

and

which ensure item (ii) of

Theorem 1 and .

Section III�B: the flow and the jump sets in (13)

guarantee that items (ii)�(iii) of Theorem 1 holds in

view of (11) and since and , that is

equivalent to Properties (b)�(c). We note that

.

4) Study the existence of dwell times. Among other

techniques, Lemma 1 below can be used for this

purpose. The existence of dwell times notably depends

on the triggering condition and the vector field that

is usually assumed to satisfy some Lipschitz properties.

If the existence of a dwell time is guaranteed, the

desired result is obtained. Otherwise, variable may be

introduced, then go back to 1) and modify the function2

. The way the variable may be chosen will become

clearer in the light of Section V. The non"existence

of dwell time may also be due to the fact that the

decreasing rate of along flows, in 2), is too

strong, thus choose a different function such

that for any .

Section III�B: the existence of semiglobal dwell�time

solutions is guaranteed in [19] using Assumption 2,

as stated in Property (d).

The following lemma provides a tool for verifying the

existence of dwell times which is used in the proofs of the

theorems of Section V.

Lemma 1. Consider system (16) and suppose the follow�

ing holds.

(i) and items (i)�(iii) of Theorem 1 are

satisfied.

(ii) For any , where

and is a forward

invariant set.

(iii) There exists a locally Lipschitz function

2It may be the case that the new no longer satisfies item (i) of Theorem
1 on , so identify such that item (i) of Theorem 1 is satisfied
on , afterwards make sure .



, where and

for , such that:

(iii"a) There exists such that for any

with : .

(iiii"b) There exists such that for any solution to

(16), with dom :

.

(iii"c) There exists a continuous non�decreasing func�

tion such that for all :

.

Then solutions to (16) have a semiglobal dwell time on

.

The conditions of Lemma 1 can be interpreted as follows.

Item (i) simply states that all the conditions of Theorem 1 are

verified except item (iv) which is the purpose of this lemma.

When a jump occurs when , we know from (16) that

after the jump , then we no longer need to transmit

since is very likely to be an equilibrium point of the "

system. That is what item (ii) of Lemma 1 says: after a jump

when , solutions to (25) lies in the stable set or in a

subset of and will never leave it. The function which

is considered in item (iii) of Lemma 1 is used to guarantee

that there exists a minimum uniform amount of time between

two successive jumps. By estimating the time it takes for

to grow from to , we are able to obtain the desired result.

Remark 3. The triggering condition that satisfies the con�

ditions of Theorem 1 respects the practical requirement that

there does exist a uniform minimum time interval between

two transmissions according to item (iv) of Theorem 1.

The only region of the state space where this may not be

guaranteed is when , but this will only occur

if the system is initialized in the stable set.

V. APPLICATIONS

We already know that the framework allows us to capture

the work in [19], we show in this section that it is also the

case for the strategy in [20]. Afterwards, new triggering rules

are proposed.

A. Event�triggered strategy in [20]

As in Section III"B, the controller is static ( ) and

implemented using zero"order"hold devices. It is considered

that Assumption 1 is satisfied with linear that is

with . The triggering rule is defined to guarantee

that always decreases at a certain rate compared to

. In that way, the control loop is closed in [20]

as soon as the condition below is violated, for :

(17)

where . Since zero"order"hold devices are con"

sidered, we have and

. Consequently, (17) is equivalent to, for

:

(18)

To model (17) using the hybrid formulation (16), we intro"

duce the variable as the solution of on flows

and at jumps. We see that

for ( ). In that way, we can reformulate

(18) using the following algebraic inequality:

(19)

The problem can then be modeled as follows:

(20)

where ,

and
(21)

with and

and where is

arbitrary small. The condition has

been added in the definition of to avoid Zeno behaviour

since after a jump holds. Indeed, it is

not necessary to jump again since will decrease faster

than for some time according to (9). The lower

bound on is used to guarantee that the threshold on

defined by (see (19)) never reaches the origin when

. This condition adds no conservatism as by

setting sufficiently small, the triggering condition

will not be satisfied in practice before reaches .

We recover Theorem 3.2 in [20] and relax some of the

required conditions.

Theorem 2. Consider system (20) and suppose Assump�

tion 1 holds with ( ) and Assumption 2

is satisfied. Then the set is S�GAS and

solutions to (20) have a semiglobal dwell time on .

We note that the conditions of Theorem 2 are more general

than those of Theorem 3.2 in [20] as in (9) is allowed to be

a nonlinear function. In addition, condition (15) in this paper

extends (5) in [20] and allows us to consider more general

types of Lyapunov functions, such as quadratic, which is not

the case in [20].

B. New triggering rules

In Section V"A, the triggering condition is obtained by

defining a decreasing threshold on (see (17)). In this

subsection, we propose an alternative that consists in defining

a similar threshold for an appropriate function for the

system. We suppose that the dynamic controller (4) has

been designed so that Assumption 1 applies. Thus, by using

the ISS property of the "system, we will be able to show

that when remains below a given decreasing threshold,

system (16) satisfies asymptotic stability properties.

We define our threshold variable as the solution of

the following differential equation on flows:

(22)



where is any class" function, and at jumps,

(23)

where for , with

as in (12). We note that is positive definite and

radially unbounded. An obvious choice of triggering rule is:

. Nevertheless, in the case where ,

decreases according to (11) and therefore we do not need

to close the loop. This suggests considering the following

triggering condition instead:

(24)

The problem can be modeled as follows:

(25)

where ,

and

and
(26)

The following theorem ensures the stability of system (25).

Theorem 3. Consider system (25), suppose the following

conditions hold.

(i) Assumptions 1�2 apply.

(ii) Function is locally Lipschitz.

(iii) For any compact set , there exist

such that for all :

.

Then is S�GAS and solutions to (25) have

a semiglobal dwell time on .

Contrary to Section V"A, we note that in (9) is allowed

to be nonlinear. In addition, we do not focus on zero"order"

hold devices that is why condition (iii) of Theorem 3 is

introduced in order to guarantee the existence of dwell times.

We show on an example in Section VI that the inter"event

intervals can be enlarged to some extent compared to Section

V"A by playing with the initial value of .

VI. ILLUSTRATIVE EXAMPLE

To illustrate the benefits of the strategy presented in

Section V"B, we revisit the example considered in [13]. The

simplified version of the considered nonlinear system is:

(27)

where is an unknown possibly time"varying parameter

satisfying . The stabilizing control law consid"

ered in [13] was . We select as

our Lyapunov function that satisfies Assumption 1 with3

, and

for . We consider 200 random initial conditions

distributed in the interval . The parameter takes for

each initial condition a random value in the interval .

We compare the average number of executions required

3The Yalmip software ([12]) was used to compute and .

[13] [20]
Section V"B

18.47

TABLE I

AVERAGE NUMBER OF EXECUTIONS OVER 200 INITIAL CONDITIONS

FOR A SIMULATION TIME OF 20S FOR THE EXAMPLE IN [13].

under the technique in [20] as extended in Section V"A,

the event"triggered strategy proposed in Section V"B and the

periodic strategy in [13] in Table I, for different values for

the design parameter . We select in (20)

and with in (22). It can be observed

that the average number of executions is considerably lower

under the event"triggered strategies. Moreover we note that

the policy in Section V"B generates less executions than [20]

and that it can be adjusted by means of the design parameter

. It is however not easy to compare the performance

guarantees under the two different policies, since Theorem 2

and Theorem 3 ensure different stability properties.

We can explore deeper the role played by the initial

condition of the auxiliary variable and its effect on

performance and number of executions. Simulations have

shown that smaller values of imply a faster decay, at

the expense of more executions. Hence the design parameter

represents the tradeoff between performance and

resource usage. Similar conclusions can be drawn for the

decay function in (22).

The technique in Section V"B exhibits great potential for

real"time scheduling, since both the initial value for the

auxiliary variable and the differential equation in (22) can be

designed according to the available resources. For instance,

functions with slow increasing slopes could be chosen in

case of overload in the network or in the processor executing

the controller.

VII. APPENDIX

Proof of Theorem 1. Let

where and be a solution to (16) with

. Define the set where

is such that (take for instance

in view of item (i) of Theorem 1). The set is forward

invariant for system (16) since . Hence,

in view of items (i)"(iii) of Theorem 1, for any

dom . From item (ii) of Theorem 1 and by using

standard comparison principles, there exists that

satisfies, for all :

(28)

and such that, for all dom ,

(29)

where means that . From item (iii) of

Theorem 1, it follows that:

(30)



for all such that dom for some .

Combining (28)"(30), we obtain:

dom (31)

Now let dom , if then

according to item (i) of Theorem 1. If then that

means that for all dom

(i.e. and ) since is forward invariant for

system (16) (according to items (i)"(iii) of Theorem 1 and

since ). As a consequence, we have that

for all dom , where

is a minimal interval of times between two jumps on

whose existence is ensured by item (iv) of Theorem 1.

It follows that:

(32)

By using item (i) of Theorem 1, we deduce that, for all

dom :

(33)

denoting

(since , ), for all dom :

(34)

Hence, the set is S"GAS according to Definition 1.

Proof of Lemma 1. Let and define

,

where is such that as in the proof of

Theorem 1. Let be a solution to (16) with .

According to items (i)"(iii) of Theorem 1,

for any dom . Denote the first

jump instant with dom (if no jump ever

occurs i.e. , (2) is obviously satisfied). We have

that and in view of item

(iii) of Theorem 1. If

then and

since it is assumed that for

any . As a consequence,

for any dom as and are

forward invariant for system (16). In that way, (2) is

ensured since on no jump ever occurs. If

, then according to item (iii"a) of Lemma

1, and therefore a

jump cannot occur immediately in view of item (iii"b) of

Lemma 1. Let denote with dom the next

jump instant and suppose , otherwise the desired

result holds. By the continuity of and the solution

to system (16) on flows, there exists such

that . According to item (iii"b) of Lemma

1, we deduce that for any .

In view of item (iii"c) of Lemma 1, invoking standard

comparison principles, we deduce that

for any where is the solution of

satisfying . The next jump cannot

occur before the time it takes for to

evolve from to (which is independent of ) has

elapsed. Note that cannot reach before . By

induction, we deduce that the inter"jump interval on

is lower bounded by . Hence solutions to (16) have a

semiglobal dwell time on according to Definition 2.

Proof of Theorem 2. The proof consists in applying Theo"

rem 1 for system (20). Let , we know that

therefore and we deduce that

. Consider system (20) and the following

candidate Lyapunov function for :

(35)

We first prove that satisfies item (i) of Theorem 1 with

. Let then . We see that

. Now suppose , since

, we have , so according to

(8). Similarly (since

), thus but since we obtain

. Hence if and only if . We

now verify that when . Noting that

, we see that as from

(8). Suppose and does not tend to , without

loss of generality we fix . Take any sequence

such that as . In view of (35), there exists

such that for any since

does not tend to . Therefore, as in

view of (8). Since has been chosen arbitrarily,

as . We have shown that

when . Consequently, there exist

so that item (i) of Theorem 1 applies by following similar

lines as in the proof of Lemma 4.3 in [9] and using the fact

that . On , we have that

so . Then,

. Since

, and item

(ii) of Theorem 1 holds with for .

Let , ,

item (iii) of Theorem 1 is ensured. We now show that item

(iv) of Theorem 1 is satisfied by applying Lemma 1. First,

we note that for , where

, so that item (ii) of Lemma 1 holds.

We take:

(36)

that is defined on (see Lemma 1) with and

comes from Assumption 2. We see that for any

with , : item (iii"a) of Lemma 1 is

ensured with . Let , according to Assumption

2, where

here. Thus, we have that implies

from Assumption 1, that ensures in return

in view of (11) (with ).

Consequently, we see that after each jump, the time

grows from (since ) to ensures that

since after each jump and



will decrease faster than for some time. Hence,

for all dom , implies

that . Noting that implies that

for all dom , we deduce that

item (iii"b) of Lemma 1 is satisfied with . We now prove

that item (iii"c) of Lemma 1 holds by following similar lines

as in (11) in [19]. The dynamics of are:

(37)

using (14), .

Therefore, noting that the derivative of

along the solutions to (20) is , we

deduce that item (iii"c) of Lemma 1 is verified with

. Finally, by invoking

Lemma 1, item (iv) of Theorem 1 holds, i.e. solutions to

(20) have a semiglobal dwell time on , and we obtain

that the set is S"GAS using Theorem 1.

Proof of Theorem 3. The proof consists in checking the

conditions of Theorem 1 for system (25) and then in applying

it. We have that

. Consider system (25) and the

following candidate Lyapunov function for :

(38)

It can be verified that satisfies item (i) of Theorem 1

with , using Remark 2.3 in [11] and the fact that

. On , we have that

, therefore in view of (11) and since

, we have that item (ii) of Theorem 1 is ensured

with for . Let

, : item

(iii) of Theorem 1 is ensured. We now show that item (iv) of

Theorem 1 holds using Lemma 1. We see that

where and

and . The set is

forward invariant for (25) as and

in view of Assumption 2 and item (iii) of Theorem 3 and

since for all dom for . Let

that is defined on , where comes

from Lemma 1 with . For any such that

, so item (iii"a) of Lemma 1

is satisfied with . By following similar lines than in

the proof of Theorem 2, it can be shown that item (iii"b) of

Lemma 1 is verified with . We now need to prove

that item (iii"c) of Lemma 1 is guaranteed. We investigate

the dynamics of :

(39)

using (14) and item (iii) of Theorem 3, we obtain:

(40)

we see that item (iii"c) is guaranteed with

. By applying Lemma 1, item (iv) of Theorem

1 is verified: solutions to (25) have a semiglobal dwell time

on . As a consequence, the set is S"GAS.
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