Watanabe, K. Osaka J. Math. 10 (1973), 243-246

A UNIQUE CONTINUATION THEOREM FOR AN ELLIPTIC OPERATOR OF TWO INDEPENDENT VARIABLES WITH NON-SMOOTH DOUBLE CHARACTERISTICS

Kinji WATANABE*

(Received October 3, 1972)

1. Introduction. Let $P=P(x; \partial/\partial x)$ be an elliptic homogeneous differential operator of order $m(\geq 2)$ with complex valued C^{∞} coefficients defined near the origin in the 2-dimensional real Euclidean space R^2 . We say that P is A-elliptic at x_0 if x_0 has a neighbourhood U such that for any open and connected neighbourhood $V (\subset U)$ of x_0 , there is no non-trivial solution $u \in C^m(V)$ of the differential inequality in V

(1)
$$|P(x; \partial/\partial x)u| \leq C \sum_{|x| < m} |(\partial/\partial x)^{\alpha}u|$$

such that u=0 in some open subset (of V) whose closure contains the point x_0 . It is well known that P is A-elliptic at each point where P has simple characteristics, or P has double characteristics and has Lipschitz continuous characteristic roots (see Hörmander [1], Pederson [2]).

In the present paper we shall give a sufficient condition for the operator P to be A-elliptic when P has double characteristics and its symbol $P(x; \xi)$ has a factorization of the form in a neighbourhood of the origin

(2)
$$p(x; \xi) = a(x) \prod_{j=1}^{N} (\xi_1^2 + 2a_j(x)\xi_1\xi_2 + b_j(x)\xi_2^2)$$

or

(3)
$$p(x;\xi) = a(x) \prod_{j=1}^{N} (\xi_1^2 + 2a_j(x)\xi_1\xi_2 + b_j(x)\xi_2^2) \prod_{j=N+1}^{N+s} (\xi_1 + a_j(x)\xi_2).$$

Here a, a_j and b_k are $C^{\infty}(\omega)$ functions such that $a(0) \neq 0$, $a_j(0)^2 = b_j(0)$ $(j=1, \dots, N)$ and $a_j(0) \neq a_k(0)$ $(1 \leq j \neq k \leq N+s)$.

Set $c_j(x) = b_j(x) - a_j(x)^2$ and let R_j be the set of points $y \in \omega$ which has a neighbourhhood where $c_j(x) = k(x)^2$ for some $C^{1+1/2}$ function k(x). Then we have our main result as follows.

^{*} This work was carried out in 1972 at Osaka University, where the author was supported by the Yukawa Foundation.

K. WATANABE

Theorem. If there is an open neighbourhood $\omega_1 (\subset \omega)$ of the origin such that the following conditions (4) and (5) hold for each $j=1, \dots, N$, then $P(x; \partial/\partial x)$ is A-elliptic at the origin.

(4) $\operatorname{grad}_{x}c_{j}(x)=0$ when $c_{j}(x)=0, x\in\omega_{1}$.

(5) The order of zero for c_i is finite at each point of $\omega_1 \setminus R_i$.

In the next section we shall give a proposition on differentiable square roots in order to prove Theorem.

2. Differentiable square roots and the proof of Theorem. Let ω_2 $(\subset \omega_1)$ be an open and connected neighbourhood of the origin such that $\min \{|a_j(x)-a_k(x)|; 1 \le j \ne k \le N+s\} > \max \{2|b_j(x)-a_j(x)^2|^{1/2}; 1 \le j \le N\}$. This means that *P* has at most double characteristics at each point of ω_1 . Then, applying the results by Hormander [1] or Pederson [2], we have *P* is A-elliptic at each point of $\omega_2 \cap R$ where $R = \bigcap_{j=1}^{N} R_j$. So it is sufficient to prove that $\omega_2 \cap R$ is a dense subdomain of ω_2 . From now on, we shall use new notation. Let Ω be domain in R^n ($n \ge 2$), and let f_j and g_j ($1 \le j < \infty$) real valued C^{∞} functions defined in Ω . We also denote by R_j the set defined §1 for $f_j + \sqrt{-1}g_j$ and Ω instead of c_j and ω . Then we have

Proposition. $R = \bigcap_{j=1}^{N} R_j$ is a dense subdomain of Ω if the following conditions (6) and (7) are satisfied for each $j=1, \dots, N$.

(6) $\operatorname{grad}_{x} f_{i}(x) = \operatorname{grad}_{x} g_{i}(x) = 0$ when $f_{i}(x) = g_{i}(x) = 0$, $x \in \Omega$.

(7) At least one of orders of zeros for f_i and g_j is finite at each point of $\Omega \setminus R_j$.

REMARKS OF THEOREM. 1) Since $p(x; \xi)$ has factorization (2) or (3), we that the condition:

(4)' grad_x $p(x; \xi) = 0$ when $p(x; \xi) = \operatorname{grad}_{\xi} p(x, \xi) = 0$, $(x, \xi) \in \omega_1 \times \mathbb{C}^2 \setminus 0$

is equivalent to the condition (4).

2) We denote by $D(x, \xi_2)$ the discriminant of polynomial $p(x; \xi)$ in ξ_1 . Since $p(x; \xi)$ is homogeneous in $\xi = (\xi_1, \xi_2)$ of order *m*, we have $D(x, \xi_2) = \delta(x)\xi_2^{m(m-1)}$ and $\delta(x) = \delta_0(x) \prod_{j=1}^{N} (b_j(x) - a_j(x)^2)$. Here $\delta_0 \in C^{\infty}$ and $\delta_0(0) \neq 0$. So that we have the condition:

(5)' the order of zero for δ is finite at the origin

implies the condition (5) if we take sufficiently small ω_1 .

REMARKS OF PROPOSITION. 1) In order that x_0 belongs to R_j , it is necessary that the following inequality holds in some neighbourhood of x_0 ,

244

$$(8) \quad |\operatorname{grad}_{x}f_{j}(x)|^{2} + |\operatorname{grad}_{x}g_{j}(x)|^{2} \leq C\{|f_{j}(x)| + |g_{j}(x)|\}$$

for some constant C. Moreover the conditon:

(9) for each j=1, ..., N, setting Re c_j=f_j and Im c_j=g_j, the inequality (8) holds in a neghbourhoof of the origin

is sufficient in order that P is A-elliptic at the origin.

2) There is a pair f and g fo C^{∞} functions satisfying the condition (6), but not satisfying both (7) and (8) such that R is not connected. For example, near t=0, $f(t, x_2)=\exp(-1/t)\sin(1/t)$, $g(t, x_2)=(\log 1/t)^{-1/t}$ if t<0, f=g=0 if t<0.

Proof of Proposition. It is easy to see that R_j and R are open and dense in Ω . So that we have only to show that R_j and R are connected. Now we first prove tha following two Lemmas under the conditions (6) and (7)

Lemma 1. For any (n-1)-dimensional C^{∞} manifold Γ in Ω , $\Gamma \cap R_j$ is dense in Γ .

Lemma 2. For each point $x \in S_j = \Omega \setminus R_j$, there is a fundamental system $\{U(x)\}$ of open neighbourhoods of x such that $U(x) \setminus S_j$ is connected.

Proof of Lemma 1. Without loss of generality, we may assume that is Γ defined by the equation $x_1 = \phi(x')$ near $x_0 \in S_j$ and that f_j and g_j vanish at any point x on Γ if x is near x_0 . Here $\phi \in C^{\infty}$ and we use notation $x = (x_1, x')$. In addition, we may assume that the order of zero for f_j is finite at x_0 by the assumption. So, near x_0, f_j and g_j have a factorization of the form

$$f_j(x) = f'_j(x)(x_1 - \phi(x'))^{\lambda}.$$

If, for some positive integer k, $\partial^k g_j / \partial x_1^k$ does not vanish identically in any neighbourhood of x_0 in Γ , we have

$$g_j(x) = g'_j(x)(x_1 - \phi(x'))^{\mathbf{v}}$$

and if other case occurs, for any positive integer i we have

$$g_{j}(x) = g_{j,i}(x)(x_1 - \phi(x'))^i$$

Here λ and v are positive integers which are independent on x and f'_j, g'_j and $g_{j,i}$ are C^{∞} functions such that f'_j and g'_j do not vanish identically in any neighbourhood of x_0 in Γ . By the assumption (6), we have $\lambda, v \ge 2$. The above factorizations imply that when for g_j the first case occurs and $\lambda \le v$, or the second case occurs, any point such that f'_j does not vanish is in R_j and when other case occurs, any point such that g'_j dose not vanish is in R_j . This means that $\Gamma \cap R_j$ is dense in Γ .

Proof of Lemma 2. Take any point x_0 in S_j . Without loss of generality,

K. WATANABE

we may assume that $\alpha(x)$, the order of zero for f_i at x, is finite at x_0 . Since $\alpha(x)$ is upper semi-continuous, we can choose an open neighbourhood W of x_0 such that $W \cap S_j = \{x \in W \cap S_j; \alpha(x) \le \alpha(x_0)\}$. Setting $T^{(k)} = \{x \in W \cap S_j; \alpha(x) \le \alpha(x_0)\}$. $\alpha(x)=k$, we have $W \cap S_j = \bigcup_{k=2}^{\alpha(x_0)} T^{(k)}$, so that, using the induction on k such that $x \in T^{(k)}$, we prove this Lemma for any $x \in W \cap S_i$. When $x \in T^{(2)}$, $T^{(2)} =$ $W \cap S_i$ and $T^{(2)}$ is contained in a (n-1)-dimensional C^{∞} manifold near x. Hence, using Lemma 1, the result is clear. When $x \in T^{(k+1)}$, by similar reason, we can take a fundamental system $\{U(x)\}$ of open neighbourhoods of x such that $U(x) \cap S_j = U(x) \cap (\bigcup_{i=2}^{k+1} T^{(i)})$ and that $U(x) \setminus T^{(k+1)}$ is connected. We show that this system $\{U(x)\}$ has that required property. If $U(x)\setminus S_j$ is not connected, we can take two disjoint components C_0 and C_1 and a continuous curve x(t) $(0 \le t \le 1)$ in $U(x) \setminus T^{(k+1)}$ such that $x(0) \in C_0$ and $x(1) \in C_1$. Take a small positive number ε such that $B(x(t), \varepsilon) \subset U(x) \setminus T^{(k+1)}$ for any $t, B(x(0), \varepsilon) \subset C_0$ and $B(x(1), \varepsilon) \subset C_1$ where $B(y, \varepsilon)$ is the closed ball with the center y and radius Set $H = \{x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n; x_1 = 0\}, H(t) = B(x(t), \varepsilon) \cap [x(t) + H] \text{ and } t \in \mathbb{R}^n\}$ Е. $t_{\max} = \sup \{t \in [0, 1]; H(t) \cap C_0 \neq \phi\}$. Since the set $\{t; H(t) \cap C_0 \neq \phi\}$ is open in [0, 1] we have $0 < t_{\text{max}} < 1$ and $H(t_{\text{max}}) \cap C_0 = \phi$. On the other hand, by the definition of t_{\max} , there are two convergent sequences $\{t_v\}$ and $\{x_v\}$ such that $x_{v} \in H(t_{v}) \cap C_{0}$ with the limit point t_{max} and y, respectively. This limit point y is in $H(t_{\max}) \cap S_j$ since $H(t_{\max}) \cap C_0 = \phi$. So that $y \in \bigcup_{i=2}^{k} T^{(i)}$. By the induction hypothesis, there is a neighbourhood U(y) of y such that $U(y) \subset U(x)$ and that $U(y) \setminus S_i$ is connected. Hence, using Lemma 1, we have $U(y) \setminus S_i \subset C_0$ and $H(t_{\max}) \cap C_0 \neq \phi$. This gives a contradiction and then completes the proof of Lemma 2.

Then we can prove easily that R_j and R are connected if we shall use the similar method by the reduction to absurdity as that in the proof of Lemma 2.

TÔHOKU UNIVERSITY

Bibliography

- [1] L. Hörmander: On the uniqueness of the Cauchy problem 2, Math. Scand. 7 (1959), 177-190.
- [2] P.N.Pederson: Uniqueness in Cauchy's problem for elliptic equations with double characteristics, Ark. Mat. 6 (1967), 535-549.