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Abstract

We prove that every unitary two-dimensional conformal field theory (with no extended
chiral algebra, and with c, c̃ > 1) contains a primary operator with dimension ∆1 that
satisfies 0 < ∆1 < c+c̃

12
+ 0.473695. Translated into gravitational language using the

AdS3/CFT2 dictionary, our result proves rigorously that the lightest massive excitation
in any theory of 3D gravity with cosmological constant Λ < 0 can be no heavier than
1/(4GN) + o(

√
−Λ). In the flat-space approximation, this limiting mass is twice that

of the lightest BTZ black hole. The derivation applies at finite central charge for the
boundary CFT, and does not rely on an asymptotic expansion at large central charge.
Neither does our proof rely on any special property of the CFT such as supersymmetry
or holomorphic factorization, nor on any bulk interpretation in terms of string theory
or semiclassical gravity. Our only assumptions are unitarity and modular invariance of
the dual CFT. Our proof demonstrates for the first time that there exists a universal
center-of-mass energy beyond which a theory of ”pure” quantum gravity can never
consistently be extended.
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1 Introduction

Quantum gravity in three dimensions [1, 2, 3, 4, 5] has long been a subject of much
interest. Particularly interesting is the case of three dimensional quantum gravity with
negative cosmological constant, which has anti-de Sitter space (AdS) as a maximally
symmetric solution. Studying the case of negative cosmological constant allows us to
confront specific treatments of the quantum dynamics with a set of general principles
[8] which any consistent theory of quantum gravity in AdS is believed to obey. Namely,
any quantum mechanical model of gravity in AdS must have its dynamics encoded by a
dual theory on the boundary of the spacetime. Furthermore this dual theory should be
a conformal field theory in one dimension less than that of the bulk spacetime, which
satisfies the usual axioms of unitarity, locality, the existence of an operator product
expansion, and so on.

This duality, known as the AdS/CFT correspondence, has had many applications,
but in this paper we wish to exploit a particular one of its virtues, namely its role
as a universal set of rules for consistent quantum gravity. The correspondence re-
duces a very complicated, badly understood and seemingly ill-defined set of theories –
namely, models of quantum gravity in D dimensions – to the precisely defined set of
(D-1)-dimensional CFT. This allows us in principle to make definite statements about
models of quantum gravity, and in particular to rule out the possibility of quantum
gravity theories with certain hypothetical properties. For instance, unitary CFT in two
dimensions with with central charge greater than 1 must contain an infinite number
of conformal families. On the quantum gravity side, this tells us that a consistent
theory of quantum gravity, the spectrum of states cannot be accounted for solely by
excitations of the metric. There must exist massive states in addition to the boundary
graviton gas. In the limit where the energy is high compared to the Planck mass 1/GN ,
the density of such states is predicted by Cardy’s formula [11] and agrees with the geo-
metric prediction for the Bekenstein-Hawking entropy of the AdS/Schwarzschild black
hole in the régime where the approximation by semiclassical general relativity is valid
[13]. These constraints are central to the study of the fundamental degrees of freedom
of quantum gravity and of their dynamics.

Nonetheless, the predictions of Cardy’s formula are in some sense unpalatably weak:
massive states in AdS will appear – eventually, at some energy – and assume a particular
entropy – approximately, in an approximation that will eventually be good at high
enough temperatures. The predictions derived from Cardy’s formula suffer from the
problem of asymptoticity – they are asymptotic predictions that can never be falsified
by performing experiments at a given energy scale or a given temperature. Cardy’s
formula is not sufficient to falsify the existence of a dual CFT, no matter how high the
energy scale of an experiment: the formula gives precise information about the behavior
of the level densities at sufficiently high energies, but remains completely silent as to
the energy threshold at which the asymptotic predictions begin to apply.

Meanwhile, if we would like to derive a firm prediction for the lowest center-of-mass

2



energy at which new states must appear in a particular theory, we cannot usefully apply
methods of effective field theory in the bulk: Planck-scale black holes have quantum
corrections to their masses that are necessarily of the same order of magnitude as the
semiclassical prediction.

Recently, an intriguing paper appeared [6] (based on earlier work [9, 10]) proposing
a context in which this question can be addressed with great precision. The paper [6]
examines the gravity duals of two dimensional CFTs in which the partition function is
holomorphically factorized as a function of the complex structure τ of the torus. The
theories examined in [6] have an operator algebra that decomposes completely into a
tensor product of a right-moving and left-moving operator algebra, with no further
projections or additional sectors. Any such theory must necessarily have a partition
function that factorizes into a product of holomorphic and antiholomorphic factors,
from which it follows directly that c, c̃ ∈ 24ZZ. In this class of CFT, it can be shown
that the lowest primary operator is either purely left- or right-moving, and can have
a weight no larger than 1 + min( c

24
, c̃

24
). There exists a unique candidate partition

function in which this bound is saturated, though it is not clear that this partition
function necessarily corresponds to an actual conformal field theory [26].

Other recent work [25] considers the case of theories with extended (2,2) supersym-
metry, which allows the authors to exploit the power of holomorphic dependence on
the complex structure without assuming holomorphic factorization of the full partition
function. Study of a certain subclass of (2,2) SUSY CFT’s suggests a bound that goes
as ∆1 ≤ c

24
for large central charge. However it has not been possible so far to demon-

strate this bound conclusively within this special class of SCFT nor to generalize the
conjecture to all (2,2) SCFT, let alone to CFT with reduced supersymmetry or none
at all.

In this paper we will derive a completely general lower bound on the weight of
the lowest primary operator in a completely general two dimensional conformal field
theory, assuming only the basic properties of unitarity, modular invariance, and a
discrete operator spectrum.1 Our bound will refer only to the energy of a single state,
namely the lowest excited primary state, rather than to the behavior of states at high
temperature. Furthermore we will not use any sort of reasoning that refers to the
bulk three-dimensional spacetime, nor make use of any asymptotic expansion at large
central charge. Our methods thus circumvent the asymptoticity problem, and prove a
general upper bound on the lowest-weight primary in a general CFT.

Our upper bound translates directly into an upper bound on the mass of the lightest
massive state in a theory of gravity and matter in three dimensions. The bound we
derive applies to all theories of gravity with an AdS3 ground state. In particular, we
do not assume holomorphic factorization, exact or approximate supersymmetry, or any

1Even this last condition can be weakened substantially: Our conclusions will also apply to CFT
with continuous spectrum that can be realized as limits of CFT with discrete spectrum. The ”singular
points” in the moduli space of D1-D5 CFT [27, 28], for instance, are of this type [29, 30, 31].
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Figure 1: One logical possibility is that there exists no ”sharp” bound on ∆1 / ctotal,
but rather only a statistical falloff at large values of the ratio.

other special property.2

2 Inequalities from modular invariance

In this section we will use unitarity and modular invariance to derive constraints on
the energy levels of a general conformal field theory in two dimensions. The techniques

2We will assume that the Hilbert space has a positive definite norm, and that the spectrum the
Hamiltonian is discrete. Positivity is necessary for a consistent interpretation of quantum mechanics,
and discreteness is necessary in order for the system to have well-behaved thermodynamic properties.
The assumption of discrete spectrum does not really count as a ”special” property, as it holds on open
sets of the moduli spaces of CFT that come in infinite families.
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Figure 2: One logical possibility is that there is no limit on ∆1 whatsoever for any
given central charge, even in the ”statistical” sense.

described in this section were invented previously in [11, 12], where they were used to
estimate dimensions of operators in special cases. 3 More recently, related techniques
have been used to bound certain operator dimensions in conformal field theories in
D=4[15]. In this section, we apply a similar method to bound the dimension ∆1 of the
lowest primary operator in a general 2D CFT with c̃, c < 9.135. This will serve as a
warm-up to demonstrate the general ideas at work. In the next section we will derive
an improved bound that applies to CFT with arbitrary central charges greater than 1.

3In particular, see appendix A of [12]. We thank J. Cardy for correspondence relating to these and
other results in the literature.
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Figure 3: In the case where the Hilbert space factorizes completely as a product of
purely left- and right-moving CFTs, it is possible to show that ∆1 can never be greater
than ctotal

24
+ 1. This is the case described by Höhn-Witten’s conjectured ”extremal”

CFT. It is unknown whether or not CFT exist that saturate this bound for c equal to
any positive integer multiple of 24.

2.1 Conformal invariance and modular invariance

Let us consider a general CFT in two dimensions with positive norm and discrete
spectrum. When the spatial direction σ1 of the theory is compactified on a circle of
length 2π, the partition function of the theory at temperature 1

β
is given by

Z(β) ≡ Tr
(

exp {−βH}
)

=
∑

n a(n)exp {−βEn} ,

where H is the Hamiltonian on a circle of length 2π, En is the nth energy eigenvalue,
and a(n) is the degeneracy at the energy En. Unitarity and discreteness of the spectrum
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imply that the a(n) are positive integers. (We will sometimes suppress the degeneracy
a(n) henceforth.) The partition function can be refined by adding a thermodynamic
potential K1 for momentum P1 in the compact spatial direction σ1:

Z(β, K1) ≡ Tr
(

exp {iK1P1 − βH}
)

Defining τ ≡ (K1 + iH)/2π, the partition function can be written in the familiar form

Z(τ, τ̄) ≡ Tr
(

qL0−
c

24 q̄L̃0−
c̃

24

)

,

where q ≡ exp {2πiτ}, c and c̃ are the right- and left-moving central charges, L0 =
1
2
(H + P1) + c̃

24
and L̃0 = 1

2
(H − P1) + c̃

24
are the right- and left-moving conformal

weight operators, and q ≡ 2πiτ , which fit into a Virasoro algebra
[

Lm, Ln

]

= (m − n)Lm+n + c
12

(m3 − m)δm,−n

[

L̃m, L̃n

]

= (m − n)L̃m+n + c̃
12

(m3 − m)δm,−n

[Lm, L̃n] = 0

The Virasoro generators obey the Hermiticity condition L†
m = L−m, and it follows

from unitarity that every primary operator has nonnegative weight, with weight zero
if and only if the operator is the identity.

The partition function can be realized as the path integral of the conformal field
theory on a torus of complex structure τ , with no operator insertions. Large coordi-
nate transformations of the torus have the structure of the modular group PSL(2, ZZ),

with the generator

(

a b
c d

)

acting as τ → aτ+b
cτ+d

. The group is generated by the

transformations T =

(

1 1
0 1

)

and S =

(

0 −1
1 0

)

, which act as τ → τ + 1 and

τ → − 1
τ
, respectively.

Invariance of the partition function under the T transformation is completely equiv-
alent to the condition that every state have h − h̃ ∈ ZZ, where h, h̃ are the state’s
eigenvalues under L0, L̃0. By contrast, invariance of the partition function under the
modular S transformation gives a condition that far less transparent as a set of con-
straints on the spectrum of the theory. The rest of this section is devoted to extracting
useful information from the invariance of Z(τ) under this transformation.

2.2 The medium-temperature expansion

The most basic constraint is Cardy’s formula [11], which has to do with the asymptotic
density of energy levels. By relating the low-temperature limit τ2 → ∞ directly to
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the high-temperature limit τ2 → 0, the modular S-transformation implies that the
asymptotic density of states goes as

ρ(∆, J) ≡ d2n
d∆ dJ

≃ exp

{

2π

(

√

c̃(∆−J)
12

+
√

c(∆+J)
12

)}

,

where ∆ = h + h̃ is the scaling dimension of the operator, J ≡ h − h̃ is the spin of
the operator, and we take ∆ to be large. Setting to zero the chemical potential K1 for
spin, we maximize the exponent with respect to J , which gives

ρ(∆) ≡ dn
d∆

≃ exp

{

+2π
√

ctotal∆
6

}

for large ∆ at a given total central charge

ctotal ≡ c + c̃ . (2.1)

Since the level density increases slower than any geometric progression, this implies
that the sum

∑

n (qq̄)En converges for any |q| < 1, by the ratio test. This will be useful
for us in what follows, but by itself it does not make a statement about the spectrum
that can be tested at finite energies or temperatures – Cardy’s formula is limited by
its status as a formula that applies only asymptotically.

We would like to devise a test that allows us to look at a finite number of energy levels
in a candidate spectrum for a CFT, and to decide whether that set of energy levels
can actually be the spectrum of a consistent theory. And we’d like to do it by using as
few inputs as possible – in particular, we would like to see what can be accomplished
just using unitarity and modular invariance, and not having to use other consistency
constraints on CFT, such as the existence of an associative operator product expansion.

For instance, the considerations in [9, 6] yield a constraint on the spectrum of a
CFT in the case that the partition function of the CFT factorizes as a product of
holomorphic and anti-holomorphic functions. Using only unitarity, holomorphy and
modular invariance, one can show that in a holomorphically factorized CFT, the weight
of the lowest-lying primary state (other than the identity) can be no higher than
∆1 ≤ min( c̃

24
, c

24
) + 1.

Similarly, in [25] the authors examined the case of CFT with (2, 2) superconformal
invariance, and used the holomorphic properties of the elliptic genus suggest a con-

jectural bound of ∆1 ≤ 1
24

min
(

c, c̃
)

+ o
(

c0
total

)

at large central charge, under

some special conditions. (In [25], the bound contains more information than the one
in [9, 6], in that the terms subleading in c̃, c have precise coefficients depending on the
U(1) R-charge of the state of interest.)

To derive – and fully prove – a bound in the general case, let us conisder the nature
of the inputs we are using. If we use only unitarity and modular invariance, what
we are really studying is just the set of modular invariant functions with a Fourier
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expansion that is discrete, with positive integer Fourier coefficients. What are the
general properties of this set of functions?

Functions f(τ, τ̄) on the upper half plane H that are modular invariant are in one
to one correspondence with functions on the fundamental domain H/PSL(2, ZZ). But
if we further assume that f(τ, τ̄) is smooth on the covering space, this gives us extra
information, because the set of modular-invariant smooth functions f(τ, τ̄) is not in
correspondence with the set of smooth functions on the fundamental region. A smooth
function on the fundamental region lifts to a modular-invariant smooth function on
the covering space if and only if it satisfies certain conditions on its derivatives at the
special points on the fundamental region that correspond to fixed points of elliptic
elements of the modular group [11, 12]. Cardy’s formula implies that Z(τ, τ̄) and all
its derivatives are continuous in the entire upper half plane, so we can indeed apply
this reasoning to the partition function.

We will focus here on the point τ = +i, which is fixed under the modular transfor-

mation S =

(

0 −1
1 0

)

. This point in complex structure moduli space corresponds to

a torus that is square – that is, the metric on the torus has no shear (off-diagonal com-
ponents), and both radii are equal. The path integral on a square torus corresponds
to the thermal partition function of a CFT compactified on a circle, at a tempera-
ture equal to the inverse circumference of the circle. The partition function at higher
temperatures can be expressed, using the modular S-transformation, in terms of the
partition function at lower temperatures. So the complex structure τ = +i, correspond-
ing to β = 1

kBT
= 2π, can be thought of as lying exactly between the high-temperature

and low-temperature régimes, or equivalently between the large- and small-complex
structure limits of the moduli space of the torus.

It is in the neighborhood of τ = i that modular invariance of the parition function,
which is obscure in the large- and small-complex structure limits, becomes manifest.
To parametrize this neighborhood conveniently, write

τ ≡ +i · exp {s} .

In terms of the variable s, the modular S-transformation τ → − 1
τ

acts as

s → −s .

In terms of the variable s, then, the condition of invariance under the modular
S-transformation can be written as

Z(+i exp {s} ,−i exp {s̄}) = Z(+i exp {−s} ,−i exp {−s̄}) .

Scaling s → 0 and examining the behavior of the partition function in that régime is
what we shall refer to as the medium complex structure expansion, or medium temper-
ature expansion when we restrict ourselves to real values of s.
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Taking derivatives at s = 0, this gives

(

∂
∂s

)NR
(

∂
∂s̄

)NL

Z(+i exp {s} ,−i exp {s̄})
∣

∣

∣

∣

s=0

= 0 for NR + NL odd .

In terms of the usual variable τ , this means

(

τ ∂
∂τ

)NR
(

τ̄ ∂
∂τ̄

)NL

Z(τ, τ̄)

∣

∣

∣

∣

τ=+i

= 0 for NR + NL odd .

For purely imaginary complex structures τ = iβ/2π, this condition implies

(

β ∂
∂β

)N

Z(β)

∣

∣

∣

∣

β=2π

= 0 for N odd .

Before proceeding to derive our inequalities, let us make a few remarks on the medium
temperature expansion. First of all, we want to emphasize that this expansion really
is quite powerful – the N th order of the medium temperature expansion generates a
new constraint on the partition function, indepdendent from all the previous ones.

Secondly, the medium temperature expansion really contains complementary infor-
mation to that of the low- and high-temperature limits. In the low-temperature régime,
unitarity is manifest because the function decomposes into a sum of exponentials with
positive integer coefficients, but modular invariance is completely invisible. The high-
temperature régime is redundant with the low-temperature régime, and Cardy’s for-
mula exploits this relation in order to derive asymptotic formulæfor level densities. But
still modular invariance constrains neither of these two limits separately, it only relates
them to one another. In the medium temperature régime, unitarity is obscure, but
modular invariance is manifest and imposes an infinite number of separate constraints
on the derivatives of the partition function.

Thirdly, we will see in the next section that the medium temperature expansion
is useful, when combined with the unitarity constraints that are visible in the low-
temperature expansion and the convergence properties inferred via Cardy’s formula for
the high-temperature expansion. We will see that one need not use the full hierarchy of
differential constraints on Z(β) for all odd N : there is a useful inequality implied just
by the constraints at N = 1, 3 alone. We now turn to the derivation of this inequality.

2.3 Warm-up : the case of c, c̃ < 9.135

In this subsection we will perform a “warm-up” derivation, where we show that every
compact, unitary CFT (with c > 1) has a local operator of some kind – not necessarily
a primary operator – whose scaling dimension ∆ ≡ h + h̃ satisfies

∆ ≤ ∆
(warm−up)
+ ≡ ctotal

12
+ 3

2π
. (2.2)

10



Since we include descendants in our partition function along with primary operators,
the bound (2.2) gives us interesting information only for low values of the total central
charge: for ctotal > 24− 36

π
≃ 18.270 the right hand side of (2.2) lies above ∆ = 2, where

there must always be a stress tensor anyway. When ctotal < 18.270, then ∆
(warm−up)
+ < 2,

which means that the operator with dimension ∆1 cannot be a descendent of the
identity. It must either be primary, or else it must be the L−1 or L̃−1 descendent of a
primary with dimension ∆1−1. In either case, this means there is a nontrivial primary
with dimension less than or equal to ∆1 < ∆+.

Our method for deriving the inequality can be refined to deal with primary operators
only, and we will do this later in the following sections. For now, we will derive our
weaker bound in order to illustrate the basic method involved.

First, we take the expression for the full partition function

Z(β) =
∑

n exp {−βEn}

and decompose it as

Z(β) = Z(vac)(β) + Z(excited)(β) (2.3)

where

Z(vac)(β) ≡ exp {−βE0}

Z(excited)(β) ≡
∑

n≥1 exp {−βEn} .

(2.4)

The basic idea behind the inequality we want to derive is to show that with every
derivative β ∂

∂β
that we take at β = 2π, the higher enegy levels tend to gain in im-

portance and also to contribute negatively to derivatives of odd order. If we assume
the degeneracies at high levels are large enough that the first derivative with respect
to β will vanish at β = 2π, then those high levels will tend to contribute even more
negatively to the third derivative at β = 2π, and the only way they can be balanced
out is by the lower positive energy levels.

So the conclusion will be that the lowest of the excited energy level must be low
enough that it does not make an overwhelmingly large negative contribution to the third
derivative, given that it makes a sufficiently large contribution to the first derivative.
Let us now make this intuition precise. We define a relative importance I(E) associated
with each energy level |E〉. This function is designed to measure the importance of |E〉’s
contribution to the third derivative of the partition function at medium temperature
(β = 2π), compared to |E〉’s contribution to the first derivative at medium temperature.
The energy level |E〉 contributes to Z(β) as exp {−βE} at temperature 1/β, so we

11



define

I(E) ≡

(

β ∂
∂β

)3

exp {−βE}

(

β ∂
∂β

)1

exp {−βE}

∣

∣

∣

∣

∣

∣

∣

∣

∣

β=2π

= 4π2E2 − 6πE + 1

(2.5)

At β = 2π, the derivatives of Z(vac) and Z(excited) will be equal and opposite, by
virtue of the medium-temperature expansion at N = 1:

(

β ∂
∂β

)1

Z(vac)(β)

∣

∣

∣

∣

β=2π

= −
(

β ∂
∂β

)1

Z(excited)(β)

∣

∣

∣

∣

β=2π

. (2.6)

Likewise by virtue of the medium-temperature expansion at order N = 3, we have:

(

β ∂
∂β

)3

Z(vac)(β)

∣

∣

∣

∣

β=2π

= −
(

β ∂
∂β

)3

Z(excited)(β)

∣

∣

∣

∣

β=2π

. (2.7)

(The zero energy states make no contribution to any of the derivatives.)

Now define the ratios

R(vac)
31 ≡

(

β ∂
∂β

)3

Z(vac)(β)

(

β ∂
∂β

)1

Z(vac)(β)

∣

∣

∣

∣

∣

∣

∣

∣

∣

β=2π

= I(E0)

and

R(excited)
31 ≡

(

β ∂
∂β

)3

Z(high)(β)

(

β ∂
∂β

)1

Z(high)(β)

∣

∣

∣

∣

∣

∣

∣

∣

∣

β=2π

(2.8)

The ratio R(vac)
31 is equal to I(E0) because the partition function Z(vac)(β) contains only

a single exponential exp {−βE0}.
The ratios (2.8) are necessarily equal in any modular invariant theory, by virtue of

relations (2.6) and (2.7):

R(excited)
31 = R(vac)

31 = I(E0) . (2.9)

Now we will use the relative importance factor I(E) to show that (2.9) can never be
satisfied if the bound (2.2) is violated.
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To do this, write the ratio R(excited)
31 as follows:

R(excited)
31 =

P

∞

m=1 I(Em)Emexp{−2πEm}
P

∞

n=1 Enexp{−2πEn}
. (2.10)

Now let us compare the individual factors I(En) to the ratio I(E0) = R(vac)
31 . The

equation I(E) = I(E0) has two roots, namely E0 itself, and

E
(warm−up)
+ ≡ 3

2π
− E0 = 3

2π
+ c+c̃

24
. (2.11)

The larger root E
(warm−up)
+ is positive, since E0 is negative in any unitary theory. So

there are two possible ranges for the relative importance function I(E), namely

I(E) ≤ (E0) for E0 ≤ E ≤ E
(warm−up)
+ (2.12)

and

I(E) > (E0) for E > E
(warm−up)
+ . (2.13)

Now we will use proof by contradiction to show that the lowest excited energy level
E1 can be no greater than E+. Suppose E1 lies in the second range, (2.13). Then so
does every excited level En, n ≥ 1. This would give us the inequalities

En ≥ E1 > E
(warm−up)
+ > 0 ,

I(En) > I(E0) > 0

(2.14)

for all n ≥ 1. These inequalities lead to a contradiction: subtracting the two sides of
(2.9) and using the identity (2.10), we obtain

0 = R(excited)
31 − I(E0) =

P

∞

m=1

“

I(Em)−I(E0)
”

·Em· exp{−2πEm}
P

∞

n=1 En· exp{−2πEn}
. (2.15)

If E1 > E
(warm−up)
+ , then every term in the numerator and denominator of (2.15) is

positive, by virtue of the inequalities (2.14), and equation (2.15) cannot be satisfied.
We conclude that

E1 ≤ ctotal
24

+ 3
2π

, Q .E .D . (2.16)

The proof above establishes a general upper bound for the lowest excited energy level
in any unitary CFT with discrete spectrum. Written in terms of operator dimensions
∆ ≡ E −E0, we have a lower bound on the scaling dimension of the lowest-dimension
operator other than the identity:

∆1 ≤ ∆
(warm−up)
+ , (2.17)
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with ∆
(warm−up)
+ ≡ ctotal

12
+ 3

2π
. For c + c̃ ≤ 24 − 18

π
≃ 18.270, we have ∆

(warm−up)
+ <

2, so the lowest operator satisfying the bound, other than the identity, must be a
primary operator. For ctotal > 18.270, the value of ∆

(warm−up)
+ is greater than 2, so the

bound yields no information, since any CFT always contains a stress tensor, which has
dimension two.

In the range ctotal ≤ 18.270, the individual central charges c and c̃ must be equal,
since both are positive (by unitarity) and their difference is an integer multiple of 24
(by modular invariance). So the theorem states that there exists a primary operator
(other than the identity) of scaling dimension less than c

6
+ 3

2π
for any unitary, modular

invariant CFT with c, c̃ < 9.135. This is a somewhat limited range of central charge,
but it contains many interesting theories, including any supersymmetric sigma model
on a Calabi-Yau threefold (with diagonal GSO projection).

3 A general inequality for primary operators

In order to derive a useful inequality for theories with ctotal > 18.270, we would like
to separate primaries from descendants, so that we can find an upper bound on the
weight of the lowest primary state. In this section, we will adapt the methods of the
previous section to focus on primary operators alone.

3.1 Strategy

Our strategy to derive such an upper bound, in parallel with the derivation of the
previous section, is to write the partition function explicitly in terms of weights of
primaries, rather than in terms of weights of general operators. To do this, we proceed
as follows:

1. Restrict our attention to the case where both left- and right-moving central
charges are greater than 1. In this case, the Virasoro representations of pri-
mary states are particularly simple. We will simplify the analysis further by
assuming that the CFT has no chiral algebra other than the Virasoro algebra.

2. Write down a partition function for primary operators alone. For the cases we
consider, this partition function is related by a simple equation to the full parti-
tion function.

3. Use the relation between the full partition function and the partition function
for primaries to derive a transformation law for the latter under the modular
S-operation τ → − 1

τ
, given the modular invariance of the former.

4. Express modular invariance as an infinite sequence of differential identities on
the partition function for primaries at medium temperature β−1 = 1

2π
.
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5. Show that the first two of these identities are not compatible with one another if
the energy of the lowest primary state is too large.

3.2 Review of Virasoro representations

For the rest of this section we will assume c and c̃ are both greater than 1. This has
well-known and useful implications for the structure of representations of the Virasoro
algebra [14, 16, 17]. In particular, for c > 1 the unitary highest-weight representations
of the Virasoro algebra are of two types, characterized by the weight h of the primary
state |h〉 on which the representation is built. For the first type of representation, the
primary state |h〉 has weight h > 0, and all each ordered monomial of Virasoro raising
operators creates an independent state. That is, for h > 0 there are no linear relations
among the states

L−n1 · L−n2 · · ·L−nk
· |h〉

for any collection (possibly empty) of ni with n1 ≥ n2 ≥ · · · ≥ nk ≥ 1. The second
type of Virasoro representation is the one in which the primary state has h = 0. In
this case the linearly independent states of the representation are given by

L−n1 · L−n2 · · ·L−nk
· |0〉

for any collection (possibly empty) of ni with n1 ≥ n2 ≥ · · · ≥ nk ≥ 2.

3.3 Decomposition of the partition function

By assuming the theory has no chiral algebra beyond the Virasoro algebra, we eliminate
from consideration primaries with h = 0, h̃ 6= 0 or vice versa. So the only primaries
in our theory have h = h̃ = 0 or h, h̃ > 0. By cluster decomposition, the CFT can
contain only one operator with h = h̃ = 0, namely the identity operator. So we can
decompose our partition function Z(τ) into a sum over conformal families, including
the identity family:

Z(τ) = Zid(τ) +
∑

A ZA(τ) ,

where Zid(τ) is the sum over states in the conformal family of the identity, and ZA(τ) is
the sum over all states in the conformal family of the Ath primary, which has conformal
weights hA, h̃A. By the structure theorem for Virasoro representations with c > 1
referred to above [14, 16, 17], the partition function ZA(τ) is

ZA(τ) = qhA− c

24 q̄h̃A− c̃

24

∏∞
m=1

(

1 − qm
)−1

∏∞
n=1

(

1 − q̄n
)−1

Likewise, the partition function Zid(τ) is

Zid(τ) = q−
c

24 q̄−
c̃

24

∏∞
m=2

(

1 − qm
)−1

∏∞
n=2

(

1 − q̄n
)−1
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So we can write the full partition function as

Z(τ) = q−
c

24 q̄−
c̃

24

[

∏∞
m=1

(

1 − qm
)−1

]

·
[

∏∞
n=1

(

1 − q̄n
)−1

]

·
[

(1 − q)(1 − q̄) + Y (τ)
]

where

Y (τ) ≡
∑∞

A=1 q−hA q̄−h̃A

is a sum over primary states only, with the vacuum omitted.

We can simplify this expression by using the definition of the Dedekind eta function

η(τ) ≡ q+ 1
24 · ∏∞

n=1

(

1 − qn
)+1

so

∏∞
n=1

(

1 − qn
)−1

= q+ 1
24

η(τ)
.

So we write the full partition function as

Z(τ) = q−
c−1
24 q̄−

c̃−1
24 · |η(τ)|−2 ·

[

(1 − q)(1 − q̄) + Y (τ)
]

Restricting to the imaginary axis τ ≡ iβ/(2π), with β real, we have q = q̄ = exp {−β},
and

Z(β) = M(β)Y (β) + B(β) (3.18)

with

M(β) ≡ exp{−(E0+
1
12

)β}
η(iβ/2π)2

(3.19)

and

B(β) ≡ M(β) ·
(

1 − exp {−β}
)+2

, (3.20)

where E0 ≡ − ctotal
24

. For real β, the partition function over primaries Y (β) becomes

Y (β) ≡
∑

A exp {−β∆A} , (3.21)

where ∆A ≡ hA + h̃A is the weight of the primary operator OA.

In what follows, it will be convenient to define the polynomials fp(x) by the equation

(

β∂β

)p [

exp{−zβ}
η(iβ/2π)2

]
∣

∣

∣

β=2π
≡ (−1)p · η(i)−2 · exp {−2πz} · fp(z) . (3.22)
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The first few polynomials are

f0(z) = 1

f1(z) = (2πz) − 1
2

f2(z) = (2πz)2 − 2 (2πz) +
(

7
8

+ 2r20

)

f3(z) = (2πz)3 − 9
2
(2πz)2 +

(

41
8

+ 6r20

)

(2πz) −
(

17
16

+ 3r20

)

(3.23)

where r20 is a numerical constant we have defined as

r20 ≡ η′′(i)
η(i)

=
(

η′(i)
η(i)

)2

+ ∂2
τ

[

ln
(

η(τ)
) ]

∣

∣

∣

τ=i
= − 1

16
+

∑∞
n=1

π2n2

sinh2(πn)

= 0.0120528 + o
(

10−8
)

.

(3.24)

In deriving these polynomials we have used the identities

η′(i) = i
4
η(i)

η′′′(i) = 15i
32

(

η(i) + 8η′′(i)
)

.

(3.25)

The identities (3.25) follow from the modular transformation law of the eta function,

η(− 1
τ
) = (−iτ)

1
2 · η(τ) ,

whose medium-complex-structure expansion yields

(

τ∂τ + 1
4

)p

η(i)
∣

∣

∣

τ=i
= 0, p odd .

The p = 1, 3 identities yield eqns. (3.25) directly.

Now we would like to take derivatives of the two terms B(β) and M(β)Y (β) at
medium temperature. For M(β)Y (β), equations (3.19),(3.21) together with the for-
mula (3.22) give

(

β∂β

)p

M(β)Y (β)
∣

∣

∣

β=2π
=

(−1)pη(i)−2exp
{

−2π(E0 + 1
12

)
}

∑∞
A=1 fp

(

∆A + E0 + 1
12

)

exp {−2π∆A}
(3.26)
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As for B(β), applying the formula (3.22) to eq. (3.20) gives

(

β∂β

)p

B(β)
∣

∣

∣

β=2π
= (−1)pη(i)−2exp

{

−2π(E0 + 1
12

)
}

·

[

fp

(

E0 + 1
12

)

− 2 exp {−2π} fp

(

E0 + 13
12

)

+ exp {−4π} fp

(

E0 + 25
12

) ]

(3.27)

For simplicity, we now define Ê0 ≡ E0 + 1
12

= 2−ctotal
24

. Then we have

(

β∂β

)p

M(β)Y (β)
∣

∣

∣

β=2π
= (−1)pη(i)−2exp

{

−2πÊ0

}

∑∞
A=1 fp(∆A + Ê0)exp {−2π∆A}

(

β∂β

)p

B(β)
∣

∣

∣

β=2π
= (−1)pη(i)−2exp

{

−2πÊ0

}

· bp(Ê0)

bp(x) ≡ fp(x) − 2 exp {−2π} fp(x + 1) + exp {−4π} fp(x + 2)

(3.28)

Thus the medium-temperature equations for modular invariance of Z(β) at p = 1, 3
reduce to

∑∞
A=1 f1(∆A + Ê0) exp {−2π∆A} = −b1(Ê0)

and

∑∞
A=1 f3(∆A + Ê0) exp {−2π∆A} = −b3(Ê0)

(3.29)

Now we will proceed in parallel with our ”warm-up” proof. Define the relative impor-
tance factor

I31(x) ≡ f3(x)
f1(x)

(3.30)

and the coefficient

K31(Ê0) ≡ b3(Ê0)

b1(Ê0)
. (3.31)

As before, we will take the scaling dimensions ∆n of our primary operators to be
indexed in order so that ∆n is increasing:

0 = ∆0 < ∆1 ≤ ∆2 ≤ · · · .

To derive an upper bound on the dimension ∆1 of the lowest primary operator other
than the identity, divide the two equations (3.29). We then obtain

P

∞

A=1 I31(∆A+Ê0)f1(∆A+Ê0)exp{−2π∆A}
P

∞

B=1 f1(∆B+Ê0)exp{−2π∆B}
= K31(Ê0) (3.32)
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Now we will prove that (for c, c̃ > 1) the value of ∆1 must always be less than or equal
to ∆+, which we define as the largest solution ∆ to the equation

I31(∆ + Ê0) = K31(Ê0) , (3.33)

which is equivalent to the cubic equation

f3(∆ + Ê0) − K31(Ê0)f1(∆ + Ê0) = 0 . (3.34)

Note that ∆+ is implicitly a function of Ê0, though we will not always indicate the Ê0

dependence in our notation.

We will prove our desired result by contradiction. Suppose ∆1 > ∆+. Now subtract
the two sides of (2.9), to give

0 =
P

∞

A=1

“

I31(∆A+Ê0)−K31(Ê0)
”

·f1(∆A+Ê0)·exp{−2π∆A}
P

∞

B=1 f1(∆B+Ê0)·exp{−2π∆B}
(3.35)

By definition of ∆+, the function I31(∆ + Ê0) is greater than K31(Ê0) for ∆ > ∆+. So
if it were the case that ∆1 > ∆+, then we would have the inequalities

∆n ≥ ∆1 > ∆+, all n ≥ 1 ,

I31(∆n + Ê0) > K31(Ê0), all n ≥ 1 .

(3.36)

We have one additional lemma to establish: that ∆+ is necessarily greater than 1
4π
−Ê0

if c and c̃ are greater than 1. It is straightforward to check this property of ∆+ numer-
ically, and we establish it with an analytic proof in one subsection of the Appendix.
This property of ∆+ means that

f1(∆n + Ê0) = 2π∆n + 2πÊ0 − 1
2

> 0, all n ≥ 1 . (3.37)

From the inequalities (3.36) and (3.37), we could infer that every term in the numerator
and denominator of the right hand side of (3.35) would have to be positive, so the
equation (3.35) would be inconsistent. Therefore our hypothesis cannot be true, and
we conclude that

∆1 ≤ ∆+ , Q.E.D. (3.38)

3.4 Extended chiral algebras, and c ≤ 1

We will comment briefly on the special cases we have excluded from our considerations.

CFT with extended chiral algebras
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Our proof assumes that there does not exist an extended chiral algebra in the CFT
– that is, that there does not exist an operator other than the identity with h = 0
or h̃ = 0. Relaxing our assumptions to include such operators may lead to further
interesting results. In particular, the case h = 0, h̃ = 1 (or vice versa) is interesting to
consider: this is the case in which the CFT carries continuous global current algebra
symmetries. In this case there are necessarily a tower of Virasoro primaries which have
low dimension by virtue of being current algebra descendants of the identity. (In the
bulk interpretation, these states correspond to a gas of chiral gauge field excitations
confined to the boundary). The interesting calculation in this case would be to derive an
upper bound on the weight of the lowest nontrivial operator that is primary with respect
to the full chiral algebra – the Virasoro and current algebra pieces simultaneously.
When the current algebra group is abelian, such a derivation could be interpreted as
an upper bound on the mass of the lightest charged state in a theory of gravity, and
could amount to a rigorous proof of the ”weak gravity conjecture” [18] of Arkani-Hamed
et al. for the case of negative cosmological constant.

Note also that the holomorphically factorized CFT of [6, 9, 10] also contain very
large chiral algebras, and the methods of our proof are not directly relevant to these.
In general, though, CFT with chiral algebras tend to have low-dimension operators
(for instance, the chiral algebra itself), and it is likely that the best possible bound
for ∆1 will tend to be lower in a theory with a nontrivial chiral algebra than in a
theory without, of the same central charge. This is an interesting direction for further
investigation.

The special case of c ≤ 1

Our removal of gravitational descendants in the case c > 1 relied on the structure
theorem for unitary representations of the Virasoro algebra. For c ≤ 1 there are unitary
Virasoro modules with nontrivial structure that one must take into account if one wants
to extend the proof.

Conformal field theories with c ≤ 1 but c̃ > 1 are not classified, and may come
in an infinite variety. However we would expect that there should always be a large
left-moving chiral algebra in such theories, and the special issues involving extended
chiral algebras would become relevant.

The gravitational interpretation of theories with 0 < c ≤ 1 and c̃ very large is still
open. If we would like to describe the bulk theory with a local Lagrangian, we would
seem to need to add a gravitational Chern-Simons term [32, 33], of the kind used in
[34]. The paper [34] only deals with the case in which one of the two central charges
strictly vanishes. It is not clear how to generalize [34] to the case where the left- and
right- moving central charges are unequal but both nonzero. Other AdS/CFT dualities
exist [35] in which the left- and right-moving central charges are nonzero and unequal,
and described in the bulk by a perturbative string theory rather than a local action.
However in all such examples the left- and right-moving central charges are both large;
neither is between 0 and 1.
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In the case where both c and c̃ are less than or equal to 1, our understanding of the
CFT is complete: compact, unitary CFT with c < 1 are completely classified4 and it is
possible to inspect the operator spectra of these theories directly rather than deriving
a bound by abstract methods. The range 0 < ctotal ≤ 2 represents AdS3 spaces with
Planck-scale curvatures, so these cases are exotic at best as theories of gravity in three
dimensions.

4 The gravitational interpretation of the upper bound

on ∆1

In this section we turn to the gravitational interpretation of our CFT results. We have
derived an inequality that is completely universal in the set of two-dimensional confor-
mal field theories, with some mild conditions: unitarity, discreteness of the spectrum,
and the condition that c, c̃ > 1, as well as the absence of purely left- or right-moving
operators other than the stress tensor.

Such a universal inequality may have many interesting applications. In particular,
our bound is relevant for the physics of gravity with negative cosmological constant.
The virtue of our approach is that we can derive a nontrivial, non-asymptotic constraint
on the spectrum of a theory of gravity with negative cosmological constant. In order
to express our bound in this form, we need only express the cosmological constant of
the theory in terms of the central charge of the corresponding CFT, and the mass of a
state in terms of the dimension of the corresponding local operator.

4.1 Central charge and AdS radius

In the case of the AdS3/CFT2 correspondence, the matching between the central charge
of the CFT and the (negative) cosmological constant predates the undestanding of
the AdS/CFT correspondence as a dynamical principle. Brown and Henneaux [19]
were able to identify the central charge in the Virasoro algebra of AdS3 symmetries,
based purely on the structure of the classical Poisson bracket algebra, leading to the
identification

c + c̃ = 3

GN

√
|Λ|

. (4.39)

It was later verified [20] that this is indeed the correct central charge for the CFT that
corresponds to the theory in the sense of [21].

4For a review of the classification of modular-invariant theories with c, c̃ < 1, see [36].
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4.2 Dimensions, masses, and rest energies

We also wish to match the spectrum of massive objects with the spectrum of primary
operators. A primary state should be thought of as corresponding to a state at rest
with respect to the global time coordinate of AdS, because its energy cannot be lowered
by acting with boost generators. As always, we simplify the situation by assuming the
absence of holomorphic primary operators. (These would have a little group different
from that of a massive particle in the bulk of AdS; therefore for small Λ = −L−2 they
can only correspond to massless states, which do not have a rest frame, or else to states
which do not propagate into the bulk of AdS at all.)

So we have the correspondence

E(rest) = ∆
L

, (4.40)

where E(rest) is the rest energy of an object in the bulk of AdS, and ∆ is the dimension
of the primary operator.

For a minimally coupled massive scalar field of mass ms, we could use the dictionary
of [8], [22]:

∆ = 1 +
√

1 + m2
sL

2

⇔

ms = 1
L
·
√

∆2 − 2∆ .

(4.41)

The formula (4.41) gives

ms ≃ ∆
L

+ o
(

∆0
)

when ∆ is large. In the limit where L → ∞ with ms held fixed, the order 1
∆

terms in
the difference between ms and the rest energy of a massive excitation can be thought
of as the coupling of the massive field to the AdS curvature.

4.3 Primaries and descendants

As for the bulk interpretation of descendants of the primary with dimension ∆, we
follow [6] in interpreting these as the original massive state in the bulk with boundary
metric excitations added.

To be more precise, the states obtained by acting with L−n, L̃−n with n ≥ 2 corre-
spond with creation operators for quadrupole and higher modes of the metric; these
are localized at spatial infinity and can be thought of loosely as ”boundary gravitons”
or ”boundary metric excitations”. (No graviton states ever propagate in the bulk in
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three dimensions.) Acting with L−1 and L̃−1, on the other hand, can be thought of as
exciting the dipole mode of the metric. In other words, the raising operators L−1 and
L̃−1 boost the massive object in the bulk to a state of motion with higher energy. So
the primary states of the CFT correspond one to one with massive states in the bulk
that are at rest, in which no boundary gravitons are excited. Their descendants corre-
spond to objects either in a nonzero state of motion, or with some boundary gravitons
excited, or both.

4.4 Bulk interpretation of the upper bound on ∆1

We do not wish to assume that the lightest massive state is a scalar, nor that it is
necessarily described by a minimally coupled local field, so we will use the formula
(4.40) to interpret our bound (3.38) in terms of the bulk physics in the flat-space
limit. Using formulæ (4.39) and (4.40), we can interpret (3.38) as saying that every
consistent theory of quantum gravity with negative cosmological constant Λ = −L−2

must necessarily have a massive state in the bulk (with no boundary gravitons excited),
with center-of-mass energy equal to M1, where

M1 < M+

M+ ≡ 1
L

∆+

∣

∣

∣

ctotal=
3L

GN

.
(4.42)

Of course we are assuming, as always, that the AdS radius L is not so small that
c, c̃ ≤ 1.

We can now use our best linear upper bound on ∆+, as derived in the Appendix and
stated in (A.6). There, we show that

∆+ < ctotal
12

+ δ0 , (4.43)

where δ0 ≡ 0.473695. In gravitational terms, this means that

M1 ≤ M+ < 1
4GN

+ δ0
L

. (4.44)

In the flat-space limit Λ → 0, this says that

M1 ≤ 1
4GN

. (4.45)

This value of the mass M1 is suggestive. The rest energy of the lightest BTZ black
hole is 1

8 GN
above the energy of the vacuum.5 The maximum possible value of M1 is

5We should think of 1

8 GN

as the rest mass of the lightest object in the spectrum of classical black
holes, despite the fact that the lightest BTZ black hole is often referred to as the ”zero mass” BTZ
black hole.
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twice that amount, so intuitively we may say that, since the BTZ black hole exists
as a state in every theory of 3D gravity and matter, then there should always be a
massive state at about that energy scale, even when quantum corrections are taken
into account.

We cannot, however, find any independent bulk reasoning that could predict the
coefficient of 1

GN
in such an upper bound. The tree-level mass of a Planck-scale black

hole need not have any particular significance at the quantum level: small black holes
would be expected to receve o(1) multiplicative renormalizations to their masses from
virtual matter particles. It is not apparent how one could use bulk reasoning to prove
any upper bound on the quantum mass renormalization of the lightest black hole, for
a general theory of gravity coupled to matter.

The mass 1
4 GN

has been argued [37] to have a special significance when Λ = 0, as the
maximum value of the total energy of a collection of matter coupled to gravity in 2+1
dimensions. 6 The reason is simple to understand: viewed from a long enough distance
away, any collection of matter with energy M looks like a point particle, which creates
a conical defecit in the metric of ∆φ = 16πGNM . For M = 1

4 GN
this means the space

closes off entirely into a sphere, and for M > 1
4 GN

there is no consistent geometry at
all.

For small but negative Λ the closing-off of the space can be avoided if the collection
of matter diffuse enough that the negative vacuum energy in any region cancels or
overcancels the positive energy carried by the matter. This cancellation cannot be
achieved if the matter is made of point particles of mass M = 1

4 GN
but it could be

achieved if the objects of M = 1
4 GN

were composite objects such as solitons or strings.

We are not entirely certain how to relate the result of [37] to the bound (4.44) the
limit Λ → 0. It may be that any theory of gravity and matter saturating (4.44) is
necessarily very degenerate in the flat-space limit, with dynamics that break up into
a product of disjoint systems with a small number of states in each one. Alternately,
the result of [37] may be a sign that a better upper bound on ∆1 can be proven that
is lower than ∆+ by some numerical factor, in the limit ctotal → ∞. Such a conclusion
would fit well with the results [9, 10, 6, 25].

5 Conclusions

In this note we have derived a rigorous upper bound on the scaling dimension of the
lowest primary operator (other than the identity) in a two-dimensional conformal field
theory. This bound is universal among all unitary conformal field theories satisfying
some very mild conditions: c, c̃ > 1 and the absence of purely left- or right-moving
operators beyond the components of the stress tensor itself.

As a warm-up, we also derived an upper bound for the scaling dimension of the

6We thank Lee Smolin for making us aware of this paper.
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Figure 4: In this paper we have proven that the distribution of unitary conformal field
theories in two dimensions looks something like the scatter plot above, where ∆1 is the
weight of the lowest primary operator. It is an open question whether there exist CFT
that saturate the bound at leading order in ctotal, or whether further considerations
could reduce the slope of the red bounding line from 1

12
, perhaps to as low as 1

24
.

lowest operator of any kind – primary or descendant – other than the identity. For
sufficiently large values of the total central charge, this version of the bound provides
no information, since every theory contains a stress tensor, which has scaling dimension
2. But for c̃+ c less than 24− 18

π
≃ 18.270, even this rudimentary version of the bound

does predict the existence of a primary of dimension less than 2.

One compelling open question is to what extent ∆+ ∼ ctotal
12

is the best bound possible
at large central charge, in the full set of 2D conformal field theories satisfying our
conditions.

On the one hand, there is some reason to suspect that our bound could be improved.
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In the holomorphically factorized case [6], which includes the biggest gap in the spec-
trum of primaries of any known class of examples, the bound ∆1 ≤ c

24
+ 1 is a factor

of two lower than the one we have derived, for large c. The work of [25] suggests the
same bound in another special class of theories with (2, 2) supersymmetry. If these
special classes of CFT are typical of 2D CFT as a whole, then it should be possible to
cut our upper bound ∆+ in half.

We also observe that in the familiar cases of AdS3/CFT2 duality, there is not only a
single primary operator lying below ∆+, but many. In fact, in every known example,
there are an infinite number of primary operators with ∆ < ∆+ in the limit ctotal → ∞.
In terms of the bulk, these operators can be realized as strings, Kaluza-Klein modes of
a decompactifying internal dimension, or some other states of energy lower than 1

4GN
.

This pattern also suggests the possibility of improving on our inequality.

On the other hand, it may well be that the holomorphically factorized case is a
misleading guide to the upper bound on ∆1 in the general case. Holomorphically
factorized CFT have many special properties that are highly atypical of the set of CFT
as a whole. As an obvious example, we note that factorized CFT always lack the chaos
and thermalizing behavior associated with true black holes.7 The extreme specialness
of holomorphically factorized CFT, in this respect and others, suggests that they may
not ever realize the largest gap ∆1 in primary operator dimensions that is achievable
in general.

The other prominent examples [25] in which there is good evidence for a bound of
∆1 ≃ ctotal

24
, also have atypical properties, by virtue of their (2, 2)-extended supersym-

metry. The states of dimension ∆1 ≃ ctotal
24

, that realize the proposed bound of [25], are
BPS operators – they are chiral primaries of the (2,2) superalgebra. Their dimensions,
and the masses of the corresponding bulk states, are protected by supersymmetry from
any renormalizations. For generic deformations of these theories breaking all of their
SUSY, we might expect that the mass of the state could receive an o(1) multiplicative
renormalization. Such a renormalization could push the mass upwards by some factor
from its a tree-level value of 1

8 GN
, possibly to as high as 1

4 GN
.

Thus it is not clear at present whether our bound ∆1 ≤ ∆+ ≃ ctotal
12

is the lowest
achievable in the set of generic 2D CFT. It would be interesting to know with confidence
what the value best possible bound is for large ctotal. It may be possible to learn this
optimal value, by deriving an inequality for ∆1 in the general case together with a
series of examples where ∆1 saturates the inequality in the limit where ctotal is large.

The goal of our work was to understand how the rigorous holographic definition of
quantum gravity in terms of CFT might generate universal predictions that would hold

7In a factorized CFT, amplitudes are automatically periodic in time with period 2π, in units where
the radius of the spatial circle is 1. Translated into gravitational language, this means that every
correlation function would return precisely to itself after shifting the Lorentzian time coordinate of
any one of the operator insertions by the AdS time L = |Λ|− 1

2 . Thermal correlators therefore cannot
decay exponentially as they would in the presence of black hole, for a generic theory of gravity coupled
to matter [38, 39, 40].
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among all theories with an AdS ground state of a given size. We have actually exceeded
that goal: we have derived an upper bound on the mass of the lightest massive state
that is independent of the boundary conditions in the limit where the AdS becomes
large. That is, the universal upper bound on the lightest mass approaches a finite limit
in Planck units, giving us a universal, falsifiable prediction about local bulk physics,
that does not refer at all to the regulating AdS boundary condition.

The desirability of such robust predictions has grown increasingly acute as our un-
derstanding of quantum gravity has developed: just as we have come to understand
that holography provides the ”genetic code” of quantum gravity, we have simultane-
ously discovered an unimaginably vast and complex jungle of theories [41] realizing
that underlying code in myriad ways. We are only now beginning to learn what family
resemblances the flora and fauna of this vast ecosystem have in common.
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Appendix

A Properties of the function ∆+(Ê0)

In this Appendix we will establish some facts about the function ∆+(Ê0). We only
deal with CFT for which c, c̃ > 1, so we will always restrict the domain of definition of
∆+(Ê0) to Ê0 ≤ 0, or equivalently ctotal > 2.

A.1 Definition of ∆+

Recall that we have defined ∆+(Ê0) to be the largest real root ∆ of the cubic polynomial

P31(∆) ≡ f3(∆ + Ê0) − K31(Ê0)f1(∆ + Ê0) = 1

b1(Ê0)
F31(∆) ,

F31(∆) ≡ b1(Ê0)f3(∆ + Ê0) − b3(Ê0)f1(∆ + Ê0) .

We have defined K31 in (3.31), in the main body of the paper.

The explicit, analytic expressions for the polynomials f1,3 and b1,3 are:

f1(z) = (2πz) − 1
2

,

f3(z) = (2πz)3 − 9
2
(2πz)2 +

(

41
8

+ 6 r20

)

(2πz) −
(

17
16

+ 3 r20

)

,

b1(z) = f1(z) − 2 exp {−2π} f1(z + 1) + exp {−4π} f1(z + 2) ,

b3(z) = f3(z) − 2 exp {−2π} f3(z + 1) + exp {−4π} f3(z + 2) .

It is a straighforward exercise to establish that the constant r20 defined in (3.24) does
not appear in the expression b1(x)f3(y) − b3(x)f1(y) for general x, y. The expression
F31(∆) is of this general form, so we will never need to use the value of r20. Thought
of as a polynomial in two variables (∆, Ê0), the coefficients in expression F31 involve
only π and exp {−2π}.

For completeness, we wil write the full expression for F31, for general Ê0.

F31(∆) =
∑3

m=0

∑4−m
n=0 AmnÊ

n
0 ∆m
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with the coefficients Amn as follows:

A31 = 16π4 (1 − exp {−2π})2

A30 = −4π3 (1 − exp {−2π})
[

1 + (8π − 1)exp {−2π}
]

A22 = 48π4(1 − exp {−2π})2

A21 = −48π3 (1 − exp {−2π})
[

1 + (2π − 1)exp {−2π}
]

A20 = 9π2 (1 − exp {−2π})
[

1 + (8π − 1) exp {−2π}
]

A13 = 32π4 (1 − exp {−2π})2

A12 = −48π3 (1 − exp {−2π})2

A11 = 6π2
[

3 + 2 (8π2 − 3) exp {−2π} − (32π2 − 3) exp {−4π}
]

A10 = −π
[

3 − (32π3 − 72π2 + 6) exp {−2π} + (128π3 − 144π2 + 3) exp {−4π}
]

A04 = 0

A03 = 64π4 exp {−2π} (1 − exp {−2π})

A02 = 96π3 exp {−2π}
[

(π − 1) − (2π − 1) exp {−2π}
]

A01 = 4π2 exp {−2π}
[

(8π2 − 24π + 9) − (32π2 − 48π + 9) exp {−2π}
]

A00 = −2π exp {−2π}
[

(4π2 − 9π + 3) − (16π2 − 18π + 3) exp {−2π}
]

A.2 ∆+ is a smooth function of ctotal

We will now show that ∆+ is continuous as a function of ctotal in the range of inter-
est, ctotal ∈ [2,∞). ∆+ is defined implicitly as the largest root ∆ of the polynomial
P31(∆, Ê0), with Ê0 ≡ 2−ctotal

24
. The value of a root of a polynomial depends smoothly
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on its coefficients, except when two roots become coincident. (This assumes the leading
coefficient of the polynomial is constant, as in this case.) So in order to show that ∆+

depends smoothly on ctotal, we need to show that the coefficients in P31 are smooth
functions of ctotal, and that the roots of P31 are all distinct.

The coefficients of P31 depend smoothly on Ê0 as long as the rational function

K31(Ê0) = b3(Ê0)

b1(Ê0)
does. The denominator b1(Ê0), is given explicitly by

b1(Ê0) = 2π(1 − exp {−2π})2 Ê0 − 1
2
(1 − exp {−2π})2 − 4πexp {−2π} (1 − exp {−2π}) .

The second and third terms are negative, and the first is negative for ctotal > 2 and
vanishes for ctotal = 2. So b1(Ê0) can never vanish, and the coefficients of P31 depend
smoothly on ctotal for ctotal ∈ [2,∞].

So the only possible way ∆+ could be non-smooth would be if P31 had coincident
roots for some value of ctotal. Fortunately P31 is only cubic as a function of ∆, so it is
straightforward to check for coincident roots. Let us put P31 into canonical form for
a cubic polynomial by changing variables so that the quadratic term vanishes and the
coefficient of the leading term is 1.

The two leading terms of P31 are

P31(∆, Ê0) = 8π3
[

∆3 +
(

3Ê0 − 9
4π

)

∆2 + o
(

∆
) ]

so let us take

x ≡ 2π(∆ + Ê0) − 3
2

∆ = x
2π

− Ê0 + 3
4π

.

Then

P31(∆, Ê0) = f3(
x+ 3

2

2π
) − K31(Ê0)f1(

x+ 3
2

2π
)

= x3 + C1(Ê0)x + C0(Ê0)

with

C1(Ê0) ≡ −K31(Ê0) + 6r20 − 13
8

C0(Ê0) ≡ −K31(Ê0) + 6r20 − 1
8

= C1(Ê0) + 3
2

Note that the constant r20 drops out of the combinations C1(Ê0) and C0(Ê0).

Now we make use of the well-known formula for the discriminant of a cubic polyno-
mial with leading term equal to 1 and vanishing quadratic term. The discriminant is
given by

Disc(Ê0) ≡ 4C3
1(Ê0) + 27C2

0(Ê0)

30



As a function of x, the roots of P31(∆, Ê0) are distinct when Disc(Ê0) vanishes. Using
C1 = C0 − 3

2
, we can write

Disc(Ê0) = D(C0(Ê0)) ,

where

D(y) ≡ 4y3 + 9y2 + 27y − 27
2

Using Cardano’s formula, we can find all the roots of D(y). Two of the roots are
complex, and the real root is

y∗ ≡ 3
4

[

− 1 +
(

6
√

3 + 9
)

1
3 −

(

6
√

3 − 9
)

1
3

]

≃ 0.427505 + o
(

10−7
)

.

So the polynomial P31(∆, Ê0) can have a double zero only if

C0(Ê0) = −K31(Ê0) + 6r20 − 1
8

= y∗

⇔

[

b3(Ê0) − 6r20b1(Ê0)
]

+ (y∗ + 1
8
)b1(Ê0) = 0

This equation has three real roots, at

Ê
∗(1)
0 = 0.0821971 + o

(

10−8
)

,

Ê
∗(2)
0 = 0.184241 + o

(

10−7
)

,

Ê
∗(3)
0 = 0.460984 + o

(

10−7
)

.

In particular, all roots Ê0
∗ are positive. But we are only interested in ctotal > 2, in

which case Ê0 is negative or zero. It follows that the polynomial P31(∆, Ê0) has no
multiple roots (as a function of ∆) for ctotal ∈ [2,∞). We conclude that in this range
the function ∆+(Ê0) depends smoothly on ctotal, Q. E. D.

A.3 The function ∆+ is greater than 1
4π

− Ê0 for ctotal > 2

Now we wish to prove a lemma of which we make use in the body of the paper. We
would like to show that ∆+(Ê0) + Ê0 > 1

4π
for all ctotal > 2. In order to show this, it
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will be convenient to work in terms of the variable x ≡ 2π(∆ + Ê0) − 3
2
, in terms of

which the polynomial P31(∆, Ê0) takes the canonical form

P31(
x+ 3

2

2π
− Ê0, Ê0) = x3 + C1(Ê0)x + C0(Ê0) (A.1)

Define x+ to be the largest root of this polynomial. In terms of x+, we need to
establish that x+ ≥ −1 at any local minimum of ∆+. The function x+(Ê0) could
develop a critical point in one of two ways: either the coefficient functions C0(Ê0) and
C1(Ê0) could have a critical point as a function of Ê0, or the largest root x+ polynomial
x3 + C1x + C0 could have a critical point as a function of C0. We will show that the
former possibility cannot occur for ctotal > 2, and the latter possibility can never occur
at all.

The condition for the functions C0,1(Ê0) to have a critical point is

K ′
31(Ê0) = 0 ⇔ b′3(Ê0)b1(Ê0) − b1

′(Ê0)b3(Ê0)

≃ 3093.87Ê3
0 − 1511.95Ê2

0 + 187.515Ê0 − 6.9832 .

The coefficients of this polynomial are strictly alternating, so it can have no negative
roots. It follows that C0(Ê0), C1(Ê0) never have critical points as a function of ctotal

for ctotal > 2.

Next we will show that x+ can never have a critical point as a function of C0. Let
x1,2,3 be the three solutions to the equation

= x3 + C1x + C0

= x3 +
(

C0 − 3
2

)

x + C0 .

These roots can be thought of as implicit functions of C0, and they satisfy

x1 + x2 + x3 = 0

x1x2 + x1x3 + x2x3 = C0 − 3
2

x1x2x3 = −C0 .

Now suppose there is some value C0
∗ of C0 such that one of the roots, say x3, has a
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critical point as a function of C0. Then at C0 = C0
∗, we have

ẋ3 = 0

ẋ1 + ẋ2 = 0

x1ẋ2 + x2ẋ1 = 1

(x1ẋ2 + x2ẋ1)x3 = −1 .

We conclude that any root x3 of (A.1) that is a local extremum as a function of C0 must
necessarily take the value x3 = −1. But if we plug this value back into the defining
equation, we find

0 = x3
3 + C1x3 + C0 = (C0 − C1) − 1 = 3

2
− 1 = 1

2
,

leading to a contradiction. So no root of the defining polynomial can never be equal
to −1, and therefore x+ is monotonic as a function of C0. Taken together with the
result that C0 is monotonic as a function of ctotal for ctotal > 2, this implies that x+ is
monotonic as a function of ctotal in the same range. We conclude that ∆+(Ê0) + Ê0 is
monotonic a a function of ctotal for ctotal > 2.

We will see in the next subsection that ∆+(Ê0) goes as −2Ê0 + o(c0
total) = ctotal

12
+

o(c0
total) at large ctotal, so ∆+ is monotonically increasing as a function of ctotal in the

range of interest.

So we have learned that ∆+(Ê0) is always greater than 1
4π

in the range ctotal > 2. It

follows that ∆+(Ê0) + Ê0 is an increaing function of ctotal for ctotal > 2. The value of

∆+(Ê0) + Ê0 at ctotal = 2 is ∆+(0) = 0.615286 + o
(

10−7
)

, so we conclude

∆+(Ê0) + Ê0 > ∆+(0) > 1
4π

, Q. E. D.

A.4 Behavior of ∆+ for large central charge

Now let us take the total central charge ctotal to be large and positive. Taking ctotal →
+∞ means taking Ê0 ≡ E0 + 1

12
= 2−ctotal

24
to −∞. In this limit it is easy to see that

∆+ is proportional to ctotal, plus corrections of order c0
total. To see this, it is useful to

expand ∆+ as a series at large central charge:

∆+ ≡
∑∞

a=−1 δ−a

(

ctotal
24

)−a

. (A.2)

The defining property of ∆+ is that it satisfies

F31(∆+, Ê0) = 0 ,
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and that ∆+ is the largest real value with that property, for a given value of ctotal.
Using the deinifiton of Ê0 in terms of ctotal and the expansion (A.2) or ∆+, we can
expand F31(∆+, Ê0) to arbitrary order in 1

ctotal
, and solve for the universal numerical

coefficients δ−a. To leading order in ctotal, we thus obtain:

F31(∆+, Ê0) = −π4(1−exp{−2π})2

20736

(

δ2
1 − 3δ1 + 2

)

c4
total + o

(

c3
total

)

. (A.3)

We conclude that δ1 is the larger of the two roots of δ3
1 − 3δ2

1 + 2δ1 = δ(δ1 − 1)(δ1 − 2).
So δ1 = +2, which means

∆+ = ctotal
12

+ δ0 + o
(

c−1
total

)

.

To determine δ0 we expand F31 to order c3
total. Fixing δ1 = +2, we find

F31 = −
(

π4(1−exp{−2π})2

432

)

c3
total

[

δ0 − (12−π)+(13π−12)exp{−2π}
6π (1−exp{−2π})

]

+ o
(

c2
total

)

.

This determines the coefficient δ0 to be

δ0 ≡ (12−π)+(13π−12)exp{−2π}
6π (1−exp{−2π})

≃ 0.473695 + o
(

10−7
)

.

We could easily determine the higher coefficients δ−1, δ−2, · · · to arbitrary order.
However we will not bother to derive any coefficients beyond δ0, for a simple reason:
There is no guarantee that the bound we have derived is the best possible, even asymp-
totically at large ctotal. If the c−a

total term in ∆+ is not the lowest possible value that can

be obtained by any method, then the c
−(a+1)
total term will not be relevant at all. We are

not even certain if our leading expression ∆+ ≃ ctotal
12

is the best possible upper bound
at large ctotal, which means the finite correction δ0 may not be meaningful. Even if it
is, it seems quite unlikely that ctotal

12
+δ0 is the best possible upper bound to order c0

total.
Unless we have some reason to believe that there exist actual CFT with total central
charge ctotal that can attain the values ∆1 = ctotal

12
+ δ0 + o(c−1

total), there is nothing to be
gained in carrying the expansion of ∆+ to order c−1

total.

A.5 The function ∆+ is bounded above by ctotal

12 + 0.473695.

To extract the simplest possible conclusions from our inequality, we would like to find
a linear function a ctotal + k that is always greater than or equal to ∆+ whenever ctotal

is greater than 2. We would also like this function to be a good approximation to ∆+

at large ctotal, so we will take a to be equal to + 1
12

.

Let us find the lowest possible number k (independent of ctotal) such that ∆+(Ê0) ≤
ctotal
12

+k for all ctotal > 2. It is convenient to rewrite this condition as ∆+ ≤ −2Ê0 +k′,

with k′ = k + 1
6
, so that we can use the variable Ê0.

If k′ is the smallest possible number such that the inequality is satisfied, then one of
three possibilities holds:
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• The inequality could be saturated asymptotically as Ê0 → −∞.

• The inequality could be saturated at Ê0 = 0.

• The inequality could be saturated at some value of Ê0 in between 0 and −∞.

Let us eliminate the third possibility. Suppose there were some value Ê
(sat)
0 between

0 and −∞ such that the inequality is saturated. Then the line ∆ = −2Ê0 + k′ must
be tangent to the curve ∆ = ∆+(Ê0) at the point (Ê

(sat)
0 , ∆+(Ê

(sat)
0 )). That is, the

derivative ∆′
+(Ê0) must be equal to −2 at the point Ê0 = Ê

(sat)
0 .

In terms of the variable x+ ≡ 2π(∆+ + Ê0) − 3
2
, we have the defining equation

x3
+ + C1x+ + C0 = 0 , (A.4)

and we wish to search for values of Ê0 such that x′
+(Ê0) = −2π. The functions

x+, C0, C1 all vary with Ê0; using a prime to denote differentiation with respect to Ê0

we have

3x2
+x′

+ + C1
′x+ + C1x+

′ + C0
′ = 0 .

For the particular values x
(sat)
+ , Ê

(sat)
0 where the equation x′ = −2π, so we have

− 6πx2
+ + C ′

1x+ − 2π C1 + C0
′
∣

∣

∣

Ê0=Ê
(sat)
0

= 0 . (A.5)

Multiplying by x+ and using the defining equation (A.4), we obtain

C ′
1x

2
+ +

(

4πC1 + C0
′
)

x+ + 6πC0

∣

∣

∣

Ê0=Ê
(sat)
0

= 0 .

Combining the two to cancel the x2
+ term, and solving for x+, we get

x
(sat)
+ = 2πC1C′

1−C0
′C1

′−36π2C0

C
′2
1 +6πC0

′+24π2C1

∣

∣

∣

Ê0=Ê
(sat)
0

Plugging back into (A.5), we obtain

−C0
′3 + C0C1

′3 − 6πC0
′2C1 + 216π3C0

2

+C0
′C1

′
(

− C1C1
′ + 18πC0

)

+ 2πC2
1

(

C1
′2 + 16π2C1

)

= 0

Substituting the actual values of C1(Ê0) and C0(Ê0) into this equation, the polynomial
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above can be factorized as

1.82307 × 1019 · (6716.62 Ê0 − 559.624)−7

·(−1.02204 + Ê0)(−0.538217 + Ê0)(−0.0833194 + Ê0)

·(0.00793973− 0.172323Ê0 + Ê2
0)(0.00701421− 0.167214Ê0 + Ê2

0)

·(0.0069072− 0.165724Ê0 + Ê2
0)(0.0164746 − 0.0886746Ê0 + Ê2

0)

·
[

3.32249× 1013 + (Ê0 + 0.0163377)2
]

For ctotal > 2, we have Ê0 ≤ 0 and every term in the above expression is nonvanishing.
We conclude that the function ∆+(Ê0) + 2Ê0 has no critical points for c > 2.

So the coefficient k that optimizes the bound ∆+ ≤ ctotal
12

+ k in the range ctotal ∈
[2, +∞) must occur at one of the endpoints – either at ctotal = 2 or in the limit
ctotal → +∞.

So that means

k = max
(

∆+(0) − 1
6

, limctotal→∞ ∆+(2−ctotal
24

) − ctotal
12

)

From the previous section, we know that limctotal→∞ ∆+(2−ctotal
24

)− ctotal
12

= δ0 = 0.473695.

We can check that the value of ∆+(Ê0) at ctotal = 2 is

∆+(0) = 0.615286

so

∆+(0) − 1
6

= 0.448619 ,

which is less than δ0. So indeed k = δ0, and our best linear bound is

∆1 ≤ ∆+(Ê0) ≤ ctotal
12

+ δ0 = ctotal
12

+ 0.473695 . (A.6)

In other words, retaining only the first two terms in the asymptotic expansion of ∆+ at
large ctotal gives a linear function that bounds ∆+ above uniformly on the semi-infinite
interval of interest, ctotal ∈ [2,∞).

We also point out that the value of 3
2π

is 0.477465, so our bound on primaries is very
slightly better than the warm-up bound we derived for the lowest-dimension nontrivial
operator in general.
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[10] G. Höhn, “Conformal Designs based on Vertex Operator Algebras,”
arXiv:math/0701626.

[11] J. L. Cardy, “Operator Content Of Two-Dimensional Conformally Invariant The-
ories,” Nucl. Phys. B 270, 186 (1986).

[12] J. L. Cardy, “Operator content and modular properties of higher dimensional
conformal field theories,” Nucl. Phys. B 366, 403 (1991).

[13] A. Strominger, “Black hole entropy from near-horizon microstates,” JHEP 9802,
009 (1998) [arXiv:hep-th/9712251].

[14] V. G. Kac, ”Highest weight representations of infinite dimensional Lie algebras”
,Proc. Internat. Congress Mathematicians (Helsinki, 1978) ; V. G. Kac, Lect.
Notes in Phys. 94, 441 (1979).

37

http://arXiv.org/abs/0706.3359
http://arXiv.org/abs/0805.4216
http://arXiv.org/abs/hep-th/9802150
http://arXiv.org/abs/0706.0236
http://arXiv.org/abs/math/0701626
http://arXiv.org/abs/hep-th/9712251


[15] R. Rattazzi, V. S. Rychkov, E. Tonni and A. Vichi, “Bounding scalar operator
dimensions in 4D CFT,” JHEP 0812, 031 (2008) [arXiv:0807.0004 [hep-th]].

[16] B. L. Feigin and D. B. Fuks, “Invariant skew symmetric differential operators on
the line and verma modules over the Virasoro algebra,” Funct. Anal. Appl. 16,
114 (1982) [Funkt. Anal. Pril. 16, 47 (1982)].

[17] D. Friedan, S. H. Shenker and Z. a. Qiu, “Details of the nonunitarity proof for
highest weight representations of the Virasoro algebra,” Commun. Math. Phys.
107, 535 (1986).

[18] N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, “The string landscape,
black holes and gravity as the weakest force,” JHEP 0706, 060 (2007)
[arXiv:hep-th/0601001].

[19] J. D. Brown and M. Henneaux, “Central Charges in the Canonical Realization of
Asymptotic Symmetries: An Example from Three-Dimensional Gravity,” Com-
mun. Math. Phys. 104, 207 (1986).

[20] A. Strominger, “Black hole entropy from near-horizon microstates,” JHEP 9802,
009 (1998) [arXiv:hep-th/9712251].

[21] J. M. Maldacena, “The large N limit of superconformal field theories and super-
gravity,” Adv. Theor. Math. Phys. 2, 231 (1998) [Int. J. Theor. Phys. 38, 1113
(1999)] [arXiv:hep-th/9711200].

[22] J. M. Maldacena and A. Strominger, “AdS(3) black holes and a stringy exclusion
principle,” JHEP 9812, 005 (1998) [arXiv:hep-th/9804085].

[23] M. Banados, M. Henneaux, C. Teitelboim and J. Zanelli, “Geometry of the (2+1)
black hole,” Phys. Rev. D 48, 1506 (1993) [arXiv:gr-qc/9302012].

[24] M. Banados, C. Teitelboim and J. Zanelli, “The Black hole in three-dimensional
space-time,” Phys. Rev. Lett. 69, 1849 (1992) [arXiv:hep-th/9204099].

[25] M. R. Gaberdiel, S. Gukov, C. A. Keller, G. W. Moore and H. Ooguri, “Ex-
tremal N=(2,2) 2D Conformal Field Theories and Constraints of Modularity,”
arXiv:0805.4216 [hep-th].

[26] M. R. Gaberdiel, “Constraints on extremal self-dual CFTs,” JHEP 0711, 087
(2007) [arXiv:0707.4073 [hep-th]].

[27] C. Vafa, “Gas of D-Branes and Hagedorn Density of BPS States,” Nucl. Phys. B
463, 415 (1996) [arXiv:hep-th/9511088].

[28] A. Strominger and C. Vafa, “Microscopic Origin of the Bekenstein-Hawking En-
tropy,” Phys. Lett. B 379, 99 (1996) [arXiv:hep-th/9601029].

38

http://arXiv.org/abs/0807.0004
http://arXiv.org/abs/hep-th/0601001
http://arXiv.org/abs/hep-th/9712251
http://arXiv.org/abs/hep-th/9711200
http://arXiv.org/abs/hep-th/9804085
http://arXiv.org/abs/gr-qc/9302012
http://arXiv.org/abs/hep-th/9204099
http://arXiv.org/abs/0805.4216
http://arXiv.org/abs/0707.4073
http://arXiv.org/abs/hep-th/9511088
http://arXiv.org/abs/hep-th/9601029


[29] N. Seiberg and E. Witten, “The D1/D5 system and singular CFT,” JHEP 9904,
017 (1999) [arXiv:hep-th/9903224].

[30] P. S. Aspinwall, “Enhanced gauge symmetries and K3 surfaces,” Phys. Lett. B
357, 329 (1995) [arXiv:hep-th/9507012].

[31] E. Witten, “Some comments on string dynamics,” arXiv:hep-th/9507121.

[32] S. Deser, R. Jackiw and S. Templeton, “Topologically massive gauge theories,”
Annals Phys. 140, 372 (1982) [Erratum-ibid. 185, 406.1988 APNYA,281,409 (1988
APNYA,281,409-449.2000)].

[33] S. Deser, R. Jackiw and S. Templeton, “Three-Dimensional Massive Gauge The-
ories,” Phys. Rev. Lett. 48, 975 (1982).

[34] W. Li, W. Song and A. Strominger, “Chiral Gravity in Three Dimensions,” JHEP
0804, 082 (2008) [arXiv:0801.4566 [hep-th]].

[35] A. Dabholkar and S. Murthy, “Fundamental Superstrings as Holograms,” JHEP
0802, 034 (2008) [arXiv:0707.3818 [hep-th]].

[36] P. Di Francesco, P. Mathieu and D. Senechal, “Conformal Field Theory,” New
York, USA: Springer (1997) 890 p

[37] A. Ashtekar and M. Varadarajan, “A Striking property of the gravitational Hamil-
tonian,” Phys. Rev. D 50, 4944 (1994) [arXiv:gr-qc/9406040].

[38] J. M. Maldacena, “Eternal black holes in Anti-de-Sitter,” JHEP 0304, 021 (2003)
[arXiv:hep-th/0106112].

[39] J. L. F. Barbon and E. Rabinovici, “Very long time scales and black hole thermal
equilibrium,” JHEP 0311, 047 (2003) [arXiv:hep-th/0308063].

[40] M. Kleban, M. Porrati and R. Rabadan, “Poincare recurrences and topological
diversity,” JHEP 0410, 030 (2004) [arXiv:hep-th/0407192].

[41] L. Susskind, “The anthropic landscape of string theory,” arXiv:hep-th/0302219.

39

http://arXiv.org/abs/hep-th/9903224
http://arXiv.org/abs/hep-th/9507012
http://arXiv.org/abs/hep-th/9507121
http://arXiv.org/abs/0801.4566
http://arXiv.org/abs/0707.3818
http://arXiv.org/abs/gr-qc/9406040
http://arXiv.org/abs/hep-th/0106112
http://arXiv.org/abs/hep-th/0308063
http://arXiv.org/abs/hep-th/0407192
http://arXiv.org/abs/hep-th/0302219

	Introduction
	Inequalities from modular invariance
	Conformal invariance and modular invariance
	The medium-temperature expansion
	Warm-up : the case of c, "707Ec< 9.135

	A general inequality for primary operators
	Strategy
	Review of Virasoro representations
	Decomposition of the partition function
	Extended chiral algebras, and c1

	The gravitational interpretation of the upper bound on 1
	Central charge and AdS radius
	Dimensions, masses, and rest energies
	Primaries and descendants
	Bulk interpretation of the upper bound on 1

	Conclusions
	Acknowledgements
	Properties of the function +("705EE0)
	Definition of +
	+ is a smooth function of ctotal
	The function + is greater than 14 - "705EE0 for ctotal> 2
	Behavior of + for large central charge
	The function + is bounded above by ctotal12 + 0.473695.


