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A universal description of ultraslow glass dynamics
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The dynamics of glass is of importance in materials science but its nature has not yet been

fully understood. Here we report that a verification of the temperature dependencies of the

primary relaxation time or viscosity in the ultraslowing/ultraviscous domain of glass-forming

systems can be carried out via the analysis of the inverse of the Dyre–Olsen temperature

index. The subsequent analysis of experimental data indicates the possibility of the self-

consistent description of glass-forming low-molecular-weight liquids, polymers, liquid crys-

tals, orientationally disordered crystals and Ising spin-glass-like systems, as well as the

prevalence of equations associated with the ‘finite temperature divergence’. All these lead to

a new formula for the configurational entropy in glass-forming systems. Furthermore, a link to

the dominated local symmetry for a given glass former is identified here. Results obtained

show a new relationship between the glass transition and critical phenomena.
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T
he glass transition constitutes one of the outstanding
problems of condensed matter physics1, with fundamental
importance for many areas ranging from geophysics to

modern food science and material engineering2–5. Over the last
decades, an important progress in this field has been achieved,
primarily because of the progress in the state-of-the-art
experimental, theoretical and numerical insights. Hence, a
conceptual breakthrough seems to emerge6–18.

Recently, however, serious doubts regarding the most funda-
mental experimental artifact, namely the parameterization of
viscosity Z(T) or primary relaxation time t(T) on approaching the
glass temperature (Tg), appeared15,19–21. The importance of this
issue is related to the fact that it is often associated with a
hypothetical link between the glass transition and critical
phenomena physics, that is, the thrilling possibility of a new
great unification within condensed matter physics14,18. Moreover,
relations portraying the evolution of Z(T) or t(T) are often
considered as a checkpoint for theoretical models3,13. Decades of
studies have led to the prevailing conviction that the ultimate
parameterization is possible via the Vogel–Fulcher–Tammann
(VFT) equation3,13,22–24:

t Tð Þ¼ t0 exp
DT T0

T �T0

� �
and Z Tð Þ¼ Z0 exp

DT T0

T �T0

� �
ð1Þ

where DT denotes the fragility strength coefficient and T0 is the
VFT singular temperature (T0 � Tg and T4Tg).

However, by following the compelling analysis of 43 sets of
t(T) data for low-molecular-weight ultraviscous liquids, Hecksher
et al.15 recently concluded: ‘There is no compelling evidence for
the VFT prediction that the relaxation time diverges at a finite
temperature [y] with a dynamic divergence of the VFT form
lack a direct experimental basisy. we suggest that in the search
for the correct theory for ultraviscous liquid dynamics, theories
not predicting a dynamic divergence of the VFT form should be
focused on’. McKenna25 extended this outlook to the case of
polymer glass formers. These findings were strengthened by the
derivation by Mauro et al.19 of the equation introduced
empirically by Waterton26:

t Tð Þ¼ t0 exp
K
T

exp
C
T

� �� �
ð2Þ

The subsequent analysis of experimental data confirmed the
advantage of the Waterton-Mauro (WM, called also MYEGA)
equation without a ‘finite temperature divergence’ over the VFT
one11,19–21,27. Thus, the question regarding t(T) or Z(T) portrayal
seemed to be clarified. However, the problem becomes more
complex if glass-forming liquid crystals (LCs) and orientationally
disordered crystals (ODICs; plastic crystals) are also considered.
For these materials, the prevalence of the ‘critical-like’ equation
with the clear ‘finite temperature divergence’ was clearly
shown28,29:

t Tð Þ¼ tC
T �TC

TC

� ��f

ð3Þ

where T 4Tg and TC oTg: most often Tg�T0E30–40 K and
Tg�TCE10–15 K.

Surprisingly, the latter description seems to be applicable also
for selected low-molecular-weight liquids and polymers28,29.
Worth mentioning is that such dynamics is also commonly
accepted for spin-glass-like (SGL) systems5,28. Remarkable is
furthermore the approximate coincidence of power exponents in
the mentioned systems, namely fE9 for LC28,29, f¼ 9–15 in
ODIC28,29 and f¼ 9–12 in SGL3,13,28.

In this respect, it is important to point out the link between
anomalous dynamics in supercooled glass-forming systems and

the cooperatively rearranged regions, introduced by the Adam
and Gibbs (AG) model3,13,30, leading to the following output
relation30:

t Tð Þ¼ t0 exp
ADm
TSC

� �
ð4Þ

where Dm defines that the free-energy barrier between
cooperatively rearranged region and SC is the configurational
entropy related to the difference between the entropy of the
metastable disordered supercooled system and the stable crystal
state.

Angell et al.31–33 noted that the AG equation can be converted
into the VFT one by assuming:

SC Tð Þ¼ S0
T �T0

T

� �
ð5Þ

for T0¼TK, where the latter denotes the Kauzmann temperature34.
Although equation (5) became popular in the semi-phenom-

enological analysis of supercooled glass formers3,13, some
puzzling issues remain. Mauro11,19 has shown that the
‘divergence-less’ equation (2) can also be derived from the AG
dependence by omitting equation (5) for the configurational
entropy. Moreover, the analysis of experimental data indicated
that the coincidence between T0 and TK may be limited35.
Eckmann and Procaccia36 showed that for a soft potential based
model, the configurational entropy can stay positive for T 4 0,
concluding that the Kauzmann temperature may not exist.

Particularly noteworthy is that the parameterization of t(T) or
Z(T) via ‘finite temperature divergence’ relations was used as an
important argument to support the hypothesis, which correlates
the glass transition with a hidden phase transition below Tg. For
instance, Colby16 suggested that equation (3), with exponent
f¼ 9, may be ‘universal’ for glass-forming low–molecular-weight
liquids and polymers, although for some of them, a multiplicative
factor exp(E/kT) should be included. The ‘critical-like’ divergence
was associated with a hypothetical phase transition at TCoTg,
linked to the correlation length x(T)¼ x0(T�TC)� v with
n¼ 3=2 (refs 16,17). However, a subsequent thorough analysis
of t(T) experimental data did not confirm the suggested superior-
fitting features28,29,37. Notwithstanding, there are several low-
molecular-weight and polymeric glass formers for which the
behaviour suggested by Colby holds surprisingly well28,29.

It is worth mentioning that in 2010, Tanaka et al.18 carried out
an in-depth simulation analysis of six glass-forming systems and
stated: ‘Our results suggest a far more direct link than thought
before between glass transition and critical phenomena. Indeed,
the glass transition may be a new type of critical phenomenon
where a structural order parameter is directly linked to slowness’.
Tanaka et al.18 linked the ‘pretransitional’ behaviour of the
relaxation time to the Ising-like critical power-law divergence of
the correlation length towards the ideal glass transition with the
exponent n � 2=d, where d defines the spatial dimensionality.
This led to the VFT-type equation t Tð Þ¼ t1 exp DT T0=½
T �T0ð Þ� ¼ t1 exp DT x Tð Þ=x0ð Þd=2

h i
. Tanaka et al.18, further

suggested that glass transition may be encountered in the ‘Ising
universality class for systems with a non-conserved order
parameter’.

At this point, some basic concepts of critical phenomena
physics are worth recalling38,39. The pretransitional behaviour for
different physical magnitudes (X(T)) is described by the relation
X(T)p|T�TC|l, where the values of critical exponents (l) are
universal and depend solely on the dimensionality of the order
parameter, the space dimensionality and the range of interactions.
The symmetry is playing an essential role, whose changes are
quantified by the order parameter. Microscopically, different
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systems can be ascribed in universality classes. It is also worth to
bear in mind that the physics of critical phenomena is considered
one of the greatest ‘unification’ successes in condensed matter
physics of the 20th century2,38,39. To the best of the authors’
knowledge, no clear manifestation of the above fundamental
features for the glass-transition phenomenon has been reported so
far. This paper aims to fill this gap and resolve the Gordian knot of
the t(T) or Z(T) evolution on approaching the glass transition.

Results
Fragility and the Dyre–Olsen temperature index. The Super-
Arrhenius (SA) evolution of relaxation time or viscosity in the
ultraslowing/ultraviscous domain can be generally expressed as
t Tð Þ¼ t1 exp E

0

a Tð Þ
�

RT
� �

, where Ea Tð Þ¼E
0

a Tð Þ
�

R stands for
the normalized apparent activation energy (AAE) and R denotes
the gas constant3,13. The departure from the simple Arrhenius
behaviour with Ea¼ const is characterized by the fragility
coefficient (m), introduced by Angell et al.40,41 as the metric at
the normalized plots log10t or log10Z versus Tg/T:

m¼mP T ¼Tg
	 


¼ d log10 t Tð Þ
d Tg

�
T

	 
� �
T!Tg

;

m¼mP T ¼Tg
	 


¼ d log10 Z Tð Þ
d Tg

�
T

	 
� �
T!Tg

ð6Þ

Although the fragility coefficient m provides a metric for glass-
forming liquids within a wide diversity of materials, it is not the
only parameter of this type3,13. A decade ago, Dyre–Olsen (DO)42

noted the formal importance of the Grüneisen parameter (g)43:

gi¼ �
V
oi

@oi

@V
¼ � @ lnoi

@ ln V
ð7Þ

It indicates that if the restoring force acting on an atom is non-
linear in displacement, the individual phonon frequency oi

changes with the volume of crystal V, and parameter g reaches a
transition from zero (linear displacement) to g40 (ref. 43). In the
SA domain, the AAE increases with a decreasing temperature,
allowing a dramatic increase from constant values to
@Ea Tð Þ=@T 4 0, hence giving rise to a non-linear behaviour in
the log10t versus 1/T representation. This formal similarity
allowed to propose the metric of the SA behaviour by the
‘Grüneisen-style’ activation energy temperature index42:

IDO Tð Þ¼ � d ln Ea Tð Þ
d ln T

ð8Þ

The DO temperature index can serve as the alternative
metric of fragility, which can be also presented as
m¼m T ¼Tg

	 

¼ H

0
a Tg
	 
�

Tg
	 


log10 e, where H
0
a Tð Þ¼Ha=R

and Ha Tð Þ¼ d ln t=d 1=Tð Þ denote the apparent activation
enthalpy44.

Assuming the hypothetical ‘universal’ value for the
prefactor t0¼ 10� 14 s (refs 3,13,15), one obtains:
m¼ log10 t Tg

	 
�
t0

� �
IDO Tg
	 


þ 1
	 


¼ 16 IDO Tg
	 


þ 1
� �

, for
t(Tg)¼ 102 s and t0¼ 10� 14 s. Subsequently, taking into
account the recent suggestion that 16omo175 (ref. 45), one
can estimate: 0o IDO Tg

	 

o 10. It is noteworthy that in 1997,

Simon et al.46 indicated the upper fragility limit m¼ 214, yielding
IDO(Tg)¼ 12.375. Very recently, McKenna47 indicated that if T0

is an ideal glass transition, the value of m evaluated at T¼T0¼Tg

would tend towards infinity for all materials. The same can be
expected for IDO(Tg).

Heksher et al.15 showed that the analysis of IDO(T) may
represent a decisive tool for testing the validity of the given
equation for fitting t(T) experimental data in low-molecular-

weight glass-forming ultraviscous liquids. To quantify how
exactly the VFT and the popular Bässler–Avramov48,49 (BA)
t Tð Þ¼ t0 exp A=TDð Þ equations describe the data, they compared
experimental and ‘theoretical’ values of IDO(T), namely15:

IVFT
DO Tð Þ¼ T0

T �T0
IBA

DO Tð Þ¼D� 1¼ const ð9Þ

Derivations of IDO(T) for equations (2) and (3) are presented in
the Methods section. In the ultraslowing domain, near Tg, they
are as follows:

IWM
DO Tð Þ¼ C

T
ICrit:

DO Tð Þ � f
T �TC

ð10Þ

A glimpse on equations (9) and (10) shows that reciprocals of
DO indexes yield a linear dependence I � 1

DO Tð Þ¼ bþ aT , namely:

1
IDO Tð Þ ¼

1
T0

� �
T � 1! ðVFTÞ

1
D� 1! ðBAÞ

1
C

	 

T ! ðWMÞ

1
f

� �
T � Tc

f ! ðCrit:Þ

8>>>><
>>>>:

ð11Þ

The discussed evolutions of DO indexes are shown graphically
in Fig. 1. Two characteristic features are worth mentioning,
namely: I � 1

DO T ¼ 0ð Þ¼ b and I � 1
DO TC;T0ð Þ¼ 0. It is worth stressing

that while the physics associated with the fragility index m has
been very broadly discussed3,13,15,20,31,40–45,50,51, the meaning
and properties of the DO index is poorly explored so far15,42.

For the estimation of IDO(T), the evolution of Ea(T) has to be
determined. This, however, constitutes a notable issue. Hecksher
et al.15 calculated Ea(T) from the SA relation, assuming
t0¼ 10� 14 s as an ‘universal averaged’ value of the prefactor.
However, in the systems analysed in this paper
t0¼ 10� 11 s�10� 16 s (refs 28,29,44). In the Methods section,
we present a novel way of determining Ea(T), avoiding the biasing
influence of poorly estimated values of the prefactor t0 for the
given system.

Experimental data analysis. This paper focuses on the ultraslow/
ultraviscous domain as in Hecksher et al.15, for t4 t TBð Þ �
10� 7s or Z4 Z TBð Þ4 103Poise, which usually occurs for
TB�Tg o 80K (refs 50–53). By heating above TB, the so-called
dynamic cross-over occurs. The discussion on recent advances
regarding this phenomenon can be found in Martinez-Garcia
et al.52 The analysis of experimental data presented below does
not only cover the most often discussed supercooled low-
molecular-weight liquids (L) and multimeric and polymeric (P)
glass formers as in Hecksher et al.15, but also LCs, plastic crystals
(ODICs) and SGL systems. The analysis is based on 16 selected
sets of t(T) experimental data representing these types of glass-
forming systems. However, to clarify the discussion, the key
results are presented for a smaller number of characteristic
systems. They are L including diethyl phthalate (DEP), glycerol,
sorbitol, ethanol28,54, P including EPON 828 and polystyrene
(MW¼ 700) (refs 28,55), ODIC (plastic crystal) including C7-OH,
C8-OH (ref. 53), CNc6 (ref. 57), CNadm58,59 and NPaNPG0.3

(ref. 56), and SGL including ferrofluid liquid, with 5% solution of
single-domain particles of the amorphous alloy Fe1� xCx

(x¼ 0.2–0.3) (ref. 57). Details regarding all tested systems are
collected in the Supplementary Table S1. The presented analysis
is focused on the primary relaxation time t(T), because the
modern broad-band dielectric spectroscopy can yield sets of high
precision and consistent experimental data3,13. For the
presentation of experimental data, we apply the linearized
derivative-based analysis introduced in Drozd-Rzoska and
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Rzoska44. The VFT equation allows the following transformation
of t(T) data:

d ln t
d 1=Tð Þ

� �� 1=2

¼ Ha 1=Tð Þ
R

¼ H
0

a 1=Tð Þ
h i� 1=2

¼ DT Toð Þ� 1=2
h i

�
T0 DT T0ð Þ� 1=2
h i

T
¼B� A

T
ð12Þ

For the critical-like equation (3):

T2

H 0
a Tð Þ ¼

T �TC

f
¼AT �B ð13Þ

where H
0
a Tð Þ stands for the normalized apparent enthalpy.

The linear behaviour of equations (12) and (13) show the
valid temperature domain of the VFT and ‘critical-like’
equations. The subsequent linear regression fit can yield
optimal values of relevant parameters44. Results of such
analysis for selected systems are shown in Fig. 2a–e. It is
visible that a clear ‘critical-like’ parameterization is preferred for
all LC rod-like compounds, as well as for sorbitol, ethanol and
polystyrene (Fig. 2b). This behaviour can be linked to the
uniaxial structure of molecules, which may lead to the local
orientational symmetry (OS) arrangements28. The ‘critical-like’
behaviour also dominates the dynamics of plastic crystals
(ODICs)28,29, where a positional symmetry (PS) is a
fundamental feature (Fig. 2a). Regarding EPON 828, glycerol
and DEP, the critical-like parameterization definitively fails
(Fig. 2c). Because these compounds cannot be linked neither to
OS nor to PS cases, we assigned them as no-symmetry (NS)
compounds.

For ‘NS’ glass formers, the VFT equation fits the experimental
data fairly well as shown in Fig. 2e. It is noteworthy that for
ethanol and sorbitol, both equations (1) and (3) seem to offer
the acceptable parameterization (Fig. 2b,d).

For a further insight into the optimal t(T) parameterization,

an analysis exploring I � 1
DO Tð Þ behaviour has been carried out

(Fig. 3 and equation (11)). It is visible that for none of the tested
compounds, the evolution expected for BA49 (I � 1

DO Tð Þ¼ const)
or WM19 (b¼ I � 1

DO T ¼ 0ð Þ¼ 0) relations take place. Solely,
patterns expected for the VFT or the ‘critical-like’ description
occurs. Experimental results show that such patterns are
associated with three ‘terminal, convergence’ cases: (i)
n¼ � 1=bð Þ¼ � 1

�
I � 1

DO T ¼ 0ð Þ � 0:17, for ODICs and SGL
(PS case); (ii) nE1.53, for all LCs and also low-molecular-
weight sorbitol, propanol and polystyrene (OS case); (iii) nE1,
for DEP, EPON 828 and glycerol (NS case). Worth to mention is
that the points (i) and (ii) are related to approximately the same
value of the ‘critical’ exponent f¼ 8.5B12 in equation (3),
being remarkable that the I � 1

DO Tð Þ plot allows to separate OS and
PS cases.

A summary of the analysis covering 16 glass-forming systems is
presented in Fig. 4 and in the Supplementary Table S1. Apart from
the already-mentioned manifestation of three ‘characteristic’ values
of the coefficient n, which can be related to the local symmetry, two
more issues are notable. First, the clear access of the SGL system to
the PS group, together with ODICs. Second, the ‘intermediate’
cases between three characteristic values of the coefficient n. For
ethanol, the coefficient is nE1.2, whereas for propanol, being a
‘longer’ and thus more uniaxial compound and from the same
homologous series, the coefficient is nE1.5, as for LCs and
polystyrene. One of the ‘intermediate’ cases is cyclooctanol (plastic
crystal), for which nE0.8. In this case, the discrepancy may be
linked to some distortion from the optimal positional ordering.

Consequences for the configurational entropy. Assuming the
validity of equation (4), recalling equation (18) from Martinez-
Garcia et al.52 and the definition of the DO index by equation (8),
the following relation can be formulated:

IDOðTÞ
1=Tð Þ ¼

@ lnðEa Tð ÞÞ
@ð1=TÞ ¼ � 1

SCðTÞ
@SCðTÞ
@ð1=TÞ ð14Þ
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Figure 1 | Evolution of the DO temperature index for different equations portraying s(T) behaviour. (a,b) Evolutions of DO index for the WM (MYEGA)

(green line), VFT (wine line) and ‘critical-like’ dependences (blue line). The omitted BA equation yields a horizontal line.
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By applying experimental findings from the previous section, the
above equation can be written as:

@SC Tð Þ
@ 1=Tð Þ þ

1
aþ b=T

� �
SC Tð Þ¼ 0 ð15Þ

The latter directly yields the following solution:

SCðTÞ¼ S0 1þ b
a

� �
1
T

� �� �� 1=b

¼ S0 1� TN

T

� �n

ð16Þ

where the ‘singular’ temperature can be defined as TN¼ b=aj j and
the power exponent as n¼ � 1=b¼ � 1= I � 1

DO T ¼ 0ð Þ
	 


.
Equation (16) represents a new generalized dependence for the

evolution of the configurational entropy of glass-forming liquids,

allowing to construct the normalized/scaling plot shown in Fig. 5.
The scaling Fig. 5 covers the variety of ultraslowing glass-

forming systems ranging from low-molecular liquids and
polymers to plastic crystals, LCs and SGLs. Clearly visible are
three characteristic (universal?) values of the power exponent:
nE1.53, n¼ 1 and nE0.17, which can be linked to different
dominating molecular symmetries, as shown in the right part of
Fig. 5. Worth to mention is also that equation (16) has been
derived by the solution of the first-order differential
equation (15), without underlying assumptions that were used
in the derivation of equation (5). The latter is recovered for n¼ 1.
It is also noteworthy that equation (16) indicates a possible link
between the ‘critical’ temperature (TC) in equation (3) and the
VFT singular temperature (T0) in equation (1)).
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Discussion
In the year 2008, Hecksher et al.15 boosted the discussion
regarding one of the most fundamental experimental artifacts
within glass-transition physics, namely the validity of the VFT
equation, the existence of the ‘final temperature divergence’ oTg,
and the ultimate way of t(T) or Z(T) parameterization. This

discussion and subsequent papers28,29,52 have indicated that
parameterizations not associated with a ‘finite temperature
divergence’ may be crucial. All these findings indirectly
questioned the connection between the glass transition and a
hidden phase transition below Tg. However, parallel studies
exploring the linearized derivative and distortion sensitive
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the coefficient (n) related to VFT or ‘critical-like’ behaviours are indicated. The separation of OS and PS cases indicates the role of the symmetry.
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analysis led to a clear proof that the ‘critical-like’ description with
a finite temperature divergence may be optimal for liquid
crystalline glass formers, plastic crystals (not tested in Erwin
and Colby17) and even for selected low-molecular liquids and
polymers27,28.

This paper shows that the ‘finite temperature divergence’ in
ultraslowing glass-forming systems on approaching Tg may be
feasible not only for low-molecular-weight liquids and polymers
but also for LCs, plastic crystals and even SGL systems.
Surprisingly, a consistency seems to be possible, despite the fact
that a single equation for portraying the dynamics in the
ultraslowing domain for an arbitrary glass former may not exist.
It is worth stressing that the optimal parameterization via the
VFT equation should be considered solely for selected com-
pounds, and other systems such as parameterization is inherently
non-optimal. This fact ought to be taken into account when
validating different equations for portraying the t(T) or Z(T)
experimental behaviour.

We would like to stress the results of the analysis focused on
BA48,49 and WM (MYEGA) equations11,19,26 without the finite
temperature divergence.

Worth to mention is also a group of further equations of such
type2,3,13,15, which should be tested in the future.

In conclusion, the obtained key forms for t(T) or Z(T)
parameterization can be linked to predefined values of the
parameter/exponent n¼ � 1

�
I � 1

DO T ¼ 0ð Þ, as well as to the
dominating local symmetry. They are clearly associated with a
finite temperature divergence below the glass temperature. All
these results indicate qualitatively new links between glass
transition and critical phenomena.

Methods
Analysis of experimental data. The analysis of ‘dynamic’ experimental data
employing higher-order derivatives of t(T) or Z(T) experimental data is most often
avoided due to scatter associated with the inherent experimental error. In this
paper, this basic issue has been overcome due to the novel implementation of
Savitzky–Golay (SG) filtering procedure introduced in Martinez-Garcia et al.52

Determination of the AAE from s(T) experimental data. For estimating the DO
temperature index (IDO(T)), the experimental evolution of the AAE is needed

(equation (8)). So far, it was calculated from the ‘general’ apparent SA equation
via Ea Tð Þ¼RT ln t Tð Þ=t0ð Þ, assuming for t0¼ 10� 14 s, which is most often
considered as the ‘typical’ or ‘universal’ value, at least for ultraviscous liquids.
Notwithstanding, there is clear evidence that the value of t0 ranges from
10� 11–10� 16 s (ref. 49). The erroneous value t0 for a given experimental system
can notably influence estimations of Ea(T). In this paper, experimental values of
Ea(T) were calculated in a novel way, avoiding t0-related problems. The AAE
was calculated via H

0
a Tð Þ¼Ha Tð Þ=R¼ d ln t=d 1=Tð Þ. Ultimate estimation was

supported by the SG filtering procedure. Subsequently, the following ‘general’
first-order differential equation was solved:

@E0a 1=Tð Þ
@ 1=Tð Þ þ

E0a 1=Tð Þ
1=Tð Þ ¼

H0a 1=Tð Þ
1=Tð Þ

1=Tð Þ ! 1 : Eað0Þ; EaðTNÞ ! 1f g
1=Tð Þ ! 0 : Ea ¼ ctef g

ð17Þ

The ‘noise-related’ scatter of the calculated Ea(T) values was minimized by the SG
filtering procedure for each tested glass-forming system. In a next step, the DO was
calculated via the equation (8).

Derivations of the DO temperature indexes for selected equations describing
s(T) or g(T) evolutions. The form of IDO(T) for VFT equation (1) and BA relation
t Tð Þ¼ t0 exp A=TDð Þ can be found in Erwin and Colby17. The DO temperature
index for the WM (MYEGA) equation can be obtained by linking equation (2), the
SA equation and IDO(T) definition (equation (8)):

Ea Tð Þ¼RK exp
C
T

� �
; and then IWM

DO ¼ �
T

Ea Tð Þ
@Ea Tð Þ
@T

¼ �T@ C=Tð Þ¼ C
T

ð18Þ

Forms of IDO(T) for the critical-like case in the ultraslowing/ultraviscous dynamic
domain can be obtained by linking equation (3) and the general SA dependence
t Tð Þ¼ t0 exp E

0
a Tð Þ

�
RT

	 

:

E
0

a Tð Þ¼RT �f ln
T �TC

TC

� �
þ ln

tC

t0

� �� �
¼RT ln

TTC

T �TCð ÞT

� �f

þ ln
tC

t0

" #

ð19Þ

Ea Tð Þ¼E
0

a Tð Þ


R¼T ln
T

T �TC

� �f

þT ln
TC

T

� �f

þCT ð20Þ

This work focuses on the ultraviscous/ultraslowing dynamic domain close to Tg,
that is, for T-TC, hence:

Ea Tð Þ � T ln
T

T �TC

� �f

ð21Þ
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Figure 5 | Scaling configurational entropy plot. It shows the experimental evolution of the normalized structural entropy for selected experimental

ultraslowing systems. The analytic evolution related to PS, NS and OS patterns (solid curves) is coupled to different ‘universal’ values of the coefficient

exponent n¼ � 1/IDO
� 1(T¼0). The related symmetries are also illustrated.
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The latter equation can be re-written as:

Ea Tð Þ¼TTC ln
T

T �TC

� �f=TC

¼TTCd Tð Þ ð22Þ

The function d Tð Þ¼ ln T= T �TCð Þ½ �f=TC can be expanded into the Taylor series
because of its inherent features (f=TC oo 1) if |d(T)� 1|r1. This condition is
valid for ultraslowing ODICs, LCs and SGL systems tested in this paper. Taking
this into account, one obtains:

Ea Tð Þ¼TTC

X1
i¼ 1

� 1ð Þiþ 1

i
T

T �TC

� �f=TC

� 1

" #i

� TTC
T

T �TC

� �f=TC

ð23Þ

Then, recalling IDO(T) definition (equation (8)):

IDO Tð Þ¼ Icrit:
DO TÞ¼

T
T �Tc

� �
1
j ln tc

t0

� �
� ln T �Tc

Tc

h i � 1

0
@

1
A � f

T �Tc
ð24Þ

The evolutions of Icrit:
DO Tð Þ and 1

�
Icrit:

DO Tð Þ are presented graphically in Fig. 6.
The analytic form of the index is given in the bracket in equation (24)

and shown graphically in Figure 6, together with the approximation
Icrit:

DO ¼ Icrit:
DO ðapprox:Þ¼f=ðT �TCÞ. This figure is supplemented by the

experimental DO index for C7-OH (ODIC; plastic crystal) where the critical-like
parameterization of t(T) is optimal (see Fig. 2). The validity of Icrit:

DO approx:ð Þ for
portraying experimental data in the ultraslowing domain (below TB) is clearly
visible.
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