
IEICE Electronics Express, Vol.VV, No.NN, 1–6

LETTER

A Unioned Graph Neural Network Based Hardware Trojan Node
Detection
Weitao Pan1a), Meng Dong1, Cong Wen2, Hongjin Liu3, Shaolin Zhang3, Bo Shi3, Zhixiong Di4, Zhiliang Qiu1, Yiming
Gao1, and Ling Zheng5

Abstract The globalization of the integrated circuit (IC) industry has
raised concerns about hardware Trojans (HT), and there is an urgent need
for efficient HT-detection methods of gate-level netlists. In this work, we
propose an approach to detect Trojan-nodes at the gate level, based on graph
learning. The proposed method does not require any golden model and can
be easily integrated into the integrated circuits design flow. In addition, we
further design a unioned GNN network to combine information from the
input side, output side, and neighbor side of the directed graph to generate
representative node embeddings. The experimental results show that it
could achieve 93.4% in recall, 91.4% in F-measure, and 90.7% in precision
on average across different designs, which outperforms the state-of-the-art
HT detection methods.
key words: Hardware Trojan Detection, Graph Neural Network, Golden
Reference-Free, Gate-Level Netlist.
Classification: Integrated circuits

1. Introduction

Integrated circuits (ICs) have been widely used in various
industries, and the IC design process has becomemore com-
plex. The production chain of modern circuits is shown in
Fig. 1. The pre-silicon contains three stages: specification,
RTL design, and netlist. The initial stage of pre-silicon trans-
lates the specification into RTL design with a Hardware
Design Language (HDL). Then, the RTL design is trans-
formed into a gate-level design. To meet the requirement
of time-to-market (TTM), IC designers must use third-party
intellectual properties (3PIP) and outsource parts of their
products to third-party hardware design companies [1, 2].

1State Key Laboratory of Integrated Services Networks, Xidian
University, Xi’an 710071, China
2School ofMicroelectronics, Xidian University, Xi’an 710071,
China
3Beijing Sunwise Space Technology Ltd, Beijing 100010,
China
4School of Information Science and Technology, Southwest
Jiaotong University, Chengdu, China
5School of Communication and Information Engineering,
Xi’an University of Posts and Telecommunications, Xi’an
710121, China
a) wtpan@mail.xidian.edu.cn

DOI: 10.1587/elex.XX.XXXXXXXX
Received October 10, 2019
Accepted October 10, 2019
Published December 31, 2019

However, the third party may not be trusted or potentially

Specific RTL Design

EDA tools 3rd IP

Standard Cell

Library

Design Model

Netlist/ Gate

Level

3rd IP

Physical Design/

Layout Level
Fabrication Assembly Market

Fig. 1. Design flow of IC.

malicious, and will increases the security risk of the system.
An adversary may take advantage of this process to imple-
ment somemalicious functionality, referred to asHTs. These
HTs may cause information leakage [3, 4], function change,
degradation of chip performance, and other destructive con-
sequences [5, 6]. HTs have drawn increasing attention in
both academia and industry because of their significant po-
tential threat.
There are many promising research efforts for HT detection
in the pre-silicon stage. These approaches can be broadly
classified into three categories: functional tests, formal val-
idation, and circuit analysis. Functional test technology is a
reliable method that is independent of process variations. It
activates HTs by applying test vectors and compares the re-
sponses with the correct results. [7] improved the possibility
of observing the impact of Trojan from the primary output
by developing a new test pattern generation algorithm. How-
ever, due to the existence of many logic states in the circuit,
the functional test cannot achieve 100% coverage and even
suffers from state explosion problem. In addition, formal
validation detects the HTs by checking whether the design
satisfies a predefined set of security properties[8, 9]. There-
fore, it cannot detect other unknown features introduced by
the Trojan. In addition, due to the opacity of 3PIP, it is im-
practical to detect HT by using the golden model of 3PIP
[10].
Circuit analysis technology is a fast and reliable method.
It identifies HTs by analyzing the HTs circuit structure
and comparing it with the normal circuit. Depending on
the detection method, circuit analysis can be divided into
three categories: feature-based, testability-based, and struc-
ture learning-based. The first feature-based method was pro-
posed in [11], which successfully detects HTs by using the
structural features manually extracted from the benchmark
netlists. Since then, structural features have beenwidely used

Copyright © 2019 The Institute of Electronics, Information and Communication Engineers
1

This article has been accepted and published on J-STAGE in advance of
copyediting. Content is final as presented.

 DOI: 10.1587/elex.20.20230204
Received May 06, 2023
Accepted May 16, 2023
Publicized May 23, 2023

Copyright © The Institute of Electronics, Information and Communication Engineers 2023

IEICE Electronics Express, Vol.VV, No.NN, 1–6

in HT detection methods, such as support vector machines
(SVM) [12], neural networks [13, 14, 15, 16], or random
forest[17]. In the past five years, feature-based HT detection
methods show high detection performance and can achieve
90% or more accuracy. To ensure detection accuracy, the
features used in these methods are obtained by heuristic ap-
proaches and need to be continuously updated. However,
as the circuit scale increases, it is very time-consuming to
obtain the HT features by heuristic methods. Therefore, it is
unrealistic to detect HT only using feature-based methods.
Since HT is activated only in extremely rare cases and is
inserted in areas with poor controllability and observability,
the SCOAP[18] is used in theHT detectionmethod. [19] first
added the combinational testability measures to the Trojan
features, and achieved better accuracy than previous meth-
ods. Based on the SCOAP, the nets are clustered into two
groups with k-means method[20], and the inter-cluster dis-
tance is used as themajor feature. Finally, it trained a support
vector machine classifier to distinguish the Trojan circuits.
To further improve detection performance, [21] extracted
the SCOAP values without a limited threshold and used
Bagged Trees as the classifier. However, for the HTs with
normal triggering probability, themethodswith SCOAPwill
reduce detection accuracy.
To overcome these limitations of feature-based and
testability-based HT detection methods, structure learning-
based methods are introduced. GramsDet [22] introduces
the natural language processing (NLP) technology to the
HT detection problems. It first models the circuit using the
n-gram circuit segmentation technique and implements the
"gate-embedding" by the order-sensitive co-occurrence ma-
trix. Then the HT detection model is built by a recurrent
neural network. However, the GramsDet has the problem
of the explosion of parameter space and the performance is
not good enough. Graph learning is now becoming an active
research area in machine learning. Since a circuit can be rep-
resented as a graph structure[23], HT detection based graph
learning is a promising approach. GNN4TJ [24] first trans-
lates register transfer level circuits into a data flowgraph, and
then trains the model by graph neural networks (GNN). It
achieves better classification results by taking advantage of
the excellent performance of GNN in non-Euclidean space.
Unfortunately, it is only applicable to the RTL design stage.
In addition, GNN4TJ only identifies whether the HT exists
in the design and does not point out the location of the HT.
[25] uses graph convolution neural network to build the de-
tection model of HT trigger, and adds contrastive learning
to enhance the recognition ability of GCN, which can ac-
curately identify HT trigger. However, the contrastive learn-
ing method is equivalent to oversampling node characteris-
tics, which will seriously affect the generalization ability of
its model, and the trigger circuit is easier to be identified
than the payload circuit with variable types and unclear HT
characteristics. In [32] proposes NHTD-GL, a node-wise
HT detection method based on GNN. Graph structure and

logic gate behavior using as the node feature, NHTD-GL
achieves 0.998 detection accuuracy. This method uses undi-
rected graphs to construct netlists. Although it uses edge
features to supplement the information loss of undirected
graphs, this method cannot correctly restore the logic level
transfer in the circuit.
Therefore, we propose an efficient and effective pre-silicon
HT detection method at the gate-level based on the graph
neural network. By mapping the netlist to a directed graph,
the HT detection problem can be translated into a node clas-
sification problem, so this method does not need a golden
model as a reference. To maintain the direction of data flow
in the netlist, we model the netlist as a directed graph and
automatically extract nodes’ features based on the graph. In
addition, to overcome the problem that the nodes connected
to the opposite side and the neighbor side are ignored in the
GNN model within a directed graph, we propose a unioned
GNN network. With the experiments of different circuit
benchmarks, we believe that it is a practical and promis-
ing HT detection method. The paper makes the following
contributions:
1) The proposed method is golden reference-free and can
precisely locate the HTs in netlist.

2) We construct a unioned GNN for HT detection in gate-
level netlist. Forward GNN learns the characteristics of
gate level information flow, and reverse GNN supple-
ments node neighborhood information.

3) The performance of proposed method is analyzed and
compared with the advanced HT detection models.

2. Methodology

Inspired by the machine learning methods for HT detection,
our methodology is built on the premise of the existence
of a feed-forward function 𝑓 that determines whether the
gate node 𝑛 in gate-level netlist is a Trojan node or not. The
workflow of the proposed HT detection method is shown in
Fig. 2.
To improve the scalability of the proposed method, we
first translate the input Trojan-in netlist into the technology-
independent netlist.Then, the netlist is translated as a di-
rected graph and a transposed graph of it, and the features
of nodes are automatically extracted.Thirdly, the directed
graph and transposed graph are fed to two different GNN
models with the same node features.Finally, the nodes are
classified by the aggregated node features.

2.1 Directed Graph Generation
In IC design, cells with the same logical function usually
have different descriptions because they vary in timing,
area, and power, which makes it more difficult to analyze
the netlist. In HT detection, we only focus on circuit struc-
ture and logic gate function. Therefore, in order to reduce
the complexity of the algorithm, we first learn the existing
technology libraries such as SMIC and TSMC, and build
a technology-independent cell model. Then, the cells in

2

IEICE Electronics Express, Vol.VV, No.NN, 1–6

Trojan-in
netlists

Normal node

Hardware trojan

Technology-independent
netlists

Directed
Graph

Transposed Directed
Graph

1st GNN
Layer

1st GNN
Layer

Gate-Level netlist
structure

Kth GNN
Layer

Kth GNN
Layer

Aggregation
FC + Softmax

Directed Graph Generation & Feature Extraction Dual-GNN Union Network

Fig. 2. An overview of the proposed HTs detection method.

the original netlist are replaced by cells in the technology-
independent cell model with the same function to obtain the
technology-independent netlist.
The netlist is a description of the circuit connection relation-
ship, including gates, wires, and the relationships between
them, which is consistent with the directed graph structure.
A gate-level netlist can be represented as a graph structure
by translating the elements of the circuit into nodes and
the wires into edges. The mapped technology-independent
netlist is modeled as a directed graph𝐺 = (𝑉, 𝐸, 𝐹), where
𝑉 is the set of vertices in the directed graph , 𝐸 is the set
of edges in the directed graph and 𝐹 is the set of nodes’
attributes. We define 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣 𝑗 }, where 𝑣 𝑗 de-
notes a logic gate description such as XOR2, AND2, or
OR2. We define 𝐸 = {𝑒𝑖 𝑗 }, where 𝑒𝑖 𝑗 equals 1 if logic
gate 𝑣𝑖 is a fan-in of logic gate 𝑣 𝑗 , and 0 otherwise. We
define 𝐹 = { 𝑓1, 𝑓2, . . . , 𝑓 𝑗 }, where 𝑓 𝑗 is the eigenvector of
𝑣 𝑗 . Meanwhile, the composition of 𝐹 will be introduced in
the following sections. A processed gate-level netlist and its
directed graph are exemplified in Fig. 3.

0

Node type one-hot

Feature vector

NAND

OAI211

INV

NOR

FFEDQ

FFDQ

D Q

clk

D
Q

clk
E

XNOR

0 0 1 0 in-degree out-degree
betweenness

centrality

harmonic

centrality
PI PO

Fig. 3. Translating technology independent netlist as a graph. The node
color in the graph represents the cell type. Feature vector extraction and
representation for the node in the netlist sub-graph.

2.2 Features Extraction
In [12], 51 structure features are employed for HT detection
in total.It extracts features from each net in a netlist from the
viewpoint of fan-in, fan-out, minimum levels to the primary
node. Based on the analysis of several existing HT detec-
tion methods, we divide the features into the following four
categories from the viewpoint of a directed graph. (a) Cell
type is represented by a one-hot encoding vector whose di-
mension is associated with the technology-independent cell
model built before. (b) Degree is the number of incoming
and outgoing neighbors. (c) Primary input is the minimum
distance between the node and input. (d) Primary output

is the minimum distance between the node and output. To
improve the accuracy of HT detection, we add some extra
features in addition to the above four features as follows.

• Betweenness centrality of a node 𝑣 is the sum of the
fraction of all-pairs shortest paths that pass through the
𝑣 [26].

• Harmonic centrality of a node 𝑣 is the reciprocal sum
of the shortest path distance from all other nodes to the
𝑣 [27].

Betweenness centrality quantifies the number of times a
node acts as a bridge along the shortest paths between any
two nodes.Nodes with high betweenness centrality usually
have more influence over the information flowing between
other nodes.Since Trojan nodes in a design usually have
large fan-in logic, the betweenness centrality is expected
to be higher for the Trojan nodes than the normal nodes.
Harmonic centrality represents the efficiency of node infor-
mation conduction.Since HTs usually appear as a relatively
independent part of the circuit, their distance from other
nodes will be larger and their harmonic centrality will be
lower than normal nodes’. In addition, considering the large
variation in the number of nodes in different netlists, all fea-
tures of the nodes are normalized to eliminate the adverse
effects caused by odd sample data.

2.3 Unioned Graph Neural Network.
In this paper, we leverage GNN to learn the complex, non-
linear relationship between the features and classification of
nodes. Our architecture is inspired by the GraphSAGE [28],
which is based on sampling and aggregating. It can perform
better on inductive inference problems when compared with
original Graph ConvolutionNetworks (GCNs)[29]. Asmen-
tioned before, tomaintain the flowdirection of the circuit, the
netlist is modeled as a directed graph. HTs are lightweight
structures in large-scale IC designs, which commonly con-
tain two components called Trojan trigger (which performs
Trojan activation) and harmful circuitry (which performs
harmful functions). Therefore, in HT detection, the role of
a node depends on its input side, output side, and neighbor
side.
However, using the original GraphSAGE model, when ag-
gregating the node features, only the input side and the edge
direction are considered in the directed graph. It is there-
fore necessary to combine information from both directions
to generate representative node embedding. Therefore, we
propose a unioned graph neural network.

3

IEICE Electronics Express, Vol.VV, No.NN, 1–6

v

d
ec

a b

v

d
ec

a b

fan in

vH
- fan out

vH
-

G
TG

()concat ,
fan in fan out

v v vH H H- -=

Fig. 4. Final embedding of vertex 𝑣 . By training two different Graph-
SAGEmodels, the information from input side (𝐻 𝑓 𝑎𝑛−𝑖𝑛

𝑣) and output side
(𝐻 𝑓 𝑎𝑛−𝑜𝑢𝑡

𝑣) is generated respectively. The final embedding 𝐻𝑣 is a con-
catenation of the two representation vectors.

Firstly, we model a new directed graph denoted as 𝐺𝑇 =

(𝑉, 𝐸𝑇 , 𝐹), where the 𝐸𝑇 is the set of reversed flow di-
rection between the cells. Then we train two GNN models,
one for 𝐺 and the other for 𝐺𝑇 , to generate two embedding
vectors 𝐻 𝑓 𝑎𝑛−𝑖𝑛

𝑣 and 𝐻 𝑓 𝑎𝑛−𝑜𝑢𝑡
𝑣 for each vertex to aggregate

the information from the fan-in cone gates and the fan-out
cone gates respectively. In a single GraphSAGE model, the
update function of 𝑘𝑡ℎ GraphSAGE layer messaging is as
follows:

𝐻𝑘
𝑣 = 𝜎

(
𝑾𝒌 · AGG

(
{𝐻𝑘−1

𝑣 } ∪ {𝐻𝑘−1
𝑢 ,∀𝑢 ∈ 𝑁 (𝑣)}

))
(1)

where 𝜎 is the activation function, 𝑾𝒌 is the matrix of a
linear transformation on the 𝑘𝑡ℎ layer for weight learning of
GraphSAGE and 𝑁 (𝑣) is the set of the 1-hop fan-in nodes of
node 𝑣. AGG is the message aggregation functions, which
aggregates the information of node 𝑣 and the information
of 𝑁 (𝑣). In a word, GNN implements the aggregation and
update of the features on the graph and its own node features
through the above message passing paradigm.
Fig. 4 explains how the final embedding of each vertex is
generated of the proposed model. Thus, the final embedding
of each vertex is given by the combination of 𝐻 𝑓 𝑎𝑛−𝑖𝑛

𝑣 and
𝐻

𝑓 𝑎𝑛−𝑜𝑢𝑡
𝑣 :

𝐻𝑣 = concat
(
𝐻

𝑓 𝑎𝑛−𝑖𝑛
𝑣 , 𝐻

𝑓 𝑎𝑛−𝑜𝑢𝑡
𝑣

)
(2)

Finally, the embedded features of nodes are fed to a fully
connected layer (FC) with a softmax activation function.
The FC layer converts the n-dimensional node embeddings
into two-dimensional vectors, and provides themeasurement
of two kinds of possibility (i.e. [normal node, HT node])
through the softmax function.

3. Experiment and Evaluation

In this section, we evaluate the performance of the pro-
posed HT method and compare it with two baselines:
XGBoost[30] and RF [31]. We conduct GNN model
training and inference experiments on a computer with an
NVIDIA 2080Ti GPU, an Intel(R) Core(TM) i7-10700, and
16-GB memory. The proposed method and our baseline
GramsDet and RF both run on the same netlist.

3.1 Dataset and Model
Benchmarks used in this paper are listed in Table I, which
contain 17 gate-level netlists from Trust-HUB. The types of
HTs covered in the data set include combinational logic, ring
inverter and sequential logic. We use python and regex to
parse these netlists and transform them into directed graphs.
In addition, the proposed method consists of 3 GraphSAGE
layers, and an FC layer with softmax activation after aggre-
gation, and Table II defines the GNN model as well as the
training architecture.

Table I. Benchmarks overview, sorted by design name.

Design No. No. Design No. No.
Gates Trojans Gates Trojans

RS232-T1000 215 13 RS232-T1100 216 12
RS232-T1200 216 14 RS232-T1300 222 9
RS232-T1400 215 13 RS232-T1500 216 14
RS232-T1600 214 12 S15850-T100 2182 27
S35932-T100 5456 15 S35932-T200 5438 16
S35932-T300 5462 36 S38417-T100 5341 12
S38417-T200 5344 15 S38417-T300 5373 44
S38584-T100 6472 9 S38584-T200 6556 83
S38584-T300 7204 730 Total 56342 1074

Table II. GNN configuration and training details
Architecture Training Setings

input-layer [n, 24] Optimizer Adam
hidden-layer units 128 No. of hidden-layer 3
MLP-layer [128,2] dropout 0.1
Activation RELU learning rate 0.005
Classification Softmax n-epochs 200
aggregator type lstm loss-fuction cross-entropy

3.2 HT Detection Results
To evaluate the performance, we perform a leave-one-out
cross-validation. GNN models are trained on 15 of the 16
total netlists, leaving 1 netlist outside of the training data set
to be the test set data. In this way, we can verify the transfer-
ability of the proposed architecture on all 16 circuits.We use
true positives (TP), true negatives (TN), false positives (FP),
and false negatives (FN) to calculate the evaluation metrics.
The evaluationmetrics used in this paper are recall, true neg-
ative rate (TNR), and F-measure. The calculation formulas
are expressed as that: Recall is defined as TP/(TP + FN),
TNR is defined as TN/(TN + FP), Precision is defined as TP
/ (TP + FP) ,F-measure is defined as 2*Recall*Precision /
(Recall + Precision).
The recall of 100% signifies that all correct Trojan nodes
were included in the set of identified Trojan nodes, while
the precision of 100% indicates that the set of identified
Trojan nodes only includes correct Trojan nodes.And the
F-measure is the weighted harmonic mean of recall and pre-
cision.

4

IEICE Electronics Express, Vol.VV, No.NN, 1–6

Dataset plays an important role in the performance of our
model. As shown in Fig 5, proposed method has higher de-
tection for RS232 because there has more data instances in
dataset. Similarly, the performance for other circuits can be
enhanced by gathering a more comprehensive dataset with
similar types of circuits under detection.

Fig. 5. The performance of unioned GNN in HT detection.

3.3 Unioned GNN Evaluation
In this section, we firstly verify the correctness and effec-
tiveness of proposed unioned GNN model. As shown in
Table III, the unioned GNN model outperforms the Graph-
SAGE model in most of the benchmarks.
To futher illustrate the advantages of the proposed unioned

Table III. Detection results of benchmarks for the proposed method and
GraphSAGE.

Design Recall TNR
GraphSAGE Proposed GraphSAGE Proposed

RS232-T1000 100% 100% 100% 100%
RS232-T1100 100% 100% 100% 100%
RS232-T1200 100% 100% 100% 100%
RS232-T1300 100% 100% 100% 100%
RS232-T1400 100% 100% 100% 100%
RS232-T1500 100% 100% 100% 100%
RS232-T1600 100% 100% 100% 100%
S15850-T100 85.2% 85.2% 96.7% 99.3%
S35932-T100 93.3% 93.3% 100% 100%
S35932-T200 75.0% 100% 100% 100%
S35932-T300 94.4% 97.2% 100% 100%
S38417-T100 50.0% 91.7% 100% 100%
S38417-T200 99.9% 100% 98.8% 100%
S38417-T300 81.8% 81.8% 99.3% 100%
S38584-T100 44.4% 44.4% 99.0% 99.8%
S38584-T200 59.8% 96.4% 100% 100%
S38584-T300 85.9% 98.6% 99.7% 99.7%

GNNmodel, we compare the performance of proposed with
the existing methods from the perspectives of Recall, TNR
and F1-score. Table IV summarizes the comparison results.

As shown in Table IV, the proposed method can achieve
an average of 93.4% in recall and 90.7% in precision, and
performance better than XGBoost[30],RF[31] and NHTD-
GL[32]. Because the dataset in [30] is a subset of dataset in
[31] and [32], we chose it as the evaluated design in order
to conduct a relatively fair result evaluation. Generally, the
number of normal nodes is much larger than that of Trojan
nodes in a circuit. For example, in the s38584-T100 bench-
mark, the ratio of normal nodes to Trojan nodes is 386:1.
Therefore, it should be noted that both the recall and F-
measure are more important than other metrics.Compared
with the SOTA method[32], ours has improved 7.4% on
recall and 0.7% on F1. Compared with the baseline, the
unioned GNN has greatly improved in precision, which
increased by 17.3%, thus driving the improvement of F1.
In short, the detection method proposed by this paper can
achieve a high detection accuracy and a better trade-off be-
tween the recall and precision.

Table IV. Average performance comparison with baselines.
Method Recall TNR PRE F1
Proposed 93.4% 99.9% 90.7% 91.4%
baseline 91.6% 99.7% 73.3% 81.6%

NDHL-GL[32] 86.5% 99.9% 97.7% 90.7%
XGboost[30] 66.7% 99.9% 96.0% 79.0%
RF[31] 57.7% 99.9% 98.6% 61.8%

4. Conclusion

In this paper, we proposed a new HT detection method
that can capture suspicious circuit structures using
GNN.Experimental results indicate that the proposed
method can detect HT nodes quickly, and it does not re-
quire the "Golden model".In future work, we will further
improve the F-measure and reduce the complexity of the
proposed architecture and apply the improved algorithm to
the complete dataset in [31] .

References

[1] C. Bao, D. Forte, and A. Srivastava, “On reverse
engineering-based hardware trojan detection,” IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst., vol. 35, no. 1, pp.
49–57, 2016, doi:10.1109/TCAD.2015.2488495.

[2] W. Hu, C.-H. Chang, A. Sengupta, S. Bhunia, R. Kastner,
and H. Li, “An overview of hardware security and trust:
Threats, countermeasures, and design tools,” IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst., vol. 40, no. 6, pp.
1010–1038, 2021, doi:10.1109/TCAD.2020.3047976.

[3] Z. Huang, Q. Wang, Y. Chen, and X. Jiang, “A survey on
machine learning against hardware trojan attacks: Recent
advances and challenges,” IEEE Access, vol. 8, pp. 10 796–
10 826, 2020, doi:10.1109/ACCESS.2020.2965016.

[4] A. Jain and U. Guin, “A novel tampering attack on aes
cores with hardware trojans,” in 2020 IEEE International
Test Conference in Asia (ITC-Asia), 2020, pp. 77–82,
doi:10.1109/ITC-Asia51099.2020.00025.

[5] H. Salmani, Salmani, and Glaser, Trusted Digital Circuits.
Springer, 2018, doi:10.1007/978-3-319-79081-7.

5

IEICE Electronics Express, Vol.VV, No.NN, 1–6

[6] S. Bhunia and M. Tehranipoor, “The hardware trojan war,”
Cham„ Switzerland: Springer, 2018, doi:10.1007/978-3-
319-68511-3.

[7] R. S. Chakraborty and S. Bhunia, “Security against hard-
ware trojan through a novel application of design obfus-
cation,” in 2009 IEEE/ACM International Conference on
Computer-AidedDesign-Digest of Technical Papers. IEEE,
2009, pp. 113–116, doi:10.1145/1687399.1687424.

[8] J. Rajendran, V. Vedula, and R. Karri, “Detecting ma-
licious modifications of data in third-party intellectual
property cores,” in 2015 52nd ACM/EDAC/IEEE Design
Automation Conference (DAC). IEEE, 2015, pp. 1–6,
doi:10.1145/2744769.2744823.

[9] X. Guo, R. G. Dutta, Y. Jin, F. Farahmandi, and
P. Mishra, “Pre-silicon security verification and valida-
tion: A formal perspective,” in Proceedings of the 52nd
annual design automation conference, 2015, pp. 1–6,
doi:10.1145/2744769.2747939.

[10] Q. Shi, N. Vashistha, H. Lu, H. Shen, B. Tehranipoor, D. L.
Woodard, andN.Asadizanjani, “Golden gates: A new hybrid
approach for rapid hardware trojan detection using testing
and imaging,” in 2019 IEEE International Symposium on
Hardware Oriented Security and Trust (HOST). IEEE,
2019, pp. 61–71, doi:10.1109/hst.2019.8741031.

[11] M. Oya, Y. Shi, M. Yanagisawa, and N. Togawa, “A score-
based classification method for identifying hardware-trojans
at gate-level netlists,” in 2015 Design, Automation & Test
in Europe Conference & Exhibition (DATE). IEEE, 2015,
pp. 465–470, doi:10.7873/date.2015.0352.

[12] K. Hasegawa, M. Oya, M. Yanagisawa, and N. To-
gawa, “Hardware trojans classification for gate-level
netlists based on machine learning,” in 2016 IEEE 22nd
International Symposium on On-Line Testing and Robust
System Design (IOLTS). IEEE, 2016, pp. 203–206,
doi:10.1109/iolts.2016.7604700.

[13] K. Hasegawa, M. Yanagisawa, and N. Togawa, “Hard-
ware trojans classification for gate-level netlists us-
ing multi-layer neural networks,” in 2017 IEEE 23rd
International Symposium on On-Line Testing and Robust
System Design (IOLTS). IEEE, 2017, pp. 227–232,
doi:10.1109/iolts.2017.8046227.

[14] T. Inoue, K. Hasegawa, Y. Kobayashi, M. Yanagisawa,
and N. Togawa, “Designing subspecies of hardware tro-
jans and their detection using neural network approach,”
in 2018 IEEE 8th International Conference on Consumer
Electronics-Berlin (ICCE-Berlin). IEEE, 2018, pp. 1–4,
doi:10.1109/icce-berlin.2018.8576247.

[15] T. Kurihara, K. Hasegawa, and N. Togawa, “Evalua-
tion on hardware-trojan detection at gate-level ip cores
utilizing machine learning methods,” in 2020 IEEE
26th International Symposium on On-Line Testing and
Robust System Design (IOLTS). IEEE, 2020, pp. 1–4,
doi:10.1109/iolts50870.2020.9159740.

[16] S. Kundu, X. Meng, and K. Basu, “Application
of machine learning in hardware trojan detection,”
in 2021 22nd International Symposium on Quality
Electronic Design (ISQED). IEEE, 2021, pp. 414–419,
doi:10.1109/isqed51717.2021.9424362.

[17] K. Hasegawa, M. Yanagisawa, and N. Togawa, “Trojan-
feature extraction at gate-level netlists and its applica-
tion to hardware-trojan detection using random forest
classifier,” in 2017 IEEE International Symposium on
Circuits and Systems (ISCAS). IEEE, 2017, pp. 1–4,
doi:10.1109/iscas.2017.8050827.

[18] L. H. Goldstein and E. L. Thigpen, “Scoap: Sandia controlla-
bility/observability analysis program,” in Proceedings of the
17th Design Automation Conference, 1980, pp. 190–196,

doi:10.1145/800139.804528.
[19] H. Salmani, “Cotd: Reference-free hardware trojan detec-

tion and recovery based on controllability and observabil-
ity in gate-level netlist,” IEEE Transactions on Information
Forensics and Security, vol. 12, no. 2, pp. 338–350, 2016,
10.1109/tifs.2016.2613842.

[20] X. Xie, Y. Sun, H. Chen, and Y. Ding, “Hard-
ware trojans classification based on controllability and
observability in gate-level netlist,” IEICE Electronics
Express, vol. 14, no. 18, pp. 20 170 682–20 170 682, 2017,
doi:10.1587/elex.14.20170682.

[21] C.H.Kok, C.Y.Ooi,M.Moghbel, N. Ismail, H. S. Choo, and
M. Inoue, “Classification of trojan nets based on scoap val-
ues using supervised learning,” in 2019 IEEE International
Symposium onCircuits and Systems (ISCAS). IEEE, 2019,
pp. 1–5, doi:10.1109/iscas.2019.8702462.

[22] R. Lu,H. Shen,Y. Su,H. Li, andX. Li, “Gramsdet: Hardware
trojan detection based on recurrent neural network,” in 2019
IEEE 28th Asian Test Symposium (ATS). IEEE, 2019, pp.
111–1115, doi:10.1109/ats47505.2019.00021.

[23] S.-Y. Yu, R. Yasaei, Q. Zhou, T. Nguyen, and M. A.
Al Faruque, “Hw2vec: A graph learning tool for automating
hardware security,” in 2021 IEEE International Symposium
on Hardware Oriented Security and Trust (HOST). IEEE,
2021, pp. 13–23, doi:10.1109/host49136.2021.9702281.

[24] R. Yasaei, S.-Y. Yu, and M. A. Al Faruque, “Gnn4tj: Graph
neural networks for hardware trojan detection at register
transfer level,” in 2021Design, Automation&Test in Europe
Conference & Exhibition (DATE). IEEE, 2021, pp. 1504–
1509, doi:10.23919/date51398.2021.9474174.

[25] N. Muralidhar, A. Zubair, N. Weidler, R. Gerdes, and N. Ra-
makrishnan, “Contrastive graph convolutional networks
for hardware trojan detection in third party ip cores,” in
2021 IEEE International Symposium on Hardware Oriented
Security and Trust (HOST). IEEE, 2021, pp. 181–191,
doi:10.1109/host49136.2021.9702276.

[26] U. Brandes, “On variants of shortest-path between-
ness centrality and their generic computation,”
Social networks, vol. 30, no. 2, pp. 136–145, 2008,
doi:10.1016/j.socnet.2007.11.001.

[27] M.Kitti, “Axioms for centrality scoringwith principal eigen-
vectors,” Social choice and welfare, vol. 46, no. 3, pp. 639–
653, 2016, doi:10.1007/s00355-015-0931-2.

[28] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive rep-
resentation learning on large graphs,” Advances in neural
information processing systems, vol. 30, 2017.

[29] W. L. Hamilton, “Graph representation learning,” Synthesis
Lectures on Artifical Intelligence and Machine Learning,
vol. 14, no. 3, pp. 1–159, 2020, doi:10.32657/10356/155039.

[30] M. Hashemi, A. Momeni, A. Pashrashid, and S. Mo-
hammadi, “Graph centrality algorithms for hardware tro-
jan detection at gate-level netlists,” International Journal
of Engineering, vol. 35, no. 7, pp. 1375–1387, 2022,
doi:10.5829/ije.2022.35.07a.16.

[31] T. Kurihara and N. Togawa, “Hardware-trojan clas-
sification based on the structure of trigger cir-
cuits utilizing random forests,” in 2021 IEEE 27th
International Symposium on On-Line Testing and Robust
System Design (IOLTS). IEEE, 2021, pp. 1–4,
doi:10.1109/iolts52814.2021.9486700.

[32] K. Hasegawa, K. Yamashita, S. Hidano, etal , “Node-wise
hardware trojan detection based on graph learning,” ArXiv,
vol. abs/2112.02213, 2021.

6

