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A UNIVERSAL MAPPING PROBLEM, COVERING GROUPS 
AND AUTOMORPHISM GROUPS OF FINITE GROUPS 

MORTON E. HARRIS l 

In this note, we show that an arbitrary finite group G has a unique 
covering group (or representation group, in the sense of Schur, cf. 
[5, p. 85] or [3, p. 630] ) if and only if there exists a solution to a cer
tain universal mapping problem connected with G (Theorem 2). Then, 
easy diagram chases yield generalizations of recent results of Alperin 
[2, Assumed Result (9)] and Thompson [6, Theorem], (Corollaries 2.1 
and 2.2). We also discuss the notion of a centrally closed group and 
obtain a sufficient condition on a finite group G that implies that any 
covering group of G is centrally closed. In the course of our work, we 
give alternate proofs of two fundamental theorems of Schur [5, 
Sätze III, I I ] , (Theorems 1, 3 (i)), that utilize the methods of [3, V, 
§ 23]. We close the paper with a result relating the automorphism 
group of G to the automorphism group of a covering group of G under 
fairly general hypotheses on G. 

Our notation is fairly standard. In particular, C will denote the 
field of complex numbers and for a finite group G, we denote the 
Schur multiplier of G by H2(G, Cx), (cf. [3, V, 23.1 and 23.5(c)] ). 

For an arbitrary finite group G, we let £(G) denote the class of all 
ordered pairs (L, A) such that L is a group and A : L—» G is an epi-
morphism with Ker(A) g V Pi Z(L). 

Clearly (G, 1G) €E ^(G) and G is perfect if and only if some and 
hence every group, appearing as a first component of an element of 
£(G), is perfect . 

DEFINITION 1. Two elements (K, 17) and (L,X) of d(G) are said to 
be equivalent, written (K,ri)~ (L,X), if there exists an isomorphism 
a : K —» L of K onto L such that a ° \ = 17. 

Clearly this relation on ^(G) is an equivalence relation. Moreover, 
by definition, G is said to be centrally closed (cf. [6] ) if C(G) has 
precisely one —equivalence class (for which (G, 1G) is a representa
tive). 

Note that a covering group of G is any element (L, X) of ^(G) such 

that |Ker(\)| = |ff2(G, C*)|. Hence the covering groups of G corn-
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prise complete ~~ -equivalence classes in C(G). Also G is said to have 
a unique covering group if the covering groups of G comprise a unique 
~ -equivalence class in £(G). 

DEFINITION 2. The element (K,^) of £(G) is said to be a solution of 
the universal mapping problem (f ) for G if, for every (L, A.) G ^(G), 
there exists a homomorphism a: K-+ L such that a ° X = rj. 

Clearly this definition has an equivalent formulation in terms of a 
certain subcategory of the category of short exact sequences of groups 
that end in G. 

At this point, we require: 

LEMMA 1. The following conditions hold: 
(i) if(L, À.) G ^(G), then L is a finite group and Ker(X) is isomor

phic to a subgroup ofH2(G, Cx), 
(ii) if (L, X) and (M, yi) are elements of C(G) and ß : L—» M is a 

homomorphism such that ß° /i = X, then ß is onto, and 
(iii) if solutions for the universal mapping problem (f ) for G exist, 

then the solutions comprise a unique ~ -equivalence class in £(G). 

PROOF. Let (L, X) G C(G). Then, since Ker(X) ^ V H Z(L), a result 
of Schur (cf. [3, IV, 2.3]) implies that L is finite and [3, V, 23.3] 
implies that Ker(X) is isomorphic to a subgroup of H2(G, Cx). Thus 
(i) holds. Assuming the hypotheses of (ii), we have M = Im(ß)Ker(/ut). 
Since Ker(/x) ^ M' Pi Z(M) ^ *(M) by a result of Gaschütz (cf. [3, 
III, 3.12] ), we have M = Im(/3); this proves (ii). Now (iii) follows 
from (i) and (ii) and we are done. 

Using the context of the proof of [3, V, 23.5], we given an alternate 
proof of [5, Satz III] : 

THEOREM 1. (SCHUR). Let (L, X) G £(G). Then there exists a cover
ing group (K,r)) of G and an epimorphism a:K^>L such that 
a ° X = 7). In particular, G always has a covering group. 

PROOF. Choose an epimorphism TT : F ^ G where F is a free group 
on n generators for some positive integer n and let R = Ker(7r) ^ F. 
T h u s [ R , F ] ^ F and_[R,F] ^RHF'. Set F=FI[R,F] and B 
= Ker(X) and let TT : F—» G denote the epimorphism induced by TT. 
Thus Ker(jf) = K ^ Z(F) and [3, V, 23.5(a), (b)] implies that R is 
a finitely generated abelian group of rank n. 

As in the proof of [3, V, 23.5(e)], there exists an epimorphism 
a : F —» L such that er ° X = 7r and such that (a) if / G F, then 
y ^ G B if and only if / Ë R , and (b) [R, F] g Ker(cr). Let 
ä : F-+ L denote the epimorphism induced by a. Thus ä ° X = 7f 
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and if fG F, then f*G B if and only if £ GR; hence R* = B.Let 
T = Tor(R), the torsion subgroup of R. Then T = RHF' = 
tf2(G,Cx) by [3, V, 23.5(a), (c)] and hence T^ B. Let b be an 
arbitrary element of B ^ L ' . Since L ' = (F ' )* there exists an ele
ment J G F such_ that / * = b. Hence / _ G R_Tl F ' = T, 
T°= B and R = TKer(ä). Thus Ker(ä) = S X fx where 
Ti = Tor(Ker(â)) and S is a free abelian group of rank n. Hence 
R = S X f with S ^ Ker(ä) and S a free abelian group of rank n. 

Letting F = F/S, we conclude that ä and ir induce epimorphisms 
ä : F - * L and it \P-+ G such that <7 ° X = 7?. Since Ker(îF) = 
T = f = #2(G, Cx), the theorem follows. 

COROLLARY 1.1. The finite group G is centrally closed if and only 
ifH2(G, Cx) = 1. 

PROOF. If G is centrally closed and (£,17) is a covering group of G, 
then |H2(G, Cx) | = |Ker(i7)| = 1. The converse, of course, follows 
from Lemma 1 (i). 

COROLLARY 1.2. Let H be a centrally closed finite group, let Z be an 
arbitrary subgroup of H ' D Z(H) and let n : H —» HIZ denote the 
canonical epimorphism. Then (H,TT) is a covering group of HIZ. 
However, HIZ does not necessarily possess a unique covering group. 
In fact, HIZ may possess a non-centrally closed covering group. 

PROOF. Since (H,TT) G C(HIZ), there exists a covering group (K,TJ) 

of HIZ and an epimorphism a : K—> H such a° rr = r). Since 
Ker(a) g Ker(a ° n) = Ker(rj) g K ' (1 Z(K), we conclude that 
Ker(a) = 1. Whence (K,TJ) ~ (H,TT) and (H,TT) is a covering group for 
HIZ. Finally, let Q and !2>, respectively, denote a generalized quater
nion group and a dihedral group with | fi| = |!à| = 2n è 23. Then 
Z( Q) = Z( <2) H Q ' = Z ( ^ ) n & ' has order 2. Also fi/Z( fi) = 
2VZ(ià) is dihedral of order 2 n _ 1 and both fi and £ò are covering 
groups of !£>/Z(£>) by [3, V, 25.6]. Since Q is centrally closed by 
[3, V, 25.3a], we are done. 

We are now in position to prove: 

THEOREM 2. Let G be a finite group. Then the following two condi
tions are equivalent: 

(i) there exists a solution of the universal mapping problem (£) for 
G; 

(ii) G has a unique covering group. 
In that case, any covering group of G is a solution of the universal 

mapping problem (€)for G. 
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PROOF. Clearly, by Theorem 1, we conclude that (ii) implies that any 
covering group of G is a solution of the universal mapping problem 
(£) for G. Conversely, let (K,TJ) be a fixed solution of the universal 
mapping problem (f) for G and let (L, \ ) be an arbitrary covering 
group of G. Then, there exists an epimorphism a: K —> L such 
that a o \ = T|, Since \K\ = \G\ |Ker(^)| g \G\ \H2(G, C x ) | = \L\ by 
Lemma 1 (i), we conclude that a is an isomorphism and we are done. 

Now, standard diagram chases yield the proofs of the next two 
results. 

We shall see below that these results are proper generalizations of a 
result of Alperin (cf. [2, p. 356, assumed result (9)] ) and of a result of 
Thompson [6, Theorem]. 

COROLLARY 2.1. Let (K, rj) be a covering group of the finite group G, 
let T G Aut(G) and assume that G has a unique covering group. Then 
there exists an automorphism r* of K such that r* ° r) = rj ° r. 

COROLLARY 2.2. Let H be a finite centrally closed group, let Z1? Z2 

be subgroups of H' C\ Z(H) and let TT{ : H —» HIZi denote the canoni-
cal epimorphism for i = i, 2. Suppose that a : H/Zj —» HIZ2 is an iso
morphism and that HIZl has a unique covering group. Then there 
exists an automorphism a* of H such that a* ° TT2 = TTY ° a. 

The proof of the first part of the next result is an alternate proof of 
[5, Satz I I ] . 

THEOREM 3. Let G be a finite group such that (|G/G'|, \H2(G, Cx)|) 
= 1. Then 

(i) (Schur) G has a unique covering group, and 
(ii) any covering group of G is centrally closed. 
In particular, if G is perfect, then G has a unique covering group 

and any covering group of G is centrally closed. 

PROOF. Let a= IG/G'lançl ß =}H2(G,CX)\, so tha^ (a,ß) = L 
Let F,TT_: F - » G, n, R, F, K ^ Z(F), W : F - * G and R H F ' = T 

= Tor (R) = H2(G, Cx) be as in the proof of Theorem 1. Choose 
S ^ R with S a free abelian group of rank n such that fì = S X T. 
Then Rß = S^ is independent of the choice of S, since \T\ = 
\H2(G,CX)\= ß. Set F=FlRß. Since R = Ker(^), we conclude 
that if induces the epimorphism TT : F-> G such that Ker(7?) = R = T 
X S S Z(F) where T = T and S = S/S^ has_order 0"._Thus F_is a 
fmite_group and F ' H R = T since R Pi (F 'RP) = (R H F ')R* = 
T X R^. Thus a = |G/G'| = |F/F 'fi| = (|F/F '\)ß~n and hence 
aßn = | F /F ' | . Since (a, ß) = 1, there exists a unique subgroup K 
of F containing F'R? with |F/K| = |F/K| = \FIK\ = ßn and |K/F' | 
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= a. Since |S| = ßn, we have S f l K e S f i F ' = S n ( f l n F ' ) = 
S fi T = 1. Hence F ' = K' and R H K = T ^ Z(K) fi K'. Letting 
T) = TT|K : K—» G, we conclude that TJ is onto and that H2(G,CX) 
= f = Kerfô) g Z(K) H K'. Thus (K, rç) is a covering group of G. 

Next, let (L, X) G C(G) and set B = Ker(X). Then, as in the proof 
of Theorem 1, there exists an epimorphism ä : F—> L such that 
ä ° X = w and ZF = B = T5: But B = Ker(X) is isomorphic to a 
subgroup of H2(G, Cx) by Lemma 1 (i), so that R? ^ B? = 1. Thus 
R^ â Ker(cr), whence ä induces the epimorphism â.F^L 
such that ä ° X = 7?. Then y = d|K : K—» L is such that y ° X = r) 
and hence (K,TJ) is a solution of the universal mapping problem (f) for 
G. Thus (i) holds. 

For (ii), let (K,TJ) be a covering group for G, let (M, /i) E £(K), Y 
= Ker(/üt) and let X = Ker(/*° r)) where / X ° T 7 : M — > G is an epi
morphism. Clearly fi\x : X-» Kerfa) is onto and Y = Ker(fi) = Ker(/4x) 
^ M ' n Z(M) since Y ë X. Also [M,X]" = [K,X"] = [K,Kerfa)] = 
1 since Kerfa) ^ Z(K). Hence [M,X] ^ Y and [M,X, M] = 1 = 
[X, M, M]. Thus M stabilizes the chain l ^ Y ^ X and M ' centralizes 
X by the three subgroup lemma ([3, III, 1.10(b))]). Moreover Y S 
Z(M), X/Y = tf2(G, Cx) has order £ and M/M' = K/K' = GIG' 
has order a. Hence, as is well known, it follows from a theorem of 
Burnside ([3, IV, 2.6]) that there exists characteristic subgroups Xl5 

X2 of X such that X = Xl X X2, .flXjl, 0) = 1, Xx S Y ^ Z ( M ) , X2 

is a 7r(j3)-group and such that X2/(X2 Pi Y) = X/Y. But [Af', X] = 1 
= [Xx, M], M stabilizes the chain l g X 2 n Y ^ X 2 and (|X2|, 
|M/M'|) =1. We conclude Jhat X g Z ( M ) . Also, setting M = M/Y, 
we have |X| = ß while M/M' = MIM' has order a, since Y^i M \ 
Thus X ^ M ' fi Z(M) and hence (M, / I ° T ) ) G £(G). NOW Lemma 
1 (i) implies that |X| ^ \H2(G, Cx)\ = |X/Y|. Hence Y = Ker(jx) = 
1, fx is an isomorphism and (ii) holds. 

An alternate proof to (ii) can be given by using [4, Theorem 2.1]. 
For, under our hypotheses, it is easy to prove that the abelian group 
of all pairings P{G, H2(G, Cx); Cx), (cf. [4, p. 131] ) is trivial. 

Note that, in general, covering groups are not necessarily centrally 
closed. In fact, as we have seen in Corollary 1.2, a group may possess 
both a centrally closed and a non-centrally closed covering group. 

We shall close our discussion with another example. 

Let S = Sz(8), let P G Syl2(S) and let G = NS(P). Then, as is well 
known, P = 02(G) is special with PIP ' = P ' = Z(P) elementary abelian 
of order 8, GIP of order 7, GIP acting irreducibly on PIP' and Z(P) 
and with G' = P. Also [3, V, 25.1 and 25.3(a)] implies that H2(G, Cx) 
is a 2-group and hence G has a unique covering group. Letting (K,r)) 
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denote a covering group of G, we conclude that K is centrally closed 
and, from [1, pp. 518-519], that Kerfa) = H2(G, Cx) is a four-
group. Also G, K possess automorphisms T, T*, respectively, of order 
3 such that T* ° rj = r)° T and such that r* is transitive on the three 
involutions of Ker(Tj) = H2(G, Cx). Let Z denote an arbitrary proper 
subgroup of Ker(7j), let K = KfZ and let̂ TT : K-» K/Z = K denote the 
canonical epimorphism. Then K' = 02(K), \K/K'\ = 7, Z = H2(K, Cx) 
and K has a unique covering group. Letting Zx = ZT* and TT1 denote 
the canonical epimorphism TTI : K-» K/Z1? we conclude that r* in
duces an isomorphism f : K/Z-* K/Zx, such that n ° f = T* ° A"!. 
We have illustrated both Corollaries 2.1 and 2.2. Moreover, this 
example and Theorem 3 show that these corollaries are proper gen
eralizations of the results of Alperin and Thompson mentioned above. 

Our final results are obtained by applying Corollary 2.1 and 
Theorem 3(i). 

THEOREM 4. Let G be a finite group such that (|G/G'|, \H2(G, Cx)|) 
= 1. Let (K,K) be a covering group ofG, let J = Ker(#c), let K = KIJ 
and let A = {a_G Aut(K)|/" = / } . Clearly K=G, Aut(K) = Aut(G) 
and A acts on K. Let y : A —> Aut(K) denote the induced homomor-
phism. Then (i) y : A-» Aut(K) is an isomorphism, and (ii) Z(K) = 
Z(K)IJ. 

PROOF. Let a G A be such that [K, a] ^ / . Note that / ^ K' Pi 
Z(K). Let ki9 k2 be arbitrary elements of K. Thus (fci^J'H^i^)0 = 

^2~1^i~1^ia^2a = (ki~lkia)(k2~lk2
a) and hence the mapping0 : K-» / 

defined by kß = fc_1fca for all k G K is a homomorphism. Since / = 
Ker(#c) = H2(G, Cx) and GIG' = K/K', we have (|K/K'|, |/|) = 1. Thus 
ß is trivial, y is a monomorphism and (ii) holds. 

Suppose that t G Aut(K). Letting n :K-+K= KIJ denote the 
natural epimorphism, it follows from Theorem 3(i) and Corollary 2.1 
that there is a t* G Aut(K) such that t* ° IT = ir ° t. Hence t* G A, 
;* o y = t and the proof is complete. 

COROLLARY 4.1. Let G be a finite group such that G = G' and Z(G) 
= 1. Let (K,K) be a covering group of G. Then Z(K) = Ker(#c) and 
Aut(K) = Aut(G). 

We conclude the paper with an example of Theorem 4 in which A 
is a proper subgroup of Aut(K). 

To this effect, let q denote an odd prime power such that q (f {3, 9} 
and let K be a group that is the direct product of two distinct normal 
subgroups Hl9 H2 such that Hx_= H2 = SL(2,q). Clearly H / = H{ 

and |Z(Hi)| = 2 for i = 1,2. Let K = K / Z ^ ) and letK : K-> K denote 
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the natural epimorphism. Clearly K = K' s SL(2, q) X SL(2, 9), 
K = K' =PSL(2,9) X SL(2,q) and (K,/c) is a covering group of K 
by [3, V, 25.5, 25.7 and 25.10]. Since Aut(K) contains an involution 
X such that Hf = H2, it follows that |Aut(K)| < |Aut(K)| and we are 
done. 
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