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ABSTRACT. A family of 4-coloured graphs depending on three integers
b,!,t and on a transitive pair of permutations o, T € 2 is constructed. Each
associated topological space turns out to be a b-fold branched covering of ei-
ther a 8- or a handcuff-graph, with embedding depending on [ and ¢, or a
two-bridge knot or link of type (I,t). Moreover, the monodromy map is com-
pletely defined by ¢ and 7. In particular, when [ = 2 and ¢ = 1, the space
is homeomorphic to the (possibly singular) manifold N(o,T), which is the
branched covering of the Montesinos universal graph, associated to the pair
@, 7. This allows us to obtain a “universal” class of 4-coloured graphs repre-
senting all orientable 3-dimensicnal singular manifolds. Further, the necessary
and sufficient condition for the graph to represent a manifold is obtained and
a topological interpretation of a similar construction of A. Cavicchioli is given.
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1. INTRODUCTION AND NOTATIONS

Throughout this paper, all spaces and maps are piecewise-linear
(PL) in the sense of [24] or [15]; (quasi-) manifolds are always supposed
to be closed and connected. The term “graph” will be used instead of
“multigraph”, hence loops are forbidden but multiple edges are allowed.
Graphs will always be of finite type. As a general reference for graph
theory see [13] and for the theory of branched coverings [1], (9] and [19].

Now, we recall some necessary notions on edge-coloured graphs,
pseudocomplexes and the relations between them (a detailed survey on
these subjects can be found in [8]).

An {n + 1)-coloured graph is a pair & = (I',y), where T = (V(T'),
E(T)) is a connected regular graph of degree n+1and y: E(I') = N, =
{0,1,2,...,n} is a map such that y(e') # y(e"), for any two adjacent
edges e',e". We set V(2) = V(T') and E(Q) = E(T). An edge e € E(T)
such that y(e} = k is called a k-edge.

An (n + 1)-coloured graph  naturally induces an (n + 1)-tuple
(to,t1,22y---,tn) Of fixed-point-free involutions ¢f : V() — V(2}, by
setting ¢x(v) = w iff v and w are the vertices of a k-coloured edge. Con-
versely, an (n + 1)-tuple ¢ = (¢0,¢1,¢2,...,¢tn) of fixed-point-free involu-
tions on a finite set V defines an (n+1)-coloured graph Q with V(Q) = V,
B(®) = {({v ()}, F)lo € V, k € No} and +({v,cx(0)}, ) = k. We
also denote @ by (V,¢).

A morphism between two (n + 1)-coloured graphs Q' = (V',/)
and ) = (V,¢) is a pair (f,p), where p is a permutation on N, and
f: V' = Vis amap such that fou, = ¢y 0 f, for every c € N,. A
morphism is said to be a cp-morphism (coloured preserving) when p = 1
(the identity permutation), hence we shall denote a cp-morphism simply
by a map f. If f is a bijection, then the (cp-) morphism will be called
a (cp-) isomorphism.

For every # C N,,, we call F-residue each connected component of
the subgraph Qr having V(1) as vertex set and y~1(F) as edge set. An
m — residue is an F-residue such that #F = m. We can think of an m-
residue as an m-coloured graph, by means of a bijection 8 : F — N,,_1.
Let f be a cp-morphism between 2 and 2, and let A be any F-residue of
2, then f~1(V(A)) comsists of the vertices of a certain set of F-residues
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Al of . We say that A is ordinarily covered by f iff f is injective when
restricted to the vertices of each Al.

An n-dimensional pseudocomplez K is an n-dimensional ball-com-
plex in which every h-ball, considered with all its faces, is isomorphic
with the complex underlying an h-simplex (see [14], p. 49). For this
reason, each h-ball of K is called h-simplex. Note that the first derived
subdivision Sd(K') of K is a usual simplicial complex. The h — skeleton
of K is defined as in the simplicial case: S*(K) = {s € K|dim(s) < h}.
We can think to a graph I' as a 1-pseudocomplex T'.

An n-psendocomplex K is said to be homogeneous if every simplex
s € K is a face of an n-simplex of K. If H is an n-homogeneous pseu-
docomplex, then the disjoined star Std(s, H ) of a simplex s € H is the
subcomplex St(s',Sd(H))} of SA(H), where s’ € Sd(H) is any simplex’
such that s Cmd_dlm.(ﬁ_)JmL&l._ﬁmhﬂmom,_H is said to be
strongly connected if each pair s',s" of n-simplices of H are connected
by a sequence of n-simplices s¢,$y,52,...,8, € H such that sp = &,
8, = ¢ and the pair of simplices s;_;,s; have a common (n — 1)-face,
for 1 < ¢ < m. The underlying polyhedron |H| of an n-homogeneous
pseudocomplex H is called a guasi-manifold iff (i) the disjoined star of
every simplex of H is strongly connected and (ii) each (n ~ 1)-simplex
is a face of exactly two n-simplices [10]. A 3-dimensional quasi-manifold
is also called a singular S-manifold in [18].

We can associate in a standard way an n-dimensional pseudocom-
plex K(f2) to an (n+ 1)-coloured graph Q = (V,¢) by the following rules
(see [6]):

(1) take a n-simplex o™(z) for each z € V, and label its vertices by N,,;

(2) ifz,y € V and y = ¢.(x), then identify the (n—1)-faces of ¢™(z) and
o™(y) opposite to the vertices labeled by c, so that equally labeled
vertices are identified together.

The graph Q represents K(2) and all spaces homeomorphic to
|K(Q2)|. Clearly, |[K ()| is connected because ) is connected too. As
a matter of fact, | K()| is precisely a quasi-manifold [10] and it is ori-
entable iff {} is bipartite [8]. If two (n + 1)-coloured graphs ' and Q"

1The definition does not depend on the choice of S', up to isomorphism of pseudo-

complexes,
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are isomorphic then |K{')| and {K(Q")| are obvicusly homeomorphic.
If @ = (V,¢) is an (n + 1)-coloured graph such that ¢, = ¢xr, for two
different colours ¢,¢’ € N, then |K(Q)| is homeomorphic to the sus-
pension X(X) of the (n — 1)-dimensional space X = |K(f2r)|, where
F =N, —{c}.

The construction of K(f2) naturally defines a “labelling” map ® :
S9(K(Q))) — N, which is injective when restricted to the vertices of
any simplex of K (). Moreover, there is a bijection ¥ between the set
of all residues of 2 and the set of all simplices of K(Q2) (including the
empty simplex), sending each F-residue to an (n — #F)-simplex whose
vertices are labelled by N,, — F. This bijection reverses the inclusions.
So, when = (I',v) represents a manifold, the 1-pseudocomplex T is
isomorphic to the 1-skeleton of the ball-complex dual to K(2). For the
3-dimensional case, the singular set of } K({})| consists of a finite number
of points [3]. Each singular point corresponds, via ¥, to a 3-residue of
Q not representing S2,

An (n + 1)-coloured graph which represents a manifold is called
an n-gem; moreover an n-gem with exactly n + 1 n-residues is called
a crystallization. Every manifold admits representations by gems [16]
and by crystallizations [23]. All 2- and 3- coloured graphs are gems and,
since the underlying polyhedron of a 3-dimensional pseudocomplex K is
a manifold iff its Euler characteristic vanishes ([25], p. 216}, a 4-coloured
graph represents a 3-manifold iff a; — ag — az = 0, where og, a2, a3 are
respectively the number of 0-residues (vertices), 2-residues (bicoloured
cycles) and 3-residues of the graph [16]. For higher dimensions the prob-
lem of characterizing n-gems among (n + 1)-coloured graphs is still open.

A 2-cell embedding of an (n + 1)-coloured graph £ into a surface is
said to be regular iff there exists a permutation £ on N, which is a cycle
of order n+ 1 and such that each region of the embedding has boundary
composed by a {c,§(c)} -residue, for a suitable ¢ € Ny, (see [11]). If an
(n + 1)-coloured graph {2 regularly embeds in $2, then the space | K(2)]
is homeomorphic to S™ (see {7}).

Let ' = (V',/) and Q = (V,:) be (n + 1)-coloured graphs. A
cp-morphism f between two (n + 1)-coloured graphs Q' = (V',.") and
@ = (V,:) is said to be a 1-covering [27] if there exists a 2-residue of §
not ordinarily covered by f. A 1-covering naturally induces a PL-map

If] + |K()] = |K(£)|, which is a (%((%?-)-fold branched covering
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map. If Q represents a manifold, then the branching set consists of the
homogeneous (n — 2)-subcomplex of K(§2), whose (n — 2)-simplices are
associated, via ¥, to the 2-residues of Q not ordinarily covered by f (see

[17]).
2. CONSTRUCTION OF THE FAMILY

Let b,1,t be parameters such that b, € Z*,t € Zy and ged(l,t) =
1. Further, let 0,7 € I3 be a transitive pair of permutations on ZZ,.
We consider the 4-coloured graph G, (b,l,t,0,7) having as vertex set

V(Gm(b,l,t,a,r)) =Zy X Zo

and equipped with the four fixed-point-free involutions:

w(i,3) = (4,5 = (1)), (2.1)
u(i, §) = (4,5 + (1)), (2.2)
L2(i!j) = (an(j)(i)’l - J)a (2'3)
i3(5,7) = (r7"U7DG), 1 — 5 4 21), (2.4)

where : Z — {—1,+1} is the function

N _ [H1 if1<j<l1

n(j) = { -1 otherwise
The graph is bipartite and connected, therefore its associated space
Sm(b,,t,0,7) is a 3-dimensional orientable quasi-manifold. In partic-
ular, the family G,, = {Gn(b,l,t,0,7)} contains the Lins-Mandel fam-
ily G = {G(b,1,t,c)lc € Z,} [16], the Lins-Mandel extended family
G = {G(b,l,t,c,c)e,e! € Zy, ged(b, e, ') = 1) [21] and the Cavicchioli
family G, = {Ga(b,1,1,0a)|la € Ly is a cycle of order b} [4], as stated in
the following:

Lemma 2.1. Letv=(012...5—1) € X, then:

(a) G(b,1,t,c) = Gm(b,l,t,v,v“c);
(6) G(b,1,t,¢,c') = Gm(b,1,t,v° ,v7°);
(c) Ga(b,l,t, &) = Gm(b, 1, t,v,a™t).
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Proof. Observe first that G(b,1,t,c), G(b,1,t,¢,¢') and G,(b,1,t,a)
have the same vertex set of G (b,{,t,0,7). Let now (5,1, ¢5,¢5), (¢, ¢y,
¢, ) and (¢, ", ¢4, ¢3’) be the involutions defining the three graphs

respectively (see [16], [21] and [4]), ther we get:

(a) Ly = to, 4 =t "2(‘1-7) = (2‘5'77(.7)’1 i) = (1,1?(1)(3) 1-7)and
t(6,3) = (i +en(f — 1)1~ +2t) = (vI=9(3), 1 ~ 5 + 2¢);

(b) g =, f =1, 5(4,5) = (i+n(F),1-7) = (v° "(J)(‘) 1-7)
and f = 53,

() &' = w0, ' = 1, o = 4f and '(3,5) = ("=9(3),1 -7 + 21).
|

Let S,, be the family of spaces {Sn(b,!,t,0,7)|Gmn(b,!,t,0,7) €
Gm}. Next lemma will give some homeomorphisms among elements of
Sm.

Lemma 2.2.

(a) The graphs G, (b,l,t,0,7), Gu(b,l,t,7,0), and G (b,l, 2,071, 171)
are 1somorphic; thus, S, (b,l,t,0,7) = Su(b,,t,7,0) = Sn.(b,{,1,
o=l r71).

(b) Grib,l,t,0,7) is equal to G,(b,I,l + t,0,771) and isomorphic to
Gum(b, 1,1 —t, 071, 7); thus, Sm(b,l,t,0,7) 2 Sp(b,l,1+t,0,771)
Sn(b,,l-t,071, 1)

(c} If T =1 (resp. ¢ =1), then o (resp. 7) is a cycle of order b and
Sm(b, i, t,0,1) = 53,

(d} If Sm(b,1,1,0,7) is a manifold, then it is homeomorphic to 5°.

Proof. (a) Let ¢ be the bijection on ZZ, X Z2; defined by ¢(i,7) =
(¢3,1=7+t). Then, when t is even { resp. when ¢ is odd), an isomorphism
{see Section 1) between G, (b,{,t,0,7) and G, (b,{,%,7,0) is given by the
pair (¢, (2 3)) (resp. by the pair (é,(0 1)(2 3)) ). Let $(i, ) = (i, +1).
If ! is odd (resp. even), then (¢,(0 1)) is an isomorphism (resp. ¢ is a
cp-isomorphism) between Gn(b,1,¢,0,7) and Gn(b,l,t,07t,r71).
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Figure 1. Gm(6,3,1,(012 34 5),(153))
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{(b) Let (¢p,¢],¢%,¢5) be the 4-tuple of involutions associated to
Gu(b Ll + t,o,771). Clearly, ¢f = t, t} = tu, th = i2 and, since
n(i — 1) = —n(j) for all § € Zy,eh(3,5) = (r"U=HD0),1 - 54+ 20 +
2t) = (r=MI=0(:),1 = j + 2t) = 13(4,5). Therefore, G (b,1,t,0,7) =
Gm(b, 1,1 + t,0,771). Finally, let ¢(3,5) = (i,1 — j), then ¢ is a cp-
isomorphism between G, (b,1,t,0,7) and G (b,{,I — 1,071, 7).

(c) The results of point (a) allow us to prove only the case T = 1.
Since (o, 7) is a transitive permutation pair, ¢ must generate a transitive
subgroup of ¥ and therefore is a cycle of order . Up to equivalence, we
can suppose ¢ = v = (0 12---b—1). It is easy to find a planar regular
embedding of G, (b,1,1,v,1) (see an example in Figure 2) and therefore
the graph represents $°.

(d) If I =t =1 then ¢y = ¢1. So Sm(b,1,1,0,7) is the suspension
of a surface. ®

As a consequence of point (b} and of the assumption ged(l,t) = 1,
we shall always suppose, without loss of generality, 1 < ¢ <! and ¢ odd.

The necessary and sufficient condition for G,,(b,[,t,,7) to repre-
sent a manifold will be investigated now. Let ¢ and @ be the permuta-
tions? '

@ = o) p1(28) gn(38) gnl4t) | Gu((2-1)t) o(248)

= Tﬂ(t)a,n(Zt)Tn(St)o.n(4t) . Tn((2l—1)t)a_ﬂ(2lt) .

These permutations are very important in our contest because (i3 o
L2)I(iat) = ((,O(i),t) and (52 © LE)I(Z',]-) = (@(3)51)
Let H be a subgroup of ¥;, then X acts on Z, dividing it into

orbits. We denote by ¢(H) the number of orbits of this action. If S is a

subset of X, we denote by (5) the subgroup of I, generated by 5. In
particular, if €,6 € Ly, we write ¢(¢) for ¢({{€})) and ¢(¢, 8) for ¢({{¢, 6}}).
Furthermore, we use the notations ¢ = ¢fe ! and [§,¢] = fed e~ 1.

*Following our convention the product of permutations ¢ means
"~ the composition of maps € o 6.
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Figure 2. Planar regular embedding of G,,(4,4,3,(0 1 2 3),1) - ¢ =
(0312)-

Note that @ is a conjugate of ¢~!, and precisely ¢! = ¢*, where
'u = Tﬂ(t)o-ﬂ(“)f'fr(iif)o-ﬂ('“) - .a'n((t-l-z)t)-r((t- "'l)t)_ Thus, (P = 1 iﬁ' @ =
1; moreover ¢(p) = ¢(@).

Proposition 2.3. The graph G,(b,1,t,0,7) represents a manifold
if

(o) + e(r) + e(p) = b+ (0, @) + ¢(7, ¢)-
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Proof. The statement is obtained by computing the number of
2- and 3-residues of the graph. The calculation is similar to the one
contained in [20] and we only give a brief sketch of it. For ¢,j,k € N3,
let us denote by 7 the number of (N3 — {k})-residues and by d;; the
number of {i, j}-residues of the graph. We get:

T3 = C(O’), Ty = C(T)a ™= C(T"P)a To = C(U,‘f’),

dor = b, dyz = e(yp),

g = 552 + 2¢(0) if Iis even don = bi if I is even
PTAb b e(o) iflisodd * T bt 4 e(o) iflisodd

4o — 4552 + 2¢(r) if 1 is even dn = bi if I is even
BTAb b e(r) iflisodd T TP T | b5 4 e(r) if lisodd

So the number of 0-, 2- and 3-residues is o = 2bl, @y == b(2] —
1)+ 2¢{o) + 2¢{1) + c(p) and az = ¢(o) + ¢(7) + ¢(o, @) + ¢(T, ). Since
ay —ap —az = c(a)+ (1) + () — b - (o, %) — e(7,¢), the statement
follows. =

Corollary 2.4. (a) If ¢ = 1, then Gn(b,l,t,0,7) represents a
manifold.

(b) If o and 7 are cycles of order b, then G, (b,1,t,0,7) is a mani-
fold iff ¢ = 1.
(c) Gn(b,2,1,0,7) represents a manifold iff

() + e(r) + ¢([o,7]) = b+ e(0,07) + (7, 77).
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Proof. (a) We have ¢(¢) = b, ¢(7,¢) = ¢(7) and, since ¢ = 1 iff
@ =1, c(o,p) = (o). .

(b) We have ¢(c) = ¢(7} = ¢(0,) = ¢(7,¢) = 1. Since ¢(p) = b iff
@ = 1, we get the result.

(¢)If ! =2 and ¢t = 1, then ¢ = [0,7] and ¢ = [r,0]. Therefore
{o:¢}) = ({o,07}) and ({r,}) = ({r,7°}). =

3. TOPOLOGICAL PROPERTIES OF THE FAMILY

The graph G, (b,1,%,0,7) is highly symmetric and therefore, follow-
ing rules (1) and (2) of Section 1, we can construct the space Sn(b,1,t, o,
T) in a simple way. By performing on the 2b/ 3-simplices of the space
the identifications depending on ¢ and ¢;, we obtain b disjoint 3-balls
To,T1,...,Ty—1. Let 0(T;) be subdivided in four quarters of a sphere
R!, RY?, S§! and S! as in Figure 3. Now, by the action of the 2-
edges, we have to identify the region R} with the region R} > for every
1 € Zy, so that the points A;, B;, C; match respectively with the points
Ag(iys Bo(iy, Co(s) and the point P;  matches with the point Q,;) x, for
each 1 < k < 1—1. After these identifications, the space becomes a col-
lection of ¢(e) 3-balls. The last operation, depending on ¢3, is to identify
the region S} with the region S’ ;)» for every i € ZZ,, so that the points
Pi_y -1, Ds, P;; match respectively with the points Pr;)_11-¢, Dr(3),
P.,.(,')‘t and the arc Pi’tC.P{_l'j_f matches with the arc P-r(,'),tBP-,-(g)_l,g_t.
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Figure 3.

We shall study some topological properties of the spaces of Sy, as
branched coverings of §°3.

The map f : Zp x Zau = V(Gm(b,,t,0,7)) — {0} X Zu =
V(G (1,1,t,1,1)) defined by

f(3) = (0,5),

is a cp-morphism and, if b > 1, a 1-covering. Therefore

{f]: Sm(b,Lt,0,7) = Sm(1,1,8,1,1) = §3

is a b-fold branched covering map. From now on we always assume b > 1.
In order to completely describe | f| we shall obtain the branching set By
(Proposition 3.2) and the monodromy map wy; (Proposition 3.4).

Since ged({,t} = 1, the graph Gp.(1,1,4,1,1} has only one {2,3}-
residue and we denote this residue by @. Figure 4 shows two examples.
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Figure 4. Gn(1,7,3,1,1) and Ge(1,8,5,1,1)
Lemma 3.1. The 2-residues of G = G,,(1,1,,1,1) not ordinarily
covered by f are the following:

(i) if o # 1: the {1,2}-residue containing (0,0) and the {0,2}-residue
(resp. the {1,2}-residue) containing (0,1) when ! is odd (resp. when
l is even), both of length two;

(ii) if T # 1: the {0,3)}-residue containing (0,t + 1) and the {1,3}-
residue (resp. the {0,3}-residue) containing (0,1 +t+ 1) whenl is
odd (resp. when [ is even), both of length two;

(iti) if o # 1: the {2,3}-residue ©.

Proof. (i) If ¢ # 1 then there exists ¢ € Z, such that o(i) # <.
Since ¢3 0 t1(4,0) = (a(4),0) and, when [ is odd (resp. when [ is even)
12 0 49(5,0) = (71(i), 1) (resp. ¢2 0 t1(i,l) = (¢7'(4),1)), the 2-residues
of G containing (£,0) and (%,1) respectively, and covering the above
residues, have length greater than two.

(ii) Let ¢ € Z, such that 7(¢) # i. Since t3oep(d, t+1) = (7(é), 1 +1)
and, when [ is odd (tesp. when [ is even) tyouq(i, I+t +1) = (v71(3), 1+
t+1) (resp. t300{syl+t+ 1} = (771(3),1 + t + 1)), we obtain the same
result of point (i).

(iii) © has length 2I. Since (¢3 0 £3)/(¢,8) = (p(3),¢) it is covered by
at least one {2,3}-residue of G, (b,1,t,0,7) of length greater than 2i.

To complete the proof we have to show that the remaining 2-residues
are ordinarily covered by f. First we note that the unique {0,1}-residue
of G has length 2 and is covered by b residues of length 2. Finally, the
remaining residues are of length four and are covered by residues all of
length four. ®
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Let L be the 1-subcomplex associated by the bijection ¥ (see Sec-
tion 1) to the five 2-residues listed in the previous lemma. Incidence
arguments on the lattice of the residues of G(1,4,1,1,1) show that ||
is homeomorphic to a @ — graph when [ is odd and is homeomorphic
to a handcuff-graph when [ is even (see Figure 5). Of course, we are
interested in determining how |L| is embedded in $3. Observe that the
embedding only depends on ! and ¢; we denote it by g({,t). Figure 6
shows how this graph is embedded in the 3-sphere and a constructive
proof of the result is contained in the Appendix. Note that, by removing
from g(1,¢) the 1-simplex § associated to ©, we get a two-bridge knot or
link® b(l,t). Furthermore, g(i,t) has a trivial embedding iff I = 1 = ¢.

A
B P
Q Cc
D
B P
D
A c  a

Figure 5. A 6-graph and a handcuff-graph (trivially embedded)

Remark 3.1. The coefficients a; of Figure 6, called Conway sym-
bols, are uniquely obtained by the following algorithm:

l=ayro +r1,

3 For the conventions on iwo-bridge knots and links we refer to [2] and denote by
b(f, i) the two-bridge knot or link of type (I, t).
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To = azT + 2,
1 = aary + 13,

Tm-3 = Cm-1Tm-2 + Tm-1,
Tm—2 = GmTm-1,
where rg =t and 0 < r; < rj_1 when ¢ > 1.

Now we are able to describe the branching set By.

I{

~

-aa

A

& o @

m odd

m even

Figure 6. The graph g(I,t) - twists of = radiants -

179
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Proposition 3.2. Let B = By be the branching set of |f].

1) Let us suppose | odd:
a) ifo,7,0# 1, then B is the §-graph g(I,t) of Figure 6;
b) if ¢ = 1, then B is the two-bridge knot b(l,t);
c¢)ifo=1orT=1, then B is the trivial knot.

2) Let us suppose | even:
a) if o,7,00 # 1, then B is the handcuff-graph g(1,t) of Figure 6;
b) if o = 1, then B is the two-bridge link b({,1);
c)ifo=1orT =1, then B is the trivial knot.

Proof. If ¢,7,¢ # 1, then B is the subcomplex associated to the
five 2-residues of Lemma 3.1. Therefore, B = g(/,t). If ¢ = 1, then B
does not contain the 1-simplex associated to ©. Hence, B is just b(I,1).
Finally, let us suppose ¢ = 1 or 7 = 1. In this case, |f| is a cyclic
covering and, since §n(b,1,t,0,7) = 5 by Lemma 2.2.c, the branching
set B must be a trivial knot. ®

Remark 3.2. Theorem 3.2 gives a topological proof to Corollary
2.4.a. In fact, if ¢ = 1 the space S,,(b,1,t,0,7) is a branched covering
of a knot or of a link and therefore is a manifold. The condition ¢ = 1 is
only sufficient because also a branched covering of the graph g(l,t) can
be a manifold. For example,ifb=4,{=3,t=1,0 =(01)(2 3) and
7 = (0 2)(1 3), then ¢ = (0 3)(1 2) = @ and therefore the branching set is
g(3,1). But §,,(4,3,1,0,7) is a manifold, since ¢(o) = (1) = (@) = 2
and ¢(7,p) = ¢(o,p) = 1.

To determine the fundamental group of §° —g({,¢) we need to choose
a suitable splitting complex for g(i,t). It is easy to see that the 2-
subcomplex K consisting of the 2-simplices associated to the 2- and 3-
edges of G, (1,1,t,1,1) is a good choice. In fact g(/,1) is contained in K
because it consists of 1-simplices associated by ¥ to 2-residues containing
2- or 3-edges. Moreover, K is simply-connected because it is the internal
of the 3-ball T previously described. From Theorem 3.3.1 of [22] follows
that m1($° ~ ¢g(I,t)) admits a presentation with generators associated to
the set of 3-edges {z; = ({(0,7+1¢),(0,1—-7+1)},3)|1 <j <[} and the
set of 2-edges {y; = ({(0,7),(0,1 - /)},2)]1 < j £ I}, while the relators
are in 1-1 correspondence with the {0,2}— {1,2}- {0,3}- and {1,3}-
residues not representing g({,¢). We orient each z; from (0,1 — j + t)
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to (0,7 + t) and each y; from (0,7) to (0,1 — 7). Thel -1 {1,3}- and
{0, 3}-residues (all of length four) give the relations ¢ = 2, = -~ = z;
(= X). In the same way, from the /—1 {1,2}- and {0, 2}-residues (again
of lenght four), we get 41 = y2 = --- 4 (= Y'). Since there are no other
relations the following result is proved:

Proposition 3.3. The fundamental group of S° — g(l,t) is the free
group on two generalors

m($® - g(1,1)) = ({X, Y };0),
for all l and t. [ |

When the branching set By is different from g({,¢), we can describe
the fundamental group of §3 — By again with the two generators X and
Y, but also with some relators corresponding to the 1-simplices of g(l,1)
not contained in B)y). In particular, when Bz = (1, 1), we get a relator
r corresponding to ©. By walking along this residue, starting by the
2-edge from (0,t), we obtain

r = Y8 x a2ty n(31) xn(4t) |y al(21-1)1) xa(2it)

On the contrary, when By is the trivial knot we obtain the relation
X =1(or Y = 1), and the fundamental group is isomorphic to ZZ. The
monodromy map wys| can now be obtained.

Proposition 3.4. The monodromy map wis : m(S® — Bjy) =
{({X,Y}; R) — I, associated to the covering |f|, is defined by:

wis(X) =,

ws(Y)=o.

Proof. First we observe that wyy| is well-defined also when By #
g(1,t) and therefore R # 0. In fact if Bjy} = b(l,t) then R = {r} and
ws(r) = ¢ = 1. Moreover, if B);| is the trivial knot then we obtain the
same conclusion because X = 1 iff r = land ¥ = 1iff ¢ = 1. Let
us fix as base point O of 71(S® — Byy|) the vertex (0,0) of the 3-gem
G = Gm(1,4,t,1,1), embedded in S* as 1-skeleton of the ball-complex
dual to K(G). Theloops X,Y € m((5°— By, 0) are showed in Figure 7.
Let [f|~1(0O) = {O:]i € Z,} be the fiber of O, where O; is the barycentre
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of the 3-simplex associated to the vertex (i,0) of G, (b,!,t,6,7). Then
!

the lifting of X (resp. of Y) starting at O; is an arc ending in 0%
(resp. in Oy ;). This completes the proof. ®

Sl S g

Figure 7. (I' ¢ R", I" e R', J' € &', J" € §")
As consequences of the above results we have the following charae-

terization of the spaces of Sp,:

Theorem 3.5. The class of spaces S,, i3 the class of all the cover-
ings of 53, branched over either g(l,t) or b(I,t). W

Corollary 3.8. Let M be a manifold which is a branched covering
of a trivially embedded 8-graph, then M ~ §3,
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Proof. A branched covering of g(1,1) is homeomorphic to S (b,1,
1,0,7), for suitable b,o,7. Therefore the result follows from Lemma
2.2.d. [ |

Corollary 3.7. Let ! be even, then the following properties hold:
(1) there ezist no abelian coverings of g(I,t);
(1) if o = 70 then the space Sm(b,!,t,0,7) is a 3-manifold.

Proof. (i) Let e(j) = ZL;IO n(7 + 2kt). It is simple to check that
e(j) = 0 for each j € Z3,. Now, let Z be any meridian around the 1-
simplex 5 of g(l,t) associated to the 2-residue ©. Then, Z is mapped by
the monodromy to (a conjugate of) ¢ or ¢~!. Since o1 = 7, we obtain
@ = o¥t)re(3) = 1. Therefore, w(Z) = 1 and the simplex 3 cannot be
contained in the branching set.

(ii) By (i), Sm(d,l,t,0,7) is the branched covering either of b(l,¢)
or of the trivial knot. Hence, the space is a manifold. ®

In Proposition 7 of [4], A. Cavicchioli states that if the condition

a—n(:‘+(2:—1)t)(_ .. (a—n(:'+at)(a-n(j+f)(i +a() + 097 + 2))...)
(2.5)
+n(i+ (2 -2)) =i

holds for every j € Zg, then G.(b,1,t,a) = Gn(bl,t,v,a” ) is a
crystallization and therefore represents a manifold. Now we give a topo-
logical interpretation of this condition. First we claim that if (2.5) holds
for a value of j then it holds for every j € Z2;. In fact (2.5), written in
terms of permutations with 7 = a~!, becomes

() prli+ )y nli+28) pn(i432) | (i (21-2)1) pn(i+(20-1)8) _ (2.6)

Replacing § with 7+ 1, taking the inverse and recalling that —n(1+j) =
n(~7) = n{(2l ~ 7), we obtain
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=i+ ) yn(—7+28) (= j43¢) (=i +41)
(=i 2I=-1))  m(—j+201) _ ¢

Now set k = t'j, where t' is the inverse of t in ZZ;, then —j + 2kt = j (in
Z4) and therefore, conjugating by T7(~i+ymM-i+28 ... =i+ (2k-1)1)
we again obtain (2.6). Evaluating (2.6) for j = t, we get ¢ = 1. Thus,
(2.5) is equivalent to the condition ¢ = 1 and therefore it is just a
sufficient condition for the branching set to be a knot or a link. This
guarantees that the represented space is a manifold. By making use
of Corollary 2.4.b, we can prove that, in the Cavicchioli family, the
condition is also necessary.

Proposition 3.8. A graph G,(b,1,t,a) € G, represents a manifold
iff condition (2.5) holds. So every gem of G, is also a crystallization.

Proof. By Lemma 2.1.c, G,(b,!,t,e) is the graph Gn(b,{,¢,v,
a~!). Since a and v are both cycles of order b, the statement follows
from Corollary 2.4.b. =

4. A "UNIVERSAL” CLASS OF 4-COLOURED GRAPHS

For each k > 1, let G% denote the class of 4-coloured graphs Gf, =
{Gm(b,l,t,0,7) € Gm|l = k} and let S¥ denote the class of spaces
S#: = {Sm(6,1,8,0,7) € Sm|Gm(b1,¢,0,7) € gfn}

In this section we show that the class G2, is “universal”: every 3-
dimensional orientable manifold or quasi-manifold can be represented by
a graph belongihg to G2,. In particular, we claim that $,,(,2,1,0,7)
is homeomorphic to the (singular) manifold N(¢,7) introduced by J.M.
Montesinos in [18]. In that paper the Author proved that the graph
G of Figure 8 is universal; i.e. every orientable singular manifold is
a branched covering of G. Since (S — G) is a free group on two
generators, the monodromy map is completely defined by a transitive
pair of permutations o,7 € L. Referring to Figure 8 (it is just a copy
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of Figure 2 of [18]), the monodromy sends the generators z and y of
T1(5% — G) respectively to o and to 7.

Figure 8. The Montesinos universal graph

Proposition 4.1. (a) The graph g(2,1) is the Montesinos universal
graph G.

(b) The singular manifold Srm(b,2,1,0,7) is homeomorphic to N(o,
1), for every transitive pair (o,7) of permulations of ¥y.

Proof. Figure 9 shows the construction of g(2,1) by a sequence of
identifications. Moreover the loops X and Y are homotopic respectively
to the loops y and z of Figure 8. ®

Remark 4.1. Note the correspondence between Corollary 7 of [18]
and Corollary 2.4.c. '

The above result allows us to obtain a “universal” class of 4-coloured
graphs representing all orientable 3-dimensional singular manifolds.
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Figure 9. Construction of ¢(2,1)
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_ Corollary 4.2. Every 3-dimensional orientable singular manifold
M belongs to §%,. Hence there ezists an integer b > 0 and a transitive
pair (0,7) of permutations of ¥y such that Gm(b,2,1,0,7) represents
M, =

Figure 10 shows an example for the manifold § x §2.

Figure 10. G,,(6,2,1,(0 1 2)(3 4 5),(0 2 5 3)(1 4)) -represents S* x §*-
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Remark 4.2. An algorithm for obtaining, from a bipartite crys-
tallization }, a transitive permutation pair (o,7) such that |K(Q})| =
N(o,7) is contained in [5] and [26]. The algorithm has been extended
to the general case of bipartite 4-coloured graphs by L. Grasselli in [12].

A. APPENDIX

The embedded graph g{I,t) of Figure 6, will be constructed from
G = Gm(1,1,t,1,1) by using just rules (1) and (2) of Section 1.

By performing on the 3-simplices of K(G) only the identifications
depending on the 0- and 1-edges of G, the 3-ball T of Figure 7 is obtained.
We refer to the Conway symbols and the coefficients m,7y,72,...,7m-1
described in Remark 3.1.

By the identifications depending on the 3-edges, we glue the two
quarters S’ and 5" of the 2-sphere 8(T) together and we obtain a new
3-ball 7". If the point A goes to infinity, the ball becomes homeomorphic
to the half space z < 0 of R?. The boundary 8(T”) becomes the plane
z = 0, with A = oo. In Figure A.1, T" is depicted, with &(T") represented
by the plane of the paper. At this stage the simplices of g(I, t) are marked
by the thick line. Note that the open arc P¢} belongs to the openr half
space z < 0, whereas the remainder of the graph belongs to the plane
z = 0. Now we perform on 8(T") the glueings depending on the 3-edges.
The t 3-edges incident to the vertices (0, — j) (for 0 < 7 <t —1) of
the graph, match the region o] with the region of. So we obtain a new
3-ball which is shown in Figure A.2. Observe that now the open arc CA
belongs to the interior of the ball. By the action of the ¢ 2-edges adjacent
to the vertices (0,{ —t — j) (for 0 < 7 € t — 1) we match the regions
ay and of, and so on. After a; — 1 steps, we obtain either the 3-ball
of Figure A.3, if t divides I (and therefore { = 1 = m), or, otherwise,
the ball of Figure A.4. In the former case the remaining 3-edge glues
the two hemispheres &' and o of the boundary of the ball together, so
obtaining a 3-sphere, but without changing the embedding of g(l,t). In
the latter case we have to do another stage of identifications. By the ry
2-edges adjacent to the vertices (0, 7) (for 0 € j € r; —1), we glue the
regions 3} and 3] together and we obtain the 3-ball of Figure A.5. By
the r, 2-edges incident to the vertices (0, ~r; —j) (for0 < j < r —1),
we glue the regions §) and (i together and so on. At the end of this
stage we arrive, after a, steps, either to the 3-ball of Figure A.6, when
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7, divides ¢ (and therefore r; = 1 and m = 2), or, otherwise, to the
one of Figure A.7. In the former case, g(/,t) is obtained, otherwise in
the latter case we need a new stage of identifications (see Figures A.8
and A.9) and so on. Of course the process will finish after m stages and
therefore the embedded graph g(I,¢) will be equivalent to one of the two
cases of Figure 6, depending on the parity of m.
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