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Abstract

Interatomic potentials (IAPs), which describe the potential energy sur-
face of atoms, are a fundamental input for atomistic simulations. However,
existing IAPs are either fitted to narrow chemistries or too inaccurate for
general applications. Here, we report a universal IAP for materials based
on graph neural networks with three-body interactions (M3GNet). The
M3GNet IAP was trained on the massive database of structural relaxations
performed by the Materials Project over the past 10 years and has broad
applications in structural relaxation, dynamic simulations and property pre-
diction of materials across diverse chemical spaces. About 1.8 million ma-
terials were identified from a screening of 31 million hypothetical crystal
structures to be potentially stable against existing Materials Project crys-
tals based on M3GNet energies. Of the top 2000 materials with the lowest
energies above hull, 1578 were verified to be stable using DFT calculations.
These results demonstrate a machine learning-accelerated pathway to the

discovery of synthesizable materials with exceptional properties.

Atomistic simulations are the bedrock of in silico materials design. The first step in most
computational studies of materials is obtaining an equilibrium structure, which involves
navigating the potential energy surface (PES) across all independent lattice and atomic
degrees of freedom in search of a minimum. Atomistic simulations are also used to probe
the dynamical evolution of materials systems and to obtain thermodynamic averages and
kinetic properties (e.g., diffusion constants). While electronic structure methods such as
density functional theory (DFT) provide the most accurate description of the PES, they are
computationally expensive and scale poorly with system size.

For large-scale materials studies, efficient, linear-scaling interatomic potentials (IAPs)
that describe the PES in terms of many-body interactions between atoms are often necessary.
However, most IAPs today are custom-fitted for a very narrow range of chemistries, often for

a single element or up to no more than 4-5 elements. The most popular “general purpose”



[APs are the AMBER family of force fields™*# and the Universal Force Field (UFF)." However,
both were formulated primarily for molecular/organic systems and have limited support and
accuracy in modeling crystal structures. More recently, machine learning (ML) of the PES
has emerged as a particularly promising approach to IAP development.**® These so-called
ML-TAPs typically express the PES as a function of local environment descriptors such
as the interatomic distances and angles, or atomic densities, and have been demonstrated
to significantly outperform classical IAPs across a broad range of chemistries.” Message-
passing and graph deep learning models®®2 have also been shown to yield highly accurate
predictions of energies and/or forces of molecules as well as a limited number of crystals, such
as Li;P3S,," and Li, Si, ¥ for lithium-ion batteries. Nevertheless, no work has demonstrated
a universally applicable TAP across the periodic table and for all crystal types.

In the past decade, the advent of efficient and reliable electronic structure codes™ with
high-throughput automation frameworks'®*? have led to the development of large federated
databases of computed materials data, such as the Materials Project,* AFLOW,“Y Open
Quantum Mechanical Database (OQMD),** NOMAD,** etc. Most of the focus has been on
the utilization of the final outputs from the electronic structure computations carried out
by these database efforts, namely, the equilibrium structures, energies, band structures and
other derivative material properties, for the purposes of materials screening and design. Less
attention has been paid to the huge quantities of PES data, i.e., intermediate structures
and their corresponding energies, forces, stresses, that have been amassed in the process of
performing structural relaxations.

In this work, we develop the formalism for a graph-based deep learning IAP by combining
many-body features of traditional IAPs with those of flexible graph material representations.
Utilizing the largely untapped dataset of more than 187,000 energies, 16,000,000 forces and
1,600,000 stresses from structural relaxations performed by the Materials Project since its
inception in 2011, we trained a universal material graph with three-body interactions neural

network (M3GNet) IAP for 89 elements of the periodic table with low energy, force, and



stress errors. We demonstrate the applications of M3GNet in the calculations of phonon
and elasticity, structural relaxations, etc. We further relaxed ~30 millions of hypothetical

structures for new materials discovery.

Materials Graphs with Many-Body Interactions

Mathematical graphs are a natural representation for crystals and molecules, with nodes and
edges representing the atoms and the bonds between them, respectively. In traditional graph
neural network (GNN) models for materials, information flows between the node, edge, and,
optionally, state vector attributes via successive application of graph convolutional or update
operations.“**" Typically, the input bond attribute is based on an interatomic pair distance
measure, such as a Gaussian basis expansion. While such graph deep learning models have
proven to be exceptionally effective for general materials property predictions,?**“? they are
not suitable as IAPs due to the lack of physical constraints such as continuity of energies
and forces with changes with the length and number of bonds.

Here, we develop a new materials graph architecture that explicitly incorporates many-
body interactions (Figure [1]). The materials graph is represented as G = (V, &, X, [M, u]]),
where v; € V is atom information for ¢, e;; € £ is the bond information for bond connected
by atom ¢ and j, and u is the optional global state information, as temperature, pressure
etc. A key difference with prior materials graph implementations is the addition of x; € X,
the coordinates for atom 4, and M, the optional 3 x 3 lattice matrix in crystals, which are
necessary for obtaining tensorial quantities such as forces and stresses via auto-differentiation.

The neighborhood of atom i is denoted as N;. Taking inspiration from traditional IAPs
such as the Tersoff bond order potential,*® we consider all other bonds emanating from atom
¢ when calculating the bond interaction of e;;. To incorporate n-body interactions, each e;;

is updated using all distinct combinations of n — 2 neighbors in the neighborhood of atom 2



excluding atom j, i.e., N;/j, denoted generally as follows:
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where ¢, is the update function and r; is the vector pointing from atom ¢ to atom k.
In practice, this n-body information exchange involves the calculation of distances, angles,
dihedral angles, improper angles, etc., which escalates combinatorially with the order n as
(M; — 1)!/(M; — n + 1)! where M; is the number of neighbors in N;. For brevity, we will
denote this materials graph with n-body interactions neural network as MnGNet. In this
work, we will focus on the incorporation of three-body interactions only, i.e., M3GNet.

Let 0;;; denote the angle between bonds e;; and e;;. Here, we expand the three-body
angular interactions using an efficient complete and orthogonal spherical Bessel function and
spherical harmonics basis set, as proposed by Klicpera et al."¥ The bond update equation

can then be rewritten as:
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where W and b are learnable weights from the network, j; is the spherical Bessel function
with the roots at z,, 7. is the cutoff radius, Y;" is the spherical harmonics function with
m = 0, ® is the element-wise product, ¢ is the sigmoid activation function, f.(r) = 1 —
6(r/r.)°+15(r/r.)*=10(r/r.)3 is the cutoff function ensuring the functions vanishes smoothly
at the neighbor boundary,*” and g(z) = zo(z) is the nonlinear activation function.”” &;; is a
vector of length n,,4.lmaex expanded by indices [ = 0,1, ..., lee — L and n = 0,1, ..., Nppee — 1.

Following the n-body interaction update, several graph convolution steps are carried out

sequentially to update the bond, atom and, optionally, state information, as follows:
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where ¢.(z) and ¢.(z) are gated multi-layer perceptrons as in Equation [0} @ is the con-
catenation operator, N, is the number of atoms, and e% are the distance-expanded basis
functions with values, first and second derivatives smoothly go to zero at the cutoff bound-
ary (see Methods). Such a design ensures that the target values and their derivatives up to
second order change smoothly with changes in the number of bonds. w inputs and updates
are optional to the models since not all structures or models have state attributes.

Each block of multi-step updates (n-body, bond, atom, state) can be repeated to construct

models of arbitrary complexity, similar to previous materials graph network architectures.?”

M3GNet Interatomic Potential

To develop an IAP using the M3GNet architecture, crystal structures with corresponding
energies (F), forces (f) and stresses (o) as targets were used as training data. The model
generate trainable targets via auto-differentiation with f = —0FE/dx and o = V10E/de,

where @ are the atomic coordinates, V' is the volume, and ¢ is the strain.

Benchmark on IAP datasets

As an initial benchmark, we selected a diverse DF'T dataset of elemental energies and forces
previously generated by Zuo et al.” for fcc Ni, fece Cu, bee Li, bee Mo, diamond Si and
diamond Ge. From Table [1 the M3GNet IAPs significantly outperform classical many-
body potentials such as the embedded atom method (EAM) and modified EAM (MEAM)
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Figure 1: Schematic of the many-body graph potential and the major compu-
tational blocks. The model architecture starts from a position-included graph, and then
goes through a featurization process, followed by main blocks, and the readout module with
energy, force and stress outputs. The featurization process consists of the graph featurizer
and the many-body computation module. In the graph featurizer, the atomic number of
elements were embedded into a learnable continuous feature space, and the pair bond dis-
tances were expanded onto a basis set with values and derivatives up to second order going
to zero at boundary. The many-body computation module calculates the three-body and
many-body interaction atom indices and the associated angles. The main block consists of
two main steps, namely the many-body to bond module and standard graph convolution.
The many-body to bond step calculates the new bond information e;; by considering the
full bonding environment N; of atom i via many-body angles such as 0}, Txiji, etc., and
the bond length 7y, 75, 7y, etc. The standard graph convolution updates bond, atom, and
the optional state information iteratively. During the readout stage, atom information in
the graph was passed to a gated MLP for obtaining atomic energy, which sums to the total
energy. The derivatives of the total energy give force and stress outputs.



and performs comparably to local environment-based ML-IAPs such as the Behler-Parinello
neural network potential (NNP)% and moment tensor potential (MTP).” It should be noted
that while ML-IAPs can achieve slightly lower energy and force errors than M3GNet [APs, it
comes at a substantial loss in flexibility in handling multi-element chemistries. Incorporating
multiple elements in ML-IAPs results in a combinatorial explosion in number of regression
coefficients and corresponding data requirements. For instance, the MTP requires O(n?,)
regression coefficients alone to describe the element interactions, where ng, is the number
of elements. In contrast, the M3GNet architecture represents the elemental information for
each atom (node) as a learnable embedding vector. Such a framework is readily extendable
to multi-component chemistries. For instance, the M3GNet-all IAP trained on all six ele-
ments perform similarly to the M3GNet IAPs trained on individual elements. The M3GNet
framework, like other GNN, is able to capture long-range interactions without the need to
increase the cutoff radius for bond construction (Figure S1). At the same time, unlike the
previous GNN models, the M3GNet architecture still retains a continuous variation of en-

ergy, force and stress with changes of the number of bonds (Figure S2), a crucial requirement

for TAPs.

Universal Interatomic Potential for the Periodic Table

To develop an TAP for the entire periodic table, we leveraged on one of the largest open
databases of DFT crystal structure relaxations in the world - the Materials Project.”Y The
Materials Project performs a sequence of two relaxation calculations®® with the Perdew-
Burke Ernzerhof (PBE)®! generalized gradient approximation (GGA) functional or the GGA+U
method? for every unique input crystal, typically obtained from an experimental database
such as the Inorganic Crystal Structure Database (ICSD).®¥ Our initial dataset comprises
a sampling of the energies, forces and stresses from the first and middle ionic steps of the
first relaxation and the last step of the second relaxation for calculations in the Materials

Project database that contains “GGA Structure Optimization” or “GGA-+U Structure Op-



Table 1: M3GNet models errors compared to the existing models EAM, MEAM,
NNP, and MTP on the single-element dataset from Zuo et al.” In each cell, the
errors are reported in root mean squared error (RMSE) by averaging results
from three independent model training. The M3GNet-all model trains all six
elements in one model.

Element | M3GNet | M3GNet-all | EAM | MEAM | NNP | MTP
Energy (1073 eV atom™!)

Ni 0.9 1.9 8.5 23.0 2.3 0.8
Cu 1.8 2.3 7.5 10.5 1.7 0.5
Li 2.5 4.7 368.6 - 1.0 0.7
Mo 6.3 6.8 68.0 36.4 5.7 3.9
Si 9.6 6.8 - 111.7 9.9 3.0
Ge 9.4 5.9 - - 11.0 3.7
Force (1073 eV A1)
Ni 374 37.0 110 330 67.3 26.9
Cu 17.0 16.9 120 240 63.0 13.5
Li 22.1 24.5 140 - 63.4 13.2
Mo 193.7 271.4 520 220 198.7 148.1
Si 102.8 126.2 - 400 174.2 88.1
Ge 76.4 78.4 - - 124.3 70.3

timization” task types as of Feb 8, 2021. The snapshots that have a final energy per atom
greater than 50 eV atom™! or atom distance less than 0.5 A were excluded, since those tend
to be the result of errors in the initial input structure. In total, this “MPF.2021.2.8” dataset
contains 187,687 ionic steps of 62,783 compounds, with 187,687 energies, 16,875,138 force
components, and 1,689,183 stress components. The dataset covers an energy, force and stress
range of [-28.731, 49.575] eV atom ™!, [-2570.567, 2552.991] eV A~! and [-5474.488, 1397.567]
GPa, respectively (Figure ,b). The majority of structures have formation energies between
-5 and 3 eV atom™!, as shown in Figure S3. While the distribution of forces is relatively
symmetric, the stress data contains a slightly higher proportion of negative (compressive)
stresses than positive stresses due to the well-known tendency of the PBE functional to un-
derbind. The radial distribution function g(r) (Figure 2k) shows that the dataset also spans
a broad range of interatomic distances, including small distances of less than 0.6 A that are

essential for the M3GNet model to learn the repulsive forces at close distances. The dataset



encompasses 89 elements of the periodic table. More information about the MPF.2021.2.8
data distribution is provided in Table S1. This dataset is then split into the training, val-
idation and test data in the ratio of 90%, 5% and 5%, respectively, according to materials
not data points. Three independent data splits were performed.

In principle, an IAP can be trained on only energies, or a combination of energies and
forces. In practice, the M3GNet AP trained only on energies (M3GNet-F) was unable to
achieve reasonable accuracies for predicting either forces or stresses, with mean absolute
errors (MAESs) great than even the mean absolute deviation of the data (Table S2). This is
the result of the amplification of errors when calculating the derivatives when only energy
data is used. The M3GNet models trained with energies + forces (M3GNet-E F') and energies
+ forces + stresses (M3GNet-EF'S) achieved relatively similar energy and force MAEs, but
the MAE in stresses of the M3GNet-EF'S was about half that of the M3GNet-E F' model.
Accurate stress predictions are necessary for applications that involve lattice changes, such
as structural relaxations or NpT molecular dynamics (MD) simulations. Our results suggest
that it is critical to include all three properties (energy, force, and stress) in the model
training to obtain a practical IAP. The final M3GNet-EF'S TAP (henceforth, referred to
simple as the M3GNet model for brevity) achieved an average of 0.035 eV atom™!, 0.072 eV
A-' and 0.41 GPa for energy, force, and stress test MAE, respectively.

We further investigated the test error distributions of one final M3GNet model. Generally,
the model predictions and the DF'T ground truth match well as revealed by the high linearity
and the R? values for the linear fitting between DFT and model predictions (Figure —c)
The cumulative distribution of the model errors indicate that 50% of the data has energy,
force, and stress errors lower than 0.01 eV atom™", 0.033 eV A~ and 0.042 GPa, respectively
(Figure -f ). Even more stringent tests were carried out using phonon and elasticity calcu-
lations, which were not part of the original training data. The M3GNet model can reproduce
accurate phonon dispersion curves and density of states (DOS) of S-cristobalite, stishovite,

and a-quartz SiO, (Figure S4) to quantitative agreements with expensive DFT computa-
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Figure 2: The distribution of the MPF.2021.2.8 dataset. Structural energy per atom
versus force components (a) and stress components (b) distributions. ¢, The radial distri-
bution function ¢(r) and pair atom distance distribution density. The short distance (<1.1
A) density is made of mostly hydrogen bonded with O, C and N, illustrated in the inset. d,
Element counts for all atoms in the dataset, covering 89 elements across the periodic table.
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Figure 3: The model predictions on the test dataset compared to DFT calcula-
tions. a-c, The parity plots for energy, force and stress, respectively. The model predicted
results are E, f , and o. The dashed lines are y = x as guides for the eye. d-e, The cumu-
lative distribution of errors for energy, force and stress, respectively. The horizontal dashed
lines indicate the model errors, from bottom to top, at 50%, 80% and 95%. g, The compar-
ison between model calculated 1,521 phonon density of state (DOS) center data (w) and the
PBEsol DFT calculations (@) from Petretto et al.*¥ and h, the 11,848 Debye temperatures

(excluding negative moduli) calculated from M3GNet model (Tpepye) and PBE DFT elastic

tensors from de Jong et al.3%
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tions.®* The M3GNet phonon DOS centers & from phonon calculations using predicted forces
and the frozen phonon approach are also in good agreement with DFT computed values with
a MAE of 44.2 ecm™! (Figure [3g).** The systematic underestimation by the M3GNet model
relative to DFT is likely due to the different choices of pseudopotentials; the DFT phonon
calculations were performed using the PBEsol®® functional while the M3GNet training data
comprised of PBE/PBE+U calculations.*®¥* This systematic underestimation can be cor-
rected with a constant shift of 31.6 cm~! and the MAE reduces to 28.8 cm™!. Such errors
are even lower than a state-of-the-art phonon DOS peak position prediction model which
reported MAE of 36.9 cm™1.%? We note that the DOS peak prediction model does not ex-
hibit a systematic shift as it was directly fitted on the data by minimizing a mean-squared
error. Similar to DFT, the relationship @ oc 1/(m)?, where m is the average atomic mass, is
obtained (Figure S5). The M3GNet-calculated Debye temperatures are less accurate (Figure
), which can be attributed to relative poor M3GNet predictions of the shear moduli (R?
= 0.134) (Figure S6), though the the bulk moduli predictions (R? = 0.757) are reasonable.

The M3GNet model was then applied in a simulated materials discovery workflow where
the final DFT structures are not known a priori. M3GNet relaxations were carried out on
the initial structures from the test dataset of 3,140 materials. M3GNet relaxation yields
crystals that have volumes much closer to the DFT reference volumes (Figure [4h). While
50% and 5% of the initial input structures have volumes that differ from the final DFT
relaxed crystals by more than 2.4% and 22.2%, respectively, these errors are reduced to 0.6%
and 6.6% via M3GNet relaxation. Correspondingly, the errors in the predicted energies E are
also much smaller (Figure [4p). Using the initial structures for direct model predictions, the
energy differences distribute broadly, with considerable amount of structures having errors
larger than 0.1 eV atom™!. All errors here were calculated relative to the DFT energies of
the final DFT-relaxed structures for each material. The overall MAE is 0.169 eV atom™!
with ~ 20% of the structures having errors greater than 0.071 eV atom ™' (Figure{4b). These

errors are far too large for reliable estimations of materials stability, given that 90% of all
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inorganic crystals in the ICSD has an energy above the convex hull of less than 0.067 eV
atom~!.%? In contrast, energy calculations on the M3GNet-relaxed structures yield a MAE
of 0.035 eV atom™! and 80% of the materials have errors less than 0.028 eV atom™'. The
error distributions using M3GNet relaxed structures are close to the case where we know
the DFT final structures, as shown in Figure @b, suggesting that M3GNet potential can
be accurate in helping getting the correct structures. In general, relaxations with M3GNet
converges rapidly, as shown in Figure S7. An example of M3GNet relaxation is shown in
Figure S8 for K;,Se;, (mp-685089), a material with one of the largest energy change during
relaxation. Convergence is achieved after about 100 steps when the forces falls under 0.1 eV
A-1. The X-ray diffraction (XRD) pattern of the M3GNet-relaxed structure also resembles
the counterpart from DFT relaxation (Figure S8g). This relaxation can be performed on a
laptop in about 22 seconds on a single CPU core of Intel(R) Xeon(R) CPU E5-2620 v4 @
2.10GHz, while the corresponding DFT relaxation took 15 hours on 32 cores in the original

Materials Project calculations.
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Figure 4: Relaxation of crystal structures with M3GNet. a, Distribution of the
absolute percentage error in volumes of M3GNet-relaxed structures relative to DFT-relaxed
structures. b, The differences between M3GNet-predicted energies E and ground state (gs)
energies Iy, using the initial, M3GNet-relaxed and DFT-relaxed structures. E,, is defined
as the DFT energy of the DFT-relaxed crystal. The horizontal lines mark the 50th, 80th,
and 95th percentiles of the distributions and the corresponding x axis values are annotated.
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New Materials Discovery

The ability of M3GNet to accurately and rapidly relax arbitrary crystal structures and pre-
dict their energies makes it ideal for large-scale materials discovery. To generate hypothetical
materials, combinatorial isovalent ionic substitutions based on the common oxidation states
of non-noble-gas element were performed on 5,283 binary, ternary and quaternary structural
prototypes in the 2019 version of the ICSD"¥ database. Only prototypes with less than 51
atoms were selected for computational speed considerations. Further filtering was performed
to exclude structures with non-integer or zero-charged atoms. A total of 31,664,858 hypo-
thetical materials candidates were generated, more than 200 times the total number of unique
crystals in the Materials Project today. All structures were relaxed using the M3GNet model
and their signed energy distance to the Materials Project convex hull were calculated using
the M3GNet IAP-predicted energy (Enu-m). We acknowledge that some of the generated
structures may compete with each other for stability. However, to avoid introducing addi-
tional uncertainties into the Ey._,, predictions, we have elected to compute Ey,_n, relative
to ground-truth DF'T energies in the Materials Project as opposed to the higher uncertainty
M3GNet-computed energies. A zero or negative Ey,; means that the material is predicted to
be potentially stable compared to known materials in MP. The more negative the Fj .y, the
greater the probability that a material is likely to be stable after accounting for uncertain-
ties in the M3GNet-predicted energies. In total, 1,849,096 materials have Ey,_., less than
0.001 eV atom™!. We then excluded materials that have non-metal ions in multiple valence
states, e.g., materials containing Br™ and Br~ at the same time, etc. It is well-known that
PBE overbinds single-element molecules such as O,, Sg, Cl,, etc. and negative anion energy
corrections are applied to ionic compounds in Materials Project to offset such errors.* How-
ever the corrections are based mostly on composition, which may artificially over-stabilize
materials with multi-valence non-metal ions. We have developed a searchable database for
the generated hypothetical structures and their corresponding M3GNet-predicted properties

at http://matterverse.ai.
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A formation energy model based on the Matbench®? Materials Project data was devel-
oped using the same architecture as the M3GNet IAP model (see Table S3). Materials with a
difference in the signed energy distance to the Materials Project convex hull from this model
(Enan—t) and By greater than 0.2 eV atom™! were then discarded in the subsequent DFT
analysis. This additional step removes materials with higher energy prediction uncertainties,
which account for 13.1% (243,820) of the predicted materials. It should be noted that this
step can also be omitted to simplify the discovery workflow, though potentially with impact
on the hit rate of stable materials discovery. The top-1000 lowest F}1_n, materials from any
chemistry as well as the top-1000 metal oxides with elements from the first five rows (exclud-
ing Tc due to radioactivity and Rb due to high dominance) were then selected for validation
via DFT relaxation and energy calculations. Only the most stable polymorphs were selected
for each composition. It was found that the distribution in the DFT calculated Eynui—as
matches well with the distributions of Eyu_m (Figure|5h). For most computational materi-
als discovery efforts, a positive threshold, typically around 0.05-0.1 eV atom™!, is applied to
identify synthesizable materials. This positive threshold accounts for both errors in DF'T cal-
culated energies as well as the fact that some thermodynamically meta-stable materials can
be realized experimentally. Of the top-1000 materials from any chemistry, 999 were found
to have a Epua_qr < 0.001 eV atom™ (Figure [5b) and none of them were in the Materials
Project database. For the top-1000 oxides, 579, 826, and 935 were found to be synthesizable
based on Elu_gg thresholds of 0.001, 0.05 and 0.1 eV atom ™!, respectively (Figure[5b). Out
of the 579 DFT-stable oxides, only five, namely Mg,Nb,O,, Sr;V,0q, K,Sn0O,, Cd(RhO,),,
CoMnQ,, were previously known and matched with the Materials Project structures. The
effectiveness of the M3GNet IAP relaxations can be seen in Figure S9, which show that the
energy changes during subsequent DFT relaxations (of the MEG3Net-relaxed structures) are
at least one order of magnitude smaller than the energy changes during M3GNet relaxation.
The final M3GNet-relaxed energies are in excellent agreement with the final DFT-relaxed

energies, with MAEs of 0.112 and 0.045 eV atom™! for the top 1000 materials in any chem-
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istry and the oxide chemistry, respectively (Figures —d). Using the M3GNet TAP, we have
also assessed the dynamic stability of the 1578 materials with Epg_gr < 0.001 eV atom™!
using phonon calculations. A total of 328 materials do not exhibit imaginary frequencies in
their M3GNet phonon dispersion curves. Four phonon dispersion curves are shown in Figure
[6l The others are provided in Data Availability.

As an additional evaluation of the performance of M3GNet for materials discovery, we
computed the discovery rate, i.e., the fraction of DFT-stable materials (Eyu_ar < 0) for
1000 structures uniformly sampled from the ~ 1.8 million materials with Ey, -, < 0.001 eV
atom~!. The discovery rate remains close to 1.0 up to a Eyu—m threshold of around 0.5 eV
atom~! and remains at a reasonably high value of 0.31 at the strictest threshold of 0.001 eV
atom ™!, as shown in Figure S10. For this material set, we also compared the DFT relaxation
time cost with and without M3GNet pre-relaxation. The results show that without M3GNet

pre-relaxation, the DFT relaxation time cost is about three times of that with the M3GNet

relaxation, as shown in Figure S11.

Discussion

A universal IAP such as M3GNet has applications beyond crystal structure relaxation and
stability predictions. For instance, a common application of IAPs is in molecular dynamics
(MD) simulations to obtain transport properties such as diffusivity and ionic conductivity.
The Arrhenius plot from MD simulations at multiple temperatures of the recently discovered
Li superionic conductor Li; YCl; is shown in Figure S12. The results agree well with the ionic
conductivity and activation barriers from previous ab initio MD simulations.#? Training an
IAP for a complex multi-component systems such as Li; YCl; is typically a highly-involved
process,*¥ while the M3GNet IAP can be universally applied to any material without further
retraining. As shown in Figure S13, M3GNet MD calculations can potentially be applied to a

wide range of Li-containing compounds to identify potential lithium superionic conductors.
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Figure 6: M3GNet-calculated phonon dispersion curves of four new materials
predicted to be thermodynamically and dynamically stable. a, SrsSc,Al,O,5; b,
K,Li;AlO,; ¢, KMN,V,0,,; d, MnCd(GAO,),
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Furthermore, the M3GNet IAP can also serve as a surrogate model in lieu of DFT with
other structural exploration techniques such as evolutionary algorithms like USPEX*# and
CALYPSO® or generative models such as CDVAE“" to generate more diverse and uncon-
strained candidates.

It should be noted that the current M3GNet TAP reported in this work is merely the
best that can be done at present with available data. Further improvements in accuracy
can be achieved through several efforts. First, the training data for the M3GNet AP comes
from DFT relaxation calculations in the Materials Project, which were performed with less
stringent convergence criteria such as a lower energy cutoff and sparser k-point grids. For
IAP development, a best practice is to obtain accurate energies, forces and stresses via single-
point, well-converged DFT calculations for training data. Building such a database is an
extensive effort that is planned for future developments in the Materials Project. Second,
active learning strategies, for instance, by using the DF'T relaxation data from the M3GNet-
predicted stable crystals in a feedback loop, can be used to systematically improve the
M3GNet TAP, especially in under-explored chemical spaces with the greatest potential for
novel materials discoveries. Nevertheless, about 1.8 million of the 31 million candidates
were predicted to be potentially stable or meta-stable by M3GNet against materials in the
Materials Project, which already expands the potential exploration pool by an order of
magnitude over the ~140,000 crystals in the Materials Project database today. We shall note
that the potentially stable materials will need to be further verified with DFT calculations
and experimental synthesis.

The model uncertainty will also play a role in further decreasing the number of true
discoveries. The candidate space contains 294,643 chemical systems, while the Materials
Project has only about 47,000 chemical systems. Hence, we likely see many extrapolations
in the predictions. For example, some of the most uncertain predictions are from chemical
systems such as F-Fe-Se-W, F-Fe-S-W, F-Fe-Te-W, F-Ni-S-W, and Co-F-S-W, which are not

represented in the Materials Project training data.
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Finally, the M3GNet framework is not limited to crystalline IAPs or even IAPs in general.
The M3GNet formalism without lattice inputs and stress outputs is naturally suited for
molecular force fields. When benchmarked on MD17 and MD17-CCSD(T) molecular force
field data (Table S4 and S5),*"* the M3GNet models were found to be more accurate
than the embedded atom neural network (EANN) force field®” and perform similarly to the
state-of-the-art message-passing networks and equivariant neural network models. Moreover,
by changing the readout section from summed atomic energy as in Figure [I] to intensive
property readout, the M3GNet framework can be used to develop surrogate models for
property prediction. We trained M3GNet models on the Matbench materials data covering
nine general crystal materials properties (Table S3).” In all cases, the M3GNet models
achieved excellent accuracies.
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Methods

Model construction
Neural network definition

If we denote one layer of the perceptron model as
El; cx— g(Wiz + by)
then the K-layer multi-layer perceptron (MLP) can be expressed as

Ex(x) = (L o LX o L)) (2)

g

The K-layer gated MLP becomes

or(x) = (LK o LE o L) (@) ® (LE oLl o ...

g

(9)

where L () replaces the activation function g(z) of L} (z) to sigmoid function o(z) and ©

denotes element-wise product. The gated MLP consists of the normal MLP before ® and

the gate network after ©.
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Model architecture

Materials graphs were constructed using a radial cutoff of 5 A. For computational efficiency
considerations, the three-body interactions were limited to within a cutoff of 4 A. The graph
featurizer converts the atomic number into embeddings of dimension 64. The bond distances
were expanded using the continuous and smooth basis function proposed by Kocer et al.,?!

which ensures that the first and second derivatives vanish at the cutoff radius.

1) = <= | ) 4 [ (10
where
dp = 1— dm”il (11)
_ mP(m+2)?

T Amt )1 (12)
ry = (— m\/§7r (m+ 1)(m+2) sinc T—(m+ 1)7T sinc T—(m+2)7r
fnlr) = ( b 7‘?/2 \/(m—|—1)2+(m—|—2)2( ( Te >+ < Te (>>>
sinc(x) = suxlx (14)

ey, is a vector formed by m basis functions of h(r).

ey (rij) = [ (rig), ha(ri), oo han (735)] (15)

In this work, we used three basis functions for the pair distance expansion.

The main blocks consist of three three-body information exchange and graph convolutions
(N = 3 in Figure [I). By default, the W’s and b’s in the perceptron model gives output
dimensions of 64. Each gated MLP (¢.(z) and ¢,(x) in Equations |4 and [5)) have two layers
with 64 neurons in each layer.

For the prediction of extensive properties such as total energies, a three-layer gated MLP

(Equation @ was used on the atom attributes after the graph convolution and sum the
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outputs as the final prediction, i.e.,

Pext = Z ¢3(U7L) (16)

The gated MLP ¢3(x) has a layer neuron configuration of [64, 64, 1] and no activation in
the last layer of the normal MLP part.
For the prediction of intensive properties, the readout step was performed as follows after

the main blocks.

Pint = 53(2 w;&s(v;) ® u) (17)

with weights w; summing to 1 and defined as

§5(vi)
W = =7 (18)
L)
& and & have neuron configurations of [64, 64, 1] to ensure the output is scalar. For
regression targets, there is no activation in the final layer of MLP, while for classification
targets, the last layer activation is chosen as the sigmoid function.

In the training of MPF.2021.2.8 data, the M3GNet model contains three main blocks

with 227,549 learnable weights.

Model training

The Adam optimizer®?

was used with initial learning rate of 0.001, with a cosine decay to
1% of the original value in 100 epochs. During the optimization, the validation metric values
were used to monitor the model convergence, and training was stopped if the validation
metric did not improve for 200 epochs. For the elemental IAP training, the loss function

was the mean squared error (MSE). For other properties, the Huber loss function® with §

set to 0.01 was used. For the universal IAP training, the total loss function includes the loss
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for energy, forces, and, in inorganic compounds, also the stresses. Batch size of 32 was used

in model training.

L =/{(e,ep)+wel(f, fp) + w.l(o,0D) (19)

where ¢ is the Huber loss function, e is energy per atom, f is the force vector, o is the stress,
and w’s are the scalar weights. The subscript D indicates data from DFT.

Before M3GNet [AP fitting, we fit the elemental reference energies using linear regression
of the total energies. We first featurize a composition into a vector ¢ = [c1, ¢z, 3, ..., Cgg] Where
¢; is the number of atoms in the composition that has the atomic number i. The composition
feature vector ¢ is mapped to the total energy of the material £ via £ = ) . ¢;E;, where
E; is the reference energy for element with atomic number ¢ that can be obtained by linear
regression of the training data. Then, the elemental reference energies were subtracted from
the total energies to improve M3GNet model training stability. We set wy = 1 and w, = 0.1
during training the MPF.2021.2.8 data.

Software implementation

The M3GNet framework was implemented using the Tensorflow™® package. All crystal and
molecular structure processing were performed using the Python Materials Genomics (py-
matgen )™ package. The structural optimization was performed using the FIRE®” algorithm
implemented in the atomic simulation environment (ASE).”® The MD simulations were per-
formed in the NVT ensemble using ASE.?® Phonon calculations were performed using the

Phonopy package.>”

Data Availability

The training data for the universal IAP is available at http://doi.org/10.6084/m9.figshare.

19470599. The phonon dispersion curves of 328 dynamically stable materials are available at
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http://doi.org/10.6084/m9.figshare.20217212. All generated hypothetical compounds

and their corresponding M3GNet predictions are provided at http://matterverse.ai.

Code Availability

The source code for M3GNet is available at https://github.com/materialsvirtuallab/

m3gnet|

26


http://doi.org/10.6084/m9.figshare.20217212
http://matterverse.ai
https://github.com/materialsvirtuallab/m3gnet
https://github.com/materialsvirtuallab/m3gnet

References

(1)

Weiner, P. K.; Kollman, P. A. AMBER: Assisted Model Building with Energy Refine-
ment. A General Program for Modeling Molecules and Their Interactions. Journal of

Computational Chemistry 1981, 2, 287-303.

Case, D. A.; Cheatham III, T. E.; Darden, T.; Gohlke, H.; Luo, R.; Merz Jr., K. M.;
Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R. J. The Amber Biomolecular Simu-

lation Programs. Journal of Computational Chemistry 2005, 26, 1668—1688.

Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A.; Skiff, W. M. UFF,
a Full Periodic Table Force Field for Molecular Mechanics and Molecular Dynamics

Simulations. Journal of the American Chemical Society 1992, 11/, 10024-10035.

Behler, J.; Parrinello, M. Generalized Neural-Network Representation of High-

Dimensional Potential-Energy Surfaces. Physical Review Letters 2007, 98, 146401.

Bartok, A. P.; Payne, M. C.; Kondor, R.; Csanyi, G. Gaussian Approximation Poten-
tials: The Accuracy of Quantum Mechanics, without the Electrons. Physical Review

Letters 2010, 104, 136403.

Thompson, A. P.; Swiler, L. P.; Trott, C. R.; Foiles, S. M.; Tucker, G. J. Spectral Neigh-
bor Analysis Method for Automated Generation of Quantum-Accurate Interatomic Po-

tentials. Journal of Computational Physics 2015, 285, 316-330.

Shapeev, A. V. Moment Tensor Potentials: A Class of Systematically Improvable In-

teratomic Potentials. Multiscale Modeling € Simulation 2016, 1, 1153-1173.

Zhang, L.; Han, J.; Wang, H.; Car, R.; E, W. Deep Potential Molecular Dynamics:
A Scalable Model with the Accuracy of Quantum Mechanics. Physical Review Letters

2018, 120, 143001.

27



9)

(10)

(13)

(15)

(16)

Zuo, Y.; Chen, C.; Li, X.; Deng, Z.; Chen, Y.; Behler, J.; Csanyi, G.; Shapeev, A. V.;
Thompson, A. P.; Wood, M. A. et al. Performance and Cost Assessment of Machine
Learning Interatomic Potentials. The Journal of Physical Chemistry A 2020, 124, 731—
745.

Schiitt, K. T.; Kindermans, P.-J.; Sauceda, H. E.; Chmiela, S.; Tkatchenko, A.;
Miiller, K.-R. SchNet: A Continuous-Filter Convolutional Neural Network for Mod-

eling Quantum Interactions. arXiv:1706.08566 [physics, stat] 2017,

Klicpera, J.; Grof, J.; Giinnemann, S. Directional Message Passing for Molecular

Graphs. arXiv:2003.03123 [physics, stat] 2020,

Haghighatlari, M.; Li, J.; Guan, X.; Zhang, O.; Das, A.; Stein, C. J.; Heidar-Zadeh, F.;
Liu, M.; Head-Gordon, M.; Bertels, L. et al. NewtonNet: A Newtonian Message Passing
Network for Deep Learning of Interatomic Potentials and Forces. arXiv:2108.02913

[physics] 2021,

Park, C. W.; Kornbluth, M.; Vandermause, J.; Wolverton, C.; Kozinsky, B.;
Mailoa, J. P. Accurate and Scalable Graph Neural Network Force Field and Molec-
ular Dynamics with Direct Force Architecture. npj Computational Materials 2021, 7,
1-9.

Cheon, G.; Yang, L.; McCloskey, K.; Reed, E. J.; Cubuk, E. D. Crystal Structure
Search with Random Relaxations Using Graph Networks. arXiv:2012.02920 [cond-mat,

physics:physics] 2020,

Lejaeghere, K.; Bihlmayer, G.; Bjorkman, T.; Blaha, P.; Bliigel, S.; Blum, V.; Cal-
iste, D.; Castelli, I. E.; Clark, S. J.; Dal Corso, A. et al. Reproducibility in Density

Functional Theory Calculations of Solids. Science 2016, 351, aad3000.

Ong, S. P.; Richards, W. D.; Jain, A.; Hautier, G.; Kocher, M.; Cholia, S.; Gunter, D.;

Chevrier, V. L.; Persson, K. A.; Ceder, G. Python Materials Genomics (Pymatgen): A

28



(19)

(21)

(22)

Robust, Open-Source Python Library for Materials Analysis. Computational Materials
Science 2013, 68, 314-319.

Jain, A.; Ong, S. P.; Chen, W.; Medasani, B.; Qu, X.; Kocher, M.; Brafman, M.;
Petretto, G.; Rignanese, G.-M.; Hautier, G. et al. FireWorks: A Dynamic Workflow
System Designed for High-Throughput Applications. Concurrency and Computation:
Practice and Experience 2015, 27, 5037-5059.

Pizzi, G.; Cepellotti, A.; Sabatini, R.; Marzari, N.; Kozinsky, B. AiiDA: Automated
Interactive Infrastructure and Database for Computational Science. Computational Ma-

terials Science 2016, 111, 218-230.

Mathew, K.; Montoya, J. H.; Faghaninia, A.; Dwarakanath, S.; Aykol, M.; Tang, H.;
Chu, I.-h.; Smidt, T.; Bocklund, B.; Horton, M. et al. Atomate: A High-Level Inter-
face to Generate, Execute, and Analyze Computational Materials Science Workflows.

Computational Materials Science 2017, 159, 140-152.

Jain, A.; Ong, S. P.; Hautier, G.; Chen, W.; Richards, W. D.; Dacek, S.; Cholia, S.;
Gunter, D.; Skinner, D.; Ceder, G. et al. Commentary: The Materials Project: A Ma-
terials Genome Approach to Accelerating Materials Innovation. APL Materials 2013,
1, 011002.

Curtarolo, S.; Setyawan, W.; Wang, S.; Xue, J.; Yang, K.; Taylor, R. H.; Nelson, L. J.;
Hart, G. L. W.; Sanvito, S.; Buongiorno-Nardelli, M. et al. AFLOWLIB.ORG: A Dis-
tributed Materials Properties Repository from High-Throughput Ab Initio Calcula-

tions. Computational Materials Science 2012, 58, 227-235.

Kirklin, S.; Saal, J. E.; Meredig, B.; Thompson, A.; Doak, J. W.; Aykol, M.; Rihl, S.;
Wolverton, C. The Open Quantum Materials Database (OQMD): Assessing the Accu-

racy of DF'T Formation Energies. np; Computational Materials 2015, 1, 1-15.

29



(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

Draxl, C.; Scheffler, M. The NOMAD Laboratory: From Data Sharing to Artificial

Intelligence. Journal of Physics: Materials 2019, 2, 036001.

Xie, T.; Grossman, J. C. Crystal Graph Convolutional Neural Networks for an Accurate
and Interpretable Prediction of Material Properties. Physical Review Letters 2018, 120,

145301.

Chen, C.; Ye, W.; Zuo, Y.; Zheng, C.; Ong, S. P. Graph Networks as a Universal
Machine Learning Framework for Molecules and Crystals. Chemistry of Materials 2019,
31, 3564-3572.

Chen, C.; Zuo, Y.; Ye, W.; Li, X.; Ong, S. P. Learning Properties of Ordered and
Disordered Materials from Multi-Fidelity Data. Nature Computational Science 2021,

1, 46-53.

DeCost, B.; Choudhary, K. Atomistic Line Graph Neural Network for Improved Mate-

rials Property Predictions. arXiv:2106.01829 [cond-mat] 2021,

Tersoff, J. New Empirical Approach for the Structure and Energy of Covalent Systems.
Physical Review B 1988, 37, 6991-7000.

Singraber, A.; Behler, J.; Dellago, C. Library-Based LAMMPS Implementation of High-
Dimensional Neural Network Potentials. Journal of Chemical Theory and Computation

2019, 15, 1827-1840.

Ramachandran, P.; Zoph, B.; Le, Q. V. Searching for Activation Functions.
arXiv:1710.05941 [es] 2017,

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made
Simple. Physical Review Letters 1996, 77, 3865-3868.

Anisimov, V. I.; Zaanen, J.; Andersen, O. K. Band Theory and Mott Insulators: Hub-

bard U Instead of Stoner I. Physical Review B 1991, 44, 943-954.

30



(33)

(34)

(36)

(39)

Hellenbrandt, M. The Inorganic Crystal Structure Database (ICSD)—Present and Fu-

ture. Crystallography Reviews 2004, 10, 17-22.

Petretto, G.; Dwaraknath, S.; P. C. Miranda, H.; Winston, D.; Giantomassi, M.;
van Setten, M. J.; Gonze, X.; Persson, K. A.; Hautier, G.; Rignanese, G.-M. High-
Throughput Density-Functional Perturbation Theory Phonons for Inorganic Materials.
Scientific Data 2018, 5, 180065.

de Jong, M.; Chen, W.; Angsten, T.; Jain, A.; Notestine, R.; Gamst, A.; Sluiter, M.;
Krishna Ande, C.; van der Zwaag, S.; Plata, J. J. et al. Charting the Complete Elastic

Properties of Inorganic Crystalline Compounds. Scientific Data 2015, 2, 150009.

Perdew, J. P.; Ruzsinszky, A.; Csonka, G. I.; Vydrov, O. A.; Scuseria, G. E.; Con-
stantin, L. A.; Zhou, X.; Burke, K. Restoring the Density-Gradient Expansion for
Exchange in Solids and Surfaces. Physical Review Letters 2008, 100, 136406.

Kresse, G.; Hafner, J. Ab Initio Molecular Dynamics for Liquid Metals. Physical Review
B 1993, 47, 558-561.

Kresse, G.; Furthmiiller, J. Efficiency of Ab-Initio Total Energy Calculations for Metals
and Semiconductors Using a Plane-Wave Basis Set. Computational Materials Science

1996, 6, 15-50.

Dunn, A.; Wang, Q.; Ganose, A.; Dopp, D.; Jain, A. Benchmarking Materials Property
Prediction Methods: The Matbench Test Set and Automatminer Reference Algorithm.

npj Computational Materials 2020, 6, 1-10.

Sun, W.; Dacek, S. T.; Ong, S. P.; Hautier, G.; Jain, A.; Richards, W. D.; Gamst, A. C.;
Persson, K. A.; Ceder, G. The Thermodynamic Scale of Inorganic Crystalline Metasta-

bility. Science Advances 2016,

31



(41) Wang, L.; Maxisch, T.; Ceder, G. Oxidation Energies of Transition Metal Oxides
within the $\mathrm{GGA }+\mathrm{U}$ Framework. Physical Review B 2006, 73,
195107.

(42) Wang, S.; Bai, Q.; Nolan, A. M.; Liu, Y.; Gong, S.; Sun, Q.; Mo, Y. Lithium Chlorides
and Bromides as Promising Solid-State Chemistries for Fast lon Conductors with Good
Electrochemical Stability. Angewandte Chemie International Edition 2019, 58, 8039—

8043.

(43) Qi, J.; Banerjee, S.; Zuo, Y.; Chen, C.; Zhu, Z.; Holekevi Chandrappa, M. L.; Li, X;
Ong, S. P. Bridging the Gap between Simulated and Experimental Ionic Conductivities

in Lithium Superionic Conductors. Materials Today Physics 2021, 21, 100463.

(44) Glass, C. W.; Oganov, A. R.; Hansen, N. USPEX—Evolutionary Crystal Structure

Prediction. Computer Physics Communications 2006, 175, 713-720.

(45) Wang, Y.; Lv, J.; Zhu, L.; Ma, Y. CALYPSO: A Method for Crystal Structure Predic-

tion. Computer Physics Communications 2012, 183, 2063-2070.

(46) Xie, T.; Fu, X.; Ganea, O.-E.; Barzilay, R.; Jaakkola, T. Crystal Diffusion Variational

Autoencoder for Periodic Material Generation. 2021,

(47) Chmiela, S.; Tkatchenko, A.; Sauceda, H. E.; Poltavsky, I.; Schiitt, K. T.; Miiller, K.-
R. Machine Learning of Accurate Energy-Conserving Molecular Force Fields. Science

Advances 2017, 3, e1603015.

(48) Schiitt, K. T.; Arbabzadah, F.; Chmiela, S.; Miiller, K. R.; Tkatchenko, A. Quantum-
Chemical Insights from Deep Tensor Neural Networks. Nature Communications 2017,

8, 13890.

(49) Chmiela, S.; Sauceda, H. E.; Miiller, K.-R.; Tkatchenko, A. Towards Exact Molecular

32



(51)

(52)

(53)

(54)

(55)

(56)

Dynamics Simulations with Machine-Learned Force Fields. Nature Communications

2018, 9, 3887.

Zhang, Y.; Hu, C.; Jiang, B. Embedded Atom Neural Network Potentials: Efficient and
Accurate Machine Learning with a Physically Inspired Representation. The Journal of

Physical Chemistry Letters 2019, 10, 4962-4967.

Kocer, E.; Mason, J. K.; Erturk, H. A Novel Approach to Describe Chemical Envi-
ronments in High-Dimensional Neural Network Potentials. The Journal of Chemical

Physics 2019, 150, 154102.

Kingma, D. P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv:1412.6980
[es] 2017,

Huber, P. J. Robust Estimation of a Location Parameter. The Annals of Mathematical

Statistics 1964, 35, 73-101.

Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghe-
mawat, S.; Irving, G.; Isard, M. et al. TensorFlow: A System for Large-Scale Machine
Learning. 12th {USENIX} Symposium on Operating Systems Design and Implementa-
tion ({OSDI} 16). 2016; pp 265-283.

Bitzek, E.; Koskinen, P.; Gahler, F.; Moseler, M.; Gumbsch, P. Structural Relaxation

Made Simple. Physical Review Letters 2006, 97, 170201.

Larsen, A. H.; Mortensen, J. J.; Blomqvist, J.; Castelli, I. E.; Christensen, R.;
Du\lak, M.; Friis, J.; Groves, M. N.; Hammer, B.; Hargus, C. et al. The Atomic Sim-
ulation Environment—a Python Library for Working with Atoms. Journal of Physics:
Condensed Matter 2017, 29, 273002.

Togo, A.; Tanaka, I. First Principles Phonon Calculations in Materials Science. Scripta

Materialia 2015, 108, 1-5.

33



Supplementary Information
A Universal Graph Deep Learning Interatomic

Potential for the Periodic Table

Chi Chen* and Shyue Ping Ong*

Materials Virtual Lab, Department of NanoEngineering, University of California San

Diego, 9500 Gilman Dr, Mail Code 0448, La Jolla, CA 92093-0448, United States

E-mail: chenc273@outlook.com; ongsp@eng.ucsd.edu



Characteristics of M3GNet models

Long-range interactions

Different from the MLIAPs, M3GNet can simulate long-range interaction by stacking graph
convolution layers without increasing the cutoff radius. To compare the long-range behavior,
we used a model system MgO. The ion interactions in the test MgO system are described

by the Buckingham potential with long-range electrostatics.

Cij  Kqgq;
6J+ 4.9

Vij = Aijexp(—rij/pij) — (1)

€Tij
where A;;, p;; and Cj; are the Buckingham potential parameters, g; is the charge for atom
7, K is the energy-conversion constant and € is the dielectric constant.

We used the MgO Buckingham potential to simulate the material and generate the long-
range force field data. The parameters were take from the work by Shukla et al.®

We took the MgO (mp-1265) structure from the Materials Project? as the initial struc-
ture. Then we applied -0.1, 0.1, and 0.2 isotropic strains to the structures, producing a total
of four structures. For each structure, we randomly displace the atoms up to 0.5 A in each
direction for 100 times, producing a total of 400 structures for the MgO data set. The data
is split into 80%-20% train-test data. Energies and forces are calculated using the potential
described in the previous section using LAMMPS? by setting the short-range interaction
cutoff as 10 A and carrying out long-range calculations using the Ewald summation.*

M3GNet and MTP models with cutoffs of 5 A were trained on the train data and eval-
uated on the test data. We calculated the equation of state (EOS) for MgO using different
computational methods, as shown in Figure Sla. The M3GNet in this work outperforms the
MTP in extrapolation outside of the training data regimes in general.

The probe the interaction reach, we adopted the locality tests following the ideas proposed
by Bartok et al.® and reiterated by Deringer and Csanyi®. For the MgO cubic conventional

~oll we nradiced a B w B s 6 ainer call with ditnendone OF FA A v OF EA A ~« OF EA A Then



for the Mg atom at the center, we fix the its neighbor atoms within a radius of 7, and
introduce random displacements (max 0.2 A) to the atoms out of ry,.,. We recorded the
forces on the center atom and compute its standard deviation o(f). If o(f) = 0 at certain

The interaction described by the computational method is localized within r;,.q.
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Figure S1: M3GNet compared to MTP in long-range MgO dataset in (a) equation-of-state
study and (b) locality tests.

Figure S1b shows the o(f) as a function of ;. for Buckingham with Coulombic forces,
MTP, and M3GNet in this work. As expected, the Buckingham potential with long-range
force is highly non-local, with large o(f) even at re = 10 A. The M3GNet in this work
shows similar long range behavior and has non-zero o(f) at req = 10 A. On the contrary,
the interaction of MTP is localized, with o(f) vanishing at 27, = 10 A. It should be noted
that while the MTP interactions in terms of energy is limited to r., the force impact goes to
2r. because the forces are calculated as follows:

D )

r; — T
J
Although all 7 in Equation 2 is within r. of atom ¢, for an atom 5 at the boundary close

to 7., the atom k that is 2r, away from ¢ can also contribute to E;. Hence the force f; will

be affected by atom £ that is 2r, away. Nevertheless, the force locality for MTP beyond 7,



is relatively minimal and vanishes completely at 27..
In conclusion, the M3GNet model proposed in this work is able to capture long-range

interactions well beyond the set cutoff radius.

Potential smoothness

A critical requirement of an interatomic potential is its prediction smoothness across changes
in structures. Figure S2 shows that by applying strains to a Ni cell, the energy, forces, and
stresses all change smoothly despite non-smooth changes of the number of bonds defined

within a cutoff of 5 A.
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Figure S2: Continuity of M3GNet models with strain applied on a Ni super cell
with atom displacements on the first atom. a, the number of bonds change, b, the
energy per atom change, c, the force on the first atom change and d, the hydrostatic stress
change. All bonds are broken at strain close to 150%, at which point the energy, force and
stress changes continuously.



MPF.2021.2.8 distribution and M3GNet fitting using

different targets
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Figure S3: Formation energy distribution of the MPF.2021.2.8 dataset
The MPF.2021.2.8 data distribution is shown in Table S1.

Table S1: The mean, standard deviation, min, max and quantiles of the MPF.2021.2.8
dataset.

Target Mean Std Min Max [0.25, 0.5, 0.75] Quantile
E (eV atom™) -5.975 1.860 -28.731 49.575 [-7.081, -6.191, -4.938]
f(eV Afl) 0.0 3.395 -2570.567 2552.991 [-0.033, 0.0, 0.033]

o (GPa) -0.833 25.13 -5474.488 1397.567 [-0.049, 0, 0.006]




Table S2: Mean absolute errors (MAEs) of M3GNet models trained on energy, energy and
force, and energy, force, and stress of the MPF.2021.2.8 data. Three models were trained,
using energy-only (M3GNet-E), energy and force (M3GNet-EF), and energy, force and
stress (M3GNet-EF'S). Each error metric is calculated from the mean of three independent
model trainings.

Energy (meV Force (meV Stress
Model atom~1) A1) (GPa)
MAD 1345.6 270.3 2.068
M3GNet-E 41.7£2.1 379.4+48.7 15.054-2.63
M3GNet-EF 34.0£2.9 70.2£1.7 0.80£0.12
M3GNet-EFS 34.7£3.1 71.7£1.1 0.41£0.01

M3GNet dynamic properties calculations

The phonon dispersion curves and density of state (DOS) calculations for SiO, polymorphs
are shown in Figure S4, where the M3GNet calculated results in Figure S4a are in good
agreements with the DFT calculations in Figure S4b, yet the M3GNet calculations took only
seconds to run, which are at least four orders of magnitude faster than the DFT calculations.
The model calculations used a frozen phonon approach while the original calculations used
DFPT. The frozen phonon approach requires larger supercells to produce long wavelength
behavior. The supercell size difference also explains the differences in the number of bands.
The DOS center versus average atomic mass results in Figure S5 are also in agreement with
DFT results.

The bulk moduli and shear moduli calculated from M3GNet in comparison with DFT
are shown in Figure S6. The bulk moduli matched well with DFT calculations, but the shear

moduli were more challenging to match.

M3GNet relaxation for materials discovery

The MAEs as a function of M3GNet relaxation steps are shown in Figure S7, where the

MAFE dronned fo 0 047 oV atom =1 after abotit 10 relaxation oteng
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Figure S4: M3GNet-calculated phonon band structure examples for SiO, poly-
morphs. (a) The band structures for the -cristobalite, stishovite, and a-quartz structures,
and their corresponding density of states (DOS) calculated from M3GNet using 2x2x2 su-
percells. (b) The same calculations by DFT using the PBEsol functional from Petretto et

al.” The M3GNet results show quantitative agreements with DFT. Panel (b) is reprinted un-
der the terms of Creative Commons Attribution 4.0 International License. Copyright 2018,
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Figure S5: The predicted phonon DOS center as a function of the average atomic
mass m = (% P \/Wk)Q, colored by the ratio between the minimal atomic mass
Mmin and M. The fitted line follows the trend w o 1/(m)2. The results are in quantitative
agreement with the work by Petretto et al.”



600 600
e R2=0.757 e R2=0.134
5001 5001
= 400 = 400
o >, o
€ 3001 < 3001
T T
z L s z
2 2001 L « 200"
100 G 100 | s
: : 0 X, ,
0 200 400 600 0 200 400 600

Kvrn (GPa) GvrH (GPa)

Figure S6: The bulk and shear moduli calculated by the M3GNet compared to
DFT. The agreement in bulk moduli (a) is better than shear moduli (b).

An example of M3GNet relaxation is shown in Figure S8. The energy, force, and stress
all converged within less than 200 steps. At the same time, the lattice constants, angles and
the mean atom distances all converged closed to the equilibrium structures from DFT. The
XRD pattern of model-relaxed structures also match with that from DFT-relaxation.

Figure S9 shows the M3GNet energy changes during M3GNet relaxation (A Ey3aNet—relax)
and DFT energy changes during DFT relaxation (AEppr_relax)- In both all chemistry cate-
gory (Figure S9a-b) and oxide category (Figure S9c-d), the DFT energy changes are at least
one order of magnitude smaller than the M3GNet energy changes, suggesting that M3GNet
effectively relaxes the structures close to their equilibrium.

Figure S10 shows the DF'T stable ratio for 1000 structures taken uniformly from the total
discovery pool of ~ 1.8 million structures based on their Eyg_., values. The stable ratio
(DFT stable structures / structures below Epu_m threshold) decreases monotonically with
the Epui_m threshold, and reaches 0.31 at threshold 0.001 eV atom™!.

For materials in Figure S10, we compared the DFT relaxation CPU cost with and without
M3GNet pre-relaxation, as shown in Figure S11. On average the DFT relaxation CPU cost

without M3GiNet pre-relaxation is 2. 971 times the one with M3G Net pre-relaxation. In other
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Figure S7: Relaxation convergence. The MAE between model calculated energies during
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Figure S8: A structural relaxation example using the model compared to DFT.
a-c, The energy, force, and stress evolution during the model optimization, compared to
the DFT relaxation for mp-685089 K,,Se;,. d-e. The lattice constant and angle changes
during relaxation compared to the final DFT structure (dashed lines). f. The average atom
distances to their final positions. g. The X-ray diffraction pattern of the initial structure,
and the ones for the DFT relaxed final structure and model relaxed final structure.
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words, the M3GNet relaxation can accelerate DF'T relaxation if one aims to obtain all DFT

results.

Average = 2.971
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Figure S11: DFT acceleration with M3GNet pre-relaxation.

M3GNet for molecular dynamics simulations

The M3GNet model trained on MPF.2021.2.8 can also be used for molecular dynamics sim-
ulations. We chose Li;YClg as an initial study case from our recent work.® The M3GNet cal-
culated mean squared displacements (MSDs) for Li, Y, and Cl show reasonable temperature
dependencies, as shown in Figure S12. Interestingly, the M3GNet calculated conductivities
matched well with AIMD simulations from Wang et al.? The extrapolated room-temperature
Li conductivity and the activation energy fitted from the Arrhenius equation also showed

excellent agreements.
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Figure S12: M3GNet MD results on Li;YClg. a-c the mean-squared displacements
(MSDs) for Li, Y and Cl, respectively, at temperatures ranging from 250 K to 1200 K at 50
K intervals. The material was found to melt at temperatures between 950 K and 1000 K, as
shown by the sudden increase of MSD for framework ions Y and Cl. d The Arrhenius plot
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To demonstrate M3GNet’s utility in screening for unexplored lithium superionic conduc-
tors, we performed NVT MD simulations on Li-containing compounds in Materials Project
that satisfying the following criteria: 1) energy above hull less than 50 meV atom ™! and band
gap greater than 2 eV, 2) no transition metals other than Sc, Y, Zr and Nb, and 3) alkaline
element fraction greater than 10% in the formula. We also manually added a few entries
with known conductivities, such as Li;Y(PS,),, Li;P(S,Cl),, LiZnPS,, LiAl(PS;),, studied
by Zhu et al,,'% the tetragonal (t)- and cubic (c)-Li;La;Zr,0,,, Na,B,H,,, etc. The filtering
and additions gave us 837 potential lithium superionic conductors for MD simulations using

1.,19 where 25 ps of molecular

the short molecular dynamics approach proposed by Zhu et a
dynamics are performed on the materials at 800 K and 1200 K temperatures and the MSDs
of the diffusive species are recorded.

Figure S13a maps all the Li-containing compounds in our materials pool. The materials
on the upper right are desired materials with both high MSDs and low diffusion energy barri-
ers (o< log ((MSD — 1200K)/(MSD — 800K))). The M3GNet model correctly “re-discovered”
known Li superionic conductors such as LiBH,, Li,P;S;;, Li,,M(PSs), (M=Ge, Si, Sn),
Li,PS,, Li;Y(PS,),, Li;P(S,Cl),, Li,GeS,, to have high MSDs at both temperatures. The
halides such as LizInCly, LigInBry, LigYClg, Li;ErCly are also good conductors but have
slightly smaller MSDs than the first batch of superionic conductors. The M3GNet model
also predicts that the c-Li;LasZr,O,, has similar MSD with t-Li,;Las;Zr,0,4 at 1200 K but
much larger MSD at 800 K, suggesting the the cubic phase is a better ionic conductor at
low temperature. Oxides such as Li,GeO,, Li,SiO,, Li,Ge,;O;;, Li;ClO and Li;BrO show
very small MSDs and hence minimal Li conductivity. However, in experiments, Li;ClO was
known to be a highly Li conductive material. We postulate that defects are the main driv-
ing force for high Li conductivity in this material, while in simulation there are no defects.
Indeed, high quality deposited thin films with few defects show very small Li conductivity in
Li;Cl1O. " AIMD simulations by Zhang et al.'? also found that pristine Li;C1O and Li;BrO

are poor conductors, with no Li diffusion up to 1500 K. AIMD that showed Li diffusion was
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Figure S13: Mean squared displacements (MSDs) of short-time M3GNet molec-
ular dynamics simulations. a, The distributions of 800 K and 1200 K MSDs for all Li-
containing compounds passing the filtering criteria, supplemented by manual entries. The
dashed line has a slope of 7, and materials below this line have desired Li diffusion energy
barrier lower than 0.4 eV. b, the MSDs at 800 K projected onto the anion types. c, the
MSDs at 800 K projected onto the anion groups.

Many materials distribute on the top left (low low-temperature MSDs and high Li dif-
fusion energy barriers) and the bottom left (low MSDs at both temperatures). Very few
materials distribute on the upper right and below the dashed line with diffusion energy
barriers less than 0.4 eV. The results also suggest the difficulties in finding new superionic
conductors.

We further group the materials according to their anion group (Figure S13b) and the
polyanions (Figure S13c). For carbon group elements (C, Si, and Ge), the Li diffusivities
decrease monotonically with the atomic number. For pnictogens, the trend forms a convex
shape where arsenide compounds have the lowest overall Li conductivity and antimonides
have the highest conductivity. For the chalcogen anions, sulfur stands out in facilitating

Li diffusion, followed by selenium. Oxides and tellurides are usually poor Li conductors.
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best Li conductors. Comparing the elements in the second row of the periodic table, boron
and nitrogen form better lithium conductors than oxygen and fluorine. The projections
onto the polyanion groups shown in Figure S13c also suggest that oxides are relatively poor
conductors, with the exception of CO;, SO,, PO, that have several conductive compounds.
Not surprisingly, PSy and PS, polyanions facilitate fast Li conduction. Lastly, the BH,
polyanion group, which are all LiBH, polymorphs, show remarkable Li diffusivity. The trends
of anions and polyanions match with experimental findings and distill chemical knowledge

for guiding new Li superionic conductor design.

Applications of M3GNet to benchmark materials datasets

MatBench materials data

We took the nine structural MatBench datasets by Dunn et al.'* as the material property
benchmark. The datasets cover a wide range of materials properties with varying data sizes,
including crystal energy, phonon spectrum, optical properties, mechanical properties, etc.
We trained the M3GNet models on those properties using the same model architectures as
the potential model. The M3GNet results compared to other state-of-the-art models are
shown in Table S3. The MODNet '*1® model shows lower or comparable errors in the small
to medium data size regimes. However, for larger data such as the whole formation energy
dataset of MP, the original authors acknowledge that the graph models such as MEGNet
outperform MODNet by a factor of 2.1® The M3GNet model, on the other hand, is able
to achieve consistently high accuracy across all the datasets, and is more accurate than the
previous MEGNet models in all nine tasks. In particular, for the large (~ 15,000) to very
large datasets (>100,000), the M3GNet models achieve much higher accuracy than the rest;
the accuracy improvements compared to the previous best graph model are 20.5% for the
perovskite formation energy data, 22.1% for the MP band gap, and even 41.3% for the MP

formation energy data.



Table S3: Performance of M3GNet models on crystal property predictions compared to
other state-of-the-art models using the same test sets as the AutoMatminer work.!* Mean
absolute error (MAE) for regression tasks and area-under-curve (AUC) of receiver operating
characteristic curve for classification tasks are used as the model metrics. The lowest errors
are highlighted with bold fonts.

MOD- AtomSets- MEG- AutoMat-

Target, Data Size M3GNet Neot 16 V17 Net 1418 miner 4
Regression Tasks
L —1

fgg{jolm”m (meV atom™), 50.1411.9 34.5 40+5 55.9 38.6
=1

316052])08 Peal (em™), 34.144.5 38.75 5449 36.9 50.8

n, 4764° 0.312+0.063 0.297 0.46%0.03 0.478 0.299

log(Kyry) (GPa), 109877 0.058+0.003 0.0548 | 0.0740.00 | 0.0712 0.0679

log(Gvrr) (GPa), 109877 0.086+0.002 0.0731 | 0.0940.00 | 0.0914 0.0849

Perovskite E; (meV

atom-1), 18098" 6.6+0.2 - 1240 8.3 38.8

MP E, (eV), 106113’ 0.183+0.005 - 0.254+0.01 0.235 0.282

MP E; (meV atom™!),

139755 19.540.2 - 441 33.2 173

Classification Tasks
MP Metallicity, 106113™ [ 0.958+0.001 | - | 0.96+0.00 [ 0.977 0.909

M3GNet as molecular force fields

The MD17 datasets'®2! were used as the first test case as M3GNet models as force fields.
The MD17 datasets contain several small molecules and their molecular dynamics trajectories
with energies and forces computed by density functional theory. The comparisons between
M3GNet and other models are shown in Table S4, where for each molecule, only 1000
snapshots were used for training and validation and the rest were used as test for metric
reporting. Each error metric in M3GNet is the mean error from three different random
sampling and model training.

The M3GNet models achieved consistently lower errors than the less complex EANN?22
models. For sGDML?! and the deep learning-based models, such as message-passing based
DimeNet,?? and the Equivalent neural networks NequlP?* and PaiNN,?> the errors are all

low and are comparable to the M3GNet models. No model is able to outperform the rest in



Table S4: Performance of M3GNet models compared to the existing models on the MD17
datasets. In each cell, the errors are reported in mean absolute error (MAE) and are written
in energy (meV), force (meV A1) pairs. The M3GNet results were obtained by average of
three independent model fitting using different random seeds for data splitting. The lowest
errors are highlighted by bold fonts.

Molecule M3GNet EANN? | sGDML?!' | DimeNet?® | NequlP?* | PaiNN?%
Aspirm 78,188 | 141,430 | 84,204 | 88 21.6 | - 161 | 7.2, 14.7
Benzene ¥ 3.9, 8.1 - 3.1, 88 3.4, 8.1 -,8.1 -
Benzene?! 4.0, 1.9 - 4.22.4 - -, 2.3 -
Ethanol 2.4,5.3 | 44,203 | 31,145 | 28 100 290 28,07
Malonaldehyde 3.4, 9.5 5.9, 26.9 4.3, 18.0 4.5, 16.6 -, 14.6 4.3, 14.9
Naphthalene 51,54 | 61,223 | 5.0.49 | 53,93 2103 5.0, 3.3
Salicylic acid 5.1, 10.1 6.1, 22.3 5.0, 12.2 5.8, 16.2 -, 4.2 5.0, 8.5
Toluene 4.0, 47 | 48,166 | 42,62 | 4494 ~ 44 41, 4.1
Uracil 4.5, 7.0 4.8, 15.3 4.7, 10.5 5.0, 13.1 -, 7.5 4.6, 6.0

all molecules.

MD17 CCSD/CCSD(T) benchmark

The quantum-accurate CCSD/CCSD(T)2! calculations of the molecules in the MD17
datasets are used for further molecular force field benchmark. The M3GNet model re-
sults are compared to the available sGDML,?' PhysNet? and NequlP,?* as shown in Table
S5. In this dataset, the M3GNet model achieves excellent accuracies across all the the
molecules, and has state-of-the-art accuracy in Ethanol, Malonaldehyde and Paracetamol.
M3GNet also shows state-of-the-art accuracies in energies of Aspirin and Toluene, and forces

of Azobenzene and Benzene.



Table S5: Performance of M3GNet models compared to the existing models on the MD17
CCSD/CCSD(T) datasets.'®?! In each cell, the errors are reported in mean absolute error
(MAE) and are written in energy (meV), force (meV A~') pairs. The M3GNet results were
obtained by average of three independent model fitting using different random seeds for data
splitting. The lowest errors are highlighted by bold fonts.

Molecule M3GNet | sGDML?' | PhysNet?® | NequlIP?*
Aspirin 6.0, 19.7 6.8, 33.0 - -, 14.7
Azobenzene 7.5,12.2 4.0, 17.7 8.5, 20.1 -
Benzene 0.15, 1.06 0.13, 1.8 - -, 0.8
Ethanol 0.92, 5.51 | 2.2,15.0 - -, 94
Malonaldehyde 1.3, 8.2 1.6, 10.7 - -, 16.0
Paracetamol 6.6, 14.5 6.6, 21.3 7.9, 22.5 -
Toluene 1.0, 5.5 1.3, 89 - -, 4.4
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