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Abstract. A uniqueness condition for Gibbs measures is given. This condition is

stated in terms of (absence of) a certain type of percolation involving two independent

realisations. This result can be applied in certain concrete situations by comparison

with "ordinary" percolation. In this way we prove that the Ising antiferromagnet on a

square lattice has a unique Gibbs measure if β(4 - \h\) < | ln(Pc/(l — Pc)), where

h denotes the external magnetic field, β the inverse temperature, and Pc the critical

probability for site percolation on that lattice. Since Pc is larger than | , this extends

a result by Dobrushin, Kolafa and Shlosman (whose proof was computer-assisted).

1. Introduction and General Theorem

Our main theorem requires hardly any prerequisites and we hope the following
introduction makes it also accessible to non-experts.

Let the graph G be connected, countably infinite, and locally finite (the last means
that each vertex has finitely many edges). The set of vertices of G is denoted by VG.
Vertices will typically be denoted by i,j,υ,w etc., possibly with a subscript. Two
vertices v and w are said to be adjacent, or neighbours (notation: v ~ w) if there is
an edge between them.

A path from v to w is a sequence of vertices υx = v,v2, . . . , υι = w with
the property that consecutive vertices are adjacent. An infinite path is a sequence
vx,v2, . . . with the property that consecutive vertices are adjacent, and which contains
infinitely many different vertices.

For B C VG, δB will denote the boundary of B, i.e. the set of all vertices which
are not in B but adjacent to some vertex in B.
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Percolation. Suppose each vertex i is, independent of all other vertices, open (i.e.
accessible) with probability pi and closed with probability 1 — p{. Denote the
corresponding probability measure by Prp y For a realisation of the process a
path is called open if all its vertices are open. We say that percolation occurs
if Prp I (there exists an infinite open path) > 0 (in which case this probability
is even 1 since the event is a tail event). In case all p^s are equal, say p,
we write Pp for the above probability measure and define the critical probability
pc = inf{p:Pp (there exists an infinite open path) > 0}. This critical probability
depends on G. One of the first results in percolation was to show that pc < 1 for a
large class of graphs, including the square lattice [Broadbent and Hammersley (1957)].
The above model is called independent site percolation. If the vertices do not behave
independent of each other we speak of dependent percolation and if the edges rather
than the vertices are open or closed we speak of bond percolation. For further study,
see Grimmett (1989) and Kesten (1982).

Markov Fields and Gibbs Measures. Let S be a finite or countably infinite set and
define Ω — Sv°. Elements of Ω will typically be denoted by ω = (ω^ί G VG). We
are interested in certain probability measures μ on Ω (equipped with the σ-algebra
generated by (ωi = s), ί E VG, s e 5; we will call this the obvious σ-algebra).
Roughly speaking, μ is called a Markov field if, for each finite set of vertices £?, the
conditional distribution of the configuration inside B, given the configuration outside
B, depends only on the configuration on δB. Such a set of conditional probabilities,
indexed by the finite sets B, the configurations on B, and the configurations on δB,
is called a specification of μ. There may be more Markov fields with the same
specification. They are called its Gibbs measures. For more general and precise
definitions see Georgii (1988) and Prum and Fort (1991). An intuitively appealing
introduction is Kindermann and Snell (1980). A central problem in the theory is to
determine whether a given specification has a unique Gibbs measure. In case of non-
uniqueness we say that there is a phase transition. The most well-known condition
which implies uniqueness is Dobrushin's condition of weak dependence [Dobrushin
(1968a)]. For references to other uniqueness results see the bibliographical notes for
Chap. 8 of Georgii (1988). In this paper we prove a uniqueness condition involving
two independent realisations. To state our result we need another definition. Let ω
and ωr be two realisations. A path of disagreement for the pair (α;, ω1) is a path in G
on which all vertices i have ωi φ ω[.

Theorem 1. Let G be a countable, locally finite, connected graph, VG its set of
vertices, S a finite or countably infinite set, and Ω — Sv°. Let the probability
measures μ and μ1 on Ω (with the obvious σ-algebra) be Markov fields with the same
specification. Consider two independent realisations, one under μ, the other under μ!.
If(μ x //) ((ω,ωf) has an infinite path of disagreement) = 0, then μ = μ!'.

Remarks, (i) The reverse is obviously false: For example, let G be a graph whose
critical probability pc (for site percolation) is strictly smaller than 1, and let S =
{1, . . . , n}. Let μ be the probability measure under which each i e VG, independent
of all other vertices, is in state s 6 S with probability 1/n. Uniqueness is trivial in
this case. However, if ω and ωr are two independent realisations of this process, then
the process {I(ωi φ ωf

i))ieyG, where /(•) denotes the indicator function, is i.i.d. with
parameter p = 1 — 1/n. Hence, if n is taken sufficiently large, then p > pc and we
have, with probability 1, an infinite path of disagreement. This example shows that
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our theorem is, in certain cases, completely useless. However, in some other cases it
is quite powerful, as the application in Sect. 2 shows.
(ii) Methods involving two independent realisations have been used, with much
success, earlier in this field [see e.g. Lebowitz (1974), Percus (1975), and Aizenman
(1980)].
(iii) It seems natural to expect that improved results may be obtained by taking a more
complicated coupling (instead of independent realisations). This will be the subject
in van den Berg and Maes (1992).

Proof of Theorem 1. Suppose the assumption holds, i.e. (μ x μf) ((ω,ω') has an
infinite path of disagreement) = 0. Let A be an arbitrary finite set of vertices, and
sl)S2, , S\A\ an arbitrary sequence of elements of S (where \A\ denotes the number
of elements of A). Further, let E be the event {ω e Sv° \ωi = si for all i e A}.We
have to prove that μ(E) = μ\E). For each pair (ω,ω') the cluster of disagreement
containing A is defined as the subset CA of VG which consists of A as well as
all vertices i for which there exists a path of disagreement to some vertex in 6A.
Let T : Ω x Ω —> Ω x Ω be the transformation which exchanges ω and ω' on the
above cluster of disagreement. More precisely, T(ω^ωf) = (σ,σ'), where σi equals
ω if i e CA and equals ω% otherwise, and, similarly, σ equals ωi if i £ CA and
ω'{ otherwise. This transformation is obviously 1-1. Moreover, CA is finite with
probability one (by assumption). From this, together with the Markov property of μ
and μ!, and the fact that μ and μ! have the same specification, it is quite easy to see
that T is also measure preserving: sum over all possibilities for CA, and all possible
configurations on CA U δCA. (This way of using the Markov property is somewhat
similar to that in Russo (1979.) Hence, since E involves only vertices of A (which
is by definition contained in CA), we have

μ(E) = (μ x μf) (E x Ω) = (μ x μf) (T(E x Ω)) = (μ x μf) (Ω x E) = μ\E),

which completes the proof. D

The condition in Theorem 1 involves dependent site percolation. In certain situa-
tions it is useful to compare this process with independent site percolation:

Corollary 1. Let G, S, μ and μ! be as defined in Theorem 1. Consider again two
independent realisations, one under μ, the other under μ!. Let, for each vertex i, Nt

be the set of neighbours of i, and define

pz = sup (μ x μ') (ω% φ ω[ \ ω- = α^ and J- = oίj for all j e N{). (1)
α,α'GSwi

Consider the percolation process where each vertex of G, independently of all others,
is open with probability pi and closed with probability 1 — pim If P^ y (there exists an
infinite open path) = 0, then μ = μ'.

Remark. It is clear from the definition of the p/s in (1) that this corollary can easily
be reformulated as a uniqueness condition for (Markovian) specifications.

Proof of Corollary 1. Let, for each i, r3i be the σ-field generated by the random
variables ω3, j φ i and the random variables ω' , j φ i. Since μ and μ1 are Markov
fields it is obvious that (μ x μt)(ωι φ c^|θy is, a.s., at most p . Therefore it is
intuitively obvious that the process (I(ωz Φ ωfy^y is stochastically dominated
by the process (/(vertex i is opeή))ιeyG. [This can be easily proved by standard
arguments as, e.g., in the proof of Lemma 1 in Grimmett and Marstrand (1990)].
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In particular, the probability that (ω,ω') has an infinite path of disagreement is
smaller than or equal to Psp y (there exists an infinite open cluster). Now apply
Theorem 1. D

2. Application: Phase Diagram of the 2-Dimensional Ising Antiferromagnet

In this section G is the square lattice, i.e. the lattice whose vertices are the elements of
Z2, and where two vertices υ = (υι,υ2) and w = (wι,w2) have an edge in between
iff \υι — wx\ -\- \v2 — w2\ = 1. The Ising antiferromagnet has two parameters, the

external magnetic field h and the temperature T I or, instead, the inverse temperature

β = — I. Each vertex i can have spin ω% = + 1 or —1, i.e. S = {—1,+1}. Its

Hamiltonian is given by

ΈH = Σ ωiωi ~hΈωJ
~3

This means that we are dealing with Markov fields with the property that the
conditional probability that a finite set B dVG has configuration σ, given the event
that its boundary has configuration a is proportional to

expf-βf £ σ*σ,+ Σ σiaj-hΣσi)) ( 3 )

J J
It is a standard result that at least one such probability measure exists. It has been
proved by Dobrushin (1968b) that there is more than one Gibbs measure in the region
β(4 — \h\) > u with u a positive constant.

In a paper by Dobrushin, Kolafa and Shlosman (1985) the phase diagram near the
points h — ± 4 , T = 0 has been investigated. In particular, they were interested in
the question whether there could be more that one Gibbs measure if h = ± 4 and T is
sufficiently small. The main result in their paper, Theorem 2 below, shows the answer
is negative (which had been made plausible before, but no rigorous proof existed).

Theorem 2 [Dobrushin, Kolafa, Shlosman (1985)]. There exist 0,π > θ > π/2, and
r > 0 such that there is a unique Gibbs measure of the antiferromagnet on a square
lattice with parameters (ft, Γ) in the domain {(/ι, T): h - 4 = r' cos θ', T — rf sin θ',
0 < θf < θ, 0 < r' < r}. By symmetry, a similar result holds near the points h = — 4,
T = 0.

The proof of the theorem above is computer-assisted and based on a constructive
uniqueness criterion by Dobrushin and Shlosman (1985). This criterion is of the form:
"if the Gibbs specification is such that a condition Cv is true for a finite volume F,
then there is a unique Gibbs measure." The values of θ and r which can be obtained
from the paper are very close to π/2 and 0 respectively, but it is believed that, in
principle, by checking sufficiently large boxes, uniqueness for this antiferromagnet can
be proved with their method whenever it holds. However, in practice the possibilities
are, of course, limited by computer power.

We will show that the corollary in Sect. 1, combined with the following result
on independent site percolation, yields, quite easily, a result which is stronger than
Theorem 2.
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Lemma 1. Let Pc denote the critical probability for site percolation on the square
lattice.
(a) [Harris (I960)] Pc > 1/2.
(b) [Higuchi (1982)] Pc > 1/2.

Remark. Part (a) of the above lemma was proved by Harris for bond percolation on
the square lattice, but extends to site percolation [see Fisher (1961) and Hammersley
(1961)].

Theorem 3. For β(4 — \h\) < | ln(Pc/(l — Pc)) the Ising antiferromagnet on the
square lattice has a unique Gibbs measure. Here Pc denotes the critical probability
for site percolation on that lattice.

Proof of Theorem 3. As remarked before, the existence of at least one Gibbs measure
is a standard result. By symmetry we may restrict to the case h > 0. We apply the
corollary in Sect. 1. In this model pi9 defined in (1), does not depend on i so we omit
the subscript. By taking B the set consisting of just one element, say the origin, and
noting that the conditional distribution of the spin at the origin, given the spins of its
four neighbours, is a function of the sum n of those neighbour spins, it takes only a
few elementary steps to derive from (3) that

p cosh(β(n - n')) /λ.
= max . . . Ί . / ^ 7 — (4)1 — p -4<n'<n<4 COSh(/?(2/l — Π — Π1))

Now set

h = 4+"β. (5)

The condition in the theorem can now be written as

u>-^ l n ( P c / ( l - P c ) ) . (6)

We have to show that, under (6), p < P c, or, equivalently, p/{\ -p) < Pc/(1 — Pc).
First, we can now write (4) as

p cosh( hii - nr))
- — - . (7)1 — p - 4 < n ' < n < 4 COSh(/3(8 — Π — Πf) + 2u)

Now note that 0 < n — nr < 8 — n — n' and use that the function x —•> cosh(x)
is increasing for x > 0. In case u — 0 this gives immediately p/(l - p) < 1,
which, combined with (6), yields the desired inequality. In case u > 0, use again the
monotonicity of cosh(x) to obtain p/(\ — p) < 1, which, combined with part (a) of
the lemma, yields again p < Pc. Finally, as to the case u < 0, note that the value
of the denominator in the right-hand side of (7) for that case is larger than exp(2w)
times the corresponding value for the case u = 0. Hence, the value of p/{\ - p) at
u < 0 is smaller than exp(—2u) times its value at u = 0. In other words, if u < 0,
then p/{\ - p) < exp(-2it), which by (6) is smaller than P c/(1 - P c). •

Remarks, (a) Note that the above theorem combined with part (a) of Lemma 1 implies
uniqueness whenever \h\ > 4. With the strong inequality in part (b) of the lemma it
clearly implies (and extends) the result by Dobrushin, Kolafa and Shlosman stated in
Theorem 2 above. Using better lower bounds for P c , our theorem yields automatically
stronger uniqueness results. For instance, Toth (1985) has proved Pc > 0.503 .... This
bound has been further improved by Menshikov and Pelikh (1989).
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(b) Intimately connected with Theorem 2 is the result (by Dobrushin et al. in the same

paper) that the critical activity ac for the hard-square lattice gas model is larger than

I. Our method easily yields ac > Pc/(l — Pc). This and other new rigorous results

for hard-core lattice gas models are given in van den Berg and Steif (1992).

(c) In this paper we have restricted to mathematically rigorous results, and we have

not mentioned the many detailed results for the Ising antiferromagnet which have been

obtained by interesting but non-rigorous methods [see e.g. Blδte and Wu (1990)].
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