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THEOREM . There exists a non trivial fourth-order algebraic differential 
equation 

P(y',y",y'",y"") = o, 

where P is a polynomial in four variables, with integer coefficients, such that for 
any continuous function y on (--00, °°) and for any positive continuous function 
e(t) on (-°°, °°), there exists a C°° solution y of * such that 

1X0 ~ *(0 I < c(0 for all t <E (-00,00). 

One such specific equation (homogeneous of degree seven, with seven terms 
of weight 14) is 

3/yy'"2 - 4 / y "V" + 6 / y y v 

+ 2 4 / y y " - 1 2 / y y " 3 - 2 9 / y y " 2 + ny1 = o. 

REMARK 1. From the proof, it will be clear that we can in addition en
sure that y(tj) — y(tj) for any sequence (tj) of distinct real numbers such that 
\tj\ —* °° as ƒ —> oo. 

REMARK 2. We may moreover make y monotone if <p is monotone. 
REMARK 3. Without changing the equation *, if y and e are only defined on 

an open interval I, then we can make \y(t) - <p(f)l < e(t) for all t E I, where y is 
a C°° solution of * on I. 

If we regard the uniform limits of solutions of * as "weak solutions" (the 
way y = \t\ is a weak solution of yy - t - 0 as the limit of (t2 4- e2)1/2 as e —* 0), 
then a corollary of our Theorem is that every continuous function </? is a weak 
solution of *. 

This Theorem may be regarded as an analogue, for analog computers, of the 
Universal Turing Machine (see [R, p. 23]), because of a theorem of Shannon (see 
[S, Theorem II] ) that identifies the outputs of analog computers with the solu
tions of algebraic differential equations. A later paper of Pour-El requires some 
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uniqueness of the solutions of the differential equations, and it is an open prob
lem whether we can require, in our Theorem, that the solution y of * that ap
proximates q> be the unique solution for its initial data. In a similar vein, we 
could ask for approximation by analytic solutions of a suitable ADE. Also see 
[J], where certain universal diophantine equations are written down. 

We go briefly into the history of our Theorem. In 1899, Borel [BO] found 
a majorant near °° of all solutions of all first-order algebraic equations. He 
claimed a similar majorant for the «th order equation, but his proof had a gap. In 
[BBV] and [V] in 1932 and 1937, Vijaraghavan and others constructed a second-
order algebraic differential equation that has solutions that have no a priori major-
ant. In 1973, Babakhanian showed that a tower of n exponentials satisfies an 
ADE of order n but not one of smaller order. Hence, for any ADE, P(t, u) = 0, 
there is a solution u of some ADE, Q(t, it) = 0, that is not a solution of P(t, it) 
= 0. We use it as shorthand for u, u', . . . , u{n). In 1975, Bank (see [BA, 
Theorem 4] ) modified the [BBV] example to produce increasing solutions of a 
third-order ADE that have no a priori majorant. It is an open problem whether 
there are a priori bounds for entire solutions of algebraic differential equations in 
the complex domain—see [BA] for a partial discussion of this and related ques
tions. One is free to speculate whether the order 4 in our Theorem is best-pos
sible. 

We thank Michael Filaseta and C. Ward Henson for helping with the com
puter calculations. We express special gratitude to Lawrence G. Brown for point
ing out that the calculations were feasible because of heavy cancellation of terms. 

PROOF OF THE THEOREM. We shall write down the polynomialP expli
citly. Let 

with g(t) = 0 for all other t, and let 

f(t)=fg(t)dt. 

We shall call the (graph of) ƒ "a primitive S-module". 
Now g satisfies the first-order ADE 

so that ƒ and every af + b, where a and b are constants, satisfies the second 
order ADE 

f\t)(l - t2)2 + f'(t)2t = 0. 

The idea is to write down a fourth order ADE, by differentiation and elimination, 
that is satisfied by every function y = Af (at + j8) + B, whatever the constants 
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A, a, p, B. Our original method, using resultants, led to a twelfth-order equation. 
Lawrence G. Brown has found the following simple way that leads to a seventh-
order equation. We are grateful to him for his permission to give it here. 

Put y = Af (at + |3) + B so that 
(1) y'=Aaf\ 
(2) y"=Aa2f\ 
(3) y'"=AaY\ 

(4) y""=Aa*f"", 
where (for \s\ < 1) 

o /'(s) = e-i/a-*2) 

( 1 - 5 2 ) 2 

(iii) f'"(s) = fa4~2 e~ » /d -^ 2 ) , 
( 1 - s 2 ) 4 

(iv) ƒ""(*) = ~24*? ~ 125s + 40s3 - 12a g _ , / ( 1 _,2> 

( 1 - s 2 ) 6 

In principle, one could solve for A, a, ft in terms of y', y", y"\ and t and 
substitute into the expression for y"". In practice, we let s = at + ft A = 
A exp(-l/(l - s2)), and solve for A, a, s. A surprising amount of cancellation 
takes place, so that the resulting ADE is simpler than one would expect in ad
vance. The computations are not without tedium. 

From (l),Aa — y so that (2) becomes 

y" = <*y'[—^-\ (2') 
2 \2 

and (3) becomes 

From (2'), we get 

so that (3') becomes 

, (1-*2) 

, 6s4 - 2 
azy . (3 ) 

o - * 2 ) 4 

2 \2 y" (i - s2) 
y 2s 

Z Ü 3 s 4 - 1 
y' 2s2 
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From this we get 

3y"s4-2y'y'"s2-y"2=09 

so that 

j 2_/y" + vyv"2 + 3/'4 

3 / ' 2 

Substituting into (4), we get 

„„ = -y"3 -6s6 - 3s4 + 10s2 - 3 
y y'2 2s2 

Putting in the expression for s2 and rationalizing the denominator, we get 

/'" = — — [2/V"2 - 12/'4 - 3 / /V" 
3 / V 

+ (6/'2 + 2 / / V / y " 2 + 3 / ' 4 ] . 
Clearing fractions, isolating the square root on one side of the equation, and 

squaring both sides, we obtain an ADE of degree 8, divisible by 3y"'. We get 

3 / y y " 2 - 4 / y ' V " + 6 / y y y " + 2 4 / y y " 

- 1 2 / y y 3 - 2 < y y y "2 + 1 2 / ' 7 = 0, 
which is the announced equation, after dividing out the 3y" term. 

It remains to prove that the C°° solutions y of P = 0 approximate the given 
function y within e(t). Since y can be so approximated by a piecewise affine 
function, there is no harm in taking y itself to be a piecewise affine function. 

Now call an "S-module" any function of the form F — af (at 4- ]3) + b on a 
closed interval /, that is constant in neighborhoods of the endpoints of /. If 
/ = [a, b] then an ^-module o(t) is a C°° function that takes some value A at a, 
some value B dit b, is constant for a < t < a + 8, is constant for Z> - 8 < £ < b 
and is a particular monotone function on a + 8 < t < Z> - ô, for some small 
constant 5. It is clear that every S-module satisfies *. Moreover, any "S-chain" 
is also a solution of *, where by S-chain we mean any C°° function that consists 
of ^-modules pieced together, possibly countably many. 

Let us take any finite interval K on which if is affine. Cut K into a large 
number N of equal pieces (depending on the infimum of e(f) over K and on the 
slope of (/? on K) and sew together N small ^-modules that interpolate ^ at the 
endpoints of the N sub intervals. Since ^ is monotone, and since the ^-modules 
are likewise monotone, they differ by less than e(t) on AT if TV is large enough. 
Now proceed with the next affine piece of y, and join all the S-modules into an 
infinite S-chain. This will be the graph of a C°° solution of *, and the result is 
proved. 
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Note. It has just come to my attention that R. C. Buck has obtained uni
versal partial algebraic differential equations using Kolmogorov's solution of 
Hilbert's Thirteenth Problem; see R. C. Buck, The solutions to a smooth PDE can 
be dense in C[ï\, J. Differential Equations (to appear). 
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