
A Universal Approach to Translating Numerical and Time

Expressions

Mei Tu Yu Zhou Chengqing Zong

National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences
{mtu,yzhou,cqzong}@nlpr.ia.ac.cn

Abstract

Although statistical machine translation (SMT) has made great
progress since it came into being, the translation of numerical
and time expressions is still far from satisfactory. Generally
speaking, numbers are likely to be out-of-vocabulary (OOV)
words due to their non-exhaustive characteristics even when
the size of training data is very large, so it is difficult to obtain
accurate translation results for the infinite set of numbers only
depending on traditional statistical methods. We propose a
language-independent framework to recognize and translate
numbers more precisely by using a rule-based method.
Through designing operators, we succeed to make rules
educible and totally separate from codes, thus, we can extend
rules to various language-pairs without re-coding, which
contributes a lot to the efficient development of an SMT
system with good portability. We classify numbers and time
expressions into seven types, which are Arabic number,
cardinal numbers, ordinal numbers, date, time of day, day of
week and figures. A greedy algorithm is developed to deal
with rule conflicts. Experiments have shown that our approach
can significantly improve the translation performance.

1. Introduction

Recently, statistical machine translation (SMT) models,
especially the phrase based translation models [1], have been
widely used and have achieved great improvements. However,
there are still some hard problems. One of them is how to
translate OOV words. Among all OOV words, the numerical
and time expressions (we generally call numbers hereafter) are
typically and widely distributed in some corpora. According to
our rough statistics in a corpus of travelling domain, there are
about 15 percent sentences containing numbers in all 5000
sentences. Theoretically, numbers are innumerable and the
forms of numbers vary greatly from universal Arabic numbers
to language-dependent number words. For example, “1.234 kg”
is an Arabic number with units, the English expression
“nineteen eighty-five” consists of cardinal number words,
while “1.345 million” is a combination of Arabic number and
cardinal number word. Due to the non-exhaustive
characteristics and variability of numbers, translating numbers
in the traditional SMT framework often suffers from the OOV
problem even when the size of training data is very large. Thus
we have to seek an efficient way to develop a new module for
recognizing and translating of numbers (RTN).

According to the characteristics of numbers, it is intuitive to
do RTN work through a framework with rules [2].
Traditionally, rules always depend on the specific languages
they are applied to. Researchers have to build specific rule-
based framework for each language-pair, thus resulting in low
efficiency. Moreover, when the source or target language
changes, codes are required to be rewritten accordingly. It
costs much time to transplant rules. Considering that RTN is

very important for text translations among all languages, we
address on designing a uniformed framework to solve the RTN
problem.

Based on the analysis above, in this paper we propose a
language-independent rule-based approach for RTN. The
proposed approach has been successfully applied and verified
on bidirectional translation of Chinese-English and other
language pairs. The experimental results give a much positive
evidence of our work.

The remainder of this paper is organized as follows: Section
2 describes the definition of rules and symbols. Section 3
presents how to apply the rules to recognize and translate
numbers. Our experimental results and analysis are presented
in Section 4. Section 5 introduces related work. Finally, we
give concluding remarks and mention our future work in
Section 6.

2. Rules definition

Even though forms of numbers are various, the written manner
and usage of number are relatively standardized. When we
construct rules, such characteristics contribute a lot, and we
also refer to some pervious work on rule-based systems [3-8].
In this section, we will give the details of the definition of the
translation rules.

2.1. Overview of the rule-based framework

To depict our RTN module clearly, we use Figure 1 to
illustrate the components of rules and how they guide the
recognition and translation process.

RecognizingRecognizing

Variables
Inducing

Variables
Inducing

TranslatingTranslating

Operation
Groups

Basic
Translation Pairs

Source
Template

Target
Template

Rules for

Recognition Rules for Translation

Input

OutputExtracting
Variables

Extracting
Variables

Figure 1: Rules and the workflow of RTN module

As seen in Fig.1, the first step of our module is to recognize
numbers in an input sentence under the guide of the database
of Source Template, which is in forms of regular expressions.
Source Template consists of variables to be transformed and
constants working as anchor words. After recognition, the
variables will be used for inducing which is in fact a
translating procedure with the assistance of Operation Groups

and Basic Translation Pairs. Operation Groups contain a
variety of operations governing the procedure of variable
inducing, while the Basic Translation Pairs are those
translations pairs frequently used. At the final stage of our
module, which is after inducing, the Target Template will
determine the word order for each translated fragment. In
order to give clearer explanation of the workflow of our
module, we take “he will arrive on the 15th of May” as the
input sentence and the Chinese as output language for example.
At the first step, “15th of May” will be recognized by our
module. And “15th” and “May” are regarded as variables,
while “of” are constants. In the stage of inducing, “15th” is
transformed to “十五”(fifteenth) and “May” is transformed to

“五月”(May) by a series of operations. At last, we reconstruct

the transformed variables to the final translation “五月 十五

号 ”. In summary, Source Template, Target Template,

Operation Group together with Basic Translation Pairs form a
rule.

By observing many instances of numbers, we group
numbers into seven categories. Rules will be created for each
category. The categories and components of rules are
described in details in the following sub-sections.

2.2. Types of number

According to the characteristics of numbers, we classify
them into seven common used types as follows:

 Arabic number: Arabic numerals are most widely used
for counting and measuring in many languages such as
Indo-European languages and Chinese. We give some
examples of them in Table 1, as well as the following
types.

 Cardinal number: Beside Arabic number, there is also
another totally different written system of numbers in
many languages. Different with Arabic numbers, it is
language-dependent. For example, in English, we use
“one, two,…., hundred, thousand, …” to represent
numbers. In addition, we also put numbers which
combine cardinal numbers and Arabic numbers into this
type.

 Ordinal number: It represents the rank of something
related with the order or position. We put them into a
different group from the two types of numbers above
because its written form differs from the Arabic and
Cardinal numbers in many languages.

 Date: The day, month, and year are always in a fixed
expression.

 Time of day: The time of the day often contains
following several common types, “XX:XX”, time
expression in Arabic numbers, in cardinal numbers or the
combination of Arabic and cardinal numbers.

 Day of week: It includes words or expressions that
represent Monday to Sunday. In some languages, like
Chinese, there are several ways to represent them.

 Figures: Other numbers except above are put in to this
group, such as telephone numbers, room numbers, and
numbers of product labels.

Table 1: Number examples of types above

Types Instances

Arabic
Number

3.1415 ; 100,000 ; 50%

Cardinal
Number

six hundred and eighty-three; 11.3 million;

一千二百(one thousand two hundred);

Ordinal
Number

twenty-first ;
第二(the second)

Date
September 3rd ; eighth of August, 2008;
2000年 1月 1号(January 1st, 2000)

Time of
day

twelve o’clock ; half past ten a.m. ;7:00;

早八点 (eight a.m.); 八点半(8:30)

Day of
week

Monday; Sunday;
星期二(Tuesday); 周六(Saturday)

Figures
telephone number one o o one one two two six ;
幺九二八 (one nine two eight)

2.3. Source template

2.3.1. Regular expression for number recognition

In many sequence searching tasks, regular expressions are
chosen to match a certain sequence, for their linear complexity
and simplicity. So we adopt it to recognize numbers. For
example, in an English text, the regular expression for any day
of May is written as follows,
Eg.1:

“ (1|2|3){0,1}(1st|2nd|3rd|[4-9]th) of (May)”

We can easily extend the above regular expression to
recognize date in other months by adding the alternatives of
“May”.

One of the most centered questions in recognition is
whether the coverage of the regular expression is precise as
well as complete. There are three cases in our experiments. Let
us use R to represent the real coverage of the regular
expression we write, and S to represent the coverage it aims to
have. Then we describe the three cases as follows.

Firstly, in most cases, R is exactly equal to S, so we can
easily write the regular expression to match numbers such as
the double-figure numbers.

Secondly, there are exceptions that R S , which means
that the sequence extracted by our source template is not a
numerical expression that we expect to get, even if it matches
our template. For example, the word “second” has two kinds
of common meaning. One is the ordinal form of “two” which
is an ordinal number, while the other is a unit of time, like “per
second”, where “second” is not used as a number. Therefore, if
there is no explicit anchor word in the surrounding context,
like “the second day”, to indicate that “second” is an ordinal
number, we keep it unrecognized.

The third case is pseudo unequal. Take the regular
expression in Eg.1 for example. Our purpose is to match the
month-day sequence, which is of course from the first day to
the last day in May. But this pattern includes not only 31 days,
but also the 32nd to 39th.So if there was “on the 32nd of May”
in the text, it would be captured by that pattern. However, “on
the 32nd of May” is against common sense, and merely
appears in the language, thus we regard this kind of inequality
as pseudo inequality and ignore it.

From the analysis above, we conclude that the only
difficulty of using regular expression for searching lies in the
second situation. In order to ensure the accuracy of our rules, it

is necessary to add more surrounding context to the regular
expression.

2.3.2. Variables and constants

After the recognition process has been finished, the next step
is to extract variables from the recognized sequences. To
distinguish variables and constants clearly, we use brackets “()”
which is compatible with the original regular expression to
enclose the sequence of variables.

In this paper, we call the sequence enclosed in brackets
“Var_N”, in which “N” is the rank number. Then a recognized
sequence can be divided into variable sequences and constant
sequences. Parts of variables are used for being induced in the
next stage, and they are what we care most for. We rewrite the
Eg.1 pattern in section 2.3.1 as this,

 ((1|2|3){0,1})(1st|2nd|3rd|[4-9]th) of (May)

Var_1 Var_3 Var_4

Var_2

where the variables are marked underlined. Only Var_1,
Var_3, and Var_4 will be transformed in the next stage.

2.4. Target template

For each rule, a target template and a source template are built
in pairs. And the target template is also constructed with
variables and constants, which determine the final translation
directly. For example,

“Var_4 Var_1Var_3 号”

 ((1|2|3){0,1})(1st|2nd|3rd|[4-9]th) of (May)

Var_1 Var_3 Var_4
Source :

Target:

Figure 2: An example of source template and target
template pair

 Given the source template above, we can write a
corresponding target template to convey the same meaning as
the source side. The variable in the target template will be
replaced with its representing sequence in the final stage of the
translation, i.e. we will replace Var_4 with the Chinese
translation of “May”, similar to Var_1 and Var_3.

2.5. Basic translation pairs

Basic translation pairs provide translations of basic units
frequently used. Take the translation of English to Chinese for
example. Fig. 3 shows some examples of the basic translation
pairs. Each pair is in form of “<A>/”, which means
sequence A in source side will be translated into B in our RTN
module.

We build an index at the beginning of each group to make it
clearer and easier to search. The index consists of rule indexes
and group number, like “<Date><#1>” which represents the
first group of basic translation pairs of Date numbers. Note
that the translation pairs we show in Fig.3 can depends on
concrete situations, such as the pair “<1>/< 十 >” in

“<Arabic><#2>”. The Arabic number “1” is actually
translated into “一”(one) in Chinese, but when “1” is at the

decade position like “12,13,14 …”, we use “十”instead of “一”
and translate the numbers into “十二,十三,十四…”(twelve,
thirteen, fourteen …) in Chinese.

<Date><#1>
 <January> /<一 月>
 <February>/<二 月>
 … …
 <May>/<五 月>
 … …
 <December>/<十二 月>

<Arabic><#2>
 <1>/<十>
 <2>/<二十>
 … …
 <9>/<九十>

<Ordinal><#1>
 <1st>/<一>
 <2nd>/<二>
 … …
 <9th>/<九>

<Cardinal><#1>
 <one>/<一>
 <two>/<二>
 … …
 <nine>/<九>

Figure 3: Basic translation pairs for each type

2.6. Operation groups

In order to do variable inducing from the source template to
the target template, we define a series of operations for
variables, which make our templates dynamic and educible,
compared to the traditional static methods. Educible templates
own the advantage that the rule-makers need to only care
about the template and operations, instead of how to make the
rules work in codes.

An operation has three terms: a subject variable, an operator,
and an object. Its form is designed as,

@Subject_Var_N+Operator+Object

where “@” is a hint symbol to indicate which variable will be
transformed. Subject_Var_N is an element of {Var}, while
Object can be one of the following forms, the index of a basic
translation pair, or a variable, or a sequence of words, which
depends on the different operators. In the following, we list all
the operators in detail,

 Terminate (T): It is an end mark, which means that all
the operations are terminated.

 Join (J): the subject variable will be joined with the
object variable. The object can be either another variable
or a sequence of words. After joining, the new sequence
becomes the subject variable.

 Replace (R): if the object is the index of a basic
translation pair, the subject variable will be replaced with
its translation. If the object is a sequence of words, then
the subject variable is thus replaced with the word
sequence.

 Replace Continuously (RC): it is similar to Replace, but
the subject variable will be replaced word by word
instead of as a whole sequence.

We give some examples with their explanations for each
operator in Table 2.

Table 2: The Example of operators

Symbol Example

T
@Var_1+T+NULL
(No operation will be applied to the variable
one)

J
@Var_1+J+Var_2
(Var_2 will be jointed to Var_1)

R
@Var_1+R+<Cardinal><#1>
(Var_1 will be replaced by the translation given
in the basic translation pairs of the index
<Cardinal><#1>)

RC
@Var_1+RC+<Cardinal><#1>
(Each word of Var_1 will be replaced by the
translation given in the basic translation pairs of
the index <Cardinal><#1>)

All the operators we define above own two features. First,

the result of a piece of operation should still be a variable,
which we call it “completeness”. Second, the two-argument
operator is of non-commutativity. That is why we call the
arguments “subject” and “object”. Operators are extendable,
and we can define many other operators in theory. But in our
experiment, the four operators above are enough for inducing
in most cases.

After defining the operators, we can transform variables.
We use the Eg.1 in section 2.3.1 to explain how the operations
work. As the source template for recognition is
“((1|2|3){0,1})(1st|2nd|3rd|[4-9]th) of (May)”, we write the
following operations to transform variables,

@Var_1+R+<Arabic><#2> (1)
@Var_3+R+<Ordinal><#1> (2)
@Var_4+R+<Date><#1> (3)

The Operation (1) translates the decade number of the day
to its cardinal form in Chinese. Operation (2) translates the
number under 10 to its Chinese expression. At last, the month
expressions are transformed to Chinese by Operation (3).
After these three operations, all English numbers are
translated into Chinese. After that, given the target template
as “Var_4 Var_1Var_3 号 ”, we will obtain the Chinese
month-day expression finally.

If there is a sentence “he will arrive on the 15th of May” to
be dealt with, then the interim results and the final result can
be listed as follows,

After “on the 15th of May” is captured by the recognition
pattern, the variable inducing starts:

 (1): “1” is replaced by “十”,

 (2): “5th” is replaced by “五“

 (3): “May” is replaced by “五 月”

The final Chinese result is “ 五 月 十 五 号 ” after
substitutions for the variables in the target template.

Several translations for one source sequence are allowed,
for which we can design several groups of operations for one
recognition pattern. For example, the source sequence “ on
the 15th of May” can be translated to another kind of
expression “5 月 15 日”. We only need to put a separator
between two groups of operations to let the system know that

there is more than one group of transformed operations. Here
we use a semicolon as the separator, and two continuous
semicolons as the end of all groups of operations.

In the next section, we will describe the matching and
integrating strategies.

3. Matching and integrating strategy

When the rules are put into use, the first thing we should care
about is how to alleviate the rule conflicts, which is an
important problem to use the rules in current SMT systems. In
this section, we will describe our strategies in details.

3.1. Matching strategy

Generally speaking, the matching conflicts are caused by two
problems: one lies on the inconsistency with tokenization, the
other comes from the rule system itself.

As stated above, the recognition pattern on the source side
is the regular expression, which is sensitive to the written
formats. Consequently, some changes to the expressions or
word segmentation in the source text may lead to a different
matching result. Some languages, such as Chinese, suffer
from the inconsistency of segmentation standard. So for such
languages, we have to make our rules as flexible and robust as
possible, by adding some alternative spaces. For example,
“[0-9][[:space:]]?号” is more capable than “[0-9]号”.

For the second problem, when the sequences captured by
multiple rules overlap, optimization for the best choice is
needed. Let us describe them mathematically. When we use
patterns to recognize number sequences in one sentence, we
will obtain a group of sequences grouped as {S} which
contains m elements (sequences), and the corresponding
patterns are grouped as {P} with m elements too. Among the
m elements of {S}, n of them are under the condition that any
one of the n elements overlaps with at least another one of
them. Then we say that the n elements are “in conflict”. From

{S}, there is always a maximum sub set { '}S with n elements

in conflict, and we re-write the n elements as

0 1 1' , ' ,..., 'nS S S , and the corresponding patterns are

0 1 1' , ' ,..., 'nP P P . Then we address the optimization problem

as follows,

1

0

1

0

1

, 1

{ }

. { }

{ }

n

i

i

n

j

j

n

kl

k l l

C Max C

Opt R Min R

O Min O

 (1)

Where iC is the coverage of 'iS , and 1jR

if ' jS

is

chosen, otherwise 0jR . If 'kS and 'lS are both chosen and

overlapping, 1klO , otherwise equals to zero. Our ultimate

goal is to cover the longest sequence with fewest rules and
fewest overlaps. Thus we adopt three optimization sub-goals,
and the first one is more important to us.

For the first and second sub-goals, we design an algorithm
based on a greedy method, which controls the complexity in
linear time. Considering the optimization of C and R, we can
write the state transition function as follows,

1 1max{ ' }k k kf f C (2)

1 min{ ' }k k kh h R (3)

where
0

{ ' }
k

k i

i

f Max C

 ,
0

min{ ' }
k

k j

j

h R

 . We only need

to sort the 'iS according to the starting position (the previous

word owns higher priority) and coverage length (the longer
sequence owns higher priority), and then pick them in order
until obtaining the maximum union.

As for the third sub-goal, we need to save the intermediate
ending positions so as to allow backtracking to the former
state. The pseudo codes of the matching strategy we describe
here are given in Figure 4. The captured sequences which
contain numbers are saved in NumberSequenceSet in Line 1.
Lines 2 and 3 focus on sorting the sequences according to the
priority stated in the previous paragraph. Line 4 puts
sequences in conflicts into a set. Line 5 is for initialization.
The main body of the greedy algorithm is shown in Line 6~13,
which is used for searching for the optimized set of sequences
to get the widest coverage with the lowest cost (counts of
sequences needed).

// Greedy algorithm for matching strategy

1: NumberSequenceSet Recognize(srcSentence, Rule)

2: SortForStartPosition (NumberSequenceSet)

3: SortForCoverageLength (NumberSequenceSet)

4: ConfSet NumberSequenceSet.FilterConfront()

5: CoverageEnd.assign(0); EndPosSet={}; FinalSet={}

6: For each index in ConfSet:

7: CurrentEnd = (ConfSet[index]).EndPos

8: if CoverageEnd.value<= CurrentEnd:

9: if StartPos(ConfSet[index]) in EndPosSet:

10: i = EndPosSet.find(StartPos(ConfSet[index]))

11: FinalSet.delete(i, FinalSet.size()-i)

12: FinalSet.add(index)

13: EndPosSet.add(CurrentEnd)

14: FilteredNumberSeqSet Output(FinalSet)

Figure 4: Pseudo Codes of the greedy algorithm for matching
conflict

3.2. Integration approach

It is also a problem to integrate the number recognition and
translation module (RTN module) into an SMT system.
Traditionally there are three ways. One is in the preprocessing
step by translating numbers before putting the source sentence
into SMT, while the second way is in the post-editing step by
translating numbers after the translation of SMT. Considering
that the matching pattern has high requirements about the
written formats, we adopt the third way which is more
flexible by adding the related number translation knowledge
to the translation model. Figure 5 illustrates how to merge the
number translation system.

Optimized
Translation

Model
Decoding

RTN
Modular

Training Data &
Development Data

Train &
MERT

Input Tokenized
Sentence

Output
Sentence

Figure 5: The systematic framework of merging RTN
module into SMT

In this framework, we firstly capture the number in the
input sentence and then translate those recognized numbers
into target translations by the RTN module. Thus we can
build a phrase-table of numbers with all the translation
probabilities as 1, by considering that we definitely believe
our rule-based translations of numbers. After that, the phrase-
table of numbers are added into the original optimized
translation model to obtain a new united table. Finally, the
decoding candidates will be searched from the united table.

4. Experiments

4.1. Experiment setup

We use the IWSLT 2009 (the 6th International Workshop on
Spoken Language Translation) corpus for the Chinese-English
evaluation task as the bilingual training data, which includes
the BTEC, CT-CE and CT-EC corpora. Because there are no
test references, we randomly choose part of the development
corpus as the testing set and the rest as the development set.
The statistics of the training set, the development set and the
testing set are listed in Table 3, 4, and 5 respectively.

Table 3: The corpus statistics for BTEC task

 Corpus Size
Training set 19,972 sentence pairs
Development set 1,000 sentences with 16 references
Test set 1,508 sentences with 16 references

Table 4: The corpus statistics for CT-CE task

Corpus Size
Training set 30,033 sentence pairs
Development set 3,000 sentences with 16 references
Test set 1,447 sentences with 16 references

Table 5: The corpus statistics for CT-EC task

 Corpus Size
Training set 30.033 sentence pairs
Development set 800 sentences with 7 references
Test set 665 sentences with 7 references

GIZA++1 is used to get alignments from the training corpus
with grow-diag-final-and option. We train a 5-gram language
model with SRILM2 on the target part of our training corpus.

1 http://www.statmt.org/moses/giza/GIZA++.html
2 http://www.speech.sri.com/projects/srilm/

The translation model is generated by Moses 1 (2010-8-13
version) with default parameter settings. The bestN option is
set up to 100 in MERT.

4.2. Experiment results

Table 6 shows the total number of rules we build for each type.

Table 6: The rule counts for each type

Type En-Ch Ch-En

Arabic 29 20
Cardinal 41 80
Ordinal 7 7

Date 36 29
Clock 13 15
Week 1 2
Figure 5 18

In our experiments, we find that the most complicated cases

are among cardinal numbers and date expressions. Take the
English date expression for example. When we say “the third
of September”, there are different ways to convey the same
date, such as “the 3rd of September”, ”September, 3”,”Sep. 3”
and so on. Fortunately, they are somehow regular and thus
easy to write rules for other forms by analogy.

Before we apply all the rules on the translation system, we
calculate the statistics manually about the ratio of sentences
containing numbers in Table 7.

 Table 7: The ratio of sentences with numbers
Corpus Development Test

BTEC
CT-CE
CT-EC

9.3%
13.5%
15.6%

6.7%
13.5%
17.8%

From Table 7, we can see that the ratios are different in

different tasks. In order to alleviate the interference caused by
the distribution difference, we make two kinds of evaluation
about the rule contributions. One of them is an evaluation on
the original test set, the other is the evaluation on sentences
with numbers, which we call the with-number sentence set.
Next, we will carry out our experiments upon the two sets.

Table 8 shows the performance of using the RTN module to
recognize number sequences in the development sets of the
BTEC, the CT-CE, and the CT-EC corpus. In the table, the
precision is the ratio of correctly captured numbers’ counts to
all captured ones. The recall is the ratio of correctly captured
numbers’ counts to the manually marked ones. In fact the
performance largely relies on the rule-makers. The more
numerical and time expressions they discover the better the
performance will be.

Table 8: Performance of automatic recognition by RTN

Corpus Precision Recall F-score

BTEC
CT-CE
CT-EC

0.98
0.96
0.91

0.90
0.93
0.84

0.94
0.94
0.88

4.2.1. Results on development and testing set

Table 9 shows how the translation quality measured by BLEU
[9] on the original testing set changes score when we add the
additional transferred translation table generated by the RTN

1 http://www.statmt.org/moses/index.php?n=Main.HomePage

module into the phrase-based translation table. The C-E
evaluation is based on the case-insensitive BLEU-4 score, and
the E-C evaluation is based on the BLEU-4 score of words.

Table 9: BLEU scores of development and testing set

 BTEC CT-CE CT-EC

Dev.
 Baseline 41.25 33.64 34.54
 Ori + RTN 41.37 33.71 34.84

Test
 Baseline 37.67 32.56 33.38
 Ori + RTN 37.79 32.99 33.71

Table 10: BLEU scores of with-number sentence set

 BTEC CT-CE CT-EC

With-number
Dev.

Baseline 40.71 31.53 39.58
Ori + RTN 42.05 31.93 41.35

With-number
Test

Baseline 30.43 30.15 38.34
Ori + RTN 31.77 31.81 39.28

In Table 9, Ori stands for Original phrase table generated by

the training data, and Ori+RTN means the new translation
table after adding the additional transferred translation table
generated by the RTN module. Combined with Table 7, results
in Table 9 shows an obvious trend in the testing set that the
more with-number sentences in testing set, the more
improvement of translation performance will be achieved,
which can be further confirmed in Table 10 in the experiments
on the with-number sentence set.

Comparing the BLEU scores in Table 9 and 10, we can get
several hints. First, although the baseline performance seems
rather good, our module is still able to improve the translation
quality. With the help of precise and exact number translations,
the results from machine translation system become more
understandable and correct.

Second, the number seems a barrier in Chinese to English
translation. The probable reason of that is that numbers in
Chinese may be cut into several words instead of a complete
word through word segmentation. As is known to us, different
segmentation results may lead to different meanings for the
computer. For example, the cardinal number “五十六” is a
word which means “fifty-six” or “56”. But after word
segmentation, it is cut into “五 十 六”, which becomes three
words with three numbers. If the decoder searches translation
candidates of this sequence in the phrase-table, there is more
than one choice. Because the SMT only depends on the
language model and the translation model, the decoder may
give a wrong answer “five ten six” instead of “fifty-six”.

In order to give a clearer view of the results, we list some
typical with-number sentences with their translations in Table
11, where S is short for source sentence, T the translation of S
through the baseline translation system without the RTN
module, T* the translation of S through Ori+RTN.

The 1st example in Table 11 shows that the rule-based
translations are better in word order for the translation of
continuous figures. The baseline translation of the 2nd source

sentence is wrong, and the currency unit “圆”(yen) is left
unknown. Our RNT module helps to translate the number and
unit correctly, which also reduce the OOV words in the
translation. The remaining examples are from the results of the
English to Chinese task. The 3rd sentence is an example to
correct the wrong number. The translation in T cannot be
understood. After correcting the numbers by the translation
from the RTN module, the system is able to generate an

understandable translation. The last sentence is also an
example of the reduction of the OOV number words.

The negative effects of OOV words include not only the
unknown meaning of themselves, but also a result of
confusing word order, as seen in the examples above.
Sometimes the reduction of OOV words can contribute a lot to
the word order in the final translation [10].

Table 11: Some with-number examples with their translations

1

S 你 的 房间 号码 是 二 一 零 。

T your room number is two o one .

T* your room number is two one zero .

2

S 就 买 这个 六 百 三 十 圆 的 吧 。

T i 'll buy this thirty six hundred , the 圆 .

T* i 'll buy this six hundred and thirty yen for that .

3

S six hundred eighty three yen ?

T 三 六 八 百 日元 吗 ？

T* 六 百 八 十 三 日元 吗 ？

4

S
you 'll stay in a hundred-dollar room with a bath on the
eleventh , and in a ninety-dollar room on the twelfth .

T
你 会 住 在 hundred-dollar 带 浴室 的 房间 号 和

ninety-dollar的 房间 十 二 号 。

T*
你 会 住 在 一 百 美元 带 浴室 的 房间 在 十一号 和

九 十 美元 的 房间 在 十二号 。

4.2.2. Errors analysis

Translation rules are indeed helpful in our experiments,
however, there are still some errors and problems currently
remaining unsettled. In the following we list the most common
errors.

 Numbers with multiple translations in the target side: in
our experiments, the translations are sometimes correct
for numbers but wrong for the unit following the number
in the target language. For example, When we translate
“the thirteenth”, we would obtain two translation results
through our rules, “在 十三 号” and “第 十三”. They are
assigned the same probability, and the final choice is
determined only by the language model, which may lead
to a wrong final choice if they merely occur in the
language model. On the other hand, it is likely to omit
one or two senses when we create rules.

 Number translations before and after the words “to”, or
“and” are sometimes inconsistent: The numerical
expressions are often not complete, and the same
sequence will be omitted, such as “August eleventh,
twelfth and thirteenth”. It is possible to recognize the
days before “and”, but the last number is hard to track.

 In our framework, we just have tried integrating the
translation of numbers into the SMT system. Although
the translations of numbers are corrected by our module,
their positions are sometimes wrong. As a matter of fact,
there is a complicated but better way to get rid of it. If
we replace the numbers with their corresponding types at
the training stage, as well as the source sentence at the
decoding stage, then the completeness and independence
of numbers are guaranteed, which is promising to

improve the translation quality much more, which we
will test it in the future work.

4.3. Extent experiment

We also did experiments on Inner Mongolian to Chinese (IM-
C), Uyghur to Chinese (U-C) and Japanese to Chinese (J-C)
for further verification, where CWMT’20111 corpora are used
as multi-language experimental data. Because of the lack of
reference of the testing set, we only observe the improvement
on the development set. Table 12, 13, and 14 separately
present the corpus statistics, including the with-number
sentences which we counted manually.

Table 12: The corpus statistics for Inner Mongolian-Chinese
Corpus Size
Training set 134,567 sentence pairs
Development set 1000 sentences with 4 references
With-number set 134 sentences

Table 13: The corpus statistics for Uyghur -Chinese

Corpus Size
Training set 100,000 sentence pairs
Development set 700 sentences with 4 references
With-number set 169 sentences

Table 14: The corpus statistics for Japanese-Chinese

Corpus Size
Training set 564,996 sentence pairs
Development set 500 sentences with 4 references
With-number set 217 sentences

Table 15 gives the experimental results of the development

of IM-C, U-C and J-C.

Table 15: BLEU scores of development set and with-number
set

 IM-C U-C J-C

Dev.
Baseline 24.58 53.42 42.24

Ori + RTN 24.85 54.12 42.72

With-
number

Baseline 24.26 47.40 42.51
Ori + RTN 26.24 48.86 43.47

We can see that the translation performance improves much
both on the development set and on the with-number set. In
table 16, we give some samples of rules and the number
translations of the baseline system and our system. In the table,
the basic translation pairs they use are not presented in detail,
due to the space limitation of this paper. But the source
template, target template and operation groups are shown.

Table 16: Examples of with-number translation and rules
M-C

S: ᠳᠥ ᠷᠪᠡ ᠨ ᠵᠠ ᠭ ᠤ ᠲᠠ ᠪᠢ ᠨ ᠲᠥ ᠷ
T: 四 一百五十 元

T*:四百五十元
Source Template :
(ᠨ ᠭᠡ |ᠬᠣ ᠶᠠ ᠷ|ᠭᠤ ᠷᠪᠠ ᠨ|ᠳᠥ ᠷᠪᠡ ᠨ|ᠲᠠ ᠪᠤ ᠨ|ᠵ ᠷᠭ ᠤ ᠭ ᠠ ᠨ|ᠳᠣ ᠯ ᠣ ᠭ ᠠ ᠨ|ᠨᠠ ᠮ ᠠ ᠨ|ᠨᠠ ᠮᠠᠨ|ᠶ ᠰᠦ ᠨ)
(ᠵᠠ ᠭ ᠤ |ᠮ ᠩᠭ ᠠ ᠨ|ᠲᠦ ᠮ ᠡ ᠨ|ᠮ ᠩᠭ ᠠ ᠨ ᠲᠦ ᠮ ᠡ ᠨ|ᠪᠤ ᠮ ᠠ ᠨ|ᠰᠠ ᠶ ᠠ | ᠦ ᠰ ᠭᠤᠷ|ᠳᠦ ᠰ ᠭ ᠤ ᠷ|ᠲᠠ ᠷᠪᠤ ᠮ)
(ᠠ ᠷᠪᠠ ᠨ|ᠬᠣ ᠷ ᠨ|ᠭᠤ ᠴ ᠨ|ᠳᠥ ᠴ ᠨ|ᠲᠠ ᠪᠢ ᠨ|ᠵ ᠷᠠ ᠨ|ᠳᠠ ᠯ ᠠ ᠨ|ᠨᠠ ᠶᠠ ᠨ|ᠶᠡ ᠷᠡ ᠨ) (ᠲᠥ ᠷ)?
Target Template : var_1 var_2 var_3 var_4

Operation Group：
@var_1+R+<Cardinal><#1>@var_1+R+<Cardinal><#3>
@var_2+R+<Cardinal><#3>@var_3+R+<Cardinal><#6>

1http://mt.xmu.edu.cn/cwmt2011/en/index.html

@var_4+R+<Date><#4>;;

U-C
S: 48شلار ا ي
T: 48ياشلار
T*:48岁
Source Template :
ق)(+[0-9]) لى اي ى|ئ شلار|ن ا ى|ي لوم|ئ قېكى رلى نى|تى ارماق (ت
Target Template : var_1 var_2

Operation Group：@var_2+R+<Date><#5>;;

J-C

S: 4 月 3 日

T: 4月 三 天

T*:4月 3日
Source Template :

([1-9]|10|11|12) 月 ((1|2|3){0,1}[0-9]) 日

Target Template : var_1月 var_2日

Operation Group：@var_1+T+NULL @var_2+T+NULL;;

5. Related work

In fact, the research on number translations started in early. [2]
analyzed cardinal number names in five languages, and
implemented the rules governing the construction of number
names. The translation from a figure expression into a word
expression is also done. [11] did part work of of [2], which
only discussed about how to translate number names to Dutch.
But they did not separate rules from source codes, which
handicaps the scalability of rules. And the number
representation they cared about is limited to cardinals with
well formats, which is not enough for processing complicated
and not so standardized text. [12] proposed an embedded-in-
code-rule based framework to do the number recognition and
translation task on Chinese-English translation. [13] combined
a rule based machine translation system with a statistic based
post editor, which showed helpful for a more accurate
performance than only using statistical machine translation.
However, although the former works on RTN have achieved
successes in different ways, as far as we see, works on
language-independent and code-separate rule-based number
recognition and translation are very rare. Our work may be a
big step in the work of number recognition and translation.

6. Conclusions

In this paper, we design a language-independent and rule-
based method to translate numbers more precisely. The
templates are totally separated from the source codes, which
makes multiple language translation of numbers with one
framework practical. We design a variety of operators to
make the templates educible and dynamic compared to
traditional templates, which allows rule-makers to get rid of
source code to present the inducing progress and gives more
flexible rooms to establish rules. Rule-makers can easily write
templates and operations according to their bilingual
knowledge of numbers. In our experiments we build groups of
rules for bidirectional English-Chinese translation, as well as
for some other languages to Chinese. After we apply the rules
on the phrase-based translation, the translation quality
improved upon both the development set and the testing set.
The performance on with-number sentences set are all
improved around 1 point BLEU score.

In the future work, we are about to explore more suitable
integrating strategy for the RTN module into the SMT system.

Rules for other language pairs will be built to improve their
translation performance.

7. Acknowledgements

The research work has been partially funded by the Natural
Science Foundation of China under Grant No. 60975053 and
the Hi-Tech Research and Development Program (“863”
Program) of China under Grant No. 2011AA01A207,
supported by the External Cooperation Program of the Chinese
Academy of Sciences. This research is supported by the
Singapore National Research Foundation under its
International Research Centre @ Singapore Funding Initiative
and administered by the IDM Programme Office.

8. References

[1]Koehn, P., Och, F.J. and Marcu, D., "Statistical phrase-
based translation," in the 2003 Conference of the North
American Chapter of the Association for Computational
Linguistics on Human Language Technology Stroudsburg,
PA, USA, 2003, pp. 48-54.

[2]Hugo Brandt, Corstius, "Automatic translation between
number names," Grammars for number names, vol. 7, p.
103, 1968.

[3]Hayes-Roth, F., "Rule-based systems," Communications of
the ACM, vol. 28, pp. 921-932, 1985.

[4]McDermott, J., "R1: A rule-based configurer of computer
systems," Artificial intelligence, vol. 19, pp. 39-88, 1982.

[5]Ilgun, K., Kemmerer, R.A. and Porras, P.A., "State
transition analysis: A rule-based intrusion detection
approach," Software Engineering, IEEE Transactions on,
vol. 21, pp. 181-199, 1995.

[6]Ishibuchi, H., Nozaki, K., Yamamoto, N. and Tanaka, H.,
"Selecting fuzzy if-then rules for classification problems
using genetic algorithms," Fuzzy Systems, IEEE
Transactions on, vol. 3, pp. 260-270, 1995.

[7]Hammer, J., Garcia-Molina, H., Nestorov, S., Yerneni, R.,
Breunig, M. and Vassalos, V., "Template-based wrappers
in the TSIMMIS system," ACM Sigmod Record, vol. 26,
pp. 532-535, 1997.

[8]Yen, J. and Wang, L., "Simplifying fuzzy rule-based
models using orthogonal transformation methods,"
Systems, Man, and Cybernetics, Part B: Cybernetics,
IEEE Transactions on, vol. 29, pp. 13-24, 1999.

[9]Papineni, K., Roukos, S., Ward, T. and Zhu, W.J., "BLEU:
a method for automatic evaluation of machine
translation," in the 40th Annual Meeting on Association
for Computational Linguistics, 2002, pp. 311-318.

[10]Zhang, Jiajun, Zhai, Feifei and Zong, Chengqing,
"Handling unknown words in statistical machine
translation from a new perspective " presented at the
NLPCC, Beijing, 2012.

[11]Corstius, H.B., "Automatic translation of numbers into
Dutch," Foundations of Language, vol. 1, pp. 59-62, 1965.

[12]Zhai, Feifei, Xia, Rui and Zong, Chengqing, “An
Approach to Recognizing and Translating Chinese &
English Time and Number Named Entities,” in the 7th
China Workshop on Machine Translation (CWMT’2009),
Nanjing, 2009.

[13]Terumasa, E., "Rule based machine translation combined
with statistical post editor for japanese to english patent
translation," 2007, pp. 13-18.

