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1. Introduction. Let P=P(x; d/dx) be an elliptic homogeneous differen-
tial operator of order m(^>2) with complex valued C°° coefficients defined near the
origin in the 2-dimensional real Euclidean space R2. We say that P is A-ellilpic
at x0 if xQ has a neighbourhood U such that for any open and connected
neighbourhood V ( c U) of x0, there is no non-trivial solution u^ Cm(V) of the
differential inequality in V

( 1) \P(x; djdx)
\a\<m

such that u=0 in some open subset (of V) whose closure contains the point x0.
It is well known that P is A-elliptic at each point where P has simple characteris-
tics, or P has double characteristics and has Lipschitz continuous characteristic
roots (see Hormander [1], Pederson [2]).

In the present paper we shall give a sufficient condition for the operator P
to be A-elliptic when P has double characteristics and its symbol P(x\ f) has a
factorization of the form in a neighbourhood of the origin

( 2 ) p(x; |) = a(x) fl (&+2aj(x%&+b,(x)®

or
•W -& + S

y=i * J 1 2 J j=*jr+i J

Here a, a. and bk are C°°(o)) functions such that a(0)=|=0, ay(0)2 = 6 (̂0)
0 = 1 , •••, N) and ^.(0)4=^(0) (l<j+k<N-\-s).

Set Cj(x)=bj(x)—aj(x)2 and let i?y be the set of points yGw which has a
neighbourhhood where Cj(x)=k(x)2 for some C1+1/2 function (̂̂ c). Then we
have our main result as follows.

* This work was carried out in 1972 at Osaka University, where the author was supported
by the Yukawa Foundation.
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Theorem. If there is an open neighbourhood co1 ( c co) of the origin such that
the following conditions (4) and (5) hold for eachj=l, -~,N, then P(x; djdx) is
K-elliptic at the origin.

( 4 ) grad*Cy(#)=O when Cj(x) = 0, x^co1.

( 5 ) The order of zero for Cj is finite at each point of co\Rj .

In the next section we shall give a proposition on differentiable square
roots in order to prove Theorem.

2. Differentiable square roots and the proof of Theorem. Let co2

(Ccoj) be an open and connected neighbourhood of the origin such that
mm{\a.(x)-ak(x)\; \<j^k<N+s}>m^{2\bj{x)-aj{x)2\1/2\ l<j<N).
This means that P has at most double characteristics at each point of cov Then,
applying the results by Hormander [1] or Pederson [2], we have P is A-elliptic

at each point of co2flR where R= f]Rj. So it is sufficient to prove that co2C\R

is a dense subdomain of co2. From now on, we shall use new notation. Let £1
be domain in Rn (n>2), and let fs and gj (1 </<<*>) real valued C°° functions
denned in ft. We also denote by Rj the set denned §1 for/y+V^T^y a n ^ ̂
instead of Cj and co. Then we have

Proposition. i ? = f] R. is a dense subdomain of £1 if the following conditions

(6) and (7) are satisfied for eachj=\, •••, N.

( 6 ) grad^/y(,xi)=grad^y(^)=0 when fJ(x)=gJ(x)=09 x G a

( 7 ) At least one of orders of zeros for f. and gj is finite at each point of £l\Rj.

REMARKS OF THEOREM. 1) Since p(x; %) has factorization (2) or (3), we
that the condition:

( 4 ) ' g r a d e s ; f)=0 when^>(^; f ) = g r a d ^ , f) = 0, (*,

is equivalent to the condition (4).

2) We denote by D(xy f2) the discriminant of polynomial p(x\ f) in fx.
Since p(x; f) is homogeneous in ? = ( ^ f2) °f order m, we have D(xy l;2) =

S(«)f?c*-1} and S(x)=S0(x) U (b.(x)-a.(x)2). Here S0^C°° and S0(0)4=0. So

that we have the condition:

( 5 )f the order of zero for S is finite at the origin

implies the condition (5) if we take sufficiently small cov

REMARKS OF PROPOSITION. 1) In order that x0 belongs to Rjy it is neces-
sary that the following inequality holds in some neighbourhood of xQ,
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( 8 ) |grad,/y(^)|2+ |grad^,(*)|2<C {|/y(*) | + \g.(x)\}

for some constant C. Moreover the conditon:

( 9 ) for each j=l, •••, N, setting Re Cj=fj and Im Cj=gj, the inequality (8)
holds in a neghbourhoof of the origin

is sufficient in order that P is .^-elliptic at the origin.
2) There is a pair/ and g fo C°° funtions satisfying the condition (6), but

not satisfying both (7) and (8) such that R is not connected. For example, near
*=0, f(*, *2)=exp(-l/*) sin (1/0, g(t, *2)=(log I/O"17' if *<0, f=g=0 if *<0.

Proof of Proposition. It is easy to see that Rj and R are open and dense in
H. So that we have only to show that Rj and R are connected. Now we first
prove tha following two Lemmas under the conditions (6) and (7)

Lemma 1. For any (n—\)-dimensional C°° manifold F in H, TCiRj is
dense in F.

Lemma 2. For each point x^Sj=D\RJy there is a fundamental system
{U(x)} of open neighbourhoods of x such that U(x)\Sj is connected.

Proof of Lemma 1. Without loss of generality, we may assume that is F
defined by the equation x1=(j)(xf) near xo^Sj and that/y and^y vanish at any
point x on F if x is near x0. Here <£eC°° and we use notation x=(xv x'). In
addition, we may assume that the order of zero for f. is finite at x0 by the
assumption. So, near xo> f. and g. have a factorization of the form

If, for some positive integer k, dkgj\dx{ does not vanish identically in any
neighbourhood of x0 in T, we have

and if other case occurs, for any positive integer i we have

Here X and v are positive integers which are independent on x and /$, gf
5 and

gjj are C°° functions such that f5 and gf
5 do not vanish identically in any

neighbourhood of x0 in F. By the assumption (6), we have X, v>2. The
above factorizations imply that when for£y the first case occurs and \<i>, or
the second case occurs, any point such that / } does not vanish is in Rj and
when other case occurs, any point such that g] dose not vanish is in R.. This
means that F f)Rj is dense in F.

Proof of Lemma 2. Take any point xQ in Sj. Without loss of generality,
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we may assume that a{x), the order of zero for f. at x, is finite at x0. Since
a(x) is upper semi-continuous, we can choose an open neighbourhood W of
x0 such that Wf)Sj={xE:Wf)Sj; a(x) <a(x0)}. Setting T^= {x<= W fl Sj;

a(x)=k}, we have WnSf= U Tck\ so that, using the induction on k such that

x<=Tck\ we prove this Lemma for any x^WHSj. When x<=TC2\ T™=
W[)Sj and T00 is contained in a (n— l)-dimensional C°° manifold near x.
Hence, using Lemma 1, the result is clear. When x^ Tck+l:>, by similar reason,
we can take a fundamental system {U(x)} of open neighbourhoods of x such

that U(x)f]Sj= U(x)n(\jTc») and that U(x)\Tck+1> is connected. We show

that this system {£/(#)} has that required property. If U(x)\Sj is not con-
nected, we can take two disjoint components Co and Cx and a continuous curve
x(t) (0<t<l) in U(x)\Tck+1> such that ^ ( 0 ) G C O and x(l)<=Cv Take a small
positive number 6 such that B(x(t), e)aU(x)\Tck+1> for any ,̂ B(x(0)y S)czCo

and B(^(l), ^)cCx where B(y, €) is the closed ball with the center y and radius
S. Set H= {x = (xv x2, -,xn)^Rn; x1 = 0}, H(t)=B(x(t), £)n[x(t)+H] and
m̂ax = sup {tei [0, 1]; H(t) n Co+^)}. Since the set {t; H(t) n Co^^} is open

in [0, 1] we have 0<*m a x<l and ^ m a x ) fl Co=<|). On the other hand, by the
definition of £max, there are two convergent sequences {£v} and {xv} such that
xv^H(tv) fl Co with the limit point £max and j>, respectively. This limit point j>

is in H(tmax)nSj since #(*max)nC0 = <£. So that yGL) Tco. By the induc-
tion hypothesis, there is a neighbourhood U(y) of y such that t/(j>)c U(x) and
that U(y)\Sj is connceted. Hence, using Lemma 1, we have U(y)\SjdC0

and H(tmax) fl CQ^$. This gives a contradiction and then completes the proof
of Lemma 2.

Then we can prove easily that Ry. and R are connceted if we shall use the
similar method by the reduction to absurdity as that in the proof of Lemma 2.
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