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Abstract Airborne light detection and ranging (LiDAR)

is fast turning the corner from demonstration technology to

a key tool for assessing carbon stocks in tropical forests.

With its ability to penetrate tropical forest canopies and

detect three-dimensional forest structure, LiDAR may

prove to be a major component of international strategies to

measure and account for carbon emissions from and uptake

by tropical forests. To date, however, basic ecological

information such as height–diameter allometry and stand-

level wood density have not been mechanistically incor-

porated into methods for mapping forest carbon at regional

and global scales. A better incorporation of these structural

patterns in forests may reduce the considerable time needed

to calibrate airborne data with ground-based forest inven-

tory plots, which presently necessitate exhaustive mea-

surements of tree diameters and heights, as well as tree

identifications for wood density estimation. Here, we

develop a new approach that can facilitate rapid LiDAR

calibration with minimal field data. Throughout four trop-

ical regions (Panama, Peru, Madagascar, and Hawaii), we

were able to predict aboveground carbon density estimated

in field inventory plots using a single universal LiDAR

model (r2 = 0.80, RMSE = 27.6 Mg C ha-1). This model

is comparable in predictive power to locally calibrated

models, but relies on limited inputs of basal area and wood

density information for a given region, rather than on tra-

ditional plot inventories. With this approach, we propose to

radically decrease the time required to calibrate airborne

LiDAR data and thus increase the output of high-resolution

carbon maps, supporting tropical forest conservation and

climate mitigation policy.
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Introduction

Tropical forest structure and composition vary with cli-

mate, geological substrate, soil fertility, vegetation type,

and both natural and anthropogenic disturbance regimes.

These and still other factors impart enormous spatial and

temporal variability in aboveground carbon density (ACD;
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units of Mg C ha-1), which is exceedingly difficult to

capture using field measurements alone. Spatial and tem-

poral variation in ACD is important from both traditional

ecological and contemporary climate-change perspectives:

standing carbon stocks are an integrative outcome of bio-

logical, hydrological, biogeochemical, and other functional

processes (Schimel 1995); and protecting and increasing

forest carbon represents a major opportunity to help offset

carbon emissions that contribute to climate change. To

facilitate this, the United Nations Framework Convention

on Climate Change (UNFCCC) recently agreed to include

provisions for reduced emissions from deforestation and

forest degradation (REDD) (Herold and Skutsch 2011). As

a result, there is a growing need for highly accurate, large-

scale mapping of the variation and changes in forest ACD.

Light detection and ranging (LiDAR), an active remote

sensing technology that uses emitted laser pulses to mea-

sure distances between objects, has proven useful for

extending plot-level ACD estimates to larger spatial and

ecological scales (see the review by Lefsky et al. 2002b).

Most LiDAR-based work has involved airborne scanning

systems that produce image-like coverage of canopy height

and three-dimensional canopy metrics. LiDAR measure-

ments have proven to be correlated with basal area (i.e.,

cross-sectional stem area per sample area; m2 ha-1), owing

to the volumetric nature of the 3-D measurements (e.g.,

Drake et al. 2003; Lefsky et al. 1999b; Means et al. 1999;

Popescu et al. 2004). Most work has focused on conifer,

temperate broadleaf and plantation forests, with less

research in tropical forests containing hundreds to thou-

sands of canopy species (but see Drake et al. 2002; Lefsky

et al. 2005).

The combination of decreased sampling time and far

more robust sampling of large heterogeneous tropical

regions makes LiDAR a potentially ideal platform for

mapping forest carbon in support of conservation, man-

agement, and climate change mitigation programs (Asner

2009). Yet, tropical forests vary widely in structure,

architecture, and composition, and the influence of these

ecological properties on the efficacy of airborne LiDAR for

carbon mapping has not been evaluated across a wide range

of forest types and compositions. Three basic structural

factors describe the amount of carbon stored aboveground

in all forests: basal area (BA), height (H) and wood density

(WD). Evolutionary and environmental factors create

known regional-scale variation in and among these struc-

tural properties relating to carbon stocks. Recent synthesis

work indicates that the ratio of tree height to diameter

(H:D) varies with climate regime and forest type in the

tropics (Feldpausch et al. 2010). Asian, African, and

Guayana Shield forests maintain high H:D ratios, but these

ratios are lower in Amazonian and Australian forests. Other

synthesis work shows that WD varies regionally in tropical

forests (Baker et al. 2004; Chave et al. 2006, 2009; ter

Steege et al. 2006), yet this and other ecologically based

information has not been mechanistically incorporated into

methods for mapping forest carbon at regional and global

scales.

Despite the potential value of creating generalized

LiDAR approaches for tropical forests, little work has been

done to seek common ground among LiDAR metrics and

field-based measures of BA, H:D, and WD. We compiled

and analyzed airborne LiDAR and field plot data from

recent studies spanning four distinct tropical ecoregions,

including Mesoamerican forests, western Amazonian for-

ests, Paleotropical forests of Madagascar, and Pacific island

forests. Our previous studies calibrated airborne LiDAR

measurements against field-based ACD estimates within

regions, using comparable methods across projects (Asner

et al. 2010, 2011a, b; Mascaro et al. 2011a). The results

show that field-measured carbon stocks are consistently

related to LIDAR measurements, but the slope of the

relationship varies among regions. These differences

highlight the need to explore a more general approach for

the use of LiDAR in tropical forest carbon monitoring. We

had two specific goals: (1) to evaluate the relative impor-

tance of different forest structural properties determining

the relationship between LiDAR measurements and carbon

stocks within and among different tropical forests, and (2)

to develop generalized LiDAR approaches for mapping

carbon stocks throughout tropical forests.

Materials and methods

Site descriptions

We compiled LiDAR and field data for four tropical

regions: Hawaii Island, Madagascar, Amazonian Peru, and

Central Panama. The regions span a wide range of climate,

soil, and floristic composition, and considerable variation

also exists within each region. On Hawaii Island, dry to wet

tropical forests range from 180 to 11,000 mm mean annual

precipitation and cover a variety of lava flows of differing

ages (0 to more than 100,000 years old) and corresponding

degrees of soil development. The native flora is primarily

endemic (Wagner et al. 1999), with nearly all native forests

containing Metrosideros polymorpha and/or Acacia koa,

although much of the island’s forests are now co-domi-

nated by introduced species (Mascaro et al. 2008). The

tropical moist forests in southeastern Madagascar

(*2,500 mm mean annual precipitation) occupy undulat-

ing topography with steep ridges. Like those in Hawaii, the

moist forests of Madagascar include a large complement of

endemic species, but are infused with a Paleotropical flora

due to their proximity to the African mainland (Ganzhorn
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et al. 2001). The Neotropical regions of Central Panama

and southern Amazonian Peru are similar in many respects,

including mean annual precipitation (*2500 mm), but

they differ considerably in edaphic characteristics and

species composition. Madre de Dios in Peru is a region of

lowland Amazonian forest abutting the Andes, which

covers vast areas of highly leached tertiary substrates to

fertile alluvial deposits, variously harboring tall forest

hardwoods as well as bamboo- and palm-dominated stands

(Gentry 1988). In Central Panama, we sampled in rela-

tively fertile volcanic soils in the Barro Colorado Nature

Monument (Leigh et al. 1982), as well as highly leached

oxisols in the Agua Salud watershed adjacent to Sobernia

National Park (Turner and Engelbrecht 2011). Within each

region, our sampling included forests of many successional

stages, from newly reverted secondary regrowth to mature

forests that have been largely undisturbed for centuries

(Asner et al. 2010, 2011a, b; Breugel et al. 2011; Mascaro

et al. 2011a; Vieilledent et al. 2011).

Airborne LiDAR

The LiDAR data were collected using the Carnegie Air-

borne Observatory (CAO) Alpha system (Asner et al.

2007), with data collection and analysis methods applied

consistently across sites. The CAO-Alpha LiDAR system

was capable of four returns per pulse, with the beam

divergence customized to 0.56 mrad. The system was

operated at 2,000 m above ground level with 1.12 m spot

spacing, a 30� field of view, and a pulse repetition fre-

quency of 50 kHz, for which the aircraft maintained a

ground speed B157 kph. Flights were planned with 100%

repeat coverage (50% overlap of each swath with each

adjacent swath) and therefore LiDAR point density aver-

aged two points per 1.12 m spot. LiDAR spatial errors

were less than 0.15 m vertically and 0.36 m horizontally

(Asner et al. 2007, 2009).

Structural properties of forests and other woody eco-

systems were estimated from these LiDAR data. Vertical

canopy profiles were analyzed by binning discrete LiDAR

returns into volumetric pixels (voxels) of 5 m spatial res-

olution and 1 m vertical resolution, yielding histograms

representing the vertical distribution of vegetation in each

5 9 5 m spatial cell. These data were further reduced to

mean canopy profile height, also known as MCH, which is

the vertical center of the canopy volumetric profile (as

opposed to simple top-of-canopy height). Each field-plot

ACD estimate (discussed below) was then linked with a

single LiDAR MCH value determined as the average MCH

of all 5 9 5 m cells for which the center was contained

within that plot’s footprint (which varied in size from 0.1 to

0.36 ha across projects; Table 1). Plot size has a strong

influence on the model error (RMSE), with larger plots

typically resulting in lower errors, although above 0.1 ha

there is little influence on model coefficients (Mascaro

et al. 2011b). Across projects with plots of many sizes,

MCH exhibits a strong relationship with forest structural

properties such as basal area and carbon density (e.g.,

Asner et al. 2010; Lefsky et al. 1999a, 2002a; Mascaro

et al. 2011a).

Field data

Within each region, we developed ground-based estimates

of aboveground carbon density across a range of habitat

types using inventory plots and allometric equations

Table 1 Key statistics on the field plot data for humid tropical forests in the Peruvian Amazon, Panama, Madagascar, and Hawaii

Region Number and

size of plots

Plot shape Taxonomic

resolution

Mean (SD) characteristics of closed forest sites

(MCH [15 m)

References

Carbon density

(Mg ha-1)

Basal area

(m2 ha-1)

Wood density

(g cm-3)

Peru 130 (0.28 ha) Circular Genus 135 (46) 33 (7) 0.56 (0.05) Asner et al. (2010)

Panama 128 (0.36 ha) 60 9 60 m Species 113 (28) 32 (6) 0.54 (0.03) Mascaro et al. (2011a)

29 (0.1 ha) 20 9 50 m

Madagascar 46 (0.28 ha) Circulara Species 144 (49) 42 (11) 0.58 (0.03) Asner et al. (2011b)

Hawaii 83 (0.28 ha) Circular Species 237 (58) 56 (12) 0.65 (0.03) Asner et al. (2011a)

36 (0.1 ha) Circular

30 (0.18 ha) Circular

The data span nonplanted intact mature forests, secondary and degraded forests, logged forests, and open woodlands, as described in the

references. To allow a comparison among sites, the mean and standard deviation (SD) of aboveground carbon density, basal area, and wood

density above a LiDAR mean canopy profile height (MCH) of 15 m are also provided. In general, forests with an MCH [15 have achieved

canopy closure
a Plots in Madagascar were nested: trees [50 cm were sampled inside a 30 m radius (0.28 ha), those [20 cm inside a 14 m radius, and all

others inside a 4 m radius
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relating stem diameter, height, and wood density to stem

biomass (IPCC 2006). For each region, a detailed

accounting of the specific methods is available in the ori-

ginal publications (Asner et al. 2010, 2011a, b; Mascaro

et al. 2011a; Vieilledent et al. 2011). The plot sampling

was designed specifically to capture the range of possible

structural variation encountered by the sensor. Importantly,

however, the field plots did not (and were not intended to)

represent a random sample of forest structural variation at

the landscape scale. Rather, to capture the relationship

between LiDAR and forest structure requires uniform

sampling along the range of possible structural condi-

tions—whether they are common (e.g., median forest

height) or rare (e.g., low forest height). Thus, field plots for

all four regions targeted nonplanted forest stands of all ages,

from mature stands to recently abandoned pasture with few

trees and, in the case of Hawaii, open savannas on primary

successional lava flows. We did not discriminate between

uneven- and even-aged stands, although uneven-aged stands

were the norm for mature forests outside of Hawaii (where

even-aged stands of the native dominant Metrosideros

polymorpha senesce and regenerate in synchrony; Wagner

et al. 1999). Plot size, shape, and spacing differed according

to the various goals (and limitations) of the respective pro-

jects (Table 1). In Hawaii and Madagascar, sampling was

planned based on a prior examination of structural variation

found in the LiDAR data (e.g., to locate exceptionally tall or

short forests); in Peru, the sampling was planned based on

known habitat variation from previous vegetation surveys; in

Panama, we utilized pre-existing plots.

In all cases, we estimated biomass by allometric

regression using, with decreasing priority depending on

which models were available, (1) species-specific equa-

tions, (2) growthform-specific equations (i.e., lianas, palms,

bamboo, tree ferns), (3) generalized regional equations

(Breugel et al. 2011; Vieilledent et al. 2011), and finally (4)

pan-tropical equations (Chave et al. 2005). For equations

with a wood density term, we utilized, with decreasing

priority, (1) local field-sampled estimates by species, (2)

species-level database estimates (Chave et al. 2009), (3)

genus-level database estimates, and (4) regional estimates

(Chave et al. 2006). In general, the biomass of most stems

was estimated with a taxon-assigned wood density value,

but by a general (rather than species-specific) allometric

model. In Hawaii, where many species-specific models

were available, we found that predicted biomass from

species-specific versus general models differed for a given

stem, but that the net effect on total plot-level biomass was

small (Asner et al. 2011a).

The compiled field measurements highlight similarities

and differences among forests over a given MCH range

(Table 1). In plots above an MCH of 15 m, ACD ranges

from 135 (±46) Mg C ha-1 in the Peruvian Amazon to

237 (±58) Mg C ha-1 in native Hawaiian forests. Mean

basal area (BA) and wood density track mean carbon

density across regions (Table 1).

Regional vs. universal models

Our approach to developing a universal model to relate

LiDAR MCH to field-measured ACD (Mg ha-1) draws on

recent efforts to develop generalized biomass allometries for

tropical trees (Chave et al. 2005), and those warrant review

here. For a given tree species, dry aboveground biomass

(AGB, of which *48% is carbon) can be related to tree

diameter (D), ideally in the form of a power function,

AGB ¼ aDb ð1Þ

(Niklas 2006). However, such models show less utility

when they include many species, due to differences in tree

form (e.g., taper as well as the height–diameter allometry)

and wood density (which varies by an order of magnitude

among tropical tree species). In contrast, generalized

models are trivariate, incorporating diameter, height, and

wood density terms. Together, these variables collectively

explain about 95% of the variation in the logarithm of

tropical tree biomass (Chave et al. 2005). The simplest

form is

AGB ¼ aDb1 Hb2 WDb3 ; ð2Þ

where H is height and WD is wood density. To date,

regional models relating ACD and LiDAR metrics have

been univariate, relying primarily on MCH or related

indices (e.g., Lefsky et al. 1999b), and taking a form

similar to Eq. 1:

ACD ¼ aMCHb: ð3Þ

Here, LiDAR-measured MCH is related to field-measured

ACD. Just as with an allometric relationship between

diameter and biomass for a single tree species (e.g., Eq. 1),

these models are highly conserved within a region, but are

not consistent across regions. Although the regional models

include information on forest canopy vertical profile, they

lack parameters that may differ among forests with similar

height profiles. Specifically, they lack information on tree

diameters and stocking (e.g., stem density), which together

are integrated as BA, as well as WD.

We considered how differences in plot-level BA–MCH

relationships, plot-level WD–MCH relationships, and tree

height–diameter allometries may contribute to differing

MCH-to-ACD models among regions. We evaluated how

plot-level BA (total basal area for stems C1 cm dbh per

area of ground) and plot-level WD (a per-plot average as

weighted by each stem’s BA contribution) related to

LiDAR MCH within each region using linear regression by
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ordinary least squares, and compared the relationships

among regions. We also compared allometric models

relating height to diameter (e.g., Chave et al. 2005),

henceforth referred to as H:D models, among regions.

These models were previously constructed using up to

third-order polynomials fitted to ln-transformed diameter

and height data. Within certain regions, such as Hawaii,

species-specific models were used; however, within most

regions we relied on a single generalized model because

there were insufficient data to parameterize species-specific

models for all relevant species.

Extending tree allometry theory to the plot scale, we

devised the following general model of plot-based ACD:

ACD ¼ aMCHb1 BAb2 WDb3

BA; ð4Þ

where BA is basal area and WDBA is the basal-area-

weighted wood density of each plot. The model was fitted

using multiple linear regression on ln-transformed plot-

level data for MCH, BA, and WDBA in the form

ln ACDð Þ¼ ln að Þþb1 ln MCHð Þþb2 ln BAð Þþb3 ln WDBAð Þ:
ð5Þ

We then back-transformed the final model and multiplied

by a correction factor (CF) to account for the back-trans-

formation of the regression error (Baskerville 1972); the

correction factor is given by CF ¼ eMSE=2, where MSE is

the mean square error of the regression model. We evalu-

ated how the predictive power of this model changed when

we used regional average wood density instead of plot level

wood densities, and when we used regional BA:MCH

slopes times observed plot MCH in place of observed plot

BA. Our final universal model incorporated plot-level data

on MCH, regional average wood density, and regional

BA:MCH slopes. We compared the performance of this

universal model to each previously published regional

ACD:MCH model in terms of their match to the observed

carbon density by fitting linear regressions between

observed and predicted carbon density, and also by cal-

culating r2 values, mean errors, and RMSE.

Results

Relating LiDAR to canopy structure and carbon stocks

Sample LiDAR cross-sections taken from the four regions,

along with the mean and spatial variance of the vertical

distribution of canopy elements such as leaves and stems,

are shown in Fig. 1. Visual comparison of the vertical

canopy profiles revealed general consistency among Pan-

ama, Peru, and Madagascar, but Hawaii is very much an

outlier. It has a shorter canopy, with a narrower upper tail

in its vertical distribution, likely indicating fewer emergent

trees that are clearly visible at the other sites. The Hawaii

profile also contains a dense and distinctive understory

layer (*7 m in height) and dense groundcover layer

(1–2 m), and while the other sites contain understory and

groundcover vegetation, the layering is not nearly as well

stratified. All sites contain a mode centered near 20 m in

Fig. 1 LiDAR cross-sectional views of four mature tropical forests in

the Peruvian Amazon (Los Amigos Conservation Concession, Madre

de Dios), Panamanian Neotropics (Barro Colorado Island), Paleo-

tropics (southeastern Madagascar), and Pacific island forests (Laup-

ahoehoe Forest Reserve, Hawaii Island). Each cross-section shows the

three-dimensional structure of the forest in a 100 m long 9 20 m

wide belt transect. Right-hand panels show mean and spatial variance

of LiDAR vertical canopy profiles for all returns in a 1 km2 area

centered on each cross-section. The mean canopy profile height

(MCH) is established as the vertical center of the canopy volumetric

profile
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height; it is in this area that the greatest density of canopy

elements can be found in all four forests.

As documented in our studies of each of these regions,

aboveground carbon density can be predicted with high

confidence from LiDAR-derived MCH within a particular

region (Fig. 2). The proportion of variation explained by the

MCH-to-ACD regressions was roughly similar across

regions (r2 = 0.68–0.85, RMSE = 18–36 Mg C ha-1;

Fig. 1a–d), but the slope of the relationship varied twofold

(Fig. 2e). Hawaiian forests diverged the most from Neo-

tropical forests in Peru and Panama, while Madagascar fell

between these extremes (Fig. 2f). A summary of all model

parameters is provided in the Electronic supplementary

material (ESM). Relative plot size and quality was a factor in

the various model fits; the nested plots used in Madagascar

(Table 1) contributed to their higher RMSE (Fig. 2f), while

the largest plots (used in Panama) were associated with the

lowest RMSE (Fig. 2b; see also Mascaro et al. 2011b).

Basal area was highly and linearly correlated with LiDAR

MCH in all four regions (Fig. 3). However, the mean basal

area of each forest at a given MCH differed between regions,

which is reflected in the pronounced variation in the basal

area of closed-canopy forests (MCH [15 m) across regions.

Closed-forest basal area declined steadily from Hawaii

(mean 56 m2 ha-1), to Madagascar (45 m2 ha-1), to the

Neotropics (32–33 m2 ha-1; Table 1). There were corre-

sponding declines in the steepness of the MCH-to-ACD

slopes observed in Fig. 2.

Plot-level, BA-weighted average WD had no consistent

relationship with MCH among regions (Fig. 4). MCH and

WD were weakly positively correlated in Peru, very weakly

negatively correlated in Hawaii and Panama, and had no

significant correlation in Madagascar. The positive relation-

ship in Peru reflects the fact that mature forest plots had higher

WD on average than plots in young, regenerating stands.

Somewhat surprisingly, the same was not true for the other

regions. However, WD did vary considerably across regions.

In Hawaii, most field plots were centered on a WD of 0.69—

the value of the widespread dominant tree Metrosideros

polymorpha. With the exception of a single plot in Mada-

gascar, all plots in the other regions had WD values of less

than 0.69. Among plots in mature forests, WD was 14–17%

lower in Neotropical regions of Peru (mean = 0.55 g cm-3)

and Panama (0.54 g cm-3) and 11% lower in Madagascar

(0.57 g cm-3) than in Hawaii (0.65 g cm-3; Table 1). As

with basal area, this sequence corresponded to the trend in the

relative steepness of slopes of the LiDAR-to-ACD relation-

ships from the various regions (Fig. 2).

Fig. 2 Comparison of

regionally derived relationships

between LiDAR mean canopy

profile height (MCH) and plot-

level estimates of aboveground

carbon density (ACD) generated

by stand information including

tree diameters, heights, and

species/genus-specific wood

densities. Panels a–d are for

each forest ecoregion; e
provides the data spread among

all ecoregions; f compares

regression lines among

ecoregions. Regression

parameters are provided in the

ESM. The horizontal line
indicates the approximate MCH

level for each example stand

shown in Fig. 1. Symbols for

each forest ecoregion are

consistently presented in

Figs. 2, 3, 4, 5, and 6
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Comparing height–diameter allometries, we found that,

at a given tree diameter, Neotropical trees were generally

taller (particularly in Peru) than those in Madagascar, and

all were far taller than those in Hawaii (Fig. 5). The

regional model for Hawaii reflects the fact that the most

dominant tree, Metrosideros polymorpha, cannot generally

attain the height that mainland tropical trees reach. Overall,

we find that regional variation in H:D relationships can

drive differences in the regional MCH-to-ACD curves

when BA is roughly similar. For example, MCH-to-BA

curves were nearly overlapping in Panama and Peru

(Fig. 3), while Peru had a slightly steeper H:D relationship

(Fig. 5). This leads to a steeper MCH-to-ACD curve in

Peru relative to Panama (Fig. 2).

Universal LiDAR-to-ACD model

Our general model incorporating plot-level MCH, BA, and

WD explained 96% of the variation in log-transformed

ACD among all 482 field plots. It resulted in the following

equation (after back-transformation, including correction

for the regression error):

ACD = 2:04MCH0:436BA0:946WD0:912: ð6Þ

All terms were significant at p \ 0.001. Standard errors for

the exponents were 0.0221 for MCH, 0.0215 for BA, and

0.0832 for WD. When we applied the original plot-level

field data to this final model, we obtained a linear rela-

tionship between observed and predicted ACD that

explained 95% of the variation (p \ 0.0001; Fig. 6a). The

root mean squared error (RMSE) was 15 Mg C ha-1. We

then generated predictions from the same model using plot-

level data only for MCH; we substituted regionally aver-

aged wood density for plot-level wood density, and

regional BA:MCH constants multiplied by the plot-level

MCH for the plot-level BA. This ‘‘universal’’ approach

explained 80% of the variation in field-measured ACD

for all regions combined (RMSE = 27.6 Mg C ha-1;

p \ 0.001; Fig. 6d). We also considered the influence of

the two regional constants by including each one separately

(i.e., using plot-specific data for the other). Including plot-

level BA but a regional WD constant explained nearly the

same variation (92%) as with the full plot-level model

(95%), indicating that plot-level WD accounted for little

overall variation (Fig. 6c). By contrast, using plot-level

WD but a regional BA:MCH constant caused the explained

variation to drop from 95% to 82% (Fig. 6b).

Fig. 3 Relationships between

LiDAR MCH and plot-level

estimates of basal area as

determined by tabular tree

measurements. Panels a–d are

for each forest ecoregion; e
provides the data spread among

all ecoregions; f compares

regression lines among

ecoregions. Regression

parameters are provided in the

ESM
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Considering each region independently, ACD variation

explained by the universal model differed by a maximum

of just 1% relative to region-specific models (Fig. 7).

Similarly, the RMSE was essentially unchanged. Median

errors by region differed by -4.2, -4.8, 4.0, and

6.2 Mg C ha-1 for Panama, Peru, Madagascar, and

Hawaii, respectively. The greatest difference in slope

between regional and universal models was found in Peru,

where high-ACD regions were slightly underpredicted by

the universal model. The reason for these model perfor-

mance differences is likely the small but statistically sig-

nificant effect of increasing wood density with increasing

stand-level carbon stocks in the southern Peruvian Ama-

zon; when we apply the universal model, we lose the plot-

scale contribution of wood density to the MCH-to-ACD

calibration, which causes underestimation in high-biomass

stands.

Discussion

Our compilation of previous and ongoing airborne LiDAR

studies finds substantial variation in the canopy structure of

closed-canopy tropical forests, both within and across

tropical forest ecoregions. Each of these studies purposely

sampled as wide a variety of forest compositions and

conditions as is known to occur in each region. Specifi-

cally, the plots include a wide range of plant species,

genera and families, as well as enormous variation in

successional states and disturbance conditions, ranging

from nearly deforested to selectively logged to young

secondary regrowth and closed-canopy intact forests

(Asner et al. 2010, 2011a, b; Mascaro et al. 2011a). Fur-

thermore, while the same airborne LiDAR and mapping

approach was used in all four ecoregions, the plots were

measured by different groups, and varied in plot size and

detail (Table 1). From this diverse set of conditions, we

were able to quantitatively compare the factors determining

the relationship between LiDAR measurements (Fig. 1)

and aboveground carbon density (Fig. 2). This relationship

proved to be consistent in functional form but to vary in

slope by ecoregion, affording an opportunity to improve

our understanding of the sources of such variation.

The results presented here ultimately suggest a con-

sistency in the way trees naturally fill tropical forest

canopy space, and are thus detected by LiDAR, that is

analogous to the consistency exhibited by tree allometry

models (Niklas 2006). Naturally occurring (unplanted)

Fig. 4 Relationships between

LiDAR MCH and basal area-

weighted wood density (WD).

For a given plot, mean WD was

determined as the summed

product of WD and basal area

for each stem divided by the

summed basal area. Panels a–d
are for each forest ecoregion; e
provides the data spread among

all ecoregions; f compares

regression lines among

ecoregions. Regression

parameters are provided in the

ESM

Oecologia

123



tropical forests undergo successional processes driven by

competition for resources, particularly light and nutrients

(Brokaw 1985; Kitajima et al. 2005). This leads to both

vertical and horizontal partitioning of canopy area and

structure (Enquist and Arak 1994), which, within regions,

is supported by relatively predictable investments in bole

wood volume and basal area to support multi-level

canopy space-filling (Richards and Williamson 1975;

Richards 1952). Although wood density varies regionally

[with some suggesting that it alone can explain biomass

variation among tropical forests (Baker et al. 2004),

while other see less of a pattern (Stegen et al. 2009)],

the end result can be a surprisingly convergent pattern of

canopy structure and space filling among tropical forests

(Kellner and Asner 2009). We have combined this

thinking with high-resolution airborne LiDAR measure-

ments of canopy structure to derive a universal approach

to mapping carbon. While this approach relies on

regional estimates of basal area and/or wood density to

produce the most accurate mapping predictions, the con-

sistency in the way that trees fill the canopy space is foun-

dational. We note that this approach breaks down in

plantation-type forests where spacing and height become

very homogeneous. In these cases, the relationship between

LiDAR-derived canopy structure and carbon stocks loses

fidelity (Asner et al. 2011a).

Relating LiDAR to tropical forest structure

and carbon stocks

In concurrence with past studies, we found strong linear

relationships between airborne LiDAR measurements of

canopy profile height and plot-level basal area within regions

(Fig. 3). This occurs because the MCH is sensitive to the

volumetric centroid of the laser point distribution in the

crown, and both crown height and crown volume generally

scale with stem diameter and basal area in tropical forests

(e.g., Asner et al. 2002; Baker and Wilson 2000; Clark et al.

2004). Although the MCH-to-BA relationships were linear

within all regions, their slopes varied more than two-fold,

from the lowest observed in Central Panama to the highest in

Hawaii (Fig. 3). These BA:MCH ratios generally parallel the

differences observed among the MCH-to-ACD regressions

(Fig. 2), but they also follow the general pattern seen in

regional H:D models (Fig. 5). In forests with shallower H:D

models (e.g., Hawaii), basal area necessarily must be greater

at a given canopy height than in forests with steeper H:D

models (e.g., Peru), provided they have similar stocking.

Fig. 5 Relationships between

field-measured tree height and

diameter (H:D). Panels a–d are

for each forest ecoregion; e
provides the data spread among

all ecoregions; f compares

regression lines among

ecoregions. Regression

parameters are provided in the

ESM
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LiDAR cannot detect differences in wood density, and

thus the extent to which wood density influences ACD

variation presents a challenge to the use of LiDAR for

forest carbon mapping. This issue is particularly important

given potential regional variation in wood density as well

as the possibility of long-term species compositional shifts

resulting from local and global anthropogenic influences

(Chave et al. 2008; Schnitzer and Bongers 2011). Two key

questions must be considered in the context of LiDAR

efforts to map ACD: (1) how does wood density affect

ACD across regions, and (2) how does wood density affect

ACD within a region? This study, like previous work

(Baker et al. 2004; Chave et al. 2006; Reyes et al. 1992;

ter Steege et al. 2006), has shown that wood density is

Fig. 6 Observed aboveground

carbon density versus that

predicted by various iterations

of the universal LiDAR

approach: a the model fit with

parameters for the LiDAR

MCH, field-estimated basal

area, and basal area-weighted

wood density for each plot;

b the model with regional basal

area-to-MCH ratios in place of

field-estimated basal area

estimates, c the model with

regional wood density constants

in place of field-estimated wood

density, and d the universal

model, with both regional basal

area-to-MCH ratio and regional

wood density constant

Fig. 7 Comparison of the

predicted and observed carbon

densities for four tropical

regions using: a regional models

calibrated by field inventory

plots, and b a single universal

model using only LiDAR MCH,

regional estimates of basal area-

to-MCH ratio, and mean basal

area-weighted wood density

values
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correlated with ACD patterns across regions. Here, for

example, we found that higher regional wood density in

Hawaiian forests—and to a lesser extent Madagascar—was

related to higher ACD at a given forest MCH (Table 1;

Fig. 2). However, the pattern is less clear within any given

region (Fig. 4). Relationships between WD and ACD were

comparable in slope and goodness of fit to those between

WD and MCH, showing weak positive, weak negative, or

no relationships in different regions (Fig. 4; ESM). Stegen

et al. (2009) also found that wood density was sometimes

positively, sometimes negatively, and sometimes not cor-

related with ACD in six Neotropical forests. In summary,

our results support a strong among-region influence of

wood density on ACD, but a relatively weak influence

within a region.

The universal LiDAR model (Eq. 6) explained nearly all

the variation (95%) in observed ACD when it was applied

to field-measured BA, field-estimated WD, and LiDAR-

derived MCH for each plot (Fig. 6a). It is important to note

that information on tree diameters, height, and WD feed

into both axes, albeit in different forms, and thus a strong

fit is not surprising. It is instructive, however, because it

demonstrates that plot-specific variables explain nearly all

the variation in ACD that tree-specific variables do. Thus,

among-tree variation, such as the taxon-assigned wood

density values, and the relative distribution of this variation

among stems (e.g., which wood density values get assigned

to trees of a certain BA) ultimately have very little effect

on plot-specific estimates of ACD. This is a key develop-

ment in the application of LiDAR to mapping tropical

forest biomass because it provides a path toward rapid

calibration.

For all forests, the MCH-to-ACD relationships were

nonlinear, while the MCH-to-BA relationships were linear.

This disparity is a consequence of the intrinsic nonlinearity

between ACD and BA. For individual trees, ACD is

approximately proportional to D2 9 H 9 WD (Chave et al.

2005). The basal area of an individual tree is proportional to

the square of its diameter, while height is also approximately

a power function of diameter, with an exponent of between

0.46 and 0.65 in tropical regions (Feldpausch et al. 2010).

Thus, the ACD of an individual tree is approximately pro-

portional to D2.45–2.65 and thus BA1.22–1.33 in most tropical

forest trees. A similar relationship holds at the stand level,

with plot-level ACD related to plot-level BA density as a

power function. For the sites considered in this study, ACD

was proportional to BA1.34 (see ESM).

It is notable that the four tropical regions considered

here displayed balancing influences of H:D and regional

WD on aboveground carbon density. That is, the relatively

short forests of Hawaii, and to a lesser extent Madagascar,

also have higher wood density. This is the opposite of the

pattern that might be expected from a biomechanics

perspective, in which higher wood density would enable

trees to be stronger and thus taller for a given diameter, and

would lead to the expectation that regions with higher

wood density would also have higher H:D (Larjavaara and

Muller-Landau 2010). In the global humid tropical forest

biome, several ecoregions do contain forests with both tall

trees and high wood density. For example, dipterocarp

forests of Southeast Asia and others in the Eastern Amazon

have steeper H:D relationships and higher wood density

than the forests currently incorporated into our universal

approach (Feldpausch et al. 2010; King et al. 2005).

Although our universal LiDAR model would certainly

estimate high ACD for these regions (consistent with field

inventories in such areas), these regions introduce new

uncertainty, since they do not enter into our current uni-

versal parameterization.

We caution that our results may not be applicable to

some airborne LiDAR systems (e.g., large-footprint

LiDAR), or to spaceborne LiDAR profilers such as the

NASA Geoscience Laser Altimeter System (GLAS) (Ab-

shire et al. 2005). While each of these approaches is

capable of detecting forest height and vertical partitioning

of canopy elements, neither can produce high-resolution

3-D information on the structural properties of canopies.

Thus, the underlying controls over canopy space-filling

revealed in the high-resolution approach described here

may not be detectable using coarser airborne and space-

borne methods.

Universal LiDAR approach for tropical forests

To date, LiDAR-based carbon mapping has been dependent

upon a region-specific calibration involving laborious and

expensive plot inventory data, including tree diameter

measurements, tree identification (for wood density esti-

mation), and a robust set of tree height measurements

(Fig. 8). This technique has been successfully employed in

both temperate and tropical forest environments. However,

we have found that nearly all of the variation in field-based

estimates of ACD can be sufficiently captured at the plot

scale using the LiDAR MCH, after accounting for inter-

regional differences in wood density, and with the applica-

tion of a regional BA-to-MCH correction (Fig. 8). More-

over, we found that the universal approach yields results that

are comparable to regionally calibrated LiDAR-to-ACD

methods (Fig. 7). With the universal approach developed

here (Fig. 8), we can estimate aboveground carbon density

using airborne LiDAR in combination with a minimal

number of co-registered field plots for which only total basal

area is measured—something that can be done rapidly with a

wedge prism or relascope (Kalliovirta et al. 2005). This

reduces logistical and financial investments to simple esti-

mates of basal area at a sufficient number of points to
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characterize the BA-to-MCH relationship for a given region.

In practice, we have found that fewer than 25 plots of 30 m

radius each spread across a range of biomass levels are suf-

ficient to reach the same low error levels in LiDAR-to-ACD

calibration as achieved with a much larger number of plots

(Asner et al. 2010, 2011a). We have also found that larger

size plots substantially reduce calibration model errors, such

that for 1 ha calibration plots, errors decline to 10% of the

mean ACD in mature forests (Mascaro et al. 2011b). Thus,

the universal model RMSE of 27.6 Mg C ha-1 reported here

is conservative because relatively small plots were employed

(0.1–0.36 ha).

The universal approach (Fig. 8) will be most accurate if

an effort is made to tabulate the dominant genera found in the

mapping region, especially among the larger, heavier canopy

species dominating forest carbon stocks. This list can be

developed while collecting basal area estimates. While we

did find a significant relationship between wood density and

carbon stocks in the Peruvian Amazon, no consistent slope

angle or consistent level of explained variance existed

among ecoregions (Fig. 5; see also Stegen et al. 2009).

Without a consistent trend, it is our view that literature-

derived estimates of regional wood density—which are now

widely available for the tropics (Chave et al. 2006; Reyes

et al. 1992; ter Steege et al. 2006; Zanne et al. 2009)—can

provide appropriate and practical model inputs. This per-

spective is further supported by the observation that wood

density variation within a region has a small effect on the

accuracy of LiDAR-based estimates of aboveground carbon

density (Fig. 6a, c).

Combined with regional BA-to-MCH ratios and regio-

nal average wood density estimates, airborne LiDAR can

provide input to yield high-resolution maps of aboveground

carbon density in tropical forests without the need for

laborious and time-consuming forest inventory plots within

the LIDAR footprint. Our proposed universal approach

represents a significant step toward the rapid production of

high-resolution carbon inventories for tropical forests. In

the past, ground-based biomass assessments have been the

most time-consuming part of regional airborne LIDAR

campaigns. With a universal approach, we propose to

decrease the time required to calibrate airborne LiDAR

data, and thus accelerate the production of high-resolution

carbon maps in support of the monitoring and verification

of carbon stocks and emissions in tropical forests.
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