
A Universal Communication Model for an Automotive System Integration Platform

Thilo Demmeler 1, Paolo Giusto 2
1 Bayerische Motoren Werke AG, Technology Office Paolo Alto 94301 CA USA

2 Cadence Design Systems Inc., San Jose, CA 95134, USA
Thilo.Demmeler@bmw.de, giusto@cadence.com

Abstract

In this paper, we present a virtual integration platform
based design methodology for distributed automotive sys-
tems. The platform, built within the ‘Virtual Component
Co-Design’ tool (VCC), provides the ability of distribut-
ing a given system functionality over an architecture so as
to validate different solutions in terms of cost, safety re-
quirements, and real-time constraints. The virtual plat-
form constitutes the foundation for design decisions early
in the development phase, therefore enabling decisive and
competitive advantages in the development process. This
paper focuses on one of the key-enablers of the methodol-
ogy, the Universal Communication Model (UCM). The
UCM is defined at a level of abstraction that allows accu-
rate estimates of the performance including the latencies
over the bus network, and good simulation performance.
In addition, due to the high level of reusability and pa-
rameterization of its components, it can be used as a
framework for modeling the different communication pro-
tocols common in the automotive domain.

1. Introduction

The increasing demand for comfort, information, and
safety in a car is satisfied through the introduction of dis-
tributed architectures with electronic control units
(ECUs). The sharing of data between ECUs that commu-
nicate over automotive buses allows integration of addi-
tional functionality at lower costs. Moreover, a modular
function can be distributed over a network of ECUs.
Different kinds of communication protocols with their
own specific strengths have been introduced in the past,
for example the Controller Area Network (CAN) [1] or
ByteFlight [2]. Other protocols such as TTP [3] [4] are
going to be introduced with the goal to provide more de-
pendable and fault tolerant networks that enable the step
towards by-wire technology for braking and steering [5]
[6].
In this scenario of increasing complexity, the main chal-
lenge for the automotive industry is to reduce production

costs, shorten development cycles, and guarantee for a
premium safety concept. To achieve these objectives a
shift in the system design process has to take place [7] [8]
[9].
This paper will proceed as following: first, the design
methodology for the virtual integration platform and the
virtual design workflow are shown. Then, the transition
from an ideal communication model (zero time), to a re-
alistic model with performance based on the underlying
architecture model is drawn. Broadcasting and communi-
cation cycle layouts of the UCM are described next. Then,
the communication matrix and the data frame packaging
are introduced. Finally, an outlook and a summary con-
clude the paper.

2. The Virtual Integration Platform

The development process in the automotive domain starts
with the analysis phase, where a functional network is de-
veloped, and proceeds to the specification phase, where
algorithms for the functional components are defined. The
system design phase determines the distribution of the
functionality onto an architectural network. In the next
phase, a composition of functional components is imple-
mented onto the target hardware and finally the system is
calibrated in the car [10]. A seamless flow through the
development stages is as important as the ability of build-
ing a virtual prototype very early in the development
stage. Substantial for valuable prototyping results is a
seamless transition from an ideal world assumption to the
real world where the application is supposed to run.
The proposed virtual integration platform is built within
the Virtual Component Co-Design (VCC) tool set [11] as
shown in Figure 1. The basic concept is to have a behav-
ioral model of the system with ideal world assumptions in
terms of zero software execution and communication de-
lays, which is separated and independent from an archi-
tectural model that represents an implementation variant
[15]. By mapping the functionality onto the architecture, a
specific system partitioning is chosen. The system models
are transformed into performance models that include

close-to-real execution and communication delays.

B u sesB us es
M a tla b

C P U s B us es O p era tin g
S ys te m s

S p ecifica tion
A S C E T

A n aly sis

A fter S ale s Se rv ic e

C alibra tio n

Im ple m e ntation
A S C E T

S o ftw a re C o m p o n en ts V irtu al A rc h itec tu ra l C o m p o n e n ts

C -C o d e
E x te rn al IP V e n d ors

A S C E T

De
ve

lo
pm

en
t P

ro
ce

ss

E va lua tion o f
A rch ite c tu ra l
an d
P a rtitio n ing
A lte rn a tives

VCCVCC

E C U -1E C U -1 E C U -2E C U -2

E C U -3E C U -3
B usB us

f1f1 f2f2

f3f3

S y stem B e h av io r S ys tem A rch itec ture

M a pp ing

P e rfo rm a nce
S im ula tio n

R efin em e nt

E va lua tion o f
A rch ite c tu ra l
an d
P a rtitio n ing
A lte rn a tives

Figure 1. The VCC Virtual Integration Platform

VCC comprises the framework for intellectual property
integration and authoring. [16]

2.1. Import of Functionality

In the specification and the implementation phases, the
ASCET-SD tool is commonly used in the automotive do-
main for algorithm development and code generation for
single processor units. ASCET-SD [12] is a typical ideal
world representative tool set that assumes no execution
delays during the simulation. An ASCET-SD/VCC auto-
mated import flow that preserves functional specification
details such as hierarchy, interface and scheduling infor-
mation is currently underway [8]. An imported ASCET-
SD model is represented in VCC as a hierarchy with the
project at the top level that comprises the functionality of
one entire ECU. The modules at the next lower level state
the functional components, which are the smallest map-
ping unit that can be distributed over the system network.
The processes, included in the modules, are the smallest
schedulable unit and constitute the leaf blocks in the hier-
archy. Finally, tasks are the aggregation of processes,
which have the same scheduling policy. To enable the
VCC performance estimation, the source code of the pro-
cesses, which share a considerable amount of data within
the module, are imported as white boxes. Furthermore,
the scheduling information of the functional ASCET-SD
model in terms of ordering, timing, priorities and proper-
ties can be preserved, as well as the data exchange and the
interfaces of the processes, the modules and the entire
project. Alternatively behavioral models can be imported
manually as “C” white or black boxes of plain C or from
the Matlab tool set [13] in the near future.

2.2. Distribution of Functionality

VCC, as a platform tool, allows the distribution of the
functionality - the software modules and projects - over

the target resources - and provides a way to explore de-
sign alternatives quickly by simulating the distributed sys-
tem under real time constraints. Trade-off analysis of
function distribution, ECUs' loads, and costs of communi-
cation enable the design optimization process. A safety
analysis can be performed either on the overall system or
on specific partitions of the system incrementally. There-
fore, the underlying communication model has to model
aspects related to real time constraints and has to be flexi-
ble enough to allow re-distribution of the software mod-
ules within a cluster. Furthermore, in order to achieve
design efficiency, the highest grade of automation is nec-
essary that takes into account the dependencies of func-
tional distribution and communication configurations.
In a first evaluation step, the architecture of the imported
ASCET-SD projects can be re-modeled. This enables the
benchmarking of the performance simulation results,
which includes the automatic estimation of task run time
and modeling of communication delays.

A S C E T M o d e l

E C U - 1E C U - 1 E C U - 2E C U - 2 E C U - 3E C U - 3

B u sB u s

f 1f 1 f 2f 2

f 3f 3

A S C E T M o d e l

f 1f 1 f 2f 2

A S C E T M o d e l

f 1f 1

f 2f 2

Figure 2. Mapping of ASCET-SD Projects

In the further design steps, the functionality can be re-
distributed and different kind of architecture alternatives
can be explored. The former ASCET-SD project structure
(one project per ECU) might dissolve as modules that be-
long to the same projects can be mapped to different
ECUs (Figure 3)

ASCET Model

f1f1 f2f2

f3f3

ASCET Model

f1f1 f2f2

ASCET Model

f1f1

f2f2

ECU-1ECU-1 ECU-2ECU-2

BusBus

f1f1 f2f2

f3f3

f1f1 f2f2f1f1

f2f2

ECU-1ECU-1 ECU-2ECU-2

BusBus

Figure 3. Optimized System Mapping

2.3. Design Work Flow

The design process on the VCC platform can be outlined
as following:
1.) Definition of a behavioral diagram in VCC by im-

porting functional components in form of software
projects and modules.

2.) Generation of an ideal communication between the
functional components in the behavioral model,
which does not consider delay or error handling.

3.) Creation of an architectural diagram in VCC
4.) Mapping of the software modules onto the CPU of a

cluster by either retaining the mapping of all modules
of the project to the according ECU or not.

5.) Generation of the CPU scheduling. This step can be
done either manually or automatically by the import
step if the original scheduling information is pre-
served.

6.) Functional simulation. No communication perform-
ance is estimated. The software execution time is es-
timated. [17]

7.) Design iteration by re-distribution of the functionality
and tuning of the scheduling of single CPUs.

8.) Initialization of the UCM performance model. Auto-
mated generation of an initial communication matrix
that carries the dependency of the functional system
mapping.

9.) Performance simulation. The bus communication de-
lays are estimated. Bus latencies are still inaccurate
due to the missing UCM configuration.

10.) Definition of a specific bus protocol implementation
by UCM parameterization. Definition of the commu-
nication cycle layout. Data frame definition.

11.) Performance simulation including the bus latencies.

Phase1 and 4 to 7 are described in [8] in detail.
Phases 2, 8, 9, 10 are explained later in the paper.

3. Functional Model

The separation of the functional model from its architec-
tural implementation is the key abstraction of the method-
ology and the prerequisite for full-scale distribution
alternatives for the functional components.

3.1. Functional Networking

The communications between the software components
are naturally modeled as shared memories, called behav-
ioral memories (BM) in VCC [8]. As shown in figure 4,
BMs can be referenced by an unlimited number of read-,
write-, or read/write-modules. The non-consuming data
access is realized through BM-read or BM-write function
calls, which are invoked in the process source code that is
generated in the export step. After importing incremen-
tally either single modules or complete projects, the I/O
interface of the top-level blocks is determined through
unbound behavioral memory references [8].
The functional system network is finally created by
manually binding the BM references of the top-level
blocks to the corresponding BMs. As shown in figure 5
the system gets stimulated within a model of the envi-
ronment. The possible test spectrum ranges from specific
component stimulation to a closed loop simulation of the
entire network, for example by applying a vehicle dynam-
ics model.

B eh a v io ra l D iagr a m

B M
R efe r en ce

E n v iron m e n t T est B en c h

R R

A S C E T P r o je ct A

B M

M od u le 1

M o d u le 2

B M

R

R

R

A S C E T P ro ject B

M od u le 1

M o d u le 2

B M

R

R

R

Figure 4. Software projects as imported into VCC

A S C E T P r o je ct A
B eh a v io ra l D iagr a m

B M

M o d u le 1

M o d u le 2

A S C E T P r o je ct B

M o d u le 1

M o d u le 2

B M B M

E n v ir on m en t T est B en ch

B M

B M B M

B M

Figure 5. Architecture independent Behavior

Note that the behavioral memories in this use model are
not intended to really map them onto architecture. They
state an ideal communication between modules without
any performance aspects.

3.2. Shared Memory Types

As a result of mapping the functional components onto
the architectural components, the mapping of a communi-
cation arcs for the BM references to a communication pat-
tern is automatically inferred by VCC. A dynamic
performance model is assigned next.
Only BM’s that are connected to modules that are mapped
onto different ECU’s, participate to the bus traffic. This
states an essential information for the VCC user, which is
revealed by VCC after (and dependent on) the distribution
of the functional components. We differentiate between
two different types of behavioral memories:
Register type behavioral memories that represent mes-
sages or global variables that are not sent between ECUs.
Bus type behavioral memories (BBM) that are sent over
the bus.
The division ratio states an important information in the
design process as the quantity of BBMs induces the bus-
load.

3.3. Message Protection

ASCET differentiates between global variables and mes-
sages, which are preemption-protected global variables.
The protection mechanism of the messages is re-modeled
in VCC within separate additional processes, which are
automatically generated by VCC at the import step. [8]
The aggregation of processes in the modules differs from
the aggregation of processes in the tasks, which results in
a dependency between the system mapping step and the
message protection mechanism. This dependency is dis-
solved in the proposed design workflow by the VCC tool
that re-generates the message protection processes after
(and therefore in dependency of) each new system map-
ping or after tuning the scheduling.

4. The Architectural Model

An automotive system network consists of several ECUs
connected to a bus. For fault tolerance reasons, redun-
dancy may be introduced by using multiple bus channels.
An ECU classically consists of at least a host controller, a
bus controller, and a physical bus driver. As shown in fig-
ure 6, the software running on the host is usually sepa-
rated in hardware independent application software and a
communication layer that is hardware (and application)
dependent [14]. Also, a real time operating system
(RTOS) that provides services to the SW depends on the
underlying architecture. In order to achieve behav-
ior/architecture independence and therefore the re-
usability of functional components, only the application
software is appropriate to be imported and modeled as a
behavior in VCC. All other layers are modeled as archi-
tecture models in VCC.

B eh a v iora l D iagram
A S C E T P roject A

B M

M o d u le 1

M od u le 2

B M

R

R

R

B M
R eferen ce

 B ro ad c ast B us C an n el 1

 C P UR T O S

B u s
C o n tro lle r

E C U

in ter n al B u s

 B roa d ca st B u s C an n e l 2

A rc h itectu ra l D iagr am

B u s

B u s C o ntro lle r

P h ys ica l B us D rive r

H o st

A p p lica tio n

C o m m u nica tio n La yer

O p era ting S ys tem

Figure 6. Modeling an ECU in VCC

The interface between host application and architecture is
independent from a specific bus implementation in the
proposed design methodology. The messages that pro-
duce the bus traffic are automatically determined from the
functional mapping of the system.

4.1. Architectural Services

An architectural component in VCC contains architectural
services that are virtual C++ functions, which model both,
the performance and also some of the functionality of the
component. As shown in figure 7 the UCM is modeled by
a stack of architectural services modeling the single bus
components of the network cluster. VCC determines the
path from the architectural topology netlist and links the
necessary protocol components into the UCM. Changing
the topology does not require remodeling the UCM ser-
vices.

A P I

B road cas t B u s M o de l

B u s C ontro lle r to B us
P ro toco l C om po nent

A P I

In te rna l B u s to B u s
C on tro lle r C o m p on en t

A P I

In te rna l B us

A P I

C P U to in te rna l B us
P ro toco l C om po nent

A P I

R T O S to C P U C o m p o n en t

A P I

V C C M o de l to R T O S
C om po nent

U C M
serv ices

Figure 7. Modeling an ECU with architectural
services

In the real application, the bus transactions and the func-
tionality running on the CPU, are parallel activities. VCC
supports this paradigm because there is no specific activa-
tion semantics bound to the architectural services; they
can schedule and handle asynchronous events. This en-
ables the UCM to run asynchronously from the modeled
host functionality and the RTOS of the CPU, therefore
modeling reality.
The UCM approach covers communication delays that are
bus protocol specific, such as packaging the messages
into frames, the frame transmission policy and the queu-
ing mechanism of data frames. The latency of the host /
bus controller interface is not considered yet in the sense
that we have not modeled the performance related to ac-
cess data from the application SW to the bus controller.
The reason being, this delay is negligible (nsec) with re-
spect to the global performance of the entire system (SW
scheduling and communication protocol – usually in the
order of msec’s) The introduction of blocking mecha-
nisms1 that model this delay is left to a further refinement
of the UCM.

1 Blocking means the sending thread is delayed until the data
has been transmitted by the bus controller

4.2. Broadcast Bus Model

Broadcasting is modeled through architectural bus memo-
ries local to each node. They are essential for modeling
communication latencies in the performance simulation.
The bus communication delays can take quite a long time
for example in case of an over load or a bus failure.
Hence, the functional components that are mapped onto
different ECUs can read different values of the same bus
message, which is represented by one BBM in the behav-
ioral diagram. The same is possible if several read/write
modules of the same BBM exist in general. The commu-
nication software layer that handles the data exchange be-
tween bus controller memory and host application is not
modeled within the UCM. Therefore, it is assumed that a
read/write component that reads a bus message always
reads the most actual value, independent if the last update
was coming from the module itself or through a bus trans-
action. As shown figure 8, each BBM has a corresponding
local bus memory (LBM) in each node of the cluster. Ac-
cordingly, a bus transaction is broadcasted to each ECU
of the cluster, even if the behaviors mapped to this ECU
will not read some of the messages.

Behavioral Diagram

 Module A

BM 1

 Module B Module C Module D

BM 2 BM 3 BM 4

 Broadcast Bus

 CPURTOS

Bus
Controller

ECU 1

internal bus

 CPURTOS

Bus
Controller

ECU 2

internal bus

 CPURTOS

Bus
Controller

ECU 3

internal busM1
M2
M3
M4

M1
M2
M3
M4

M1
M2
M3
M4

Local
Bus

Memory

Figure 8. Local Bus Memory Allocation

The functional components mapped on an ECU access the
bus message values directly from the corresponding LBM
of the ECU. The access is tied to the BBM read and write
functions and therefore dependent to the scheduling of the
RTOS. On the other side, the architectural services of the
UCM are controlling and updating the LBMs of each
node of a cluster asynchronously, considering the bus la-
tency in accordance to the traffic over the network.
For diagnostic reasons, an architectural status memory
register can be introduced that allows to feedback mode
changes from the bus model to the behavior of an ECU.
The behavior could check the status of the register to de-
cide what to do next, for example in case of failure in the
transmission. Diagnosis mechanisms are left to a further
refinement of the UCM. A synchronization mechanism
between bus controller and host, as common for a time
driven protocol can also be realized via the status register.

The LBMs are service internal vectors that are not di-
rectly visible to the user in VCC. The bus traffic can be
analyzed in VCC via view ports and probes tied to the dif-
ferent architectural bus services. They filter the LBM vec-
tors in a way that the communication can be visualized in
a clear form.

4.3. Universal Communication Model

The central idea of the UCM is to provide an open
framework that models the performance of the two basic
automotive bus concepts, time- and event-driven. We en-
vision using the UCM in a refinement process. At the be-
ginning of the exploration stage, the designer may start
with the UCM being set up with some default parameter
that, for instance, make it run in a pure event-driven mode
– less expensive than the time driven case.
The refinement down to the different kinds of existing bus
protocols, is done step by step by the VCC user through
adapting the UCM parameter settings. It even can be used
as a framework for investigating the performance of new
communication protocols not yet available off-the-shelf,
because the UCM provides highly reusable building
blocks. Once the UCM settings are matching a specific
communication bus protocol, we expect accurate per-
formance results to be obtained that allow qualitative as-
sessments, at least for the system running properly under
no fault conditions. The implementation of the UCM in-
frastructure is underway. We are planning to provide
simulation results based upon a real automotive applica-
tion quite soon.
Error cases are not covered by the UCM in a first step as
they often rely on hardware features of specific bus com-
ponents. As future work, specific bus protocol features
can be implemented in VCC by either refining the archi-
tectural service models, where for example failure states
could easily be implemented, or by explicitly importing
specific bus protocol models e.g. from silicon suppliers.

4.4. Message Packaging

The communication delays mainly depend on the data
frame packaging and the activation policy of the frames
[18]. A single bus transaction always causes some over-
head, for example because of the frame header or the in-
ter-frame gap. In order to keep the system costs low; the
net-bandwidth usually is increased by packing as many
messages of a sender ECU into data-frames as possible.
The packaging process is supported in the VCC tool set
by UCM parameterization. The frame names and the
overheads are specified within the frame properties. The
frame size is not limited in VCC and can be adapted to
any kind of protocol.
Next, the activation policy has to be assigned to the data
frame that defines if it is either a time- or event-triggered
frame. In case the designer selects a frame to be time

driven, the sending activation is generated from the archi-
tectural service that models the bus controller. A time
driven frame has a fixed assignment in the communica-
tion cycle by defining the sending interval in the frame
properties. In case a frame is defined to be an event driven
frame, the activation policy is derived from the corre-
sponding BM-write event of the underlying functional
model. Limits or timeouts can superpose the sending
event if defined in the frame properties. Alternatively also
event frames can be sent at a periodic interval time.

4.5. Communication Cycle Design

In the proposed UCM, we allow the composition of a
communication cycle at compile time that assigns static
parts for time-driven data frames and dynamic parts for
event-driven frames, as shown in figure 9. This leads the
designer to explore the performance of different commu-
nication protocols.

C o m m u n i c a t i o n C y c l e

S t a t i c P a r t 1 D y n a m i c P a r t 2

Slot 2

T
elegram

 1

Slot 1

Slot 1

T
elegram

 2

S t a t . P . 2D y n .P . 1

T
elegram

 1

Slot 3

Figure 9. Communication Cycle of the UCM

In the static parts of the communication cycle, the time-
driven frames are transmitted in slots according to a stati-
cally defined TDMA scheme. In the dynamic parts event-
driven frames, called telegrams, are transmitted according
to an arbitration algorithm. The communication cycle,
represented by state machine in figure 10, is controlled by
a global synchronous time.

Dynamic Part

Static Part

Start
Static
Free

Dyn.
Busy

Dyn.
Free

Static
Busy

Preempt or Abort Telegram
 Start Static
 Part

Remove Slot from Queue

Remove Telegram from Queue

Start Sending

Start Sending

Start
 Static
 Part

 Start
 Dynamic
 Part

Figure 10. State Machine of the Bus Model

The bus state is Busy while a frame is sent. If the transac-
tion is over, the data frame is removed from the sending

queue and the bus mode changes back to Free. Cycle
changes are usually performed in the state Free, except
telegrams that can be interrupted to ensure a proper start
of time driven frames. The interrupted telegram remains
in a queue and is sent later in the next dynamic part.

4.6. Arbitration and Queuing

Although a properly defined time driven communication
does not require queuing and arbitration, the idea is that
the UCM provides a fall back solution in case of colli-
sions. In other words, time slots are only possible when
they are correctly assigned over a complete cluster, oth-
erwise they are sent on a first-come first-serve basis.
Therefore, the UCM provides a queuing mechanism for
both event driven- and time driven frames. The VCC user
gets a warning if there is a slot activation conflict in the
static part of the communication cycle. This method en-
ables a continuous and seamless design flow in VCC even
for the deterministic adjustment of a time driven protocol,
which usually takes a very significant effort in the devel-
opment process to define a priori. Moreover, it makes it
possible to seamlessly change the contingents between
event- and time-driven frames within a cluster; therefore,
providing the user with ways to explore mixed protocol
solutions. Also functional components may be mapped
onto a new node with a different bus protocol type.

4.7. Communication Refinement

The local bus memory vectors of all ECUs within a clus-
ter is summarized in the communication matrix (CM).

 ECU1 ECU2 ECU3 ECU4
BM1 Write Read No Access Read
BM2 Read Write/Read Read No Access
BM3 No Access Read Write Read
BM4 No Access Read Write Read
BM5 Read Read Read Write/Read

Table 1. Communication Matrix Example

After accomplishing the mapping of the system function-
ality, a first CM is generated by VCC in an initial form.
This Initial-CM does not require any refinements for run-
ning a first performance simulation. The data packages to
be sent have exactly the size of one BBM. The activation
policy is fully event driven and reflects the scheduling of
the behavioral memory write functions. Specific proper-
ties, for example the arbitration IDs are assigned ran-
domly by VCC or by a specific user pre-defined

algorithm. The goal of this step is to have a first overview
of the bus load and communication matrix complexity and
set up the bus communication model although the esti-
mated performance may still be different from a real sys-
tem.
The communication matrix (CM) constitutes the basic
means for the user to refine the bus configuration. A de-
tailed CM shows how messages are packed to frames,
what the sender and receiver nodes of the frames are and
their properties.
The UCM has three different property categories:
a) Frame properties such as BM collection, activation

policy, overhead and inter frame space.
b) Bus controller properties such as node name, collec-

tion of the send and receive frames.
c) Bus properties such as bandwidth and communica-

tion cycle layout.

4.8. Distribution Techniques

The methodology described so far provides a seamless
flow over the different stages in the system design proc-
ess. Because of the broad variety of mapping possibilities
in the proposed methodology and because of the level of
abstraction of the UCM - the bus communication layer
SW is not modeled – a constellation where two or more
nodes send the same message over the network bus, is
throughout possible in VCC. This can happen if modules
that were running on one ECU in ASCET-SD are distrib-
uted over the network. It is clear that more than one
sender of the same message over the bus network is not a
good VCC design solution and may show unwanted be-
havioral effects. For example, a sent message that was de-
layed over the bus could overwrite a more recent message
of an ECU.
Due to the broadcasting concept this can never occur in
reality. Ideally, the imported models should have only
messages that have exactly one writer-module. As this is
not guaranteed, it is in the responsibility of the VCC user
to investigate this kind of communication constellation to
ensure a proper functionality or to redesign the communi-
cation manually at this point. Either the designer maps all
writer-modules of a specific BM onto the same node, or
the situation is solved by creating two (or more) BMs in-
stead of the original one, that then are referenced by only
one writer-module. A copy mechanism, which needs to be
implemented in the functional components, has to update
the correct variables. The advantage is that the copy
mechanism is now scheduled by the RTOS of the CPU
and not at an unpredictable point in time caused by the
bus model. In other words, the communication matrix
should always have only one writer per line.

5. Conclusions

In this paper, we have proposed a methodology shift in
the design phase of an automotive system. The usage of a
virtual integration platform, which allows the distribution
of functional components onto an architectural network is
key for the shift. The supported levels of abstraction en-
able a seamless flow in the design process, from a broad
variety of partitioning possibilities to refinement stages
that allow qualitative performance assessments. The
UCM framework provides a high grade of automation, al-
though the designer has still to adapt the bus protocol
properties and refine the communication matrix.
The CM of real automotive systems is a result of an ex-
tended development process, where many developers and
external partners are involved. It requires a lot of experi-
ence and knowledge about the functional requirements
and the system behavior. Prospectively the import of the
necessary bus model properties in form of an appropriate
communication matrix, which is available for specific de-
signs in external databases, would add a lot of value to the
proposal. As well, a high grade of automation should sup-
port the re-use and maintenance of communication con-
figurations that are already refined in VCC to enable an
iterative design process and its implementation.
Once a good performance model for the distributed func-
tional components and their communication is generated,
hardware relevant protocol characteristics such as specific
failure mechanisms can be introduced as additional archi-
tectural features to the UCM. The modular definition of
the UCM components as finite state machines provides
the open infrastructure for adding models of faulty modes.
This step will become more relevant when a potential sys-
tem partitioning is found and finally a safety analysis
should be performed to confirm the failure concept of the
application.

Acknowledgements

The authors like to thank Dr. Maximilian Fuchs, Jürgen
Ehret and Peter Schiele from BMW for the valuable dis-
cussions and comments. Also, special thanks to Aaron
Beverly and Sherry Solden from Cadence Design Systems
and the whole Cadence VCC team for the invaluable sup-
port and for the implementation of the communication
model.

References

[1] Robert Bosch, CAN Specification Version 2.0, Technical

Report ISO 11898, Robert Bosch GmbH, 1991.
[2] ByteFlight homepage, http://www.byteflight.com/

[3] TTP Forum. TTP/C specification V0.5.

http://www.ttpforum.org/, 1998.
[4] H. Kopetz, R. Hexel, A. Kruger, D. Millinger, R. Nossal,

A. Steininger, C. Temple, T. Fuhrer, R. Pallierer, and M.
Krug. A prototype implementation of a ttp/c controller.
Proceedings of SAE Congress and Exhibition, Feb. 1997.

[5] E. Dilger , L.Å. Johansson, H. Kopetz, M. Krug, P. Lidén,
G. McCall, P. Mortara, B. Müller. Towards An Architec-
ture For Safety Related Fault Tolerant Systems In Vehi-
cles. ERSEL - European Conference on Safety and
Reliability

[6] E. Dilger, T. Führer, B. Müller, S. Poledna, T. Thurner. X-
By-Wire: Design of Distributed Fault Tolerant and Safety
Critical Applications in Modern Vehicles. VDI - Verein
Deutscher Ingenieure

[7] P. Schiele. Transition Methodology from Specifications to
a Network of ECUs Exemplarily with ASCET-SD and
VCC. SAE Technical Paper Series Nr. 2000-01-0720,
2000.

[8] Translating Models of Computation for Design Explora-
tion of Real-Time Distributed Automotive Applications –
Submitted – 2001

[9] S. Edwards, L. Lavagno, E. Lee, A. Sangiovanni-
Vincentelli. Design of Embedded Systems: Formal Meth-
ods, Validation and Synthesis. Proceedings of the IEEE,
vol. 85 (n.3) - March 1997, p366-290.

[10] Vector Informatik. Calibration of Electronic Control
Units via CAN. http://www.vector-
informatik.de/english/products/index.html, Canape, 2000.

[11] Cadence Inc. Virtual Component Codesign Product
Documentation. Cadence Inc., 1998.

[12] ETAS GmbH, Whitepaper ASCET-SD-, ETAS GmbH,
1998.

[13] Matlab. Homepage Technical report, Osek,
http://www.iiit.etec.uni-karlsruhe.de /osek.

[14] OSEK/VDX Organisation. OSEK/VDX Operating System
Specification 2.1. http//www.osex-vdx.org.

[15] L. Lavagno, A. Sangiovanni-Vincentelli and E. Sentovich.
Models of Computation for Embedded System Design.
1998 NATO ASI, Proceedings on System Synthesis, Il
Ciocco, 1998.

[16] E. Lee, A. Sangiovanni-Vincentelli. Comparing Models of
Computation. Proceedings of ICCAD, 1996.

[17] Reliable estimation of execution time of embedded soft-
ware. Submitted, 2001.

[18] I. Gutkin, P. Giusto, J. Ehret. Modelling the CAN bus
within the VCC environment. Proceedings of the Interna-
tional Conference on Parallel and Distributed, Processing
Techniques and Applications, 1999.

