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Abstract 
 

We develop a unit-root test based on a simple variant of Gallant’s (1981) flexible Fourier form. 
The test relies on the fact that a series with several smooth structural breaks can often be 
approximated using the low frequency components of a Fourier expansion. Hence, instead of 
selecting specific break dates and the precise form of the breaks, the specification problem is 
transformed into selecting the proper frequency components to include in the estimating 
equation. It is shown that the Fourier approximation does reasonably well particularly for the 
smooth types of breaks often used in economic analysis. The appropriate use of the test is 
illustrated using several interest rate spreads. 
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1. Introduction 

As shown in Perron (1989), traditional unit root tests lose power if structural breaks 

present in the data-generating process are ignored. If the break date is known, these unit root 

tests can be modified by including dummy variables to capture changes in the level and trend.  

Typically, structural breaks in a series are assumed to occur instantaneously and manifest 

themselves contemporaneously. However, a number of authors have recognized that the effects 

of structural change on the level or slope of a series can be gradual. For example, Leybourne, 

Newbold and Vougas (1998) and Kapetanios, Shin and Snell (2003) develop unit-root tests such 

that the deterministic component of the series is a smooth transition process. To properly use this 

type of unit-root test, it must be assumed that there is a single gradual break with a known break 

date and functional form.  However, the break dates and the number of breaks are likely to be 

unknown. The existing literature assumes, a priori, the presence of only one or two structural 

breaks in the series in question. Although it is possible to allow for more breaks, such tests are 

not powerful as many parameters need to be estimated. As such, it does not seem fruitful to 

develop a new test for the purpose of capturing multiple structural breaks with unknown break 

dates.  

 The aim of this paper is to develop a unit-root test that can be used in the presence of a 

small number of smooth breaks in the deterministic components of a series. Specifically, we use 

a variant of Gallant’s (1981) flexible Fourier form to control for the unknown nature of the 

break(s). We follow Becker, Enders and Lee (2006) and illustrate that the essential 

characteristics of a series containing a small number of structural breaks can often be captured 

using the low frequency components of a Fourier approximation. A key feature of the 

approximation is that we do not need to assume that the break dates, the precise number of 
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breaks, and/or the exact form of the breaks are known a priori. Hence, the specification problem 

is transformed into selecting the appropriate frequency components to include in the estimating 

equation. Moreover, the Fourier approximation can reduce the need to estimate a large number of 

parameters and, hence, results in a test with good size and power properties. The test is designed 

to work when breaks are gradual and we show that it has good size and power properties in the 

presence of either LSTAR (logistic smooth transition autoregressive) or ESTAR (exponential 

smooth transition autoregressive) breaks. Nevertheless, we show that our test can perform 

reasonably well in the presence of sharp breaks. The appropriate use of our test is illustrated 

using several interest rate spreads. 

2. Approximating a nonlinear trend with a Fourier series 

 A simple modification of the Dickey-Fuller (DF) type test is to allow the deterministic 

term to be a time-dependent function denoted by d(t): 

 yt = d(t) +  yt-1 + ·t + t (1) 

where t is a stationary disturbance with variance 2
 , and d(t) is a deterministic function of t. 

We note that the initial value is assumed to be a fixed value, and t is weakly dependent. If the 

functional form of d(t) is known, it is possible to estimate (1) directly and to test the null 

hypothesis of a unit root (i.e.,  = 1). When the form of d(t) is unknown, any test for  = 1 is 

problematic if d(t) is mis-specified. Our test is based on the fact that it is often possible to 

approximate d(t) using the Fourier expansion:1 
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1 As indicated in Becker, Enders and Hurn (2004), structural change can be captured by the 
relatively low frequency components of a series since breaks shift the spectral density function 
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where n represents the number of frequencies contained in the approximation, k represents a 

particular frequency, and T is the number of observations.2  

In the absence of a nonlinear trend, all values of k = k = 0 so that the standard Dickey-

Fuller specification emerges as a special case. However, if there is a break or nonlinear trend, at 

least one Fourier frequency must be present in the data-generating process. As pointed out by 

Gallant (1981), most other approximations, such as a Taylor series, are valid at a particular point 

in the sample space. An important advantage of a Fourier approximation is that it is a global, 

rather than a local, approximation.  

As a practical matter, it is not possible to use a large value of n in a regression 

framework. The use of many frequency components uses degrees of freedom and can lead to an 

over-fitting problem. As such, the issue is to select the proper low-frequency components to 

include in (2) so as to mimic the nature of a few smooth structural breaks. If the value of n is 

small, equation (2) can be viewed as an application of Gallant’s (1981) flexible Fourier form 

(FFF) to modeling d(t). As evidenced by Gallant (1981), Davies (1987), Gallant and Souza 

(1991), and Bierens (1997), a Fourier approximation using a small number of frequency 

components can oftentimes capture the essential characteristics of an unknown functional form. 

Moreover, Becker, Enders and Hurn (2004) show that if the number of breaks is unknown, a test 

for structural change that uses a single trigonometric component can have better power than the 

well-cited Bai-Perron (1998) test. 

                                                                                                                                                             
towards zero. Becker, Enders and Hurn (2004) also show that the higher frequency components 
of a series are most likely to be associated with stochastic parameter variation.   
2  When the sample size gets very large, it will be natural to expect that the number of 
frequencies (n) will also increase accordingly. In the limit, we may let n = n(T)   as T  .  
However, as n increases, the tests lose power. As such, in finite samples, it is sufficient to treat n 
as a finite value (n << T), and the test depends on n.  
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One key issue for our test is whether a small number of frequency components can 

replicate the types of breaks typically seen in economic data. To keep the problem tractable, we 

begin by considering a Fourier approximation using a single frequency component, so that 

 d(t)  0 + k sin(2kt/T) + k cos(2kt/T), (3) 

where k represents the single frequency selected for the approximation, and k and k measure 

the amplitude and displacement of the sinusoidal component of the deterministic term. Thus, 

even with a single frequency (n = 1), we can allow for multiple smooth breaks.   

Although (3) is especially suitable to mimicking smooth breaks, the solid lines in Panels 

1 to 9 of Figure 1 show nine series for T = 500 containing various types of sharp and smooth 

structural breaks. Panel 1 illustrates a temporary break, which often occurs empirically in macro 

variables. Panels 2 and 3 allow for breaks in the intercept and slope of a trending series. As 

indicated by Prodan (2008), the types of sharp breaks illustrated in Panels 1 through 3 are 

difficult to detect using standard break-testing methodologies. In these cases, using smooth 

breaks with our Fourier approximation would work better than using dummy variables. Series 

with smooth breaks are shown in Panels 4 through 9. Panel 4 of the figure shows the following 

LSTAR break with parameter values d1 = 3,  = 0.05, T = 500, and  = 0.5:  

  yt = d1/[ 1 + exp((t  T)) ].  (4) 

 Panel 5 of the figure shows the same LSTAR break setting  = 0.75. Panel 6 shows the 

following ESTAR break for d1 = 3,   = 0.0003, T = 500, and  = 0.75:   

 yt = d1[ 1  exp((t  T)2) ].  (5) 

   Series with multiple smooth breaks are shown in Panels 7 through 9. Of course, the 

essential features of all nine series are invariant to inverting their magnitudes or to reordering the 

data from t = 500 to t = 1.  



 5

 The dashed line (short dashes) in Panel 1, shows the time path of yt = (t) + γt obtained 

by setting k = 1, 0 = 1.26, 1 = 1.45, 1 = 1.24, and γ = –0.003. The values of 0, 1, 1 and γ 

were selected by setting k = 1 and regressing yt on a constant, a linear time trend t, sin(2πkt/T) 

and cos(2πkt/T). The sum of squared residuals (SSR = 302.62) was about one third of that 

obtained using only an intercept and trend (SSR = 896.40). As illustrated by the long-dashed line 

in Panel 1, the fit can be improved by introducing a second frequency component in the 

regression. In terms of equation (2), when we set n = 2 (so that we use the frequency components 

k = 1 and k = 2) we obtained SSR = 136.90. 

 For our purposes, the precise parameter values for the other panels of the figure are not 

especially important. The key points illustrated by the nine panels are:   

1. A Fourier approximation of structural change using the single frequency n = 1 can often 

serve as a reasonable approximation to breaks of an unknown form. The addition of the 

second frequency seems to be important if there are several breaks and/or if the breaks are 

sharp. Moreover, using the specific frequency k = 1 often leads to a good approximation to a 

model with structural change. Since structural breaks shift the spectral density function 

towards frequency zero, it seems reasonable to use the low frequency components to mimic 

structural change. In addition, the introduction of a time trend in the estimating equation 

eliminates the need for the starting and ending values of the approximation to be equal. As 

such, changes in the intercept and slope of a trending function can also be captured by the 

approximation.  

2. The approximations shown in Panels 1, 3 and 6 are clearly worse than those shown in the 

other panels. In general, sharp breaks of short duration will not be well-approximated by a 

few low frequency components.  
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3. As mentioned above, Leybourne, Newbold and Vougas (1998) and Kapetanios, Shin and 

Snell (2003) developed tests for a unit root allowing for LSTAR and ESTAR breaks, 

respectively. However, it is unclear how an applied researcher will know whether to use a 

linear test, an LSTAR test, or an ESTAR test. An important feature of the flexible Fourier 

form is that it can behave like an LSTAR break or an ESTAR break.  

 Of course, it is possible to design series with more complicated break patterns than those 

shown in Figure 1. However, our experimentation with a large number of break types only 

served to reinforce the three points listed above. This is not to say that the use of one or two 

frequency components is able to control for all types of nonlinearities in the deterministic 

components of a time-series model. Nevertheless, as we show in our Monte Carlo experiments 

of Section 4, the approximation does reasonably well for other types of breaks often used in 

economic analysis. Nevertheless, the issue at hand is not to precisely formulate a model for 

breaks. Instead, the goal is to develop a unit-root test controlling for the possibility of smooth 

breaks of unknown forms. As such, we now turn to the theory underlying our break test. 

3. The asymptotic properties of the test statistics 

 Since a small number of frequency components can mimic a variety of breaks, we begin 

our analysis with a data-generating process (DGP) containing only one frequency: 

 yt = 0 + ·t + k sin(2kt/T) + k cos(2kt/T) + et ; k  T/2 (6) 

 et =  et-1 + t . (7) 

 Note that  = 1 under the null hypothesis of a unit root, and  < 1 under the alternative 

hypothesis. By adopting the above DGP, we are able to show that the asymptotic distribution for 

the test of the null hypothesis  = 1 is invariant to the magnitudes of 0, k, k and . Our testing 

procedure is based on the Lagrange Multiplier (LM) methodology of Schmidt and Phillips 
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(1992) and Amsler and Lee (1995). Specifically, we employ the LM principle by imposing the 

null restriction and estimate the following regression using first-differences: 

 yt = 0 + 1 sin(2kt/T) + 2 cos(2kt/T) + ut . (8) 

 We denote the estimated coefficients as 0, 


1 and 


2.
3  Then, we construct a detrended 

series using these coefficients as:  

 S


t = yt - 


 - 0 t - 


1 sin(2kt/T) - 2 cos(2kt/T),  t=2, … ,T  (9) 

where  = y1 - 


0 - 


1 sin(2k/T) - 2 cos(2k/T), and y1  is the first observation of yt. Once we 

subtract   from yt, it follows that S


1 = 0. The testing regression is based on the following 

regression using the detrended series: 

 yt = St-1+ d0 + d1 sin(2kt/T) + d2 cos(2kt/T) + t.  (10) 

If yt is not stationary, it must be the case that 0; hence, the LM test statistic is: 

 LM = t-statistic for the null hypothesis  = 0. (11) 

To allow for serially correlated as well as heterogeneously distributed innovations, we 

assume that the innovations t in the DGP (7) satisfy the following conditions [see Phillips and 

Perron (1988, p. 336)]:   

Assumption 1. (a) E(t) = 0 for all t;  (b) sup
t

 E|t|
+ <  for some  > 2 and  > 0;  (c) 2 = 

lim
 T

T-1 E(ST
2) exists and 2 > 0, where ST = 

t=1

T

 t;  (d) {t}1
 is strong mixing with mixing 

numbers m that satisfy: 
1



 m
1-2/ < . 

                                                 
3 In the earlier version of this paper, we also considered a DF type test. The DF type test can be viewed as 
a test using the coefficients derived from the regression in levels of yt on 1, t, sin(2kt/T) and cos(2kt/T). 
It was shown that the LM type tests have better size and power properties than the DF version of the test. 
We focus on the LM type tests.  
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To correct for the effect of autocorrelated errors we augment (10) with lagged values of 

S


t-j, j=1,.., p, so as to ensure that there is no remaining serial correlation in the residuals. To find 

the asymptotic distribution of the test statistic, we need to establish: 

Lemma 1:  Suppose that yt is generated by the DGP in (6) and (7) with  = 1, and one adopts the 

first step testing regression (8). Then, 

T (0 - 0)  W(1)  

 1 
 T 

(1 - 1)   [(2k)
0

1 cos2(2kr)dr]-1[W(1)+(2k)
0

1 sin(2kr)W(r)dr]  

 
 1 

 T 
(2 - 2)  [

0

1 sin2(2kr)dr]-1 [
0

1 cos(2kr)W(r)dr]          (12) 

Proof. See the Appendix. 

 As shown in the Appendix, the asymptotic distribution of LM
  follows from 

Theorem 1:  Suppose that yt is generated by the DGP in (6) and (7) with  = 1, and one adopts 

the testing regressions (8), (9), and (10). Then, under the null hypothesis: 

  LM
    – 0.5 (/) [

0

1 V_(r)2dr]-1/2 (13) 

where V_(r) is the projection of the process V(r) on the orthogonal complement of the space 

spanned by the trigonometric function dz = (1, dsin(2kr), dcos(2kr)); and where V(r) =  

W(r) – rW(1) – [(2k)
0

 1cos2(2kr)dr]-1[W(1)+(2k)
0

 1sin(2kr)W(r)dr] sin(2kr) –  

[
0

 1 sin2(2kr)dr]-1 [
0

 1cos(2kr)W(r)dr] cos(2kr), and  W(r) is a Wiener process on r [0, 1]. 

The above results show that the asymptotic distribution of LM depends on the frequency 

k, but is invariant to all other parameters in the DGP in (6). Using any values of these parameters 

will not change the asymptotic distribution of the test.  Thus, the tests are pivotal. To obtain 
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critical values via simulations, we employ the DGP in (6) and (7) with  = 1, 
2 = 1, and use 

random initial values for 0. The critical values of LM are reported in Table 1 for the sample sizes 

T = 100, 200 and 500. The critical values were calculated using 100,000 replications for different 

frequency values of k = 1, …, 5. Our simulations show that the critical values converge quickly 

as the sample size increases and that it is reasonable to use simple interpolation to obtain critical 

values for sample sizes other than 100, 200 and 500.  

As suggested by Figure 1, it is often possible to simply impose n = k = 1 so as to 

approximate a wide variety of smooth breaks. In essence, the method filters out a low frequency 

component (such as a break or other form of nonlinearity) that might interfere with the unit-root 

test for   = 1.4  In this way, (8) can be estimated directly and the estimated coefficients can be 

used to construct (9). The t-statistic for the null hypothesis 0 in (10) can be compared to the 

critical values reported in the top row of Table 1.  

Of course, it follows that if the use of k = 1 can reasonably represent an unknown 

functional form, the use of k = 1 and k = 2 (with n = 2) will do even better. Hence, instead 

conducting our LM test using a single frequency component, a researcher might want to include 

multiple frequencies in the estimating equation. Moreover, since the individual frequency 

components are orthogonal to each other, it can be easily shown that the appropriate critical 

values will depend only on the particular frequencies included in the estimating equation. Since 

                                                 
4 Of course, there may be circumstances when the researcher may want to select some frequency other 
than k = 1. If, for example, it is clear that there are three distinct swings in the data, it is possible to 
impose k = 3 and use the entries in the third row of the table. Also, if it is desirable to estimate such a 
distinct single component, a completely agnostic approach to the problem of detecting breaks is to select k 
using purely statistical means. We refrain from using the expression “estimate k” since the trigonometric 
terms are employed to approximate, not actually identify, the potential breaks. One may follow Davis 

(1987) by using a grid-search method such that the value k = k̂  minimizes the sum of squared residuals 
(SSR) from (10). In this case, using the values 1 through 5 appears reasonable since low frequencies are 
associated with breaks.  
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the researcher has no a priori way to select the appropriate frequencies to use so as to mimic the 

unknown functional form of d(t), we follow the methodology of Gallant (1981) and Bierens 

(1997) and use cumulative frequencies to estimate the unknown functional form. Hence, instead 

of conducting our LM test using a single frequency component or an ad hoc selection of 

frequencies, a researcher might want to include frequencies 1 through n in the estimating 

equation. The asymptotic distribution of the test statistic can be modified accordingly to allow 

for multiple frequencies. Table 2 reports the critical values of τLM for n = 1,.., 5; we denote these 

critical values by τLM(n) in order to differentiate them from the case when a single frequency 

component is used. Hence, for T = 500, at the 5% significance level, the critical value of τLM(3) 

for the null hypothesis that  = 0 is 5.43 if frequencies 1, 2 and 3 are used in the estimating 

equation.  

One remaining question concerns the effect on the usual LM unit-root tests if a nonlinear 

trend in the DGP is ignored. Perron (1989) earlier suggested that there will be a bias against 

rejecting a false unit root if an existing structural break is ignored in the usual DF test. We 

examine the asymptotic property of the LM tests under this situation with a nonlinear trend. 

Lemma 2:  Suppose that a nonlinear trend occurs in the data, and the DGP implies (6) and (7) 

with  < 1, but the nonlinear trend is ignored and usual LM tests with a linear trend are 

employed. Then, as we prove in the Appendix, the resulting OLS estimate follows: 

 ̂  
 

2( - 1) 
 H(k,r)   (14) 

H(k,r) = 
2 + (1/3)(2+1+1

2) + k
2

0

1 sin2(2kr)dr + k
2

0

1 cos2(2kr)dr  

+ k
2 - 2W(1)[k0

1 rsin(2kr)dr+ k0

1 rcos(2kr)dr];  

and   is the true parameter value in the DGP (7). 
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Looking at the numerator, we note that ^ 0 as   1. The obvious conclusion is that 

the unit-root null will not be rejected for  near unity. The power of the test will increase as  

0, which is also obvious. Second, the denominator gets larger as the magnitude of the 

coefficients k and k increase. Then, we will observe that ^ 0 and this leads to non-rejections 

of the null. This result implies that there will be loss of power under the alternative, if the 

existing non-trend is ignored. Thus, the loss of power depends on the magnitude of the 

coefficients k and k under the alternative. The loss of power is understood in line with Perron’s 

(1989) finding that unit-root tests will fail to reject a false unit root if an existing structural break 

is ignored. His result generalizes to the failure to control for a nonlinear Fourier break. 

4. The Monte Carlo experiments 

In this section, we evaluate the performance of our unit-root test using Monte Carlo 

20,000 replications. To correct for the possibility of serial correlation, we augment equation (10) 

with lagged values of S


t-j , j = 1,.., p, using the general to specific methodology. Starting from a 

maximum of p = 8, we estimate (10) augmented with a full p lags of .t pS    If a standard t-test 

indicates that the p-th lag is insignificant at the 10% level, p is reduced by one and the procedure 

is repeated. To conserve space, we report only results using the critical values for the five percent 

significance level.  

Size and Power with a single value of k 

As a benchmark, we begin by generating the small-sample size and power of the test for 

various values of k, k and k assuming that value of k in the estimating equation is the same as 
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that in the DGP.5  Column 4 of Table 3 reports the size of our test for three sets of values for k 

and k,  = 1.0, and values of k = 1 through 5 for a sample size of 100. Consider the case k =1, 1 

= 0, and 1 = 5. At the five-percent significance level, the test rejects the null hypothesis of a unit 

root (i.e.,  = 1) in 4.9 percent of the 20,000 Monte Carlo replications. Also observe that these 

results are insensitive to the actual value of k used in the DGP. We also performed the 

experiment for T = 200, and T = 500. The results reported in columns 6 and 8 of the table show 

that the empirical size is never less than 4.8% and never more than 5.4%. 

As in most unit-root tests, when the sample size is small, the power of the test is low. 

Consider Table 3 for the case k =1, 1 = 0, 1 = 5, and  = 0.9. At the five-percent significance 

level, the test correctly rejects the null hypothesis in only 11.6% of the Monte Carlo replications. 

We note that the power improves when a higher value of k is used; in fact, the power can exceed 

that of a standard DF test. For instance, when T = 100, the power of LM is 0.220 and 0.245 for k 

= 2 and 3, respectively. The more important point is that increasing the sample size to T = 200 or 

500 greatly improves the power of the test, implying that the test is consistent; the power always 

exceeds 99% when  = 0.9 and T = 500.  

Size and Power of the Test with Cumulative Frequencies 

 The Monte Carlo results reported in Table 4 indicate that our test is correctly sized when 

cumulative frequencies are used. The DGP implies (6) and (7), and we used the values k = k = 

0, for k = 1, …, 5, but the results would be invariant to using other values of k and k. The first 

entry in the table indicates that for T = 100, and  = 1, the null hypothesis of a unit root was 

rejected in 4.9% Monte Carlo replications when the single frequency k = 1 was included in the 

                                                 
5 Hence, the entries in the table imply that the researcher ‘knows’ the correct value of k to include in the 
estimating equation. Details of the case where k is estimated along with the other parameters of the model 
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estimating equation. Similarly, for n = 2 (so that k = 1 and k = 2 were included in the estimating 

equation) the simulated size of the test is 0.049. As can be seen from examining the second, 

fourth, and sixth columns of the table, the test is correctly sized regardless of the value of T and 

the number of cumulative frequencies included in the estimating equation.  

  The problem is that the power of the test diminishes rapidly as additional frequency 

components are added to the estimating equation. In essence, an over-fitting phenomenon occurs 

when a large number of frequency components are included in the estimating equation. If the 

number of frequency components increases past n = 3, the power of the test deteriorates rapidly 

even for large T. Also, there is a technical problem that it is not feasible to test for the optimal 

number of frequency components. As such, we recommend that a small value of n, such as n = 1 

or n = 2, be used. We observe that the power is much better for T = 200 and for T = 500 when n 

is small. For instance, for n = 2 and  = 0.9, the null hypothesis of a unit root was correctly 

rejected in 38.6% and 96% of the trials when T = 200 and 500, respectively.  

Effects of Ignoring Nonlinear Trends 

Lemma 2 above indicates that ignoring a nonlinear trend affects the performance of a 

linear unit-root test under the null and alternative hypotheses. Table 5 indicates the magnitude of 

the size distortion and the loss of power when a standard LM unit-root test is used (so that the 

nonlinear trend is ignored). When  = 1, the linear LM test exhibits a serious size distortion 

regardless of the magnitudes of k and k, the sample size, and the frequency present in the DGP. 

Notice that the size of the linear test is usually zero, and is never more than 3.5%, even though 

we used the 5% critical values to construct the table. Also notice that the power of the linear LM 

test is very low, and is usually near zero, whenever k  0, and/or k  0. This is in contrast to the 

                                                                                                                                                             
were included in an earlier version of this paper and are available from the authors. 
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results shown in Table 3: when the nonlinear trend does not exist in the DGP (i.e., all k = k = 

0), using trigonometric components does not seriously distort the size of the test and the power 

can be comparable to the usual unit-root tests.  

Effects of Improperly Modeling the Breaks 

 In a related experiment, we examined the consequences of employing dummy variables 

to model nonlinear breaks. Specifically, we use Perron’s (1997) dummy-endogenous unit-root 

test in which a dummy variable is used to control for a break occurring at an unknown date. To 

perform the experiment, we assume that the DGP is given by (6) and (7) and generate 5,000 

series with the single frequency component k = 1. Although not reported here, Perron’s (1997) 

test results in relatively poor size and power properties.6  For example, for k = 1, T = 500, k = 3, 

and k = 5, the empirical size of the break test (using the 5% critical value) with dummy 

variables is 3.6% and the power is only 11.8% (the size-adjusted power is 16.5%). As previously 

reported in Tables 3 and 4, for these same parameter values, our test is properly sized and has 

power in excess of 99% regardless of whether k = 1 or n = 2 is used in the testing regression. The 

point is that improperly modeling the break can be as problematic as ignoring the break 

altogether.  

Robustness of Fourier Tests in the Presence of Various Breaks 

 Although our test works well in the presence of trigonometric components in the DGP, it 

has reasonable size and power properties in the presence of other types of breaks. To determine 

the how our unit-root test works in the presence of different types of breaks, we examined the 

empirical performance of the size and power of the test in the presence of the types of breaks 

shown in the nine panels of Figure 1: 

                                                 
6 The complete results are available from the authors on request.  
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 yt = Itd1 + ( 1  It)d2 + et  where It = 1 if t  T/2 and It = 0 otherwise.   (15) 

 yt = Itd1 + ( 1  It)d2 + et  where It = 0 if T/4 < t  3T/4 and It = 1 otherwise.       (16) 

 yt = It(d1 + t/T)  +  ( 1  It)(d2 + d3t/T) + et where It = 1 if t  T/2 and It = 0 otherwise.      (17) 

     yt = It(d1+t/T)  +  (1It)(d2 + d3t/T) + et where It = 0 if T/4 < t  3T/4 and It = 1 otherwise. (18) 

     yt = d1/[ 1 + exp((t  T)) ] + et.              (4)

 yt = d1[ 1  exp((t  T)2) ] + et.  (5) 

where et =  et-1 + vt. Columns 5 through 8 of Table 6 report the size and power of our unit root 

test with Fourier functions when we used k = 1 in the estimating equation. For example, for 

break type 1 (equation 15),  = 1, and T = 200, the entries in column 5 show that the null 

hypothesis of a unit root was rejected in 5.3% of the simulated series for d1 = 3, and in 5.2% of 

the series for d1 = 6. If you read down columns 5 and 7, it should be clear that the size of the test 

is approximately 5% for all of the simulated breaks for T = 200 and T = 500, respectively.7  This 

is an encouraging result since our unit-root test is fairly robust to the DGP with structural 

changes in level and trend shifts. We noted in the earlier experiment that the converse did not 

hold; the dummy-endogenous tests have poor size and power in the presence of a Fourier 

function in the DGP. In contrast, column 6 indicates that the power of our test for break type 1 is 

0.354 for T = 200 and  = 0.9. For T = 500, Column 7 shows that the size remains good and the 

power improves substantially. In fact, the power is always in excess of 96.8%. Columns 9 

through 12 of Table 6 report the size and power when we used the cumulative method for n = 2. 

In all instances, both the size and power of the test using k = 1 is superior to that using the 

cumulative method.  

                                                 
7 To save space, we do not report values for T = 100. The power of our test and of the dummy- 
endogenous test is relatively low in the case. For example, in equation (15) with d1 = 3, the power of our 
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 The last four columns of the table report the size and power of the dummy-endogenous 

break tests using the estimated break dates. Of course, this test should have better performance 

than ours since it is designed for the type of sharp breaks used in the simulations. Nevertheless, it 

does not perform substantially better than the Fourier test. In fact, columns 13 and 15 of the table 

show that the size distortion of the test can be noticeable. This occurs since the dummy-

endogenous tests are not invariant to the magnitude of breaks. With non-zero breaks under the 

null, they tend to exhibit over-rejections which increase as the magnitude of breaks increases. 

Once we corrected for the size distortion, the size-adjusted power of the dummy-endogenous test 

is comparable to that of our test.  

 As reported in Table 7, little of substance is changed if we repeat the simulation exercise 

for smooth LSTAR and ESTAR breaks given by (4) and (5). As listed in the table, break types 

1 and 2 are the LSTAR breaks shown in Panels 1 and 2 of Figure 2. Type 3 is for the offsetting 

LSTAR breaks shown in Panel 4 and Type 4 is for the ESTAR break shown in Panel 3. As 

should be clear from the table, the size of the test is quite good, indicating that the Fourier tests 

are robust to the DGP with smooth transitions. The power is low for T = 100 but is excellent for 

T = 500. The power of the test using n = 1 exceeds that for n = 2 even for the large sample size.  

5. The term structure of interest rates 

 We now use the test to examine the term structure of interest rates. A number of papers, 

including Enders and Granger (1998) and Shin and Lee (2001), suggest that interest rate spreads 

should be stationary such that the adjustment towards the long-run equilibrium follows a 

threshold process. To explore this possibility we obtained monthly values of the 3-month T-bill 

rate and the 1-year (R1) and 3-year (R3) rates on U.S. government securities over the 1990:1 

                                                                                                                                                             
test was 0.114 and the power of the dummy-endogenous break test was 0.125. Further details are 
available from the authors on request.  
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through 2003:11 period. The time paths of the R1 – R3 spread is shown in Figure 2; the time 

paths of the other spreads are similar. It seems that the spread is subject to several structural 

breaks. Thus, usual unit root tests using one or two breaks can pose a problem. The 3-year rate 

was substantially above R1 throughout the early 1990s. However, in the 1995 - 2000 period, the 

spreads between R3 and R1 declined substantially. In mid-2001, R3 did not decline as rapidly as 

the other two rates so that the spread became large.  

 It is plausible to argue that persistence of the magnitudes of the gaps is due to several 

structural smooth breaks in the equilibrium level of the spread. To employ our test, we estimated 

each spread as a nonlinear Fourier process in the form of (6) with k = 1. We used the estimated 

coefficients to construct tS and   as in (9) and estimated an equation in the form of (10) with 

lagged values of  t iS 
  to correct for serial correlation. The sample values of the LM-statistics for 

the null hypothesis  = 0 are as follows: 

R-long R-short LM k p DF TAR 

R1 T-bill 5.50 1 12 3.52 0.243 
R3 T-bill 5.76 1 11 3.27 0.917 
R3 R1 5.05 1 11 2.72 0.702 

  
 As reported in Table 1, the critical values of LM for T = 100 are 4.69, 4.11 and 3.82 

at the 1%, 5% and 10% significance levels, respectively. As such, if we wanted to use the 1% 

significance level, it would be possible to conclude that the spreads are all stationary. The 

situation can be quite different when we do not use a trigonometric component to control for 

nonlinearities. If we use the (R1 – T-Bill)t spread, the linear Dickey-Fuller test (see the next-to-

last column of the table labeled ‘DF’) indicates that the t-statistic for the null hypothesis is 3.52. 

Using the standard Dickey-Fuller distribution, we can just reject the null hypothesis of a unit root 

at the 1% significance level (the critical value is 3.51). However, it is not possible to reject the 
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unit-root hypothesis at the 1% level for the (R3  T-bill)t spread or at the 5% level for the (R3  

R1)t spread.  

 For our purposes, the key issue is how the spreads adjust over time. In particular, we 

wanted to examine whether the interest rate spreads follow a threshold process. When we apply 

Hansen’s (1997) test for threshold behavior, we are unable to reject the null hypothesis of no 

threshold at any conventional significance level. We used 1000 Monte Carlo replications to 

obtain the appropriate critical values for the test. The prob-values (listed under ‘TAR’ in the 

table above) for the three spreads are 0.243, 0.917 and 0.702, respectively. Hence, it is unlikely 

that our Fourier approximation detects any type of threshold behavior.  

 To obtain a better understanding of the nature of the Fourier adjustment process, the solid 

line in Figure 2 shows the time path of the difference between the 3-year rate and 1-year rate. 

One can clearly see that the spread was much higher in the early 1990s and in 2002 than in the 

intervening years. We estimated the following model (with t-statistics in parentheses): 

 yt = 0.223 yt-1 + 0.160 + 0.080 sin(2kt/T) + 0.069 cos(2kt/T) +  i t iS    (19) 

                      (5.38)        (5.29)    (3.97)                     (4.16) 
 
where k = 1, and yt is the gap between 3-year rate and the 1-year rate.  

 The time-varying mean of the {yt} sequence can be obtained by dividing the Fourier 

intercept [i.e., 0.160 + 0.080 sin(2kt/T) + 0.069 cos(2kt/T)] by one minus the sum of the 

autoregressive coefficients ( = 0.232). You can clearly see by the smooth line in Figure 2, the 

time-varying mean mimics the fact that the spread was much higher in the early 1990s and in the 

later part of the sample than in the intervening years. Given that the spreads are stationary, we 

also examined the breaks that are identified by the Bai and Perron (1998) procedure. Allowing 

for a maximum of five breaks with a minimum break-size of 12 months, the BIC selected three 
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breaks. The first occurs at 1994:11, the second at 2000:12, and the third at 2002:6. The dashed 

line in Figure 2 shows the breakpoints and the four sub-period means of the (R3 – R1) spread. 

Notice that these sharp breaks are similar to the Fourier intercept. The difference, of course, is 

that the Fourier intercept is smooth and that the Bai-Perron procedure does not embody a unit-

root test.  

 Although there are fewer than 200 observations, we wanted to determine how the test 

performs when n = 2 (so that trigonometric terms for k =1 and k = 2 were included in the 

estimating equations). It turns out that nothing of consequence is altered when we use a second 

frequency component to capture the behavior of α(t). In fact, the time path of the intercept using 

n = 2 almost exactly coincides with the Fourier intercept shown in Figure 2. Consider: 

 
R-long R-short LM n p 
R1 T-bill 5.49 2 12 
R3 T-bill 6.27 2 11 
R3 R1 5.81 2 11 

 

 Table 2 indicates that the critical values of LM(2) for T = 100 are 5.49, 4.92 and 4.62 

at the 1%, 5% and 10% significance levels, respectively. As such, the null hypothesis of a unit 

root can be rejected at the 5% significance level for the (R1 – T-Bill)t spread and, since there are 

more than T = 100 sample observations, at the 1% level for the other two spreads. 

6. Summary and conclusion 

The paper develops a unit-root test that can be used to control for several smooth breaks 

of an unknown functional form. The test is based on the fact that a small number of low 

frequency components of a Fourier approximation can often capture a process of gradual change 

in a time-varying intercept. Nevertheless, the test can often capture sharp breaks and other types 

of nonlinear trends that we examined. Another advantage of a Fourier approximation is that it is 
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a global, rather than a local, approximation. As such, it can approximate an unknown function at 

any point in the sample space. Since the test can mimic a small number of smooth breaks using a 

parsimonious number of parameters, it can avoid the loss of power that can occur in unit root 

tests using a large number of estimated dummy variables. Our test reaffirms the well-known 

result that interest rate spreads are stationary even though there have been long-swings in the 

value of the spread.  
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Table 1: Critical Values of LM 

 
 T = 100 T = 200 T = 500 
k 1% 5% 10% 1% 5% 10% 1% 5% 10% 
1 -4.69 -4.11 -3.82  -4.64 -4.07 -3.78 -4.59 -4.05 -3.78 
2 -4.24 -3.57 -3.22  -4.15 -3.55 -3.22 -4.13 -3.53 -3.21 
3 -3.98 -3.30 -2.97  -3.93 -3.30 -2.97 -3.94 -3.29 -2.96 
4 -3.84 -3.19 -2.87  -3.78 -3.18 -2.87 -3.79 -3.18 -2.86 
5 -3.77 -3.12 -2.82  -3.72 -3.11 -2.82 -3.72 -3.12 -2.82 

 
 
 

Table 2: Critical Values of LM(n) Using Cumulated Frequencies 
 

 T = 100 T = 200 T = 500 
n 1% 5% 10% 1% 5% 10% 1% 5% 10%
1 -4.69 -4.11 -3.82  -4.64 -4.07 -3.78 -4.59 -4.05 -3.78
2 -5.49 -4.92 -4.62  -5.39 -4.83 -4.56 -5.31 -4.81 -4.54
3 -6.16 -5.59 -5.28  -6.02 -5.48 -5.22 -5.94 -5.43 -5.16
4 -6.77 -6.19 -5.88  -6.62 -6.05 -5.77 -6.46 -5.98 -5.72
5 -7.39 -6.75 -6.45  -7.12 -6.58 -6.30 -6.98 -6.47 -6.21

 
 

Table 3: Finite Sample Performance of LM  
 

DGP T = 100 T = 200 T = 500 

k k k  = 1.0  = 0.9  = 1.0  = 0.9  = 1.0  = 0.9 
1 0 5 0.049 0.116 0.054 0.395 0.050 0.997 
 3 0 0.049 0.119 0.053 0.396 0.049 0.996 
 3 5 0.052 0.119 0.053 0.396 0.050 0.996 

2 0 5 0.050 0.220 0.054 0.624 0.047 0.998 
 3 0 0.050 0.216 0.054 0.624 0.052 0.997 
 3 5 0.049 0.209 0.054 0.623 0.050 0.998 

3 0 5 0.049 0.245 0.050 0.719 0.050 0.999 
 3 0 0.049 0.247 0.049 0.720 0.051 0.999 
 3 5 0.050 0.243 0.050 0.719 0.050 0.999 

4 0 5 0.048 0.253 0.052 0.749 0.051 0.999 
 3 0 0.049 0.253 0.051 0.748 0.051 0.999 
 3 5 0.051 0.256 0.053 0.748 0.051 0.999 

5 0 5 0.049 0.255 0.052 0.766 0.052 1.000 
 3 0 0.048 0.255 0.053 0.765 0.048 1.000 
 3 5 0.049 0.253 0.053 0.765 0.052 1.000 

 Note: Entries in the table were constructed using the five-percent critical 
values from Table 1.  
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Table 4: Size and Power of the LM(n) test (Cumulative Frequencies) 
 

 
 
 
 

 
 

 
 

Note: Entries in the table were constructed using the five-percent 
critical values from Table 2.  

   
 

Table 5: Effects of Ignoring Nonlinear Trends 

 

DGP T = 100 T = 500 
k k k   = 1  = 0.9   = 1  = 0.9 
1 3 3 0.010 0.003 0.035 0.548 
 3 5 0.002 0.000 0.028 0.029 
 5 3 0.003 0.000 0.027 0.066 
2 3 3 0.000 0.000 0.018 0.541 
 3 5 0.000 0.000 0.008 0.015 
 5 3 0.000 0.000 0.007 0.022 
3 3 3 0.000 0.000 0.009 0.549 
 3 5 0.000 0.000 0.002 0.012 
 5 3 0.000 0.000 0.002 0.016 
4 3 3 0.000 0.000 0.005 0.568 
 3 5 0.000 0.000 0.000 0.013 
 5 3 0.000 0.000 0.000 0.013 
5 3 3 0.000 0.000 0.002 0.595 
 3 5 0.000 0.000 0.000 0.011 
 5 3 0.000 0.000 0.000 0.011 

 
Note: Entries in the table were constructed using the five-percent critical 
values from a traditional linear LM unit root test. 

 
 
 
 
 
 
 
 
 

 T = 100 T = 200 T = 500 
n   = 1  = 0.9   = 1  = 0.9    = 1  = 0.9 
1 0.049 0.117 0.049 0.386  0.050 0.997 
2 0.049 0.081 0.049 0.221  0.051 0.957 
3 0.048 0.068 0.051 0.153  0.051 0.845 
4 0.049 0.062 0.050 0.118  0.050 0.686 
5 0.049 0.060 0.051 0.096  0.049 0.552 
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Table 6: Effects of Level and Trend Shifts  
 

    Fourier Approximation:  
n = 1 

Fourier Approximation:  
n = 2 

Dummy-Endogenous  
Break Tests 

Breaks    T = 200 T = 500 T = 200 T = 500 T = 200 T = 500 
 d1 d2 d3  = 1.0  = 0.9  = 1.0  = 0.9  = 1.0  = 0.9  = 1.0  = 0.9  = 1.0  = 0.9  = 1.0  = 0.9 

Level              
Type 1 
(Eqn. 
15) 

3 
 

0  0.053 0.354 0.051 0.993 0.057 0.222 0.048 0.937 0.040 0.253 
0.301

0.057 0.925
0.917

 6 
 

0  0.052 0.266 0.050
 

0.968
 

0.056 0.181 0.047 0.879 0.072 0.419 
0.333

0.069
 

0.953
0.935

 
Type 2 
(Eqn. 
16) 

3 
 

0 
 

 0.059 0.362
 

0.048 0.993 0.056 0.194 0.048 0.903 0.037 0.257 
0.300

0.055
 

0.913
0.908

 6 
 

0 
 

 0.059 0.282 0.052 0.970 0.044 0.108 0.045 0.716 0.089
 

0.357 
0.224

0.067 0.877
0.821

              
Trend                 
Type 3 
(Eqn. 
17) 

0 
 

0 0.2 0.054 0.394 0.051 0.996 0.058 0.236 0.048 0.951 0.034 0.144 
0.197

0.065 0.827
0.781

 0 
 

0 0.4 0.054 0.393 0.051 0.996 0.058 0.236 0.048 0.950 0.078 0.150 
0.111

0.075 0.591
0.511

 
Type 4 
(Eqn. 
18) 

0 
 

0 
 

0.2 0.053 0.386 0.052 0.996 0.058 0.235 0.049 0.950 0.032 0.132 
0.180

0.054
 

0.842
0.838

 0 
 

0 
 

0.4 0.053 0.384 0.052 0.996 0.058 0.234 0.049 0.949 0.035
 

0.066
0.088

0.047
 

0.568
0.577

 

Note: For Type 1 and 2 breaks in the DGP, the endogenous break tests with level shifts were used. For Type 3 and 4 breaks in the DGP, the 
endogenous break tests with trend shifts were used. The values at the second rows denote size-adjusted powers of the relevant tests. 
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Table 7: Effects of Smooth Transition Shifts 
 

   Fourier Approximation: n = 1 Fourier Approximation: n = 2 
   T = 100 T = 200 T = 500 T = 100 T = 200 T = 500 

Breaks  d1  = 1.0  = 0.9  = 1.0  = 0.9  = 1.0  = 0.9  = 1.0  = 0.9  = 1.0  = 0.9  = 1.0  = 0.9 

              
Type 1 0.05 3 0.054 0.122 0.054 0.395 0.051 0.997 0.045 0.075 0.058 0.238 0.048 0.952
LSTAR  6 0.054 0.121 0.054 0.392 0.051 0.996 0.044 0.075 0.058 0.238 0.048 0.952

 = 0.5 0.10 3 0.054 0.122 0.054 0.395 0.051 0.997 0.045 0.074 0.058 0.238 0.048 0.952
  6 0.054 0.122 0.054 0.395 0.051 0.997 0.045 0.075 0.058 0.238 0.048 0.952
     

Type 2 0.05 3 0.053 0.122 0.054 0.395 0.051 0.996 0.045 0.075 0.058 0.238 0.048 0.952
LSTAR  6 0.053 0.120 0.053 0.391 0.050 0.996 0.044 0.075 0.058 0.238 0.048 0.952

 = 0.75 0.10 3 0.053 0.122 0.054 0.395 0.051 0.997 0.044 0.075 0.058 0.239 0.048 0.952
  6 0.053 0.121 0.053 0.394 0.051 0.997 0.044 0.075 0.058 0.239 0.048 0.952
             

Type 3 0.05 3 0.053 0.123 0.054 0.396 0.051 0.997 0.045 0.075 0.058 0.238 0.048 0.952
Offsetting  6 0.054 0.122 0.055 0.396 0.051 0.997 0.045 0.075 0.058 0.238 0.048 0.952

LSTAR 0.10 3 0.054 0.122 0.054 0.396 0.051 0.997 0.046 0.075 0.059 0.238 0.048 0.952
  6 0.054 0.122 0.055 0.395 0.051 0.996 0.046 0.074 0.058 0.238 0.048 0.952
             

Type 4 0.05 3 0.053 0.121 0.054 0.393 0.051 0.997 0.044 0.074 0.058 0.239 0.048 0.952
ESTAR  6 0.051 0.117 0.053 0.385 0.051 0.996 0.044 0.073 0.058 0.236 0.048 0.951

 0.10 3 0.053 0.121 0.054 0.393 0.051 0.997 0.044 0.074 0.058 0.239 0.048 0.952

  6 0.051 0.117 0.053 0.385 0.051 0.996 0.044 0.073 0.058 0.236 0.048 0.951

 
Note: Entries in the table were constructed using the appropriate five-percent critical value from Table 1 or from Table 2.  
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Figure 1: Sharp, ESTAR and LSTAR Breaks
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Figure 2: The R3 - R1 Spread and the Two Intercepts
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APPENDIX 

Proof of Lemma 1  

For the estimated coefficients from the first step regression in (8), we let  = (0, 1, 2), 

and Zt = [1, sin(2kt/T), cos(2kt/T)], and DT = diag[ T, 1/ T, 1/ T ] to have 

DT ( - ) = DT()-1u = [DT
-1()DT

-1]-1DT
-1u   (A.1) 

where Z = (Z2, ZT)and u = (u2, uT). First, it is easy to show that  

DT
-1()DT

-1  = diag[ T-1 
 T , T 

t=2

T

 sin2(2kt/T), T 
t=2

T

 cos2(2kt/T)],   (A.2) 

for which all off-diagonal terms are zero due to the orthogonality property  


t=2

T

 sin(2kt/T)cos (2kt/T) = 0, and  
t=2

T

 sin(2kt/T) = 
t=2

T

 cos(2kt/T) = 0.  

Since sin(2kt/T) = (2k/T)cos(2kt/T) + op(1), and cos(2kt/T)= – (2k/T)sin(2kt/T) + op(1), 

 T 
t=2

T

 sin2(2kt/T)  (2k)2

0

1 cos2(2kr)dr       (A.3) 

 T 
t=2

T

 cos2(2kt/T)  (2k)2

0

1 sin2(2kr)dr       (A.4) 

Second, we have 

DT
-1u = [  1 

 T 

t=2

T

 ut, T 
t=2

T

 utsin(2kt/T), T 
t=2

T

 utcos(2kt/T)] 

We note that 
 1 

 T 


t=2

T

 ut W(1), which is a standard result. For the second and third terms, we 

need to utilize the following asymptotics in Proposition 1. Then, combining the above results in 

(A.2) ~ (A.4), we can obtain the results in Lemma 1. � 
 
Proposition 1 

T 
t=2

T

 utsin(2kt/T)   (2k)[W(1) + (2k)
0

1 sin(2kr)W(r)dr]   (A.5) 

T 
t=2

T

 utcos(2kt/T)   (2k)2[
0

1 cos(2kr)W(r)dr]    (A.6) 

Proof:  We employ the result in Bierens (1994, Lemma 9.6.3):  
t=2

T

 F(t/T)ut = F(1)ST(1) –  

0

1 f(r)ST(r)dr, where f(r) is F(r). For (A.5), we choose F(x) = cos(2kt/T). Then, we can show 

F(1)ST(1) – 
0

1 f(r)ST(r)dr = [W(1)+ (2k)
0

1 sin(2kr)W(r)dr]. For (A.6), we choose F(x) = 

sin(2kt/T), and follow the similar procedure to obtain the desired result. � 
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Proof of Theorem 1  

We let St = j=2
t  j  and [rT] be the integer part of rT, r  [0,1]. Then, it is easy to show 

that the expression St
in (8) can be given as: 

        
 1 

 T 
S


[rT]
= 

 1 
 T 

S
[rT] –

 1 
 T 

 (0-0) rT –
 1 

 T 
 (1-1) sin(2krT/T) – 

 1 
 T 

 (2-2) cos(2krT/T)  

V(r) =  {W(r) – rW(1) – [(2k)
0

1 cos2(2kr)dr]-1[W(1) + (2k)
0

1 sin(2kr)W(r)dr]  

         sin(2kr) – [
0

1 sin2(2kr)dr]-1 [
0

1 cos(2kr)W(r)dr]·cos(2kr)}  (A.7)  

Now, from the second step regression (8), we obtain: 
 
 = (S


1Z S


1)

-1 (S


1Z y),    (A.8) 

where S


1(S


1,..,S


T-1), Z=(Z2,..,ZT ), y= (y2,..,yT), and Z = I - Z(ZZ)-1Z. From 

the results in (A.7), we have: 
 

T -2 S


1Z S


1 

0

1 V_(r) 2dr,      (A.9) 

where V_(r) is the projection of the process V(r) on the orthogonal complement of the space 

spanned by dz = (1, d sin(2kr), d cos(2kr)) where r[0, 1]. That is, 
  

V_(r) = V(r) – dz,    
 

 = argmin
 

 
0

1 (V(r) – dz)2dr.. 

Following SP, we can similarly show that for the second term in (A.8): 
 1 
 T S


1Zy = 
 1 
 T S


1Z  = 
 1 
 T S


1 _    – 0.5
2  ,     (A.10) 

where _ = Z . Theorem 1 is thus proved by combining the results in (A.9) - (A.10). � 
 

Proof of Lemma 2  

 The DGP implies (6), which includes the nonlinear trigonometric terms, but they are 

ignored in the testing regressions. Thus, the first step regression is yt = 0 + ut. Then, we can 

show that the OLS estimate of 0 is given as 

     ^  0 = mean of y = 0 + e
__
        (A.11)  

Then, we construct a detrended series using ^ 0  as:  
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       S^t = yt – y1  - 


0 (t-1) = yt – y1  – 0 (t-1) - (0-0)(t-1) 

          = (et - e1) + a1 sin(2kt/T) + a2 cos(2kt/T) - a1 sin(2k/T) – a2 cos(2k/T)  - (t-1) e
__
 

 
The second step regression involves yt = S^t-1+ c + ut. For simplicity, we ignore the constant 

term, which is 0 in the population. Then, for the denominator of ^ , we have: 

 
 1 
 T 

t=2

T

 S^t-1
2   

 1 
 T 

t=2

T

 S^t
2   = 

 1 
 T 

t=2

T

 [(et - e1) + a1sin(2kt/T) + a2 cos(2kt/T) - a1sin(2k/T)  

    – a2 cos(2k/T)  – (t-1) e
__
. 

This can be expressed as: 

 
 1 
 T 

t=2

T

 [(et - e1)- (t-1)e
__
2 + 

 1 
 T 

t=2

T

 [a1 sin(2kt/T) + a2 cos(2kt/T)]2  

+ 
 1 
 T 

t=2

T

 [- a1 sin(2k/T) – a2 cos(2k/T)]2 + 2
 1 
 T 

t=2

T

 [(et - e1)- (t-1)e
__
a1 sin(2kt/T)  

+  a2 cos(2kt/T)] + 2
 1 
 T 

t=2

T

 [(et - e1) – (t-1)e
__
-a1 sin(2k/T) – a2 cos(2k/T)]  

  + 2
 1 
 T 

t=2

T

 [ a1 sin(2kt/T) + a2 cos(2kt/T)]-a1 sin(2k/T) – a2 cos(2k/T)]               (A.12) 

For each term, we can show: 

 
 1 
 T 

t=2

T

 [(et - e1)- (t-1)e
__
2  

2 + (1/3)(2+1+1
2)  (A.13a)  

 
 1 
 T 

t=2

T

 [a1 sin(2kt/T) + a2 cos(2kt/T)]2   a1
2

0

1 sin2(2kr)dr + a2
2

0

1 cos2(2kr)dr  (A.13b) 

 
 1 
 T 

t=2

T

 [- a1 sin(2k/T) – a2 cos(2k/T)]2  a2
2  (A.13c) 

  2
 1 
 T 

t=2

T

 [(et - e1)- (t-1)e
__
a1 sin(2kt/T) + a2 cos(2kt/T)]  

  = 2
 1 
 T 

t=2

T

 (et - e1)a1 sin(2kt/T) + 2
 1 
 T 

t=2

T

 (et - e1) a2 cos(2kt/T) 

   – 2
 1 
 T 

t=2

T

 (t-1)e
__
a1 sin(2kt/T) - 2

 1 
 T 

t=2

T

 (t-1) e
__
a2 cos(2kt/T) 

 0 + 0 - 2W(1)a10

1 rsin(2kr)dr - 2W(1)a20

1 rcos(2kr)dr           (A.13d) 

In the above, the first and the second terms in (A.13d) are degenerate since 
 1 

 T 

t=2

T

 et sin(2kt/T) 

 
0

1 cos(2kr)W(r)dr, and 
 1 

 T 

t=2

T

 et cos(2kt/T)  W(1) + (2k)
0

1 sin(2kr)W(r)dr. The 

results for the third and fourth terms follow, since  Te
__
W(1), 

 1 
 T 

t=2

T

 (t/T)sin(2kt/T)  
0

1 r 
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sin(2kr)dr, and 
 1 
 T 

t=2

T

 (t/T)cos(2kt/T)  
0

1 r cos(2kr)dr. Thus, the asymptotic distribution of 

the numerator of ^ is obtained by collecting the terms in (A.13a) - (A.13d). 

 Next, we examine the numerator of ^  Since Ŝt = et - e
__
+ a1sin(2kt/T) + 

a2cos(2kt/T), we have: 

         
 1 
 T 

t=2

T

 ŜtS
^

t-1 = 
 1 
 T 

t=2

T

 [et - e
__
 + a1sin(2kt/T) + a2cos(2kt/T)][(et - e1) 

         + a1 sin(2kt/T) + a2 cos(2kt/T) - a1 sin(2k/T) – a2 cos(2k/T) – (t-1) e
__


 1 
 T 

t=2

T

 (et - e
__
 [(et-1 - e1)- (t-2) e

__
+ 

 1 
 T 

t=2

T

 et - e
__
 [a1 sin(2kt/T) + a2 cos(2kt/T)

- a1 sin(2k/T) – a2 cos(2k/T)] + 
 1 
 T 

t=2

T

 [a1sin(2kt/T) + a2cos(2kt/T)][a1 sin(2kt/T) 

          + a2 cos(2kt/T)  – a1 sin(2k/T) – a2 cos(2k/T)+ 
 1 
 T 

t=2

T

 [a1sin(2kt/T)  

          + a2cos(2kt/T)]  [(et-1 - e1)- (t-2) e
__
 (A.14)

The first term in the last equation in (A.14) follows: 

 
 1 
 T 

t=2

T

 et - e
__
 [(et-1 - e1)- (t-2) e

__
 1 

 T 
t=2

T

 et(et-1 - e1) – 
 1 
 T 

t=2

T

 e
__

 (et-1 - e1) 

    + 
 1 
 T 

t=2

T

 et (t-2) e
__
+ 

 1 
 T 

t=2

T

 e
__

 (t-2) e
__
 

2( -1) + op (1) 

For the above result, we note 
 1 
 T 

t=2

T

 et(et-1 - e1)  
 1 
 T 

t=2

T

 (et-1 - e1)et-1 since e1
 1 
 T 

t=2

T

 et = e1e
__

Also, 
 1 
 T 

t=2

T

 (et-1 - e1)et-1  1  - 
2 = 

2( -1) where  is the AR coefficient in the DGP 

(7). It can be easily seen that all remaining terms are degenerate. The second term in the last 

equation in (A.14) can be shown as op(1) by employing the results that  
 1 

 T 

t=2

T

 etsin(2kt/T)  


0

1 cos(2kr)W(r)dr, and 
 1 

 T 

t=2

T

 etsin(2kt/T) [W(1)+(2k)
0

1sin(2kr)W(r)dr. The third 

and fourth terms in the last equation in (A.14) can be shown as op(1). Thus, 

 
 1 
 T 

t=2

T

 ŜtS
^

t-1   
2(  - 1)            (A.15) 

The result in Lemma 2 follows by combining the results in (A.13) and (A.15). � 
 
 


