A Unifying View of Wiener and Volterra Theory and Polynomial Kernel Regression Matthias O. Franz, Bernhard Schölkopf mof;bs@tuebingen.pg.de Max-Planck-Institut für biologische Kybernetik, Tübingen, Germany Volterra and Wiener series are perhaps the best understood nonlinear system representations in signal processing. Although both approaches have enjoyed a certain popularity in the past, their application has been limited to rather low-dimensional and weakly nonlinear systems due to the exponential growth of the number of terms that have to be estimated. We show that Volterra and Wiener series can be represented implicitly as elements of a reproducing kernel Hilbert space by utilizing polynomial kernels. The estimation complexity of the implicit representation is linear in the input dimensionality and independent of the degree of nonlinearity. Experiments show performance advantages in terms of convergence, interpretability, and system sizes that can be handled. #### 1 Introduction In system identification, one tries to infer the functional relationship between system input and output from observations of the in- and outgoing signals. If the system is linear, it can be always characterized uniquely by its impulse response. For nonlinear systems, however, there exists no canonical representation that encompasses all conceivable systems. The earliest approach to a systematic, i.e., a nonparametric, characterization of nonlinear systems dates back to V. Volterra who extended the standard convolution description of linear systems by a series of polynomial integral operators with increasing degree of nonlinearity, very similar in spirit to the Taylor series for analytic functions (Volterra, 1887). The last 120 years have seen the accumulation of huge amount of research done both on the class of systems that can be represented by Volterra operators, and on their application in such diverse fields as nonlinear differential equations, neuroscience, fluid dynamics or electrical engineering (overviews and bibliography in Schetzen, 1980; Rugh, 1981; Mathews & Sicuranza, 2000; Giannakis & Serpedin, 2001). A principal problem of the Volterra approach is the exponential growth of the number of terms in the operators, both with degree of nonlinearity and with input dimensionality. This has limited its application to rather low-dimensional systems with mild nonlinearities. Here, we show that this problem can be largely alleviated by reformulating the Volterra and Wiener series as operators in a *reproducing kernel Hilbert space* (RKHS). In this way, the whole Volterra and Wiener approach can be incorporated into the rapidly growing field of kernel methods. In particular, the estimation of Volterra or Wiener expansions can be done by polynomial kernel regression which scales only linearly with input dimensionality, independent of the degree of nonlinearity. Moreover, RKHS theory allows us to estimate even infinite Volterra series which was not possible before. Our experiments indicate that the RKHS formulation also leads to practical improvements in terms of prediction accuracy and interpretability of the results. In the next section, we review the essential results of the classical Volterra and Wiener theories of nonlinear systems¹. In Sect. 3, we discuss newer developments since the mid-80s that lead to our new formulation which is presented in Sect. 4. A preliminary account of this work has appeared in Franz and Schölkopf (2004). ### 2 Volterra and Wiener theory of nonlinear systems **The Volterra class.** A system can be defined as a map that assigns an output signal y(t) to an input signal x(t) (we assume for the moment that x(t) and y(t) are functions of time t). Mathematically, this rule can be expressed in the form $$y(t) = Tx(t) \tag{1}$$ using a system operator T that maps from the input to the output function space. The system is typically assumed to be time-invariant and continuous, i.e., the system response should remain unchanged for repeated presentation of the same input and small changes in the input functions x(t) should lead to small changes in the corresponding system output functions y(t). In traditional systems theory, we further restrict T to be a sufficiently well-behaved compact linear operator H_1 such that the system response can be described by a convolution $$y(t) = H_1 x(t) = \int h^{(1)}(\tau) x(t - \tau) d\tau$$ (2) of x(t) with a *linear kernel* (or impulse response) $h^{(1)}(\tau)$. A natural extension of this convolution description to nonlinear systems is the *Volterra series* operator $$y(t) = Vx(t) = H_0x(t) + H_1x(t) + H_2x(t) + \dots + H_nx(t) + \dots$$ (3) in which $H_0x(t) = h_0 = \text{const.}$ and $$H_n x(t) = \int h^{(n)}(\tau_1, \dots, \tau_n) x(t - \tau_1) \dots x(t - \tau_n) d\tau_1 \dots d\tau_n$$ (4) is the nth-order Volterra operator (Volterra, 1887, 1959). The integral kernels $h^{(n)}(\tau_1, ..., \tau_n)$ are the Volterra kernels. Depending on the system to be represented, the integrals can be computed over finite or infinite time intervals. The support of the Volterra kernel defines the memory of the system, i.e., it delimits the time interval in which past inputs can influence the current system output. The Volterra series can be regarded accordingly as a Taylor series with memory: whereas the usual Taylor series only represents systems that instantaneously map the input to the output, the Volterra series characterizes systems in which the output also depends on past inputs. The input functions typically come from some real, separable Hilbert space such as $L^2[a,b]$, the output functions from the space C[a,b] of bounded continuous functions. Similar to the Taylor series, the convergence of a Volterra series can only be guaranteed for a limited range of the system input amplitude. As a consequence, the input functions must be restricted to some suitable subset of the input space. For instance, if the input ¹This section is mainly a review for readers who are not familiar with Wiener and Volterra theory signals form a compact subset of the input function space, one can apply the Stone-Weierstraß theorem (a generalization of the Weierstraß theorem to nonlinear operators; see, e.g., Hille & Phillips, 1957) to show that any continuous, nonlinear system can be uniformly approximated (i.e., in the L^{∞} -norm) to arbitrary accuracy by a Volterra series operator of sufficient but finite order (Fréchet, 1910; Brilliant, 1958; Prenter, 1970)². Although this approximation result appears to be rather general on first sight, the restriction to compact input sets is quite severe. An example of a compact subset are the set of functions from $L^2[a,b]$ defined over a closed time interval with a common upper bound (proof in Liusternik & Sobolev, 1961). In practice, this means that the input signals have to be nonzero only on a finite time interval and that the approximation holds only there. Many natural choices of input signals are precluded by this requirement such as, e.g., the unit ball in $L^2[a,b]$ or infinite periodic forcing signals. **The Wiener class.** So far, we have only discussed the representation of a general nonlinear system. Now we come to problem of obtaining such a representation from data. For a linear system, this is a straightforward procedure since it suffices to test the system on a set of basis functions from the input space (e.g., Delta functions or sinusoids). In a nonlinear system, however, we ideally have to measure the system response for all possible input functions. One way to achieve this is by testing the system on realizations of a suitable random process. The stochastic input chosen by Wiener is the limiting form of the random walk process as the number of steps goes to infinity (or, equivalently, as the step size goes to zero) which is nowadays known as *Wiener process* (Papoulis, 1991). One can show that the Wiener process assigns a non-zero probability to the neighbourhood of every continuous input function (Palm & Poggio, 1977). Thus the realizations of the Wiener process play a similar role in Wiener theory as the sinusoidal test inputs in linear system theory since they are capable of completely characterizing the system. In system identification, we are only given pairs of input and output functions whereas the system itself is treated as a black box. The appropriate Volterra representation has to be found by minimizing some error measure between the true output and the model output such as, e.g., the integral over the squared error. Thus, the approximation has to be only in the L^2 -norm, not in the L^∞ -norm as in Volterra theory. A weaker approximation criterion typically relaxes the restrictions imposed on the input and output set and on the type of systems that can be represented by a Volterra series (Palm, 1978). Wiener theory relaxes the approximation criterion even further: assuming that the input is generated by the Wiener process, it only requires an approximation in the mean squared error sense over the whole process, not for any single realization of it. The minimization of the mean squared error for the estimation of the Volterra kernels requires the solution of a simultaneous set of integral equations. This can be avoided by using an orthogonal least-squares framework as proposed by Wiener (1958) and Barrett (1963). Since the distribution of the input is known for the Wiener process we can choose an input-specific decomposition of the system operator T $$y(t) = G_0 x(t) + G_1 x(t) + G_2 x(t) + \dots + G_n x(t) + \dots$$ (5) ²If one further restricts the system to have *fading memory* (i.e., the influence of past inputs decays exponentially) the uniform approximation by finite Volterra series can be extended to bounded and slew-limited input signals on infinite time intervals (Boyd & Chua, 1985). into a Wiener series of operators G_n that are mutually uncorrelated, i.e., orthogonal with respect to the
Wiener process. The Wiener operators G_n are linear combinations of Volterra operators up to order n. They can be obtained from the original Volterra series by a procedure very similar to Gram-Schmidt orthogonalization. For instance, the second-degree Wiener operator³ $$G_2x(t) = \int h_2(\tau_1, \tau_2)x(t - \tau_1)x(t - \tau_2) d\tau_1 d\tau_2 - \int h_2(\tau_1, \tau_1) d\tau_1$$ (6) consists of a zero-order and a second-order Volterra operator. The integral kernel of the highest-order (i.e., nth-order) Volterra operator of G_n is called the *leading* Volterra kernel of G_n . As a result of the orthogonalization, the G_n can be estimated independently of each other. Moreover, any truncation of this orthogonalized series minimizes the mean squared error among all truncated Volterra expansions of the same order. All systems that produce square integrable output for the Wiener input process can be approximated in the mean square sense by finite order Wiener series operators (Ahmed, 1970). In practice, this means that the systems must be non-divergent and cannot have infinite memory. Due to the different types of inputs and convergence, the classes of systems that can be approximated by infinite Volterra or Wiener series operators are not identical. Some systems of the Wiener class cannot be represented as a Volterra series operator and vice versa (Palm & Poggio, 1977; Korenberg & Hunter, 1990). However, a truncated Wiener or Volterra series can always be transformed into its truncated counterpart. One of the reasons for the popularity of the Wiener series is that the leading Volterra kernels can be directly measured via the *crosscorrelation method* of Lee and Schetzen (1965). If one uses Gaussian white noise with standard deviation A instead of the Wiener process as input, the leading Volterra kernel of G_n can be estimated as $$h^{(n)}(\sigma_1, \dots, \sigma_n) = \frac{1}{n!A^n} \overline{\left(y(t) - \sum_{l=0}^{n-1} G_l x(t)\right) x(t - \sigma_1) \dots x(t - \sigma_n)}$$ (7) where the bar indicates the average over time. The zero-order kernel is simply the time average $h^{(0)}=\overline{y(t)}$ of the output function. The other lower-order Volterra kernels of G_n can be derived from the leading kernel by applying again a Gram-Schmid-type orthogonalization procedure. **Discrete Volterra and Wiener systems.** In practical signal processing, one uses a discretized form for a finite sample of data. Here, we assume that the input data is given as a vector $\mathbf{x} = (x_1, \dots, x_m)^\top \in \mathbb{R}^m$ of finite dimension. The vectorial data can be generated from any multi-dimensional input or, for instance, by a sliding window over a discretized image or time series. A discrete system is simply described by a function $T: \mathbb{R}^m \to \mathbb{R}$, not by an operator as before. The discretized Volterra operator is defined as the function $$H_n(\mathbf{x}) = \sum_{i_1=1}^m \cdots \sum_{i_n=1}^m h_{i_1...i_n}^{(n)} x_{i_1} \dots x_{i_n}$$ (8) where the Volterra kernel is given as a finite number of m^n coefficients $h_{i_1...i_n}^{(n)}$ (Alper, 1965). It is, accordingly, a linear combination of all ordered nth-order monomials of ³Strictly speaking, the integrals in the Wiener operators have to be interpreted as *stochastic integrals* (e.g. Papoulis, 1991) with respect to the Wiener process, i.e., the equality only holds in the mean squared sense. For conditions under which the equality also holds for specific inputs, see Palm and Poggio (1977). the elements of \mathbf{x}^4 . Analogously to the continuous Volterra series, it can be shown by applying the Stone-Weierstraß theorem that all continuous systems with compact input domain can be uniformly approximated by a finite, discrete Volterra series. For systems with exponentially fading memory, the uniform approximation can be extended to all input vectors with a common upper bound (Boyd & Chua, 1985). The discrete analogue to the Wiener series is typically orthogonalized with respect to Gaussian input $\mathbf{x} \sim \mathcal{N}(0,A)$ since this is the only practical setting where the popular crosscorrelation method can be applied. All properties of continuous Wiener series operators described above carry over to the discrete case. In particular, any square-integrable function with Gaussian input can be approximated in the mean square sense by a finite, discrete Wiener series (Palm & Poggio, 1978). **Problems of the crosscorrelation method.** The estimation of the Wiener expansion via crosscorrelation poses some serious problems: - 1. The estimation of crosscorrelations requires large sample sizes. Typically, one needs several tens of thousands of input-output pairs before a sufficient convergence is reached. Moreover, the variance of the crosscorrelation estimator in Eq. (7) increases with increasing values of the σ_i (Papoulis, 1991) such that only operators with relatively small memory can be reliably estimated. - 2. The estimation via crosscorrelation works only if the input is Gaussian noise with zero mean, not for general types of input. In physical experiments, however, deviations from ideal white noise and the resulting estimation errors cannot be avoided. Specific inputs, on the other hand, may have a very low probability of being generated by white noise. Since the approximation is only computed in the mean square sense, the system response to these inputs may be drastically different from the model predictions⁵. - 3. In practice, the crosscorrelations have to be estimated at a finite resolution (cf. the discretized version of the Volterra operator in Eq. (8)). The number of expansion coefficients in Eq. (8) increases with m^n for an m-dimensional input signal and an nth-order Wiener kernel. However, the number of coefficients that actually have to be estimated by crosscorrelation is smaller. Since the products in Eq. (8) remain the same when two different indices are permuted, the associated coefficients are equal in symmetric Volterra operators. As a consequence, the required number of measurements is (n+m-1)!/(n!(m-1)!) (Mathews & Sicuranza, 2000). Nonetheless, the resulting numbers are huge for higher-order Wiener kernels. For instance, a 5th-order Wiener kernel operating on 256-dimensional input contains roughly 10^{12} coefficients, 10^{10} of which would have to be measured individually by crosscorrelation. As a consequence, this procedure is not feasible for higher-dimensional input signals. - 4. The crosscorrelation method assumes noise-free signals. For real, noise-contaminated data, the estimated Wiener series models both signal and noise of the ⁴Throughout this text, we assume that the Volterra kernels are symmetric with respect to permutations of the indices i_j . A non-symmetric kernel can be converted into a symmetric kernel without changing the system output (Mathews & Sicuranza, 2000). ⁵There are a number of studies that develop an orthogonal framework with respect to other input classes (Schetzen, 1965; Ogura, 1972; Segall & Kailath, 1976). None of these, however, can be applied to input classes differnt from the one they were developed for. training data which typically results in reduced prediction performance on independent test sets. ## 3 Estimating Wiener series by linear regression in RKHS **Linear regression.** The first two problems can be overcome by adopting the framework of linear regression: given observations $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)$, linear regression tries to estimate y as a function of \mathbf{x} via $$y = f(\mathbf{x}) = \sum_{i=1}^{M} \gamma_i \varphi_i(\mathbf{x}), \tag{9}$$ using $\gamma_j \in \mathbb{R}$ and a dictionary of M functions $\varphi_j : \mathbb{R}^m \to \mathbb{R}$. In the case of pth-order Volterra or Wiener series, this dictionary consists of all monomials of \mathbf{x} up to order p (see Eq. 8). Instead of assuming an infinite amount of data, the γ_j are found by minimizing the mean squared error over the dataset $$c((\mathbf{x}_1, y_1, f(\mathbf{x}_1)), \dots, (\mathbf{x}_N, y_N, f(\mathbf{x}_N))) = \frac{1}{N} \sum_{j=1}^{N} (f(\mathbf{x}_j) - y_j)^2$$ (10) which disposes of the cumbersome crosscorrelation estimator (Korenberg, Bruder, & McIlroy, 1988; Mathews & Sicuranza, 2000). Moreover, the input signal class is no more restricted to Gaussian noise, but can be chosen freely, e.g., from the 'natural' input ensemble of the system. As long as the input is known to the experimenter, there is no need for controlling the input as in the classical system identification setting. Note, however, that the obtained Volterra models will approximate the Wiener series only for sufficiently large datasets of Gaussian white noise. Korenberg et al. (1988) have shown that the linear regression framework leads to Wiener models that are orders of magnitude more accurate than those obtained from the crosscorrelation method. Regression in RKHS. Instead of directly using the monomials as basis functions, we will be interested in the case where the dictionary is specified in terms of a kernel function k via $\varphi_j(\mathbf{x}) = k(\mathbf{x}, \mathbf{z}_j)$, using a set of points $\mathbf{z}_1, \dots, \mathbf{z}_M$ from \mathbb{R}^m . In particular, we consider *positive definite* kernels, i.e. functions k with the property that the *Gram matrix* $K_{ij} = k(\mathbf{x}_i, \mathbf{x}_j)$ is positive definite for all choices of the $\mathbf{x}_1, \dots, \mathbf{x}_N$ from the input domain. It can be shown that such kernels admit a representation as a dot product in an associated linear space \mathbb{F} , i.e., there exists a map Φ such that $k(\mathbf{x}, \mathbf{x}') = \Phi(\mathbf{x})^{\top} \Phi(\mathbf{x}')$. Modulo certain details, \mathbb{F} can be identified with a space of functions $$f(\mathbf{x}) = \sum_{j=1}^{M} \gamma_j k(\mathbf{x}, \mathbf{z}_j). \tag{11}$$ This space has the structure of a *reproducing kernel
Hilbert space (RKHS)*. By carrying out linear methods in \mathbb{F} , one can obtain elegant solutions for various nonlinear estimation problems (see Schölkopf & Smola, 2002), examples being Support Vector Machines. Although \mathbb{F} can have infinite dimension, 6 these problems can often be solved efficiently, which is in part due to the so called *representer theorem*. It states the following: suppose c is an arbitrary cost function, Ω is a nondecreasing function on \mathbb{R}_+ and $\|\cdot\|_{\mathbb{F}}$ is the norm of the RKHS. If we minimize an objective function $$c((\mathbf{x}_1, y_1, f(\mathbf{x}_1)), \dots, (\mathbf{x}_N, y_N, f(\mathbf{x}_N))) + \Omega(\|f\|_{\mathbb{F}}), \tag{12}$$ ⁶Note that with a slight abuse of notation, we will nevertheless use the transpose to denote the dot product in that space. over all γ_j and \mathbf{z}_j in (11), then an optimal solution 7 can be expressed as $$f(\mathbf{x}) = \sum_{j=1}^{N} \gamma_j k(\mathbf{x}, \mathbf{x}_j), \quad \gamma_j \in \mathbb{R}.$$ (13) In other words, although we did consider functions which were expansions in terms of arbitrary points \mathbf{z}_j (see (11)), it turns out that we can always express the solution in terms of the training points \mathbf{x}_j only. Hence the optimization problem over an arbitrarily large number of M variables is transformed into one over N variables, where N is the number of training points. Let us consider the special case where the cost function is given by (10), and the regularizer Ω is zero. The solution for $\gamma = (\gamma_1, \dots, \gamma_N)$ is readily computed by setting the derivative of (10) with respect to the vector γ equal to zero; it takes the form $\gamma = K^{-1}\mathbf{y}$ where $\mathbf{y} = (y_1, \dots, y_N)^{\top}$, hence⁸ $$y = f(\mathbf{x}) = \gamma^{\top} \mathbf{k}(\mathbf{x}) = \mathbf{y}^{\top} K^{-1} \mathbf{k}(\mathbf{x}), \tag{14}$$ where $\mathbf{k}(\mathbf{x}) = (k(\mathbf{x}, \mathbf{x}_1), k(\mathbf{x}, \mathbf{x}_2), \dots, k(\mathbf{x}, \mathbf{x}_N))^{\top} \in \mathbb{R}^N$. **Volterra series as linear operator in RKHS.** We now have the prerequisites to address the third problem with a new estimation method for the Wiener series. As our first step, we have to convert the Volterra series into a form suitable for regression in RKHS. Our starting point is the discretized version of the Volterra operators from Eq. (8). The nth-order Volterra operator is a weighted sum of all nth-order monomials of the input vector \mathbf{x} . For $n = 0, 1, 2, \ldots$ we define the map ϕ_n as $$\phi_0(\mathbf{x}) = 1$$ and $\phi_n(\mathbf{x}) = (x_1^n, x_1^{n-1} x_2, \dots, x_1 x_2^{n-1}, x_2^n, \dots, x_m^n)$ (15) such that ϕ_n maps the input $\mathbf{x} \in \mathbb{R}^m$ into a vector $\phi_n(\mathbf{x}) \in \mathbb{F}_n = \mathbb{R}^{m^n}$ containing all m^n ordered monomials of degree n evaluated at \mathbf{x} . Using ϕ_n , we can write the nth-order Volterra operator in Eq. (8) as a scalar product in \mathbb{F}_n , $$H_n(\mathbf{x}) = \eta_n^{\top} \phi_n(\mathbf{x}), \tag{16}$$ with the coefficients stacked into the vector $\eta_n = (h_{1,1,\dots 1}^{(n)}, h_{1,2,\dots 1}^{(n)}, h_{1,3,\dots 1}^{(n)}, \dots)^\top \in \mathbb{F}_n$. Fortunately, the functions ϕ_n constitute a RKHS. It can be easily shown (e.g., Schölkopf & Smola, 2002) that $$\phi_n(\mathbf{x}_1)^{\top}\phi_n(\mathbf{x}_2) = (\mathbf{x}_1^{\top}\mathbf{x}_2)^n =: k_n(\mathbf{x}_1, \mathbf{x}_2). \tag{17}$$ This equivalence was already used as early as 1975 in an iterative estimation scheme for Volterra models, long before the RKHS framework became commonplace (Poggio, 1975). The estimation problem can be solved directly if one applies the same idea to the entire pth-order Volterra series. By stacking the maps ϕ_n with positive weights a_n into a single map $\phi^{(p)}(\mathbf{x}) = (a_0\phi_0(\mathbf{x}), a_1\phi_1(\mathbf{x}), \dots, a_p\phi_p(\mathbf{x}))^\top$, one obtains a mapping from \mathbb{R}^m into $\mathbb{F}^{(p)} = \mathbb{R} \times \mathbb{R}^m \times \mathbb{R}^{m^2} \times \dots \times \mathbb{R}^{m^p} = \mathbb{R}^M$ with dimensionality $M = \frac{1-m^{p+1}}{1-m}$. The entire pth-order Volterra series can be written as a scalar product in $\mathbb{F}^{(p)}$ $$\sum_{n=0}^{p} H_n(\mathbf{x}) = (\eta^{(p)})^{\top} \phi^{(p)}(\mathbf{x})$$ (18) ⁷ for conditions on uniqueness of the solution, see Schölkopf and Smola (2002) ⁸If K is not invertible, K^{-1} denotes the pseudo-inverse of K. with $\eta^{(p)} \in \mathbb{F}^{(p)}$. Since $\mathbb{F}^{(p)}$ is generated as a Cartesian product of the single spaces \mathbb{F}_n , the associated scalar product is simply the weighted sum of the scalar products in \mathbb{F}_n : $$\phi^{(p)}(\mathbf{x}_1)^{\top}\phi^{(p)}(\mathbf{x}_2) = \sum_{n=0}^{p} a_n^2(\mathbf{x}_1^{\top}\mathbf{x}_2)^n =: k^{(p)}(\mathbf{x}_1, \mathbf{x}_2).$$ (19) A special case of this kernel is the inhomogeneous polynomial kernel used in the Volterra estimation approach of Dodd and Harrison (2002) $$k_{inh}^{(p)}(\mathbf{x}_1, \mathbf{x}_2) = (1 + \mathbf{x}_1^{\mathsf{T}} \mathbf{x}_2)^p \tag{20}$$ which corresponds to $$(1 + \mathbf{x}_1^{\mathsf{T}} \mathbf{x}_2)^p = \sum_{n=0}^p \binom{p}{n} (\mathbf{x}_1^{\mathsf{T}} \mathbf{x}_2)^n$$ (21) via the binomial theorem. If a suitably decaying weight set a_n is chosen, the approach can be extended even to infinite Volterra series. For instance, for $a_n = \sqrt{1/n!}$ we obtain the well-known kernel $$k^{(\infty)}(\mathbf{x}_1, \mathbf{x}_2) = e^{\mathbf{x}_1^{\top} \mathbf{x}_2} = \sum_{n=0}^{\infty} \frac{1}{n!} (\mathbf{x}_1^{\top} \mathbf{x}_2)^n,$$ (22) or for $\|\mathbf{x}\|<1,\,\alpha>0$, Vovk's infinite polynomial kernel (Saunders, Stitson, Weston, Bottou, Schölkopf, & Smola, 1998) $$k_{\text{Vovk}}(\mathbf{x}_1, \mathbf{x}_2) = (1 - \mathbf{x}_1^{\mathsf{T}} \mathbf{x}_2)^{-\alpha} = \sum_{n=0}^{\infty} {\binom{-\alpha}{n}} (-1)^n (\mathbf{x}_1^{\mathsf{T}} \mathbf{x}_2)^n.$$ (23) The latter two kernels have been shown to be *universal*, i.e., the functions of their associated RKHS are capable of uniformly approximating all continuous functions on compact input sets in \mathbb{R}^m (Steinwart, 2001). As we have seen in our discussion of the approximation capabilities of discrete Volterra series, the family of finite polynomial kernels in its entirety is also universal since the union of their RKHSs comprises all discrete Volterra series. Isolated finite polynomial kernels, however, do not share this property. Implicit Wiener series estimation. We know now that both finite and infinite discretized Volterra series can be expressed as linear operators in a RKHS. As we stated above, the pth-degree Wiener expansion is the pth-order Volterra series that minimizes the squared error if the input is white Gaussian noise with zero mean. This can be put into the regression framework: assume we generate white Gaussian noise with zero mean, feed it into the unknown system and measure its output. Since any finite Volterra series can be represented as a linear operator in the corresponding RKHS, we can find the pth-order Volterra series that minimizes the squared error by linear regression. This, by definition, must be the pth-degree Wiener series since no other Volterra series has this property. From Eqns. (7) and (14), we obtain the following expressions for the implicit Wiener series $$G_0(\mathbf{x}) = \frac{1}{N} \mathbf{y}^{\mathsf{T}} \mathbf{1}$$ and $\sum_{n=0}^p G_n(\mathbf{x}) = \sum_{n=0}^p H_n(\mathbf{x}) = \mathbf{y}^{\mathsf{T}} K_p^{-1} \mathbf{k}^{(p)}(\mathbf{x})$ (24) ⁹assuming symmetrized Volterra kernels which can be obtained from any Volterra expansion. where the Gram matrix K_p and the coefficient vector $\mathbf{k}^{(p)}(\mathbf{x})$ are computed using the kernel from Eq. (19) and $\mathbf{1} = (1,1,\dots)^{\top} \in \mathbb{R}^N$. Note that the Wiener series and its Volterra functionals are represented only implicitly since we are using the RKHS representation as a sum of scalar products with the training points. Thus, we can avoid the "curse of dimensionality", i.e., there is no need to compute the possibly large number of coefficients explicitly. The explicit Volterra and Wiener expansions can be recovered at least in principle from Eq. (24) by collecting all terms containing monomials of the desired order and summing them up. The individual nth-order Volterra operators (p>0) are given implicitly by $$H_n(\mathbf{x}) = a_n \mathbf{y}^\top K_p^{-1} \mathbf{k}_n(\mathbf{x})$$ (25) with $\mathbf{k}_n(\mathbf{x}) = ((\mathbf{x}_1^{\top}\mathbf{x})^n, (\mathbf{x}_2^{\top}\mathbf{x})^n, \dots, (\mathbf{x}_N^{\top}\mathbf{x})^n)^{\top}$. For p = 0 the only term is the constant zero-order Volterra operator $H_0(\mathbf{x}) = G_0(\mathbf{x})$. The coefficient vector $\eta_n = (h_{1,1,\dots 1}^{(n)}, h_{1,2,\dots 1}^{(n)}, h_{1,3,\dots 1}^{(n)}, \dots)^{\top}$ of the explicit Volterra operator is obtained as $$\eta_n = a_n \Phi_n^{\top} K_p^{-1} \mathbf{y} \tag{26}$$ using the design matrix $\Phi_n = (\phi_n(\mathbf{x}_1), \phi_n(\mathbf{x}_2), \dots, \phi_n(\mathbf{x}_N))^{\top}$. Note that these equations are also valid for infinite polynomial kernels such as $k^{(\infty)}$ or k_{Vovk} . Similar findings are known from the neural network literature where Wray and Green (1994) showed that individual Volterra operators can be extracted from certain network models with sigmoid activation functions which correspond to infinite Volterra series. The individual Wiener operators can only be recovered by applying the regression procedure twice. If we are interested in the nth-degree Wiener operator, we have to compute the solution for the kernels $k^{(n)}(\mathbf{x}_1,\mathbf{x}_2)$ and $k^{(n-1)}(\mathbf{x}_1,\mathbf{x}_2)$. The Wiener operator for n>0 is then obtained from the difference of the two results as
$$G_{n}(\mathbf{x}) = \sum_{i=0}^{n} G_{i}(\mathbf{x}) - \sum_{i=0}^{n-1} G_{i}(\mathbf{x})$$ $$= \mathbf{y}^{\top} \left[K_{n}^{-1} \mathbf{k}^{(n)}(\mathbf{x}) - K_{n-1}^{-1} \mathbf{k}^{(n-1)}(\mathbf{x}) \right].$$ (27) The corresponding ith-order Volterra operators of the nth-degree Wiener operator are computed analogously to Eqns. (25) and (26). **Orthogonality.** The resulting Wiener operators must fulfill the orthogonality condition which in its strictest form states that a *p*th-degree Wiener operator must be orthogonal to all monomials in the input of lower order. Formally, we will prove the following **Theorem 1** The operators obtained from Eq. (27) fulfill the orthogonality condition $$E\left[m(\mathbf{x})G_n(\mathbf{x})\right] = 0 \tag{28}$$ where E denotes the expectation over the training set and $m(\mathbf{x})$ an ith-order monomial with i < p. We will show that this a consequence of the least squares fit of any linear expansion in a set of basis functions of the form of Eq. (9). In the case of the Wiener and Volterra expansions, the basis functions $\varphi_j(\mathbf{x})$ are monomials of the components of \mathbf{x} . We denote the error of the expansion as $e(\mathbf{x}) = y - \sum_{j=1}^{M} \gamma_j \varphi_j(\mathbf{x}_i)$. The minimum of the expected quadratic loss with respect to the expansion coefficient γ_k is given by $$\frac{\partial}{\partial \gamma_k} E \|e(\mathbf{x})\|^2 = -2E \left[\varphi_k(\mathbf{x})e(\mathbf{x})\right] = 0. \tag{29}$$ This means that, for an expansion of the type of Eq. (9) minimizing the squared error, the error is orthogonal to all basis functions used in the expansion. Now let us assume we know the Wiener series expansion (which minimizes the mean squared error) of a system up to degree p-1. The approximation error is then given by the sum of the higher-order Wiener operators $e(\mathbf{x}) = \sum_{n=p}^{\infty} G_n(\mathbf{x})$, so $G_p(\mathbf{x})$ is part of the error. As a consequence of the linearity of the expectation, Eq. (29) implies $$\sum_{n=p}^{\infty} E\left[\varphi_k(\mathbf{x})G_n(\mathbf{x})\right] = 0 \quad \text{and} \quad \sum_{n=p+1}^{\infty} E\left[\varphi_k(\mathbf{x})G_n(\mathbf{x})\right] = 0 \tag{30}$$ for any φ_k of order less than p. The difference of both equations yields $E\left[\varphi_k(\mathbf{x})G_p(\mathbf{x})\right] = 0$, so that $G_p(\mathbf{x})$ must be orthogonal to any of the lower order basis functions, namely to all monomials with order smaller than p. For both regression and orthogonality of the resulting operators, the assumption of white Gaussian noise was not required. In practice, this means that we can compute a Volterra expansion according to Eq. (24) for any type of input, not just for Gaussian noise. Note, however, that the orthogonality of the operators can be only defined with respect to an input distribution. If we use Eq. (27) for non-Gaussian input the resulting operators will still be orthogonal, but with respect to the non-Gaussian input distribution. The resulting decomposition of the Volterra series into orthogonal operators will be different from the Gaussian case. As a consequence, the operators computed according to Eq. (27) will not be the original Wiener operators, but an extension of this concept as proposed by Barrett (1963). **Regularized estimation.** So far we have not addressed the fourth problem of the crosscorrelation procedure, namely the neglicence of measurement noise. The standard approach in machine learning is to augment the MSE objective function in Eq. (12) with a penalizing functional Ω , often given as a quadratic form $$\Omega = \lambda \, \gamma^{\top} R \gamma, \quad \lambda > 0 \tag{31}$$ with a positive semidefinite matrix R. R is chosen to reflect prior knowledge that can help to discriminate the true signal from the noise. λ controls the tradeoff between the fidelity to the data and the penalty term. The resulting Wiener series is given by $$\sum_{n=0}^{p} G_n(\mathbf{x}) = \sum_{n=0}^{p} H_n(\mathbf{x}) = \mathbf{y}^{\top} (K_p + \lambda R)^{-1} \mathbf{k}^{(p)}(\mathbf{x})$$ (32) instead of Eq. (24). When choosing $R=I_N$, one obtains standard ridge regression which leads to smoother, less noise-sensitive solutions by limiting their RKHS norm. Alternatively, Nowak (1998) suggested to selectively penalize noise-contaminated signal subspaces by a suitable choice of R for the estimation of Volterra series. If one is interested in single Wiener operators, the regularized estimation has a decisive disadvantage: the operators computed according to Eq. (27) are no more orthogonal. However, orthogonality can be still enforced by considering the (smoothed) output of the regularized Wiener system on the training set $$\tilde{y} = \mathbf{y}^{\top} (K_p + \lambda R)^{-1} K \tag{33}$$ Figure 1: Mean squared error on the test set for varying training set size. *a*. First- ('x') and second-order (squares) crosscorrelation leads to test errors orders of magnitude higher than the regression techniques (dots). *b*. Performance of the tested regression techniques (see legend) for training set size below 75. as modified, "noise-corrected" training set for Eq. (27) which becomes $$G_n(\mathbf{x}) = \mathbf{y}^{\top} (K_p + \lambda R)^{-1} K \left[K_n^{-1} \mathbf{k}^{(n)}(\mathbf{x}) - K_{n-1}^{-1} \mathbf{k}^{(n-1)}(\mathbf{x}) \right].$$ (34) The resulting Wiener operators are an orthogonal decomposition of the regularized solution over the training set. ## 4 Experiments The principal advantage of our new representation of the Volterra and Wiener series is its capability of implicitly handling systems with high-dimensional input. We will demonstrate this in a reconstruction task of a fifth-order receptive field. Before doing so, we compare the estimation performance of the kernelized technique to previous approaches. Comparison to previous estimation techniques. Our first dataset comes from a calibration task for a CRT monitor used to display stimuli in psychophysical experiments. The data were generated by displaying a Gaussian noise pattern ($\mathcal{N}(128,64^2)$) on the monitor which was recorded by a cooled CCD camera operating in its linear range. The system identification task is to quantify the nonlinear distortion of the screen and the possible interaction with previous pixels on the same scan line. The input data were generated by sliding a window of fixed length m in scanning direction over the lines of the Gaussian input pattern, the system output value is the measured monitor brightness at the screen location corresponding to the final pixel of the window. We used three techniques to fit a Wiener model: 1. Classical crosscorrelation with model orders 1, 2 and 3 and window size 1 to 4; 2. Direct linear regression with monomials as basis functions; 3. Kernel regression with the adaptive polynomial (19), the inhomogeneous polynomial (20), and the infinite Volterra series kernel of Eq. (22). For 2. and 3., we used the standard ridge regularizer $R = I_M$ and $R = I_N$, respectively. The regularization parameter λ in Eq. (31), the weights a_i in the adaptive polynomial kernel (19), the window size m and the model order p were found by minimizing the Figure 2: Left: 16×16 linear kernel of the test system; Right: Reconstructed linear kernel from the fifth-order Volterra kernel by computing a preimage (after 2500 samples). analytically computed leave-one-out error (Vapnik, 1982). We varied the number of training examples from 10 to 1000 to characterize the convergence behaviour of the different techniques. The independent test set always contained 1000 examples. As the result shows (Fig. 1a), the mean squared error on the test set decreases at a significantly faster rate for the regression methods due to the unfavorable properties of the crosscorrelation estimator. In fact, a comparable test error could not be reached even for the maximal test set size of 1000 (not contained in the figure). We only display the crosscorrelation results for m=2 and p=1,2 which had the lowest test error. Third-order crosscorrelation produced test (and training) errors above $10^{\,5}$ on this dataset. We observe small, but significant differences between the tested regression techniques due to the numerical conditioning of the required matrix inversion (Fig. 1b). For a training set size above 40, the adaptive polynomial kernel performs consistently better since the weights a_i can be adapted to the specific structure of the problem. Interestingly, the infinite Volterra kernel shows a consistently lower performance in spite of the higher approximation capability of its infinite-dimensional RKHS. Reconstruction of a fifth-order LN cascade. This experiment demonstrates the applicability of the proposed method to high-dimensional input. Our example is the fifth-order LN cascade system $y = \left(\sum_{k,l=1}^{16} h_{kl} x_{kl}\right)^5$ that acts on 16×16 image patches by convolving them with a linear kernel h_{kl} of the same size shown in Fig. 2a before the nonlinearity is applied. We generated 2500 image patches containing uniformly distributed white noise and computed the corresponding system output to which we added 10% Gaussian measurement noise. The resulting data was used to estimate the implicit Wiener expansion using the inhomogeneous polynomial kernel (20). In classical crosscorrelation and linear regression, this would require the computation of roughly 9.5 billion independent terms for the fifth-order Wiener kernel. Moreover, even for much lower-dimensional problems, it usually takes tens of thousands of samples until a sufficient convergence of the crosscorrelation technique is reached. Even if all entries of the fifth-order Wiener kernel were known, it would be still hard to interpret the result in terms of its effect on the input signal. The implicit representation of the Volterra series allows for the use of
preimage techniques (e.g., Schölkopf & Smola, 2002) where one tries to choose a point \mathbf{z} in the input space such that the nonlinearly mapped image in \mathbb{F} , $\phi(\mathbf{z})$, is as close as possible to the representation in the RKHS. In the case of the fifth-order Wiener kernel, this amounts to representing Figure 3: Representation of a Volterra or Wiener system by a. a cascade of a linear system (preimage) and a static nonlinearity f(x) (e.g., $(1+x)^p$ or e^x , depending on the choice of the kernel), b. a several parallel cascades (reduced set). $H_5[\mathbf{x}]$ by the operator $(\mathbf{z}^{\top}\mathbf{x})^5$ with an appropriately chosen preimage $\mathbf{z} \in \mathbb{R}^{256}$. The nonlinear map $z \mapsto z^5$ is invertible, so that we can use the direct technique described in Schölkopf and Smola (2002) where one applies the implicitly given Volterra operator from Eq. (25) to each of the canonical base vectors of \mathbb{R}^{256} resulting in a 256-dimensional response vector \mathbf{e} . The preimage is obtained as $\mathbf{z} = \sqrt[5]{\mathbf{e}}$. The result in Fig. 2b demonstrates that the original linear kernel is already recognizable after using 2500 samples. The example shows that preimage techniques are capable of revealing the input structures to which the Volterra-operator is tuned, similar to the classical analysis techniques in linear systems. #### 5 Conclusion We have presented a unifying view of the traditional Wiener and Volterra theory of nonlinear systems and newer developments from the field of kernel methods. We have shown that all properties of discrete Volterra and Wiener theory are preserved by using polynomial kernels in a regularized regression framework. The benefits of the new kernelized representation can be summarized as follows: - 1. The implicit estimation of the Wiener and Volterra series allows for system identification with high-dimensional input signals. Essentially, this is due to the representer theorem: although a higher order series expansion contains a huge number of coefficients, it turns out that when estimating such a series from a finite sample, the information in the coefficients can be represented more parsimoniously using an example-based implicit representation. - 2. The complexity of the estimation process is independent of the order of nonlinearity. Even infinite Volterra series expansions can be estimated. - 3. Regularization techniques can be naturally included into the regression framework to accommodate for measurement noise in the system outputs. As we have shown, one still can extract the corresponding Wiener operators from the regularized kernel solution while preserving their orthogonality with respect to the input. The analysis of a system in terms of subsystems of different order of nonlinearity can thus be extended to noisy signals. - 4. Preimage techniques reveal input structures to which Wiener or Volterra operators are tuned. These techniques try to represent the system by a cascade consisting of a linear filter followed by a static nonlinearity (Fig. 3a). 5. As in standard linear regression, the method works also for non-Gaussian input. At the same time, convergence is considerably faster than in the classical crosscorrelation procedure because the estimation is done directly on the data. Both regression methods omit the intermediate step of estimating crosscorrelations which converges very slowly. The preimage method in our experiment works only for Volterra kernels of odd order. More general techniques exist (Schölkopf & Smola, 2002), including the case of other kernels and the computation of approximations in terms of parallel cascades of preimages and nonlinearities (reduced sets, cf. Fig. 3b). In the case of a second-order system, the reduced set corresponds to an invariant subspace of the Volterra operator (cf. Hyvärinen & Hoyer, 2000). Korenberg (1983)showed that the entire class of discrete Volterra systems can be approximated by such cascades. Having shown that Volterra and Wiener theory can be treated just as a special case of a kernel regression framework, one could argue that this theory is obsolete in modern signal analysis. This view is supported by the fact that, on many standard datasets for regression, polynomial kernels are outperformed by other kernels such as, e.g., the Gaussian kernel. So why do we not replace the polynomial kernel by some other, more capable kernel and forget about Wiener and Volterra theory altogether? There are at least two arguments against this point of view. First, our study has shown that, in contrast to other kernels, polynomial kernel solutions can be directly transformed into their corresponding Wiener or Volterra representation. Many entries of the Volterra kernels have a direct interpretation in signal processing applications (examples in Mathews & Sicuranza, 2000). This interpretability is lost when other kernels are used. Second, Wiener expansions decompose a signal according to the order of interaction of its input elements. In some applications, it is important to know how many input elements interact in the creation of the observed signals such as, for instance, in the analysis of higher-order statistical properties (an example on higher-order image analysis can be found in Franz & Schölkopf, 2005). **Acknowledgments.** The ideas presented in this article have greatly profited from discussions with P. V. Gehler, G. Bakır, and M. Kuss. This work was supported in part by the IST Programme of the European Community, under the PASCAL Network of Excellence, IST-2002-506778. The publication only reflects the authors' views. #### References - Ahmed, N. U. (1970). Closure and completeness of Wiener's orthogonal set G_n in the class $L^2(\Omega, B, \mu)$ and its application to stochastic hereditary differential systems. *Information and Control*, 17, 161 174. - Alper, A. (1965). A consideration of the discrete Volterra series. *IEEE Trans. Autom. Control*, **AC-10**(3), 322 327. - Barrett, J. F. (1963). The use of functionals in the analysis of non-linear physical systems. *J. Electron. Control*, **15**, 567 615. - Boyd, S., & Chua, L. O. (1985). Fading memory and the problem of approximating nonlinear operators with Volterra series. *IEEE Trans. Circuits. Syst.*, **CAS-32**, 1150 1161. - Brilliant, M. B. (1958). Theory of the analysis of nonlinear systems. RLE Technical Report No. 345, MIT. - Dodd, T. J., & Harrison, R. F. (2002). A new solution to Volterra series estimation. In CD-Rom Proc. 2002 IFAC World Congress. - Franz, M. O., & Schölkopf, B. (2004). Implicit estimation of Wiener series. In A. Barros, J. Principe, J. Larsen, T. Adali, & S. Douglas (Eds.), Proc. 2004 IEEE Signal Processing Society Workshop, Vol. XIV of Machine Learning for Signal Processing, pp. 735 744. IEEE, New York. - Franz, M. O., & Schölkopf, B. (2005). Implicit Wiener series for higher-order image analysis. In L. K. Saul, Y. Weiss, & L. Bottou (Eds.), Advances in Neural information Processing Systems, Vol. 17, pp. 465 – 472 Cambridge, MA. MIT Press. - Fréchet, M. (1910). Sur les fonctionelles continues. *Annales Scientifiques de L'École Normale Supérieure*, **27**, 193 216. - Giannakis, G. B., & Serpedin, E. (2001). A bibliography on nonlinear system identification. Signal Processing, 81, 533 – 580. - Hille, E., & Phillips, R. S. (1957). Functional analysis and semi-groups. Providence: AMS. - Hyvärinen, A., & Hoyer, P. (2000). Emergence of phase- and shift-invariant features by decomposition of natural images into independent feature subspaces. *Neural Computation*, 12, 1705 – 1720. - Korenberg, M. J. (1983). Statistical identification of parallel cascades of linear and nonlinear systems. In Proc. IFAC Symp. Identification and System Parameter Estimation, pp. 669 – 674. - Korenberg, M. J., Bruder, S. B., & McIlroy, P. J. (1988). Exact orthogonal kernel estimation from finite data records: extending Wiener's identification of nonlinear systems. *Ann. Biomed. Eng.*, 16, 201 – 214. - Korenberg, M. J., & Hunter, I. W. (1990). The identification of nonlinear biological systems: Wiener kernel approaches. *Ann. Biomed. Eng.*, **18**, 629 654. - Lee, Y. W., & Schetzen, M. (1965). Measurement of the Wiener kernels of a non-linear system by crosscorrelation. *Intern. J. Control*, **2**, 237 254. - Liusternik, L., & Sobolev, V. (1961). Elements of functional analysis. New York: Unger. - Mathews, V. J., & Sicuranza, G. L. (2000). Polynomial signal processing. New York: Wiley. - Nowak, R. (1998). Penalized least squares estimation of Volterra filters and higher order statistics. *IEEE Trans. Signal Proc.*, **46**(2), 419 428. - Ogura, H. (1972). Orthogonal functionals of the Poisson process. *IEEE Trans. Inf. Theory*, **18**(4), 473 481. - Palm, G. (1978). On representation and approximation of nonlinear systems. *Biol. Cybern.*, **31**, 119 124. - Palm, G., & Poggio, T. (1977). The Volterra representation and the Wiener expansion: validity and pitfalls. SIAM J. Appl. Math., 33(2), 195 216. - Palm, G., & Poggio, T. (1978). Stochastic identification methods for nonlinear Systems: an extension of Wiener theory. SIAM J. Appl. Math., 34(3), 524 –534. - Papoulis, A. (1991). Probablity, random variables and stochastic processes. Boston: McGraw-Hill. - Poggio, T. (1975). On optimal nonlinear associative recall. Biol. Cybern., 19, 201 209. - Prenter, P. M. (1970). A Weierstrass theorem for real, separable Hilbert spaces. *J. Approx. Theory*, **3**, 341 351. - Rugh, W. J. (1981). Nonlinear system theory. Baltimore: Johns Hopkins Univ. Press. - Saunders, C., Stitson, M. O., Weston, J., Bottou, L., Schölkopf, B., & Smola, A. (1998). Support vector machine reference manual. Tech. rep., Dept. Comp. Sc., Royal Holloway, Univ. of London, Egham, UK. - Schetzen, M. (1965). A theory of nonlinear system identification. *Intl. J. Control*, **20**(4), 577 592. - Schetzen, M. (1980). The Volterra and Wiener
theories of nonlinear systems. Malabar: Krieger. - Schölkopf, B., & Smola, A. J. (2002). Learning with kernels. Cambridge, MA: MIT Press. - Segall, A., & Kailath, T. (1976). Orthogonal functionals of independent-increment processes. *IEEE Trans. Inf. Theory*, **22**(3), 287 298. - Steinwart, I. (2001). On the influence of the kernel on the consistency of support vector machines. JMLR, 2, 67 93. - Vapnik, V. (1982). Estimation of dependences based on empirical data. New York: Springer. - Volterra, V. (1887). Sopra le funzioni che dipendono de altre funzioni. In *Rend. R. Academia dei Lincei* 2° *Sem.*, pp. 97 105, 141 146, and 153 158. - Volterra, V. (1959). Theory of functionals and of integral and integro-differential equations. New York: Dover. - Wiener, N. (1958). Nonlinear problems in random theory. New York: Wiley. - Wray, J., & Green, G. G. R. (1994). Calculation of the Volterra kernels of non-linear dynamic systems using an artificial neural network. *Biol. Cybern.*, **71**, 187 195.