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A UNIVERSAL MAPPING PROBLEM, COVERING GROUPS 
AND AUTOMORPHISM GROUPS OF FINITE GROUPS 

MORTON E. HARRIS l 

In this note, we show that an arbitrary finite group G has a unique 
covering group (or representation group, in the sense of Schur, cf. 
[5, p. 85] or [3, p. 630] ) if and only if there exists a solution to a cer­
tain universal mapping problem connected with G (Theorem 2). Then, 
easy diagram chases yield generalizations of recent results of Alperin 
[2, Assumed Result (9)] and Thompson [6, Theorem], (Corollaries 2.1 
and 2.2). We also discuss the notion of a centrally closed group and 
obtain a sufficient condition on a finite group G that implies that any 
covering group of G is centrally closed. In the course of our work, we 
give alternate proofs of two fundamental theorems of Schur [5, 
Sätze III, I I ] , (Theorems 1, 3 (i)), that utilize the methods of [3, V, 
§ 23]. We close the paper with a result relating the automorphism 
group of G to the automorphism group of a covering group of G under 
fairly general hypotheses on G. 

Our notation is fairly standard. In particular, C will denote the 
field of complex numbers and for a finite group G, we denote the 
Schur multiplier of G by H2(G, Cx), (cf. [3, V, 23.1 and 23.5(c)] ). 

For an arbitrary finite group G, we let £(G) denote the class of all 
ordered pairs (L, A) such that L is a group and A : L—» G is an epi-
morphism with Ker(A) g V Pi Z(L). 

Clearly (G, 1G) €E ^(G) and G is perfect if and only if some and 
hence every group, appearing as a first component of an element of 
£(G), is perfect . 

DEFINITION 1. Two elements (K, 17) and (L,X) of d(G) are said to 
be equivalent, written (K,ri)~ (L,X), if there exists an isomorphism 
a : K —» L of K onto L such that a ° \ = 17. 

Clearly this relation on ^(G) is an equivalence relation. Moreover, 
by definition, G is said to be centrally closed (cf. [6] ) if C(G) has 
precisely one —equivalence class (for which (G, 1G) is a representa­
tive). 

Note that a covering group of G is any element (L, X) of ^(G) such 

that |Ker(\)| = |ff2(G, C*)|. Hence the covering groups of G corn-
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prise complete ~~ -equivalence classes in C(G). Also G is said to have 
a unique covering group if the covering groups of G comprise a unique 
~ -equivalence class in £(G). 

DEFINITION 2. The element (K,^) of £(G) is said to be a solution of 
the universal mapping problem (f ) for G if, for every (L, A.) G ^(G), 
there exists a homomorphism a: K-+ L such that a ° X = rj. 

Clearly this definition has an equivalent formulation in terms of a 
certain subcategory of the category of short exact sequences of groups 
that end in G. 

At this point, we require: 

LEMMA 1. The following conditions hold: 
(i) if(L, À.) G ^(G), then L is a finite group and Ker(X) is isomor­

phic to a subgroup ofH2(G, Cx), 
(ii) if (L, X) and (M, yi) are elements of C(G) and ß : L—» M is a 

homomorphism such that ß° /i = X, then ß is onto, and 
(iii) if solutions for the universal mapping problem (f ) for G exist, 

then the solutions comprise a unique ~ -equivalence class in £(G). 

PROOF. Let (L, X) G C(G). Then, since Ker(X) ^ V H Z(L), a result 
of Schur (cf. [3, IV, 2.3]) implies that L is finite and [3, V, 23.3] 
implies that Ker(X) is isomorphic to a subgroup of H2(G, Cx). Thus 
(i) holds. Assuming the hypotheses of (ii), we have M = Im(ß)Ker(/ut). 
Since Ker(/x) ^ M' Pi Z(M) ^ *(M) by a result of Gaschütz (cf. [3, 
III, 3.12] ), we have M = Im(/3); this proves (ii). Now (iii) follows 
from (i) and (ii) and we are done. 

Using the context of the proof of [3, V, 23.5], we given an alternate 
proof of [5, Satz III] : 

THEOREM 1. (SCHUR). Let (L, X) G £(G). Then there exists a cover­
ing group (K,r)) of G and an epimorphism a:K^>L such that 
a ° X = 7). In particular, G always has a covering group. 

PROOF. Choose an epimorphism TT : F ^ G where F is a free group 
on n generators for some positive integer n and let R = Ker(7r) ^ F. 
T h u s [ R , F ] ^ F and_[R,F] ^RHF'. Set F=FI[R,F] and B 
= Ker(X) and let TT : F—» G denote the epimorphism induced by TT. 
Thus Ker(jf) = K ^ Z(F) and [3, V, 23.5(a), (b)] implies that R is 
a finitely generated abelian group of rank n. 

As in the proof of [3, V, 23.5(e)], there exists an epimorphism 
a : F —» L such that er ° X = 7r and such that (a) if / G F, then 
y ^ G B if and only if / Ë R , and (b) [R, F] g Ker(cr). Let 
ä : F-+ L denote the epimorphism induced by a. Thus ä ° X = 7f 
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and if fG F, then f*G B if and only if £ GR; hence R* = B.Let 
T = Tor(R), the torsion subgroup of R. Then T = RHF' = 
tf2(G,Cx) by [3, V, 23.5(a), (c)] and hence T^ B. Let b be an 
arbitrary element of B ^ L ' . Since L ' = (F ' )* there exists an ele­
ment J G F such_ that / * = b. Hence / _ G R_Tl F ' = T, 
T°= B and R = TKer(ä). Thus Ker(ä) = S X fx where 
Ti = Tor(Ker(â)) and S is a free abelian group of rank n. Hence 
R = S X f with S ^ Ker(ä) and S a free abelian group of rank n. 

Letting F = F/S, we conclude that ä and ir induce epimorphisms 
ä : F - * L and it \P-+ G such that <7 ° X = 7?. Since Ker(îF) = 
T = f = #2(G, Cx), the theorem follows. 

COROLLARY 1.1. The finite group G is centrally closed if and only 
ifH2(G, Cx) = 1. 

PROOF. If G is centrally closed and (£,17) is a covering group of G, 
then |H2(G, Cx) | = |Ker(i7)| = 1. The converse, of course, follows 
from Lemma 1 (i). 

COROLLARY 1.2. Let H be a centrally closed finite group, let Z be an 
arbitrary subgroup of H ' D Z(H) and let n : H —» HIZ denote the 
canonical epimorphism. Then (H,TT) is a covering group of HIZ. 
However, HIZ does not necessarily possess a unique covering group. 
In fact, HIZ may possess a non-centrally closed covering group. 

PROOF. Since (H,TT) G C(HIZ), there exists a covering group (K,TJ) 

of HIZ and an epimorphism a : K—> H such a° rr = r). Since 
Ker(a) g Ker(a ° n) = Ker(rj) g K ' (1 Z(K), we conclude that 
Ker(a) = 1. Whence (K,TJ) ~ (H,TT) and (H,TT) is a covering group for 
HIZ. Finally, let Q and !2>, respectively, denote a generalized quater­
nion group and a dihedral group with | fi| = |!à| = 2n è 23. Then 
Z( Q) = Z( <2) H Q ' = Z ( ^ ) n & ' has order 2. Also fi/Z( fi) = 
2VZ(ià) is dihedral of order 2 n _ 1 and both fi and £ò are covering 
groups of !£>/Z(£>) by [3, V, 25.6]. Since Q is centrally closed by 
[3, V, 25.3a], we are done. 

We are now in position to prove: 

THEOREM 2. Let G be a finite group. Then the following two condi­
tions are equivalent: 

(i) there exists a solution of the universal mapping problem (£) for 
G; 

(ii) G has a unique covering group. 
In that case, any covering group of G is a solution of the universal 

mapping problem (€)for G. 
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PROOF. Clearly, by Theorem 1, we conclude that (ii) implies that any 
covering group of G is a solution of the universal mapping problem 
(£) for G. Conversely, let (K,TJ) be a fixed solution of the universal 
mapping problem (f) for G and let (L, \ ) be an arbitrary covering 
group of G. Then, there exists an epimorphism a: K —> L such 
that a o \ = T|, Since \K\ = \G\ |Ker(^)| g \G\ \H2(G, C x ) | = \L\ by 
Lemma 1 (i), we conclude that a is an isomorphism and we are done. 

Now, standard diagram chases yield the proofs of the next two 
results. 

We shall see below that these results are proper generalizations of a 
result of Alperin (cf. [2, p. 356, assumed result (9)] ) and of a result of 
Thompson [6, Theorem]. 

COROLLARY 2.1. Let (K, rj) be a covering group of the finite group G, 
let T G Aut(G) and assume that G has a unique covering group. Then 
there exists an automorphism r* of K such that r* ° r) = rj ° r. 

COROLLARY 2.2. Let H be a finite centrally closed group, let Z1? Z2 

be subgroups of H' C\ Z(H) and let TT{ : H —» HIZi denote the canoni-
cal epimorphism for i = i, 2. Suppose that a : H/Zj —» HIZ2 is an iso­
morphism and that HIZl has a unique covering group. Then there 
exists an automorphism a* of H such that a* ° TT2 = TTY ° a. 

The proof of the first part of the next result is an alternate proof of 
[5, Satz I I ] . 

THEOREM 3. Let G be a finite group such that (|G/G'|, \H2(G, Cx)|) 
= 1. Then 

(i) (Schur) G has a unique covering group, and 
(ii) any covering group of G is centrally closed. 
In particular, if G is perfect, then G has a unique covering group 

and any covering group of G is centrally closed. 

PROOF. Let a= IG/G'lançl ß =}H2(G,CX)\, so tha^ (a,ß) = L 
Let F,TT_: F - » G, n, R, F, K ^ Z(F), W : F - * G and R H F ' = T 

= Tor (R) = H2(G, Cx) be as in the proof of Theorem 1. Choose 
S ^ R with S a free abelian group of rank n such that fì = S X T. 
Then Rß = S^ is independent of the choice of S, since \T\ = 
\H2(G,CX)\= ß. Set F=FlRß. Since R = Ker(^), we conclude 
that if induces the epimorphism TT : F-> G such that Ker(7?) = R = T 
X S S Z(F) where T = T and S = S/S^ has_order 0"._Thus F_is a 
fmite_group and F ' H R = T since R Pi (F 'RP) = (R H F ')R* = 
T X R^. Thus a = |G/G'| = |F/F 'fi| = (|F/F '\)ß~n and hence 
aßn = | F /F ' | . Since (a, ß) = 1, there exists a unique subgroup K 
of F containing F'R? with |F/K| = |F/K| = \FIK\ = ßn and |K/F' | 
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= a. Since |S| = ßn, we have S f l K e S f i F ' = S n ( f l n F ' ) = 
S fi T = 1. Hence F ' = K' and R H K = T ^ Z(K) fi K'. Letting 
T) = TT|K : K—» G, we conclude that TJ is onto and that H2(G,CX) 
= f = Kerfô) g Z(K) H K'. Thus (K, rç) is a covering group of G. 

Next, let (L, X) G C(G) and set B = Ker(X). Then, as in the proof 
of Theorem 1, there exists an epimorphism ä : F—> L such that 
ä ° X = w and ZF = B = T5: But B = Ker(X) is isomorphic to a 
subgroup of H2(G, Cx) by Lemma 1 (i), so that R? ^ B? = 1. Thus 
R^ â Ker(cr), whence ä induces the epimorphism â.F^L 
such that ä ° X = 7?. Then y = d|K : K—» L is such that y ° X = r) 
and hence (K,TJ) is a solution of the universal mapping problem (f) for 
G. Thus (i) holds. 

For (ii), let (K,TJ) be a covering group for G, let (M, /i) E £(K), Y 
= Ker(/üt) and let X = Ker(/*° r)) where / X ° T 7 : M — > G is an epi­
morphism. Clearly fi\x : X-» Kerfa) is onto and Y = Ker(fi) = Ker(/4x) 
^ M ' n Z(M) since Y ë X. Also [M,X]" = [K,X"] = [K,Kerfa)] = 
1 since Kerfa) ^ Z(K). Hence [M,X] ^ Y and [M,X, M] = 1 = 
[X, M, M]. Thus M stabilizes the chain l ^ Y ^ X and M ' centralizes 
X by the three subgroup lemma ([3, III, 1.10(b))]). Moreover Y S 
Z(M), X/Y = tf2(G, Cx) has order £ and M/M' = K/K' = GIG' 
has order a. Hence, as is well known, it follows from a theorem of 
Burnside ([3, IV, 2.6]) that there exists characteristic subgroups Xl5 

X2 of X such that X = Xl X X2, .flXjl, 0) = 1, Xx S Y ^ Z ( M ) , X2 

is a 7r(j3)-group and such that X2/(X2 Pi Y) = X/Y. But [Af', X] = 1 
= [Xx, M], M stabilizes the chain l g X 2 n Y ^ X 2 and (|X2|, 
|M/M'|) =1. We conclude Jhat X g Z ( M ) . Also, setting M = M/Y, 
we have |X| = ß while M/M' = MIM' has order a, since Y^i M \ 
Thus X ^ M ' fi Z(M) and hence (M, / I ° T ) ) G £(G). NOW Lemma 
1 (i) implies that |X| ^ \H2(G, Cx)\ = |X/Y|. Hence Y = Ker(jx) = 
1, fx is an isomorphism and (ii) holds. 

An alternate proof to (ii) can be given by using [4, Theorem 2.1]. 
For, under our hypotheses, it is easy to prove that the abelian group 
of all pairings P{G, H2(G, Cx); Cx), (cf. [4, p. 131] ) is trivial. 

Note that, in general, covering groups are not necessarily centrally 
closed. In fact, as we have seen in Corollary 1.2, a group may possess 
both a centrally closed and a non-centrally closed covering group. 

We shall close our discussion with another example. 

Let S = Sz(8), let P G Syl2(S) and let G = NS(P). Then, as is well 
known, P = 02(G) is special with PIP ' = P ' = Z(P) elementary abelian 
of order 8, GIP of order 7, GIP acting irreducibly on PIP' and Z(P) 
and with G' = P. Also [3, V, 25.1 and 25.3(a)] implies that H2(G, Cx) 
is a 2-group and hence G has a unique covering group. Letting (K,r)) 
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denote a covering group of G, we conclude that K is centrally closed 
and, from [1, pp. 518-519], that Kerfa) = H2(G, Cx) is a four-
group. Also G, K possess automorphisms T, T*, respectively, of order 
3 such that T* ° rj = r)° T and such that r* is transitive on the three 
involutions of Ker(Tj) = H2(G, Cx). Let Z denote an arbitrary proper 
subgroup of Ker(7j), let K = KfZ and let̂ TT : K-» K/Z = K denote the 
canonical epimorphism. Then K' = 02(K), \K/K'\ = 7, Z = H2(K, Cx) 
and K has a unique covering group. Letting Zx = ZT* and TT1 denote 
the canonical epimorphism TTI : K-» K/Z1? we conclude that r* in­
duces an isomorphism f : K/Z-* K/Zx, such that n ° f = T* ° A"!. 
We have illustrated both Corollaries 2.1 and 2.2. Moreover, this 
example and Theorem 3 show that these corollaries are proper gen­
eralizations of the results of Alperin and Thompson mentioned above. 

Our final results are obtained by applying Corollary 2.1 and 
Theorem 3(i). 

THEOREM 4. Let G be a finite group such that (|G/G'|, \H2(G, Cx)|) 
= 1. Let (K,K) be a covering group ofG, let J = Ker(#c), let K = KIJ 
and let A = {a_G Aut(K)|/" = / } . Clearly K=G, Aut(K) = Aut(G) 
and A acts on K. Let y : A —> Aut(K) denote the induced homomor-
phism. Then (i) y : A-» Aut(K) is an isomorphism, and (ii) Z(K) = 
Z(K)IJ. 

PROOF. Let a G A be such that [K, a] ^ / . Note that / ^ K' Pi 
Z(K). Let ki9 k2 be arbitrary elements of K. Thus (fci^J'H^i^)0 = 

^2~1^i~1^ia^2a = (ki~lkia)(k2~lk2
a) and hence the mapping0 : K-» / 

defined by kß = fc_1fca for all k G K is a homomorphism. Since / = 
Ker(#c) = H2(G, Cx) and GIG' = K/K', we have (|K/K'|, |/|) = 1. Thus 
ß is trivial, y is a monomorphism and (ii) holds. 

Suppose that t G Aut(K). Letting n :K-+K= KIJ denote the 
natural epimorphism, it follows from Theorem 3(i) and Corollary 2.1 
that there is a t* G Aut(K) such that t* ° IT = ir ° t. Hence t* G A, 
;* o y = t and the proof is complete. 

COROLLARY 4.1. Let G be a finite group such that G = G' and Z(G) 
= 1. Let (K,K) be a covering group of G. Then Z(K) = Ker(#c) and 
Aut(K) = Aut(G). 

We conclude the paper with an example of Theorem 4 in which A 
is a proper subgroup of Aut(K). 

To this effect, let q denote an odd prime power such that q (f {3, 9} 
and let K be a group that is the direct product of two distinct normal 
subgroups Hl9 H2 such that Hx_= H2 = SL(2,q). Clearly H / = H{ 

and |Z(Hi)| = 2 for i = 1,2. Let K = K / Z ^ ) and letK : K-> K denote 
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the natural epimorphism. Clearly K = K' s SL(2, q) X SL(2, 9), 
K = K' =PSL(2,9) X SL(2,q) and (K,/c) is a covering group of K 
by [3, V, 25.5, 25.7 and 25.10]. Since Aut(K) contains an involution 
X such that Hf = H2, it follows that |Aut(K)| < |Aut(K)| and we are 
done. 
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