
An. Şt. Univ. Ovidius Constanţa Vol. 19(1), 2011, 35–48

A UNIQUENESS RESULT RELATED TO

MEROMORPHIC FUNCTIONS SHARING

TWO SETS

Abhijit Banerjee and Sujoy Majumder

Abstract

With the help of a new unique range set we investigate the well

known question of Gross and prove a uniqueness theorem on meromor-

phic functions sharing two sets. The result in this paper will improve

and supplement some earlier results.

1 Introduction, Definitions and Results

In this paper, by meromorphic functions we will always mean meromorphic
functions in the complex plane. We adopt the standard notations of the Nevan-
linna theory of meromorphic functions as explained in [5]. It will be convenient
to let E denote any set of positive real numbers of finite linear measure, not
necessarily the same at each occurrence. For a non-constant meromorphic
function h, we denote by T (r, h) the Nevanlinna characteristic of h and by
S(r, h) any quantity satisfying S(r, h) = o{T (r, h)}, as r −→ ∞ and r 6∈ E.

Let f and g be two non-constant meromorphic functions and let a be a
complex number. We say that f and g share a CM, provided that f − a and
g− a have the same zeros with the same multiplicities. Similarly, we say that
f and g share a IM, provided that f−a and g−a have the same zeros ignoring
multiplicities. In addition, we say that f and g share ∞ CM, if 1/f and 1/g
share 0 CM, and we say that f and g share ∞ IM, if 1/f and 1/g share 0 IM.
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Let S be a set of distinct elements of C ∪ {∞} and Ef (S) =
⋃

a∈S{z :
f(z) = a}, where each point is counted according to its multiplicity. Denote
by Ef (S) the reduced form of Ef (S). If Ef (S) = Eg(S), we say that f and g
share the set S CM. If Ef (S) = Eg(S), we say that f and g share the set S
IM.

In 1970s F. Gross and C.C. Yang started to study the set sharing problem
of entire function instead of the value sharing problem, and prove that if f and
g are two non-constant entire functions and S1, S2 and S3 are three distinct
finite sets such that f−1(Si) = g−1(Si) for i = 1, 2, 3, then f ≡ g. In 1976 F.
Gross proposed the following question in [8]:
Question A Can one find two finite sets Sj (j = 1, 2) such that any two
non-constant entire functions f and g satisfying Ef (Sj) = Eg(Sj) for j = 1, 2
must be identical ?

In [8] Gross wrote If the answer of Question A is affirmative it would be
interesting to know how large both sets would have to be ?

Yi [21] and independently Fang and Xu [7] gave the same positive answer
in this direction.

Now it is natural to ask the following question [19].
Question B Can one find two finite sets Sj (j = 1, 2) such that any two
non-constant meromorphic functions f and g satisfying Ef (Sj) = Eg(Sj) for
j = 1, 2 must be identical ?

Gradually the research on Question B gained pace and today it has become
one of the most prominent branches of the uniqueness theory. For the last two
decades several attempts have been made by different authors to consider the
shared value problems relative to a meromorphic function sharing two sets
and at the same time give affirmative answers to Question B under weaker
hypothesis {see [1]-[7], [10], [14], [16]-[17], [19]-[21], [23]-[28]}.

Dealing with the question of Gross in [6] Fang and Lahiri obtained a unique
range set S with smaller cardinalities than that obtained previously imposing
some restrictions on the poles of f and g.

Theorem A. [6] Let S = {z : zn + azn−1 + b = 0} where n(≥ 7) is an
integer and a and b are two nonzero constants such that zn + azn−1 + b = 0
has no multiple root. If f and g are two non-constant meromorphic functions
having no simple poles such that Ef (S) = Eg(S) and Ef ({∞}) = Eg({∞})
then f ≡ g.

Let S = {z : z7 − z6 − 1 = 0} and

f =
ez + e2z + . . .+ e6z

1 + ez + . . .+ e6z
, g =

1 + ez + . . .+ e5z

1 + ez + . . .+ e6z

Obviously f = ezg, Ef (S) = Eg(S) and Ef ({∞}) = Eg({∞}) but f 6≡ g. So
for the validity of Theorem B, f and g must not have any simple pole.
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In 2001 an idea of gradation of sharing known as weighted sharing has been
introduced in {[12], [13]} which measure how close a shared value is to being
shared CM or to being shared IM. In the following definition we explain the
notion.

Definition 1.1. [12, 13] Let k be a nonnegative integer or infinity. For a ∈
C ∪ {∞} we denote by Ek(a; f) the set of all a-points of f , where an a-point
of multiplicity m is counted m times if m ≤ k and k + 1 times if m > k. If
Ek(a; f) = Ek(a; g), we say that f, g share the value a with weight k.

We write f , g share (a, k) to mean that f , g share the value a with weight
k. Clearly if f , g share (a, k) then f, g share (a, p) for any integer p, 0 ≤ p < k.
Also we note that f, g share a value a IM or CM if and only if f, g share (a, 0)
or (a,∞) respectively.

Definition 1.2. [12] Let S be a set of distinct elements of C∪ {∞} and k be
a nonnegative integer or ∞. We denote by Ef (S, k) the set

⋃

a∈S Ek(a; f).

Clearly Ef (S) = Ef (S,∞) and Ef (S) = Ef (S, 0).

With the notion of weighted sharing of sets improving Theorem A, Lahiri
[14] proved the following theorem.

Theorem B. [14] Let S be defined as in Theorem A and n(≥ 7) be an integer.
If for two non-constant meromorphic functions f and g, Θ(∞; f)+Θ(∞; g) >
1, Ef (S, 2) = Eg(S, 2) and Ef ({∞},∞) = Eg({∞},∞) then f ≡ g.

In the paper we consider a new range set different from that mentioned
earlier and with the help of that set we will improve Theorem B.

The following theorem is the main results of the paper.

Theorem 1.1. Let

S =

{

z :
(n− 1)(n− 2)

4
zn −

n(n− 2)

2
zn−1 +

n(n− 1)

4
zn−2 − 1 = 0

}

,

where n (≥ 6) is an integer. Suppose that f and g are two non-constant
meromorphic functions satisfying Ef (S,m) = Eg(S,m) and Ef ({∞},∞) =
Eg({∞},∞), If

(i) m ≥ 2 and Θf +Θg +min{Θ(1; f),Θ(1; g) > 8− n

(ii) or if m = 1 and Θf + Θg + min{Θ(1; f),Θ(1; g)} + 1
2 min{Θ(0; f) +

Θ(∞; f),Θ(0; g) + Θ(∞; g)} > 9− n

(iii) or if m = 0 and Θf + Θg + Θ(0; f) + Θ(∞; f) + Θ(0; g) + Θ(∞; g) +
min{Θ(0; f) + Θ(1; f) + Θ(∞; f),Θ(0; g) + Θ(1; g) + Θ(∞; g) > 14− n
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then f ≡ g, where Θf = 2Θ(0; f)+Θ(∞; f)+Θ(1; f) and Θg can be similarly
defined.

Corollary 1.1. Let S be given as in Theorem 1.1 where n (≥ 7) is an integer.
If for two non-constant meromorphic functions f and g Ef (S, 2) = Eg(S, 2)
and Ef ({∞},∞) = Eg({∞},∞) and Θf + Θg + min{Θ(1; f),Θ(1; g)} > 1
then f ≡ g, where Θf and Θg have the same meaning as in Theorem 1.1.

It is assumed that the readers are familiar with the standard definitions
and notations of the value distribution theory as those are available in [9]. We
are still going to explain some notations as these are used in the paper.

Definition 1.3. [11] For a ∈ C ∪ {∞} we denote by N(r, a; f |= 1) the
counting function of simple a points of f . For a positive integer m we de-
note by N(r, a; f |≤ m)(N(r, a; f |≥ m)) the counting function of those a
points of f whose multiplicities are not greater(less) than m, where each a
point is counted according to its multiplicity. We denote by N(r, a; f |<
m), (N(r, a; f |> m)) the counting function of those a-points of f whose mul-
tiplicities are less (greater) than m, where each point is counted according to
its multiplicity. We denote by N(r, a; f |≤ m), N(r, a; f |≥ m), N(r, a; f |<
m) and N(r, a; f |> m) the reduced forms of N(r, a; f |≤ m), N(r, a; f |≥
m), N(r, a; f |< m) and N(r, a; f |> m) respectively.

Definition 1.4. Let f and g be two non-constant meromorphic functions such
that f and g share (1, 0). Let z0 be a 1-point of f with multiplicity p, a 1-
point of g with multiplicity q. We denote by NL(r, 1; f) the reduced counting

function of those 1-points of f and g where p > q, by N
1)
E (r, 1; f) the counting

function of those 1-points of f and g where p = q = 1, by N
(2

E (r, 1; f) the
reduced counting function of those 1-points of f and g where p = q ≥ 2. In

the same way we can define NL(r, 1; g), N
1)
E (r, 1; g), N

(2

E (r, 1; g). In a similar
manner we can define NL(r, a; f) and NL(r, a; g) for a ∈ C ∪ {∞}. When f

and g share (1,m), m ≥ 1 then N
1)
E (r, 1; f) = N(r, 1; f |= 1).

Definition 1.5. [13] We denote by N2(r, a; f) = N(r, a; f) +N(r, a; f |≥ 2).

Definition 1.6. [8, 9] Let f , g share (a, 0). We denote by N∗(r, a; f, g) the
reduced counting function of those a-points of f whose multiplicities differ from
the multiplicities of the corresponding a-points of g.

Clearly N∗(r, a; f, g) = N∗(r, a; g, f) and N∗(r, a; f, g) = NL(r, a; f) +
NL(r, a; g).
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2 Lemmas

In this section we present some lemmas which will be needed in the sequel.
Let f and g be two non-constant meromorphic function and for an integer
n ≥ 3

F =
(n− 1)(n− 2)

4
fn −

n(n− 2)

2
fn−1 +

n(n− 1)

4
fn−2, (2.1)

G =
(n− 1)(n− 2)

4
gn −

n(n− 2)

2
gn−1 +

n(n− 1)

4
gn−2. (2.2)

Henceforth we shall denote by H the following functions

H =

(

F
′′

F ′
−

2F
′

F − 1

)

−

(

G
′′

G′
−

2G
′

G− 1

)

.

Lemma 2.1. [23] If F , G be two non-constant meromorphic functions such
that they share (1,0) and H 6≡ 0 then

N
1)
E (r, 1;F |= 1) = N

1)
E (r, 1;G |= 1) ≤ N(r,H) + S(r, F ) + S(r,G).

Lemma 2.2. Let F , G be given by (2.1) and (2.2). If H 6≡ 0, F , G share
(1, 2) and f , g share (∞; k) then

N(r,H) ≤ N(r, 0; f) +N(r, 0; g) +N(r, 1; f) +N(r, 1; g) +N∗(r, 1;F,G)

+N∗(r,∞; f, g) +N0(r, 0; f
′

) +N0(r, 0; g
′

),

where N0(r, 0; f
′

) is the reduced counting function of those zeros of f
′

which
are not the zeros of f(f − 1) and F − 1, N0(r, 0; g

′

) is similarly defined.

Proof. First we note that F
′

= n(n − 1)(n − 2)fn−3(f − 1)2f
′

/4 and G
′

=
n(n − 1)(n − 2)gn−3(g − 1)2g

′

/4. We can easily verify that possible poles of
H occur at (i) zeros (1-points) of f and g, (ii) poles of f and g with different
multiplicities, (iii) those 1-points of F and G whose multiplicities are distinct
from the multiplicities of the corresponding 1-points of G and F respectively,
(iv) zeros of f

′

which are not the zeros of f(f − 1) and F − 1, (v) zeros of g′

which are not the zeros of g(g − 1) and G− 1.
Since H has only simple poles, clearly the lemma follows from above ex-

planations.

Lemma 2.3. [15] If N(r, 0; f (k) | f 6= 0) denotes the counting function of
those zeros of f (k) which are not the zeros of f , where a zero of f (k) is counted
according to its multiplicity then

N(r, 0; f (k) | f 6= 0) ≤ kN(r,∞; f)+N(r, 0; f |< k)+kN(r, 0; f |≥ k)+S(r, f).
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Lemma 2.4. [20] Let f be a non-constant meromorphic function and P (f) =
a0+a1f +a2f

2+ . . .+anf
n, where a0, a1, a2 . . . , an are constants and an 6= 0.

Then T (r, P (f)) = nT (r, f) +O(1).

Lemma 2.5. Let f , g be two non-constant meromorphic functions and sup-

pose α1 and α2 are the roots of the equation (n−1)(n−2)
4 z2− n(n−2)

2 z+ n(n−1)
4 =

0. Then

(n− 1)2(n− 2)2fn−2(f − α1)(f − α2)g
n−2(g − α1)(g − α2) 6≡ 16

and n (≥ 5) is an integer.

Proof. If possible, let us suppose

(n− 1)2(n− 2)2fn−2(f − α1)(f − α2)g
n−2(g − α1)(g − α2) ≡ 16. (2.3)

Let z0 be a zero of f with multiplicity p. Then z0 is a pole of g with
multiplicity q such that

(n− 2)p = (n− 2)q + 2q = nq. (2.4)

From (2.4) we see that 2q = (n− 2)(p− q) ≥ n− 2 and so p = n
n−2q ≥ n

2 .
Let z0 be a zero of f − αi i = 1, 2 with multiplicity p. Then z0 is a pole of

g with multiplicity q such that p = (n− 2)q + 2q = nq ≥ n.
Since the poles of f are the zeros of g and g − αi i = 1, 2, we get

N(r,∞; f) ≤ N(r, 0; g) +N(r, α1; g) +N(r, α2; g)

≤
2

n
N(r, 0; g) +

1

n
N(r, α1; g) +

1

n
N(r, α2; g)

≤
4

n
T (r, g).

By the second fundamental theorem we get

2T (r, f) ≤ N(r, 0; f) +N(r, α1; f) +N(r, α2; f) +N(r,∞; f) + S(r, f)

≤
2

n
N(r, 0; f) +

1

n
N(r, α1; f) +

1

n
N(r, α2; f) +

4

n
T (r, g) + S(r, f)

≤
4

n
T (r, f) +

4

n
T (r, g) + S(r, f).

i.e.,

(2−
4

n
) T (r, f) ≤

4

n
T (r, g) + S(r, f). (2.5)
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Similarly

(2−
4

n
) T (r, g) ≤

4

n
T (r, f) + S(r, g) (2.6)

Adding (2.5) and (2.6) we get

(2−
8

n
) {T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),

a contradiction for n ≥ 5. This proves the lemma.

Lemma 2.6. [5] Let f , g be two non-constant meromorphic functions and
suppose n (≥ 6) is an integer. If

(n− 1)(n− 2)

2
fn − n(n− 2)fn−1 +

n(n− 1)

2
fn−2

≡
(n− 1)(n− 2)

2
gn − n(n− 2)gn−1 +

n(n− 1)

2
gn−2,

then f ≡ g.

Lemma 2.7. Let F , G be given by (2.1), where n ≥ 7 is an integer. Also let
S be given as in Theorem 1.1. If Ef (S, 0) = Eg(S, 0) then S(r, f) = S(r, g).

Proof. Since Ef (S, 0) = Eg(S, 0), it follows that F and G share (1, 0). We
first note that the polynomial

p(z) =
(n− 1)(n− 2)

4
zn −

n(n− 2)

2
zn−1 +

n(n− 1)

4
zn−2 − 1

has only simple zeros. In fact

p
′

(z) =
n(n− 1)(n− 2)

4
zn−3(z − 1)2.

Also we note that p(0), p(1) 6= 0. Thus all the zeros of p(z) are simple and we
denote them by wj , j = 1, 2, . . . n. Since F , G share (1, 0) from the second
fundamental theorem we have

(n− 2)T (r, g) ≤

n
∑

j=1

N (r, wj ; g) + S(r, g)

=
n
∑

j=1

N (r, wj ; f) + S(r, g)

≤ nT (r, f) + S(r, g).
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Similarly we can deduce

(n− 2)T (r, f) ≤ nT (r, g) + S(r, f).

The last inequalities imply T (r, f) = O (T (r, g)) and T (r, g) = O (T (r, f)) and
so we have S(r, f) = S(r, g).

3 Proofs of the theorems

Proof of Theorem 1.1. Let F , G be given by (2.1) and (2.2). Since Ef (S,m) =
Eg(S,m) it follows that F , G share (1,m). By a simple computation it can
be easily seen that 1 is a root with multiplicity 3 of F − 1

2 and hence F − 1
2 =

(f − 1)
3
Qn−3(f) , whereQn−3(f) is a polynomial in f of degree n−3 and thus

N2

(

r, 1
2 ;F

)

≤ 2N(r, 1; f) +N (r, 0;Qn−3(f)) ≤ 2N(r, 1; f) + (n− 3)T (r, f) +
S(r, f).

Case 1. If possible let us suppose that H 6≡ 0.
Subcase 1.1. m ≥ 1. While m ≥ 2, using Lemma 2.3 we note that

N0(r, 0; g
′

) +N(r, 1;G |≥ 2) +N∗(r, 1;F,G) (3.1)

≤ N0(r, 0; g
′

) +N(r, 1;G |≥ 2) +N(r, 1;G |≥ 3)

≤ N0(r, 0; g
′

) +

n
∑

j=1

{N(r, ωj ; g |= 2) + 2N(r, ωj ; g |≥ 3)}

≤ N(r, 0; g
′

| g 6= 0) + S(r, g) ≤ N(r, 0; g) +N(r,∞; g) + S(r, g).

According to the condition (i) of the theorem there exist a δ > 0 such that

2Θ(0; f) + 2Θ(0; g) + Θ(∞; f) + Θ(∞; g) + Θ(1; f) + Θ(1; g)+

min{Θ(1; f),Θ(1; g)} = 8− n+ δ.

Hence using (3.1), Lemmas 2.1 and 2.2 we get from second fundamental the-
orem for 0 < ε < δ that

(n+ 1) T (r, f) (3.2)

≤ N(r, 0; f) +N(r, 1; f) +N(r,∞; f) +N(r, 1;F |= 1) +N(r, 1;F |≥ 2)

−N0(r, 0; f
′

) + S(r, f)

≤ 2
{

N(r, 0; f) +N(r, 1; f)
}

+N(r,∞; f) +N(r, 0; g) +N(r, 1; g)

+N(r, 1;G |≥ 2) +N∗(r, 1;F,G) +N0(r, 0; g
′

) + S(r, f) + S(r, g)

≤ 2
{

N(r, 0; f) +N(r, 0; g) +N(r, 1; f)
}

+N(r,∞; f) +N(r,∞; g)

+N(r, 1; g) + S(r, f) + S(r, g)

≤ (9− 2Θ(0; f)− 2Θ(0; g)−Θ(∞; f)−Θ(∞; g)− 2Θ(1; f)−

− Θ(1; g) + ε)T (r) + S(r),
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where T (r) = max {T (r, f), T (r, g)}. In a similar way we can obtain

(n+ 1) T (r, g) (3.3)

≤ (9− 2Θ(0; f)− 2Θ(0; g)−Θ(∞; f)−Θ(∞; g)−Θ(1; f)

− 2Θ(1; g) + ε)T (r) + S(r).

Combining (3.2) and (3.3) we see that

(n+ 1) T (r)

≤ (9− 2Θ(0; f)− 2Θ(0; g)−Θ(∞; f)−Θ(∞; g)−Θ(1; f)−Θ(1; g)

−min{Θ(1; f),Θ(1; g)}+ ε)T (r) + S(r).

That is

(n− 8 + 2Θ(0; f) + 2Θ(0; g) + Θ(∞; f) + Θ(∞; g) + Θ(1; f)+ (3.4)

Θ(1; g) + min{Θ(1; f),Θ(1; g)} − ε ) T (r) ≤ S(r).

Since δ > ε > 0, (3.4) leads to a contradiction.
While m = 1, using Lemma 2.3, (3.1) changes to

N0(r, 0; g
′

) +N(r, 1;G |≥ 2) +N∗(r, 1;F,G) (3.5)

≤ N0(r, 0; g
′

) +N(r, 1;G |≥ 2) +NL(r, 1;G) +N(r, 1;F |≥ 3)

≤ N(r, 0; g) +N(r,∞; g) +
1

2

n
∑

j=1

{N(r, ωj ; f)−N(r, ωj ; f)}

≤ N(r, 0; g) +N(r,∞; g) +
1

2
{N(r, 0; f) +N(r,∞; f)}+ S(r, f) + S(r, g)

So using (3.5), Lemmas 2.1 and 2.2 and proceeding as in (3.2) we get from
second fundamental theorem for ε > 0 that

(n+ 1) T (r, f) (3.6)

≤

{

5

2
N(r, 0; f) + 2N(r, 1; f) + 2N(r, 0; g)

}

+
3

2
N(r,∞; f) +N(r, 1; g) +N(r,∞; g)

+S(r, f) + S(r, g)

≤

(

10−
5

2
Θ(0; f)− 2Θ(0; g)−

3

2
Θ(∞; f)−Θ(∞; g)− 2Θ(1; f)−Θ(1; g) + ε

)

T (r)

+S(r).

Similarly we can obtain

(n+ 1) T (r, g) (3.7)

≤

(

10− 2Θ(0; f)−
5

2
Θ(0; g)−Θ(∞; f)−

3

2
Θ(∞; g)−Θ(1; f)− 2Θ(1; g) + ε

)

T (r)

+S(r).
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Combining (3.6) and (3.7) we see that

(n− 9 + 2Θ(0; f) + 2Θ(0; g) + Θ(∞; f) + Θ(∞; g) + Θ(1; f) + Θ(1; g) (3.8)

+min{Θ(1; f),Θ(1; g)}+
1

2
min{Θ(0; f) + Θ(∞; f),Θ(0; g) + Θ(∞; g)} − ε ) T (r)

≤ S(r).

Since ε > 0 is arbitrary, using condition (ii) of the theorem and resorting to
the same argument as used in the case when m = 2 we see that (3.8) leads to
a contradiction.
Subcase 1.2. m = 0. Using Lemma 2.3 we note that

N0(r, 0; g
′

) +N
(2

E (r, 1;F ) + 2NL(r, 1;G) + 2NL(r, 1;F ) (3.9)

≤ N0(r, 0; g
′

) +N
(2

E (r, 1;G) +NL(r, 1;G) +NL(r, 1;G) + 2NL(r, 1;F )

≤ N0(r, 0; g
′

) +N(r, 1;G |≥ 2) +NL(r, 1;G) + 2NL(r, 1;F )

≤ N(r, 0; g
′

| g 6= 0) +N(r, 1;G |≥ 2) + 2N(r, 1;F |≥ 2)

≤ 2{N(r, 0; g) +N(r,∞; g) +N(r, 0; f) +N(r,∞; f)}+ S(r, f) + S(r, g)

Hence using (3.9), Lemmas 2.1 and 2.2 we get from second fundamental the-
orem for ε > 0 that

(n+ 1) T (r, f) (3.10)

≤ N(r, 0; f) +N(r, 1; f) +N(r,∞; f) +N
1)
E (r, 1;F ) +NL(r, 1;F ) +NL(r, 1;G)

+N
(2

E (r, 1;F )−N0(r, 0; f
′

) + S(r, f)

≤ 2
{

N(r, 0; f) +N(r, 1; f)
}

+N(r,∞; f) +N(r, 0; g) +N(r, 1; g)

+N
(2

E (r, 1;F ) + 2NL(r, 1;G) + 2NL(r, 1;F ) +N0(r, 0; g
′

) + S(r, f) + S(r, g)

≤ 4N(r, 0; f) + 3N(r,∞; f) + 3N(r, 0; g) + 2N(r,∞; g) + 2N(r, 1; f) +N(r, 1; g)

+S(r, f) + S(r, g)

≤ (15− 4Θ(0; f)− 3Θ(∞; f)− 3Θ(0; g)− 2Θ(∞; g)− 2Θ(1; f)−Θ(1; g)

+ ε)T (r) + S(r).

In a similar manner we can obtain

(n+ 1) T (r, g) (3.11)

≤ (15− 3Θ(0; f)− 2Θ(∞; f)− 4Θ(0; g)− 3Θ(∞; g)−Θ(1; f)− 2Θ(1; g) +

+ ε)T (r) + S(r).

Combining (3.10) and (3.11) we see that

(n− 14 + 3Θ(0; f) + 3Θ(0; g) + 2Θ(∞; f) + 2Θ(∞; g) + Θ(1; f) + Θ(1; g) (3.12)

+min{Θ(0; f) + Θ(1; f) + Θ(∞; f),Θ(0; g) + Θ(1; g) + Θ(∞; g)} − ε)T (r) ≤ S(r).
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Since ε > 0 is arbitrary, using condition (iii) of the theorem and applying the
same argument as used in the case when m = 2 it is clear that (3.12) leads to
a contradiction.
Case 2. H ≡ 0. Then

F ≡
aG+ b

cG+ d
, (3.13)

where a, b, c, d are constants such that ad− bc 6= 0. Also

T (r, F ) = T (r,G) +O(1). (3.14)

We now consider the following cases.
Case I. Let ac 6= 0. From (3.13) we get

N(r,∞;G) = N
(

r,
a

c
;F
)

. (3.15)

So in view of (3.14), by the second fundamental theorem we get

T (r, F ) ≤ N(r, 0;F ) +N(r,∞;F ) +N
(

r,
a

c
;F
)

+ S(r, F )

= N(r, 0; f) + 2T (r, f) +N(r,∞; f) +N(r,∞; g) + S(r, f)

≤ 5T (r, f) + S(r, f),

which in view of by Lemma 2.4 gives a contradiction for n ≥ 6.
Case II. Let a 6= 0 and c = 0. Then F = αG+ β, where α = a

d
and β = b

d
.

If F has no 1-point, by the second fundamental theorem we get

T (r, F ) ≤ N(r, 0;F ) +N(r,∞; f) + S(r, f)

≤ 3T (r, f) +N(r,∞; f) + S(r, f),

which implies a contradiction in view of Lemma 2.4.
If F and G have some 1-points then α+ β = 1 and so

F ≡ αG+ 1− α. (3.16)

Suppose α 6= 1. If 1 − α 6= 1
2 then in view of (3.14) and the second

fundamental theorem we get

2T (r, F ) ≤ N(r, 0;F ) +N(r, 1− α;F ) +N

(

r,
1

2
;F

)

+N(r,∞;F ) + S(r, F )

≤ 3T (r, f) +N(r, 0;G) + (n− 2)T (r, f) +N(r,∞; f) + S(r, f)

≤ (n+ 5)T (r, f) + S(r, f),
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which implies a contradiction in view of Lemma 2.4 and n ≥ 6. If α = 1
2 , then

we have from (3.16)

F ≡
1

2
(G+ 1).

So by the second fundamental theorem we can obtain using (3.14) that

2T (r,G) ≤ N(r, 0;G) +N

(

r,
1

2
;G

)

+N(r,−1;G) +N(r,∞;G) + S(r,G)

≤ 3T (r, g) + (n− 2)T (r, g) +N(r, 0;F ) +N(r,∞; g) + S(r, g)

≤ (n+ 5)T (r, g) + S(r, g),

which implies a contradiction in view of Lemma 2.4 and n ≥ 6.
So α = 1 and hence F ≡ G. So by Lemma 2.6 we get f ≡ g.

Case III. Let a = 0 and c 6= 0. Then F ≡ 1
γG+δ

, where γ = c
b
and δ = d

b
.

If F has no 1-point then as in Case II we can deduce a contradiction.
If F and G have some 1-points then γ + δ = 1 and so

F ≡
1

γG+ 1− γ
. (3.17)

Suppose γ 6= 1 If γ 6= −1, then by the second fundamental theorem we get

2 T (r, F ) ≤ N(r, 0;F ) +N(r,
1

1− γ
;F ) +N

(

r,
1

2
;F

)

+N(r,∞; f) + S(r, f)

≤ 3T (r, f) +N(r, 0;G) + (n− 2)T (r, f) +N(r,∞; f) + S(r, f)

≤ (n+ 5)T (r, f) + S(r, f),

which gives a contradiction in view of Lemma 2.4 and n ≥ 6. If γ = −1 from
(3.17) we have

F ≡
1

−G+ 2
.

Now the second fundamental theorem with the help of (3.14) yields

2T (r,G) ≤ N(r, 0;G) +N

(

r,
1

2
;G

)

+N(r, 2;G) +N(r,∞;G) + S(r,G)

≤ 3T (r, g) + (n− 2)T (r, g) +N(r,∞;F ) +N(r,∞;G) + S(r, g)

≤ (n+ 3)T (r, g) + S(r, g),

which implies a contradiction in view of Lemma 2.4 and n ≥ 6.
So we must have γ = 1 then FG ≡ 1, which is impossible by Lemma 2.5.

This completes the proof of the theorem.
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