
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3178953, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

A Universal, Low-Delay, SEC-DEC-TAEC
Code for State Register Protection
MENG DONG1, WEITAO PAN1, ZHILIANG QIU1, XIAOXIN QI1, LING ZHENG2, AND HUAN LIU1
1State Key Laboratory of Integrated Services Networks, Xidian University, Xi’an 710071, China
2School of Communication and Information Engineering, Xi’an University of Posts and Telecommunications, Xi’an 710121, China

Corresponding author: Weitao Pan (wtpan@mail.xidian.edu.cn)

This work was supported in part by the National Key Laboratory Foundation (HTKJ2019KL504012) and National Natural Science
Foundation (61502204).

ABSTRACT Finite State Machine (FSM) is widely used in electronic systems and its reliability is
critical to the system. Ionizing radiation induced soft error is one of the major concerns in the design
of electronic systems, especially in avionics or space applications. Nowadays, the majority of electronic
systems relies on single-error correction, double-error detection (SEC-DED) codes to mitigate soft errors.
However, the presence of multiple bit upsets is becoming more prevalent as CMOS technology scales
down. In addition, state registers in FSMs usually have variable bit-widths and have strict requirement on
encoding and decoding delay, which poses challenges for error mitigation techniques. This paper presents
an Error Detection and Correction (EDAC) code for state register protection, which can achieve single-
error correction, double-error correction and triple-adjacent-error correction (SEC-DEC-TAEC) ability. The
proposed code can be used to protect data with 4n bit-width (n = 2, 3, 4, ...) using one common encoder
and decoder code block and introduces minimal delay. Experiment results show that the proposed code has
better error correction ability than most existing MCU correction codes. Besides, it reduces area occupation
by 30% and delay by 15% compared with Orthogonal Latin Square (OLS) code in the case of 8 bit-width
data.

INDEX TERMS Finite State Machine, State Register, Error Correction Codes, Double Error Correction,
Triple Adjacent Error Correction.

I. INTRODUCTION

In the design of electronic systems, reliability is one of the
major concerns. One reliability issue is the ionizing radiation
induced soft errors, which is common in avionics or space
applications. These errors can cause single event upset, which
could be harmful to the functionality of the electronic sys-
tems. Error detection and correction (EDAC) codes have been
traditionally used to protect electronic systems from single
event upset problems. Single-error correction, double-error
detection (SEC-DED) codes are one of the most commonly
used EDAC schemes [1]–[4]. These codes have few redun-
dant check bits, simple logic, and fast encoding and decoding
speed. However, as CMOS technology scales down, the num-
ber of transistors per unit area increases and the operation
voltage of transistors decreases. Therefore, a single high-
energy radiating particle or ionizing radiation will cause mul-
tiple errors, resulting in multiple cells unpsets (MCU) [5]–
[9]. The traditional SEC-DED codes cannot correct this kind
of error. Therefore, methods to detect and correct multiple

errors are needed to protect electronic systems from data
corruption.

With the development of programmable ASIC technol-
ogy, the implementation of electronic systems using pro-
grammable ASICs is becoming prevalent. The application
of programmable ASICs greatly reduces the development
cost and cycle of electronic systems. In an electronic system
using programmable ASICs, finite state machines (FSMs) are
the brain of the system and are utilized to generate control
signals and schedule other function units. State registers
in FSMs are responsible for storing the current state. The
protection of state registers is of great importance to the
reliability of the system. However, the characteristics of state
registers pose challenges to the design of error correction
schemes. First, state registers usually have variable bit-width,
which is determined by the number of states that need to
be represented. Second, to ensure the correctness of the
FSM operation, the encoding and decoding process should
typically be completed within one clock cycle. Therefore, an

VOLUME 4, 2016 1

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3178953, IEEE Access

M. Dong et al.: A Universal, Low-Delay, SEC-DEC-TAEC Code for State Register Protection

error correction scheme that supports variable bit-widths and
low delay is urgent.

In this paper, we propose an EDAC code based on Hsiao
code and parity check code to protect state registers from data
corruption. The proposed code has the following features:

1) It achieves single-error correction, double-error cor-
rection and triple-adjacent-error correction (SEC-DEC-
TAEC) ability.

2) It can support variable bit-widths using one common
encoder and decoder code block. Specifically, it can
protect data with bit-width of 4n (n = 2, 3, 4, ...).

3) It has minimal encoding and decoding delay, which is
appealing to state register protection.

4) It can correct errors in both data bits and check bits.

Extensive experiments are conducted to verify the effec-
tiveness of the proposed code. The results show that the error
correction ability of the proposed code is greatly improved
compared with most existing MCU correction codes. In the
case of 8-bit data (which is the commonly used instruction
length), compared with OLS code, the hardware area oc-
cupied by the proposed code is reduced by 30% and the
calculation delay is reduced by 15%. In addition, compared
with the commonly used triple-mode redundancy technology
in satellite communication systems, the proposed scheme has
more obvious advantages in area, delay and reliability.

The rest of this paper is organized as follows. In Section
II, the existing proposals for MCU correction are reviewed.
Besides, a brief introduction to Hsiao code and parity check
code is presented. In Section III, the design of the proposed
SEC-DEC-TAEC code is elaborated and its error correction
ability is analysed. In Section IV, the proposed code is
evaluated in terms of error correction ability and implemen-
tation cost, including delay, power consumption and area
occupation. Comparation with existing codes are conducted.
Finally, the conclusion is drawn and further work is outlined
in Section V.

II. RELATED WORK
In this section, we first present related work on MCU cor-
rection schemes. Then, we give a brief introduction to parity
check code and Hsiao code, based on which the proposed
code is designed.

A. MCU CORRECTION SCHEMES
There are many proposals in the literature to solve the MCU
problem in order to detect and correct multiple bit errors.
These proposals can be divided into three categories. The first
category aims to complete encoding and decoding without
adding additional check bits [10]–[12], but the generation
time of the check matrix is long. For example, it takes nearly
a week to generate the check matrix in [11]. The second
category stores data in the form of a two-dimensional matrix,
called matrix code [13]–[18], and adds error correction codes
to the data in row and column to achieve correction of the
bit flip situation. To improve the encoding and decoding

efficiency, the One-Step Majority of Logic Decoding (OS-
MLD) technique is proposed, including Euclidean Geom-
etry codes (EG) [19], Difference Set codes (DS) [20] and
Orthogonal Latin Square codes (OLS) [21], among others.
However, these methods can only support specific application
scenarios. For example, OLS codes can only be applied to
codewords with length of m2 (m is a positive integer). Be-
sides, for different bit-widths, the size of the corresponding
check matrix is different. Therefore, if the data to be pro-
tected has various bit-widths in an electronic system, multiple
encoder and decoder code blocks are needed, complicating
the overall system. At present, researchers are working on
applying OLS to 32-bit codeword [22] and reducing check
bits [23], [24]. The last category is triple-mode redundancy,
which is commonly used in satellite communications. There
has been a lot of research on FPGA-based implementation of
triple-mode redundancy [25]–[27].

For protecting data in registers where low delay is re-
quired, some codes have been proposed [28]–[30]. In addi-
tion, more complex and precise error correction codes [31]–
[40] are used in electronic systems for critical applications.

B. PARITY CHECK CODE
Parity check code is the colletive term of odd parity check
code and even parity check code, which is one of the most
basic error detection codes. By adding a redundant bit, the
codeword is ensured to have an odd or even number of
1s. The limitation of parity check code is that it can only
detect odd number of errors, but because of its simplicity,
parity check code is still widely used for error control in data
transmission.

C. HSIAO CODE
Hsiao code is a kind of SEC-DED code with odd weight
column. For data bits of the same length, the number of check
bits of Hsiao code and Extended Hamming code are the
same, but Hsiao code has better performance [2]. Hsiao code
reconstructs the check matrix to ensure that the number of 1s
in each column is odd, and the number of 1s in each row is
equal or as equal as possible (the difference does not exceed
one). To minimize the number of 1s in the check matrix,
the check matrix of Hsiao code must meet the following
conditions:

1) Each column in the check matrix contains an odd num-
ber of 1s.

2) The total number of 1s is minimum.
3) The number of 1s in each row is equal as much as

possible and the maximum difference is one.
4) There is no column with all 0s.
5) There are no two identical columns.

The first condition ensures that the code spacing is 4. The
second and third conditions enable Hasio codes to have a high
coding efficiency which reduces overhead. They also enable
Hasio codes to have uniform timing, which outperforms
extended Hamming codes. The fifth condition ensures that

2 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3178953, IEEE Access

M. Dong et al.: A Universal, Low-Delay, SEC-DEC-TAEC Code for State Register Protection

the code spacing is at least 3, and that each corrector is
different because the columns in the check matrix represent
standard correctors for error correction.

III. THE PROPOSED EDAC CODE
In this section, the design of the proposed EDAC code is
elaborated. The encoding process and decoding process are
described and the error correction ability is analysed.

A. OVERALL ARCHITECTURE

Fig. 1 depicts the block diagram of the encoder. The encoding
process consists of three steps. First, the original word is
divided into half-byte segments which are then arranged by
row. Then, check bits are generated, which consist of two
parts. For each segment, row check bits are computed using
Hsiao code; for each column of the segments, a column check
bit is generated by the parity check code. Finally, the data and
check bits are interleaved to generate the final codeword.

Original

Word
Byte1 Byte2 ... Byten

Encoder

Word Segment

Half-byte1

Half-byte2

Half-bytem

...

Interleave

Final

Codeword
D ...C D C DC D C

Half-byte1

Half-byte2

Half-bytem
...

Row check bits1

Row check bits2

Row check bitsm

...

Column

check bits

Check Bit Generator

FIGURE 1. Block diagram of the encoder. D and C represent the data bit and
check bit respectively. First, the original word is divided into half-byte
segments. Then, for each segment, row check bits are computed using Hsiao
code; for each column of the segments, a column check bit is generated by the
parity check code. Finally, the data and check bits are interleaved to generate
the final codeword.

Fig. 2 depicts the block diagram of the decoder. The
codeword is first deinterleaved to recover the data bits and
check bits. Then, errors in the data bits are detected and
corrected based on the check bits. Finally, the data segments
are concatenated to recover the original word.

B. THE ENCODING PROCESS

We now elaborate the first two steps of the encoding process,
as shown in Algorithm 1. An 8-bit word is used as an
example to illustrate the procedure. Firstly, the original word
is divided into m half-byte segments. For example, the 8-
bit word can be divided as shown in Fig. 3 (a). The half-
byte segments are arranged by row to form the data matrix,
denoted by D. Then, for each row of D, the row codeword

Original

Word
Byte1 Byte2 ... Byten

Decoder

Word Segment

Half-Byte1

Half-Byte2

Half-Bytem

...

Deinterleave

Codeword D ...C D C DC D C

Half-byte1

Half-byte2

Half-bytem

...

Row check bits1

Row check bits2

Row check bitsm

...

Column

check bits

Error detection and correction

FIGURE 2. Block diagram of the decoder. The codeword is first deinterleaved
to recover the data bits and check bits. Then, errors in the data bits are
detected and corrected. Finally, the data segments are concatenated to
recover the original word.

is computed by multiplying the data bit vector and generator
matrix as follows.

cwm = dm ∗G, (1)

where cwm is the mth row codeword, dm represents the data
bit vector of the mth segment and G =

[
I4 BT

]
is the

generator matrix. To reduce the complexity of calculation, B
must meet the following restrictions:

1) every column in B contains an odd number of 1s;
2) the number of 1s in B is minimised;
3) the number of 1s in every row is as equal as possible and

the difference is no larger than one;
4) there is no column with all 0s;
5) every column is distinct.
We use the following generator matrix which meets the

restrictions.

G =


1 0 0 0 1 1 1 0
0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1

 . (2)

After calculation, all the row codewords are arranged by
row to form the row codeword matrix, denoted by C, as
shown in Fig. 3(b). Then, all bits in each column of D are
XORed to generate a column check bit. All the column check
bits form the column codeword vector, denoted by O, as
shown in the last row of Fig. 3 (c).

C. THE DECODING PROCESS
Suppose that the codeword has been deinterleaved and the
row codeword matrix C and the column codeword vector O
are obtained. The syndrome matrix J of C is calculated using
parity check matrix H . The mth row of J is:

Jm = cwm ∗H ′, (3)

VOLUME 4, 2016 3

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3178953, IEEE Access

M. Dong et al.: A Universal, Low-Delay, SEC-DEC-TAEC Code for State Register Protection

(a) (b)

(c)

FIGURE 3. Example of codeword generation for an 8-bit word.

Algorithm 1 Codeword Generation without Interleaving
Input: original data Dw[0 : n− 1]
Output: row codeword matrix C, column codeword vector O

1: j = 0,D = [],C = [],O = []
2: for i = 0 to n/4− 1 do
3: Put the data from Dw[i× 4 : i× 4+ 3] to the jth row of D
4: j = j + 1
5: end for
6: for i = 0 to j − 1 do
7: C[i, :] = D[i, :]×G
8: end for
9: for i = 0 to 3 do

10: XOR all data in D[:, i] and output the result to the ith column
of O

11: end for
12: Output C and O.

where Jm is the syndrome of the mth codeword and H =[
B I4

]
as shown in Eq. (4):

H =


1 1 1 0 1 0 0 0
1 1 0 1 0 1 0 0
1 0 1 1 0 0 1 0
0 1 1 1 0 0 0 1

 . (4)

J and O are jointly used to detect and correct errors in
cwm. We now discuss the following situations:

1) Suppose that there is no error in the data and check
bits. Then J is an all-0 matrix. No further processing
is needed.

2) Suppose that there is only one error in the data and check
bits. Further consider the following two cases:

a) The error happens in O. Then J is an all-0 matrix.
No further processing is needed.

b) The error happens in C. Then one row of J , say Jm
is equal to the pth column of H while other rows
of J are 0. This tells us that the bit in the mth row
and pth column of C is wrong. Therefore, the correct
codeword can be generated by flipping the pth bit of
cwm.

3) Suppose that there is two errors in the data and check
bits. Further consider the following four cases:

a) The two errors both happen in O. Then J is an all-0
matrix. No further processing is needed.

b) One error happens in O and the other error happens
in C. Then, the error in C can be corrected, as in the
case 2)b).

c) Both errors happens in C but are in different rows.
Then there are two rows in J , say Jm and Jn,
which are equal to column p and column r in H ,
respectively. This tells us that the bit in the mth row
and pth column as well as the bit in the nth row and
rth column of C are wrong. Therefore, the correct
codeword can be generated by flipping the pth bit of
cwm and the rth bit of cwn.

d) Both errors happens in the same row of C. Suppose
it is row m. Then Jm is equal to the result of XOR
of two different columns in H . This tells us that two
errors happens in cm. Then, O can be used to correct
these two errors because they happen in different
columns of C, thereby ensuring that each column
contains at most one error. Specifically, to get the
correct data, the first four bits of cwm is XORed with
O. Note that we do not care about error(s) in the last
four bits of cwm, which are the check bits.

Based on the above analysis, it can be seen that the pro-
posed scheme can ensure the correct recovery of data when
its storage content encounters a single or double random
errors. Hardware implementation of the decoder for 8-bit data
is illustrated in Fig. 4.

D. INTERLEAVING FOR TAEC ABILITY
As discussed above, with the first two encoding steps, the
proposed scheme can ensure the correct recovery of data
when it encounters single error bit or two error bits. We now
further examine the decoding process to see if it is possible
to correct triple bit errors. Consider the following conditions:

1) If the three errors happen in different rows, then J is
able to detect and correct all errors that happen in C
and the error (if any) in O does not matter.

2) If two errors happen in O and one error happen in C,
then the error in C can be corrected, as in case 1).

3) If two errors happen in the same row in C and the other
error happens in a different column in O, then the first
two errors can be detected by J and corrected by O.

4) If two errors happen in the same row in C and the other
error happens in a different row and different column in
C, then the first two errors can be detected by J and
corrected by O, while the other error can be corrected
by J .

Based on above analysis, we can see that if the three error
bits fulfill some certain patterns, then they can be detected
and corrected. Therefore, triple adjacency error correction
ability can be achieved without adding additional check bits
using interleaving technique. That is, if we can ensure that
any triple adjacency error that happens after interleaving
fulfills one of the above conditions after deinterleaving, then
the triple adjacency error can be corrected. To achieve triple
adjacency error correction, the data bits and check bits are

4 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3178953, IEEE Access

M. Dong et al.: A Universal, Low-Delay, SEC-DEC-TAEC Code for State Register Protection

FIGURE 4. Decoding circuitry of the proposed method for 8-bit data.

interleaved according to the following rules.
1) Any triple adjacent bits cannot be composed of data bits

and check bits in the same row of C.
2) Any triple adjacent bits cannot be composed of one

column check bit (denoted by Oi), one data bit in the
same column with Oi (denoted by Di), and another bit
in the same row with Di.

To fulfill the above rules, we propose the following inter-
leaving scheme. Define I as the interleaving matrix, where
the data and check bits are put into. I is a k by 4 matrix,
where k = 2×m+ 1. Two cases are seperately considered,
where m is even and odd, respectively.

1) m is even
Put O′ into the (m + 1)th column of I . For each row i with
odd number (i.e., i = 1, 3, . . .) in C, put the first four bits
(data bits) into the ith of column I , put the last four bits
(check bits) into the (m + 1 + i)th column of I . For each
row j with even number (i.e., j = 2, 4, . . .) in C, put the
first four bits (data bits) into the (m + 1 + j)th column of
I , put the last four bits (check bits) into the jth column of I .
The interleaving process for a 16-bit data word is illustrated
in Fig. 5.

2) m is odd
Put O′ into the (m + 2)th column of I . For each row i with
odd number (i.e., i = 1, 3, . . .) expect the mth row in C, put

D0 D1 D2 D3

D4 D5 D6 D7

D8 D9 D10 D11

D12 D13 D14 D15

C0 C1 C2 C3

C4 C5 C6 C7

C8 C9 C10 C11

C12 C13 C14 C15

O0 O1 O2 O3

D0

D1

D2

D3

C4

C5

C6

C7

D8

D9

D10

D11

C12

C13

C14

C15

O0

O1

O2

O3

C0

C1

C2

C3

D4

D5

D6

D7

C8

C9

C10

C11

D12

D13

D14

D15

FIGURE 5. Interleaving process for a 16-bit data word. The upper part is C
and O. The lower part is I. Red lines in the upper part indicate the order by
which data and check bits are put into the left part of I. Purple lines in the
upper part indicate the order by which data and check bits are put into the right
part of I.

the first four bits (data bits) into the (i+2)th of column I , put
the last four bits (check bits) into the (m+2+ i)th column of
I . For each row j with even number (i.e., j = 2, 4, . . .) in C,
put the first four bits (data bits) into the (m+2+j)th column
of I , put the last four bits (check bits) into the jth column of
I . For row m in C, put the first four bits (data bits) into the
first column of I , put the last four bits (check bits) into the
(m+ 1)th column of I . The interleaving process for a 20-bit

VOLUME 4, 2016 5

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3178953, IEEE Access

M. Dong et al.: A Universal, Low-Delay, SEC-DEC-TAEC Code for State Register Protection

data word is illustrated in Fig. 6.

D0 D1 D2 D3

D4 D5 D6 D7

D8 D9 D10 D11

D12 D13 D14 D15

C0 C1 C2 C3

C4 C5 C6 C7

C8 C9 C10 C11

C12 C13 C14 C15

D0

D1

D2

D3

C4

C5

C6

C7

D8

D9

D10

D11

O0

O1

O2

O3

C0

C1

C2

C3

D4

D5

D6

D7

C8

C9

C10

C11

D12

D13

D14

D15

O0 O1 O2 O3 O O O O

D16 D17 D18 D19 C16 C17 C18 C19

C16

C17

C18

C19

D16

D17

D18

D19

C12

C13

C14

C15

FIGURE 6. Interleaving process for a 20-bit data word. The upper part is C
and O. The lower part is I. Red lines in the upper part indicate the order by
which data and check bits are put into the left part of I. Purple lines in the
upper part indicate the order by which data and check bits are put into the right
part of I.

After generating I , the rows of I are concatenated to form
the final codeword. The deinterleaving process in the decod-
ing phase is a reverse process of the interleaving process.
With interleaving, the proposed code achieves SEC-DEC-
TAEC ability.

IV. PERFORMANCE EVALUATION
In this section, we evaluate the error correction ability and
implementation cost of the proposed code. The encoder and
decoder are implemented in HDL according to given G and
H . It should be noted that in actual chips, both data bits and
check bits will have problems such as single particle flipping.
Therefore, in the evaluation of the code’s error correction
ability, we treat the check bits and the data bits equally.

A. ERROR CORRECTION ABILITY
The first part of the evaluation focuses on evaluating the
error correction ability of the proposed code. The circuit
under test (CUT) is an FSM controlled waterfall light circuit
implemented using Verilog, the code of which has been
uploaded to Github [41]. To simulate the SEU and MBU
failures occurring in the circuit, the bit flip is chosen as the
basic fault injection model. Therefore, the FPGA platform is
used to evaluate the code correction ability by flipping the
bit/bits of specified register in the CUT. To better simulate
different error scenarios, all registers in the CUT are replaced
by the structure as shown in Fig. 7, where the EIE signal
is the enable of bit fault injection. When the EIE signal
is deactivated, the register is in normal operation since the
normal signal is directly selected to the input of the register.
On the contrary, when the EIE signal is activated, the reverse
of the normal signal value will be selected to the input of the
register and the single bit fault will be injected to the circuit.

According to the run state of the CUT, the result of error
injection can be divided into three categories as follows.

CLK

EIE

1

Normal

Input
D

CLK

Q

M
U

X
FIGURE 7. The new structure of register. The input of the register is the
output of a multiplexer whose inputs are normal input and the xor result of
normal input and "1". In addition, the select signal of the multiplexer is error
inject enable (EIE), which controls whether the register is injected with fault.

• Silent State. For a given runtime, the output of the CUT
and all register state in the CUT are normal.

• Latent State. For a given runtime, the output of the
CUT is normal, but the state of some registers in the
CUT is different from that when the error is not injected.
In this state, although the injected error has no effect on
the circuit function, it may result in a functional error in
the subsequent operation.

• Failure State. For a given runtime, the output of the
CUT is different from that when the error is not injected.

In this paper, to maximize the proper operation of the
circuit, the error correction code is considered valid only
when the circuit is in the silent state under error injection.
The LFSR is used to generation all possible combinations of
bit flip in the specified register according the injected error
type such as single error, double error, double-adjacent error
and so on. For example, for the case where the original data
is 4-bit and the injected error type is double error, there will
be 6 different combinations of two flip bits. We can generate
the LFSR circuit as shown in Fig. 8. If the initial state of
LSFR is "1000", the state sequence of it is 1000→ 1100→
1110 → 0111 → 0011 → 0001 → 1000. Thus, all possible
combinations of flip bits can be generated according to the
different output states of the LFSR circuit.

FIGURE 8. An example of LFSR circuit, which the number of DFFs equals the
bits number of data and the number of output states equals the number of all
possible combinations of flip bits.

As our goal in this section is to measure the correction
coverage, we have not injected errors according the error oc-
currence probability. We have injected single error, double er-
rors, double-adjacent errors, triple errors and triple-adjacent
errors in all bits of the data by the corresponding LFSR
circuit. For each error type, 1,000,000 errors are injected. The

6 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3178953, IEEE Access

M. Dong et al.: A Universal, Low-Delay, SEC-DEC-TAEC Code for State Register Protection

TABLE 1. Error correction ability of different codes.

Error types Code in [14] Code in [16] Code in [33] Code in [34] Code in [35] Proposed Code
Single Error 100% 100% 100% 100% 100% 100%

Double Adjacent 91.7% 100% 100% 100% 100% 100%Error
Double Error 80% 48.6% 16.2% 29% 13% 100%

Triple Adjacent 79.31% 100% 100% 100% 100% 100%Error
Triple Error 25.7% 22.5% 39.7% 23.8% 27.2% 50.93%

metric is calculated as

Error_correction_ability =
No. of Corrected
No. of Injected

× 100% (5)

The code proposed in this paper is compared with the
codes proposed in [14], [16], [33], [34] and [35]. The results
are shown in Table 1. Reference [14] combines Hamming
codes and parity codes to achieve single-bit error correction,
but cannot achieve 100% correction for double-bit errors.
The codes in [16], [33], [34] and [35] can correct single
error, double-adjacent errors, triple-adjacent errors, but can-
not correct 100% of double-bit random errors. The decoding
accuracy of the proposed code is 100% in the case of single,
double and triple adjacent error(s) and 50.93% in the case
of random triple errors. This demonstrates the superior error
correction ability of the proposed code.

B. IMPLEMENTATION COST
In electronic systems, especially in space electronic systems,
minimization of the implementation cost in terms of area,
power, and delay is very important. This part of the evaluation
focuses on evaluating the cost of the encoder and decoder
of the error correction code. The length of state registers in
electronic systems is generally 8-bit. Therefore, we focus on
the case where the original data bit is 8. It has to remarked
that the codes in [14], [16], [33], [34] and [35] do not support
data with bit width of 8. Meanwhile, the Hamming code [1]
and OLS code [23] support 8-bit data and have relatively
simple encoder and decoder circuit. Therefore, the proposed
code is compared with the Hamming code [1] and the OLS
code [23] in this section. To estimate the cost, we have
implemented the encoder and decoder circuit for the three
codes in Verilog, and used the Synopsis Design Compiler
(DC) configured to minimize the circuit area with the SMIC
180 nm library.

The results are summarized in Table 2. It can be seen that
although the proposed code has larger power, area and delay
compared with the Hamming code, it has much stronger error
correction ability. In addition, compared with OLS code, the
proposed code has better performance in power, area and
delay. Specifically, the area occupation is reduced by 30%
and delay is reduced by 15%.

C. THE IMPACT OF BIT-WIDTHS
The third part of the evaluation focuses on the impact of
different bit-widths on the area, power and delay for the

TABLE 2. Implementation cost of different codes.

Hamming Code [1] OLS Code [21] Proposed Code

Encoder
Power(µw) 10.59 21.73 14.57
Area(µm2) 266.12 638.67 425.78
Delay(ns) 0.48 0.39 0.32

Decoder
Power(µw) 38.70 89.41 69.59
Area(µm2) 861.54 1663.20 1423.7
Delay(ns) 0.97 1.37 1.11

Error Correction Ability SEC-DED DEC SEC-DEC-TAEC
Parity Bits 4 12 12

proposed code. To make the evaluation more representative,
the most commonly used data bit widths in FPGA/ASIC are
selected, including 8, 12, 16, 20, 32 and 64 bits. The encoder
and decoder are mapped to the SMIC 180 nm device library
with DC. The results are summarized in Table 3. It can be
seen that as the bit-width to be protected increases, the power
and area of the proposed code increase to a large extent, but
the increase in delay is small, which demonstrates the low-
delay property of the code.

In order to further evaluate the proposed code in actual
environment, the encoder and decoder are mapped to the
SMIC 180 nm device library with the Synopsys IC Compiler
software (ICC). The results are summarized in Table 4. It can
be seen that the delay increase is minimal. In addition, we
compare the proposed code with the triple-mode redundancy
(TMR) scheme in a practical project, and the results show
that the occupied area using the proposed scheme is 43.5%
of the TMR scheme.

TABLE 3. The implementation cost under different bit-widths for the proposed
code (results in DC).

Encoder Decoder
Power
(µw)

Area
(µm2)

Delay
(ns)

Power
(µw)

Area
(µm2)

Delay
(ns)

8-bit 14.57 425.78 0.32 69.59 1423.7 1.11
12-bit 25.26 691.9 0.32 108.03 2155.50 1.21
16-bit 35.31 958.0 0.32 148.54 2874.0 1.25
20-bit 46.95 1224.12 0.44 189.73 3592.51 1.25
32-bit 81.22 2022.45 0.45 323.83 5794.58 1.26
64-bit 197.08 4251.35 1.1 693.85 11569.22 1.75

V. CONCLUSION
In this paper, we present an EDAC code to achieve low-delay
SEC-DEC-TAEC ability for state register protection. The
proposed code is based on Hsiao code and parity check bit
to achieve SEC-DEC, while the introduction of interleaving

VOLUME 4, 2016 7

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3178953, IEEE Access

M. Dong et al.: A Universal, Low-Delay, SEC-DEC-TAEC Code for State Register Protection

TABLE 4. The implementation cost under different bit-widths for the proposed
code (results in ICC).

Encoder Decoder
Power
(µw)

Area
(µm2)

Delay
(ns)

Power
(µw)

Area
(µm2)

Delay
(ns)

8-bit 35.40 95987 1.12 107.4 96102 1.78
12-bit 54.59 137129 1.42 167.8 137303 1.80
16-bit 76.77 178280 1.44 229.5 178506 1.81
20-bit 95.23 219420 1.47 298.4 219711 1.83
32-bit 160 342870 1.5 499.2 343338 1.83
64-bit 321.7 672044 1.71 1089.4 673017 2.15

further provides TAEC ability. Besides, variable data bit
widths are supported by the code. Compared with existing
coding schemes, the proposed code has more advantages
for state register protection with its low-delay property and
enhanced error correction ability. In the future, we will focus
on how to further reduce the check bits of the proposed code.

REFERENCES
[1] R. W. Hamming, "Error detecting and error correcting codes," The Bell

System Technical Journal, vol. 29, no. 2, pp. 147-160, Apr. 1950.
[2] M. Y. Hsiao, "A class of optimal minimum odd-weight-column SEC-DED

codes," IBM Journal of Research and Development, vol. 14, no. 4, pp. 395-
401, Jul. 1970.

[3] C. L. Chen and M. Y. Hsiao, "Error-correcting codes for semiconductor
memory applications: A state-of-the-art review," IBM Journal of Research
and Development, vol. 28, no. 2, pp. 124-134, Mar. 1984.

[4] E. Fujiwara, Code Design for Dependable Systems: Theory and Practical
Applications, 1st ed., Wiley, NY, USA, 2005.

[5] E. Ibe, H. Taniguchi, Y. Yahagi, K. Shimbo and T. Toba, "Impact of scaling
on neutron-induced soft error in SRAMs from a 250 nm to a 22 nm design
rule," IEEE Transactions on Electron Devices, vol. 57, no. 7, pp. 1527-1538,
Jul. 2010.

[6] G. Tsiligiannis, L. Dilillo, A. Bosio, P. Girard, S. Pravossoudovitch, A.
Todri, et al., "Multiple cell upset classification in commercial SRAMs," IEEE
Trans. Nucl. Sci., vol. 61, no. 4, pp. 1747-1754, Aug. 2014.

[7] G. I. Zebrev, K. S. Zemtsov, R. G. Useinov, M. S. Gorbunov, V. V.
Emeliyanov and A. I. Ozerov, "Multiple cell upset cross-section uncertainty
in nanoscale memories: Microdosimetric approach," in Proc. 15th Eur. Conf.
Radiat. Effects Compon. Syst. (RADECS), pp. 1-5, Sep. 2015.

[8] N. Chechenin and M. Sajid, "Multiple cell upsets rate estimation for 65 nm
SRAM bit-cell in space radiation environment," in Proc. 3rd Int. Conf. Exhib.
Satell. Space Missions, pp. 77, May 2017.

[9] N. N. Mahatme, B. L. Bhuva, Y.-P. Fang and A. S. Oates, "Impact of
strained-Si PMOS transistors on SRAM soft error rates," IEEE Trans. Nucl.
Sci., vol. 59, no. 4, pp. 845-850, Aug. 2012.

[10] A. Dutta and N. A. Touba, "Multiple bit upset tolerant memory using a
selective cycle avoidance based SEC-DED-DAEC code," in Proc. IEEE VLSI
Test Symp. (VTS), pp. 349-354, 2007.

[11] L. J. Saiz-Adalid, P. Reviriego, P. Gil, S. Pontarelli and J. A. Maestro,
"MCU tolerance in SRAMs through low-redundancy triple adjacent error
correction," IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 23, no.
10, pp. 2332-2336, Oct. 2015.

[12] A. Neale and M. Sachdev, "A new SEC-DED error correction code
subclass for adjacent MBU tolerance in embedded memory," IEEE Trans.
Device Mater. Rel., vol. 13, no. 1, pp. 223-230, Mar. 2013.

[13] C. Argyrides, H. R. Zarandi and D. K. Pradhan, "Matrix codes: Multiple
bit upsets tolerant method for SRAM memories," in Proc. 22nd IEEE Int.
Symp. Defect Fault Tolerance VLSI Syst., pp. 340-348, Sep. 2007.

[14] C. Argyrides, D. K. Pradhan and T. Kocak, "Matrix codes for reliable and
cost efficient memory chips," IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 19, no. 3, pp. 420-428, Mar. 2011.

[15] H. S. de Castro, J. A. N. da Silveira, A. A. P. Coelho, F. G. A. e Silva, P.
D. S. Magalhães and O. A. de Lima, "A correction code for multiple cells
upsets in memory devices for space applications," in Proc. 14th IEEE Int.
New Circuits Syst. Conf. (NEWCAS), pp. 1-4, Jun. 2016.

[16] J. Gracia-Moran, L. -J. Saiz-Adalid, J. -C. Baraza-Calvo and P. Gil,
"Correction of adjacent errors with low redundant matrix error correction
codes," in Proc. 8th Latin-American Symp. on Dependable Computing, pp.
107-114, 2018.

[17] F Silva, W Freitas, J Silveira, C Marcon and F Vargas, "Extended matrix
region selection code: An ECC for adjacent multiple cell upset in memory
arrays," Microelectron. Rel., vol. 106, pp. 113582, 2020.

[18] D. C. C. Freitas, D. F. M. Mota, C. Marcon, J. A. N. Silveira and J. C. M.
Mota, "LPC: an error correction code for mitigating faults in 3D memories,"
IEEE Transactions on Computers, vol. 70, no. 11, pp. 2001-2012, 1 Nov.
2021.

[19] S. Ghosh and P. D. Lincoln, "Dynamic low-density parity check codes for
fault-tolerant nanoscale memory," in Proc. Found. Nanosci., pp. 1-5, 2007.

[20] P. Reviriego, M. F. Flanagan, S. F. Liu and J. A. Maestro, "Multiple
cell upset correct ion in memories using difference set codes," IEEE Trans.
Circuits Syst. I Reg. Papers, vol. 59, no. 11, pp. 2592-2599, Nov. 2012.

[21] H. Y. Hsiao, "Orthogonal Latin square codes," IBM J. Research and
Development, vol. 14, no. 4, pp. 390-394, July 1970.

[22] S. Liu, L. Xiao and Z. Mao, "Extend orthogonal Latin square codes for
32-bit data protection in memory applications," Microelectron. Rel., vol. 63,
pp. 278-283, Aug. 2016.

[23] P. Reviriego, S. Liu, A. Sánchez-Macián, L. Xiao and J. A. Maestro, "A
scheme to reduce the number of parity check bits in orthogonal Latin square
codes," IEEE Trans. Rel., vol. 66, no. 2, pp. 518-528, Jun. 2017.

[24] P. Reviriego, S. Liu, A. Sánchez-Macián, L. Xiao and J. A. Maestro,
"Reduction of parity overhead in a subset of orthogonal Latin square codes,"
in Proc. 2020 XXXV Conference on Design of Circuits and Integrated
Systems (DCIS), pp. 1-5, 2020.

[25] C. Ramamurthy, S. Chellappa, V. Vashishtha, A. Gogulamudi and L. T.
Clark, "High performance low power pulse-clocked TMR circuits for soft-
error hardness," IEEE Trans. Nucl. Sci., vol. 62, no. 6, pp. 3040-3048, Dec.
2015.

[26] K. Morgan, D. McMurtrey, B. Pratt and M. Wirthlin, "A comparison of
TMR with alternative fault-tolerant design techniques for FPGAs," IEEE
Trans. Nucl. Sci., vol. 54, no. 6, pp. 2065-2072, 2007.

[27] R. Shuler, B. Bhuva, P. O’Neill, J. Gambles and S. Rezgui, "Comparison
of dual-rail and TMR logic cost effectiveness and suitability for FPGAs with
reconfigurable SEU tolerance," IEEE Trans. Nucl. Sci., vol. 56, no. 1, pp.
214-219, Dec. 2009.

[28] K. Namba and F. Lombardi, "A single and adjacent error correction code
for fast decoding of critical bits," IEEE Trans. Comput., vol. 67, no. 10, pp.
1525-1531, Oct. 2018.

[29] J. Li, P. Reviriego, L. Xiao, Z. Liu, L. Li, and A. Ullah, “Low delay single
error correction and double adjacent error correction (SEC-DAEC) codes,”
Microelectron. Rel., vol. 97, pp. 31-37, Jun. 2019.

[30] L. Saiz-Adalid, J. Gracia-Morán, D. Gil-Tomás, J. -. Baraza-Calvo and P.
Gil-Vicente, "Ultrafast codes for mltiple adjacent error correction and double
error detection," IEEE Access, vol. 7, pp. 151131-151143, 2019.

[31] A. Sánchez-Macián, P. Reviriego, J. Tabero, A. Regadío and J. A. Maestro,
"SEFI protection for nanosat 16-bit chip onboard computer memories," IEEE
Trans. Device Mater. Rel., vol. 17, no. 4, pp. 698-707, Dec. 2017.

[32] S. Ahmad, M. Zahra, S. Z. Farooq and A. Zafar, "Comparison of EDAC
schemes for DDR memory in space applications," in Proc. Int. Conf. Aerosp.
Sci. Eng. (ICASE), pp. 1-5, Aug. 2013.

[33] A. Neale, M. Jonkman and M. Sachdev, "Adjacent-MBU-tolerant SEC-
DED-TAEC-yAED codes for embedded SRAMs," IEEE Trans. Circuits Syst.
II: Express Briefs, vol. 62, no. 4, pp. 387-391, Apr. 2015.

[34] J. Gracia-Morán, L. J. Saiz-Adalid, D. Gil-Tomás and P. J. Gil-Vicente,
"Improving error correction codes for multiple-cell upsets in space applica-
tions," IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 26, no. 10, pp.
2132-2142, Oct. 2018.

[35] S. Vijayakumaran and D. Pal, "On the minimum redundancy of SEC-
DAEC-TAEC binary linear block codes," IEEE Communications Letters, vol.
20, no. 4, pp. 652-655, Apr. 2016.

[36] A. Pinheiro, D. Tavares, F. Silva, J. Silveira and C. Marcon. "Optimized
buffer protection for network-on-chip based on Error Correction Code,"
Microelectronics Journal, vol. 100, 2020.

[37] N. Sridevi, K. Jamal and K. Mannem, "Implementation of error correction
techniques in memory applications," Proc. 2021 5th International Confer-
ence on Computing Methodologies and Communication (ICCMC), pp. 586-
595, 2021.

[38] L.-J. Saiz-Adalid, J. Gracia-Morán, D. Gil-Tomás, J.-C. Baraza-Calvo, and
P.-J. Gil-Vicente, "Reducing the overhead of BCH codes: new double error
correction codes," Electronics, vol. 9, no. 11, p. 1897, Nov. 2020.

8 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3178953, IEEE Access

M. Dong et al.: A Universal, Low-Delay, SEC-DEC-TAEC Code for State Register Protection

[39] R. K. Maity, S. Tripathi, J. Samanta, and J. Bhaumik. "Lower complex-
ity error location detection block of adjacent error correcting decoder for
SRAMs," IET Computers & Digital Techniques, vol. 14, no. 5, pp. 210-216,
2020.

[40] L. Ramasethu, P. Poongodi, "A class of SEC-DAED-TAEC codes for fault
secure SRAM," Journal of Computational and Theoretical Nanoscience, vol.
14, no. 12, pp. 5897-5900, 2017.

[41] M. Dong (2022). An Efficient Universal Low Delay SEC-DEC-TAEC
Code. [Online]. Available: https://github.com/Melvin-Dong/An-Efficient-
Universal-Low-Delay-SEC-DEC-TAEC-Code.

MENG DONG was born in 1995. He received the
B.S. degree in school of information communica-
tion engineering from Beijing Information Science
& Technology University, Beijing, China, in 2016.
He is currently pursuing the Ph.D. degree with
the Xidian University, Xi’an, China. His research
interests include hardware security.

WEITAO PAN received B.S. degree from School
of Technical Physics of Xidian University in 2004.
His Ph.D. degree was received from School of
Microelectronics of Xidian University in 2010.
Now he is an associate professor in State Key Lab-
oratory of Integrated Service Networks of Xidian
University. His current research interests include
VLSI design methods and post-silicon verifica-
tion.

ZHILIANG QIU is a Professor with the State
Key Laboratory of Integrated Services Networks
(ISN), Xidian University, Xi’an, China. He re-
ceived the B.S. degree in communication engi-
neering and the M.S. and Ph.D. degrees in com-
munication and information systems from Xidian
University, in 1986, 1989, and 1999, respectively.
His research interests include broadband network
and switching technology.

XIAOXIN QI was born in 1994. He received
the B.S. degree in telecommunication engineering
from Xidian University, Xi’an, China, in 2016.
He is currently pursuing the Ph.D. degree in in-
formation and telecommunication engineering at
Xidian University. His research interests include
internetworking and routing in satellite networks.

LING ZHENG received the M.S. degree in com-
puter science and technology in 2014, and the
Ph. D. degree in information and communica-
tion engineering in 2019 respectively, from Xid-
ian University, Xi’an, P.R.China. He is currently
a Lecturer with the School of Communications
and Information Engineering, Xi’an University of
Posts and Telecommunications. His research in-
terests include high performance switching and
routing, software-defined networking and deter-

ministic network.

HUAN LIU is currently pursuing the Ph.D. degree
with the Xidian University. His research interests
include reconfigurable hardware and networked
systems. He has rich research experience in dat-
aplane architectures of the network device.

VOLUME 4, 2016 9

