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A UNIVERSAL MAPPING PROBLEM, COVERING GROUPS
AND AUTOMORPHISM GROUPS OF FINITE GROUPS

MORTON E. HARRIS !

In this note, we show that an arbitrary finite group G has a unique
covering group (or representation group, in the sense of Schur, cf.
[5, p. 85] or [3, p. 630]) if and only if there exists a solution to a cer-
tain universal mapping problem connected with G (Theorem 2). Then,
easy diagram chases yield generalizations of recent results of Alperin
[2, Assumed Result (9)] and Thompson [6, Theorem], (Corollaries 2.1
and 2.2). We also discuss the notion of a centrally closed group and
obtain a sufficient condition on a finite group G that implies that any
covering group of G is centrally closed. In the course of our work, we
give alternate proofs of two fundamental theorems of Schur [5,
Satze III, II], (Theorems 1, 3 (i)), that utilize the methods of [3, V,
§ 23]. We close the paper with a result relating the automorphism
group of G to the automorphism group of a covering group of G under
fairly general hypotheses on G.

Our notation is fairly standard. In particular, C will denote the
field of complex numbers and for a finite group G, we denote the
Schur multiplier of G by H¥G, CX), (cf. 3, V, 23.1 and 23.5(c)] ).

For an arbitrary finite group G, we let £(G) denote the class of all
ordered pairs (L, A) such that L is a group and A: L— G is an epi-
morphism with Ker(A\) = L' M Z(L).

Clearly (G,1¢) € ¢(G) and G is perfect if and only if some and
hence every group, appearing as a first component of an element of
2(G), is perfect .

DEeFiniTiON 1. Two elements (K, ) and (L,A) of Z(G) are said to
be equivalent, written (K,7n) ~ (L,\), if there exists an isomorphism
a: K— Lof Konto L such thata° A = 1.

Clearly this relation on £(G) is an equivalence relation. Moreover,
by definition, G is said to be centrally closed (cf. [6]) if Z(G) has
precisely one ~-equivalence class (for which (G, 1¢) is a representa-
tive).

Note that a covering group of G is any element (L, ) of Z(G) such
that |Ker(\)| = |[H¥G, C*)|. Hence the covering groups of G com-
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prise complete ~ -equivalence classes in €(G). Also G is said to have
a unique covering group if the covering groups of G comprise a unique
~-equivalence class in £(G).

DerFintTiON 2. The element (K, ) of ¢(G) is said to be a solution of
the universal mapping problem (£) for G if, for every (L,A) € £(G),

there exists a homomorphism a: K— L such thatac A = 7.

Clearly this definition has an equivalent formulation in terms of a
certain subcategory of the category of short exact sequences of groups
that end in G.

At this point, we require:

LemMa 1. The following conditions hold:
(i) if (L,A) € C(G), then L is a finite group and Ker(A) is isomor-
phic to a subgroup of H*(G, CX),
(ii) if (L,A) and (M, ) are elements of ¢(G) and B:L—> M isa
homomorphism such that B ° p = A, then B is onto, and
(iii) if solutions for the universal mapping problem (£) for G exist,
then the solutions comprise a unique ~ -equivalence class in C(G).

Proor. Let (L,A) € ¢(G). Then, since Ker(A\) = L' M Z(L), a result
of Schur (cf. [3, IV, 2.3]) implies that L is finite and [3, V, 23.3]
implies that Ker(\) is isomorphic to a subgroup of H%G, C*X). Thus
(i) holds. Assuming the hypotheses of (ii), we have M = Im(B8)Ker(pu).
Since Ker(u) = M' N Z(M) = ®(M) by a result of Gaschiitz (cf. [3,
III, 3.12]), we have M = Im(B); this proves (ii). Now (iii) follows
from (i) and (ii) and we are done.

Using the context of the proof of [3, V, 23.5], we given an alternate
proof of [5, Satz III] :

TueoreM 1. (Scaur). Let (L,\) € &(G). Then there exists a cover-
ing group (K,m) of G and an epimorphism a:K— L such that
a° A = . Inparticular, G always has a covering group.

Proor. . Choose an epimorphism 7 : F— G where F is a free group
on n generators for some positive integer n and let R = Ker(r) 2 F.
Thus[R,F] 2 F and [R,F]=RNF'. Set F= F/[R F] and B
= Ker(\) and let 7 : F— G denote the epimorphism induced by =.
Thus Ker(7) = R= Z(F) and [3, V, 23.5(a), (b)] implies that R.is
a finitely generated abelian group of rank n.

As in the proof of [3, V, 23.5(e)], there exists an epimorphism
o0:F— L such that oo A =7 and such that (a) if fEF, then
fEB if and only if fER, and (b) [R, F] = Ker(o). Let
G : F— L denote the epimorphism induced by o. Thus oA =7
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g_nd if?E_ F, then FE B if and only iff E€R; hence Ro= B. Let
T = Tor(R), the torsion subgroup of R. Then T=RNF'=
H*G,C*) by [3, V, 23.5(a), (c)] and hence T¢= B. Let b be an
arbitrary element of B= L’. Since L’ = (F'), there exists an ele-
ment fEF such that fo=b. Hence fERNF =T,
Té=B and R=TKer(d). Thus Ker(d)=SX T, where
?1 = Tor(Ker(d)) and S is a free abelian group of rank n. Hence
R =TS X T with S = Ker() and S a free abelian group of rank n.

Letting F = F/S, we conclude that & and # induce epimorphisms
6:F>L and #:F—> G such that 6eA =7 Since Ker(7)=
T = T = H%(G, CX), the theorem follows.

CoroLLARY 1.1. The finite group G is centrally closed if and only
if H(G, CX) = 1.

Proor. If G is centrally closed and (K,7) is a covering group of G,
then |H2G, CX)| = |Ker(n)] = 1. The converse, of course, follows'
from Lemma 1 (i).

CoroLrary 1.2. Let H be a centrally closed finite group, let Z be an
arbitrary subgroup of H' N Z(H) and let = : H— H|Z denote the
canonical epimorphism. Then (H,w) is a covering group of H|Z.
However, H/Z does not necessarily possess a unique covering group.
In fact, HIZ may possess a non-centrally closed covering group.

ProoF. Since (H,7) € C(H|Z), there exists a covering group (K, 7)
of H/Z and an epimorphism «:K— H such a°#7 =m7. Since
Ker(a) = Ker(a° 7) = Ker() = K' N Z(K), we conclude that
Ker(a) = 1. Whence (K,n) ~ (H,w) and (H, ) is a covering group for
H/Z. Finally, let © and D, respectively, denote a generalized quater-
mon group and a dihedral group with | 9| = |D| = 2= 23. Then
Z(Q)=Z(2)NQ'=Z(D)N D' has order 2. Also 9/Z( Q)=
DJZ(D) is dihedral of order 2"~! and both © and D are covering
groups of DIZ(D) by [3, V, 25.6]. Since Q is centrally closed by
[3,V,25.3a], we are done.

We are now in position to prove:

THeEOREM 2. Let G be a finite group. Then the following two condi-
tions are equivalent:

(i) there exists a solution of the universal mapping problem () for
G;

(ii) G has a unique covering group.

In that case, any covering group of G is a solution of the universal
mapping problem (§) for G.
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Proor. Clearly, by Theorem 1, we conclude that (ii) implies that any
covering group of G is a solution of the universal mapping problem
() for G. Conversely, let (K,n) be a fixed solution of the universal
mapping problem (§) for G and let (L,\) be an arbitrary covering
group of G. Then, there exists an epimorphism a:K — L such
that a° A = 7. Since |K| = |G| |[Ker(n)| = |G| |[H¥G, CX)| = |L| by
Lemma 1 (i), we conclude that « is an isomorphism and we are done.

Now, standard diagram chases yield the proofs of the next two
results.

We shall see below that these results are proper generalizations of a
result of Alperin (cf. [2, p. 356, assumed result (9)]) and of a result of
Thompson [6, Theorem] .

CoroLLARY 2.1. Let (K, m) be a covering group of the finite group G,
let 7 € Aut(G) and assume that G has a unique covering group. Then
there exists an automorphism v* of K such that t* e n =no° 7.

CoroLLARY 2.2. Let H be a finite centrally closed group, let Z,, Z,
be subgroups of H' N Z(H) and let =;: H — H|Z; denote the canoni-
cal epimorphism for i = i,2. Suppose that a: HIZ, — HIZ, is an iso-
morphism and that H|Z, has a unique covering group. Then there
exists an automorphism a* of H such that a* > 7y = 7, ° a.

The proof of the first part of the next result is an alternate proof of
[5, Satz I1] .

TueoreM 3. Let G be a finite group such that (|G/IG'|, |H*(G, C¥)|)
= 1. Then

(i) (Schur) G has a unique covering group, and

(ii) any covering group of G is centrally closed.

In particular, if G is perfect, then G has a unique covering group
and any covering group of G is centrally closed.

Proor. Let a = |G/G’| and B = |H¥G, CX)|, so that (a, B) = 1.
Let F,7:F—>G, n, R, F, REZ(F), #:F->G and RNF'=T
= Tor (R)= H%G, C*) be as in the proof of Theorem 1. Choose
S= R with S a free abelian group of rank n such that R=S X T.
Then Rf =Sf is independent of the choice of S, since |T| =
|[HXG,CX)| = B8. Set F= F/R?. Since R = Ker(7), we conclude
that 7 induces the epimorphism 7 : F_‘_ — G such that Ker(7) = 13 =T
X § = Z(F) where T=T and § = §/S# has order 8*. Thus F is a
finite group and F' N R= T since RN (F'R*)=(RNF')RF =
Tx Rf. Thus a=|GIG'| = |FIF'R| = (|FIF'|)8™ and hence
aB" = |F/F'|. Since (a, B) = 1, there exists a unique subgroup K
of F containing F'R? with |F/K| = |F/K| = |FIK| = g* and |K/F'|
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= a. Since |S| =p8", we have SNK=SNF'=SNRNF')=
SNT=1 Hence F' =K' and RN K= T=ZK) N K'. Letting
n=7|x: K= G, we conclude that n is onto and that H%(G, CX)
= T = Ker(j)) = Z(K) N K’. Thus (K, ) is a covering group of G.

Next, let (L,A\) € ¢(G) and set B= Ker(A). Then, as in the proof
of Theorem 1, there exists an epimorphism &:F— L such that
d°A=7 and R°= B= T° But B= Ker(A) is isomorphic to a
subgroup of H*G, CX) by Lemma 1 (i), so that R?= B’ = 1. Thus
R? = Ker(d), whence & induces the epimorphism &:F— L
such that 6o A =# Then y=d|x: K— L is such that yoA=19
and hence (K, ) is a solution of the universal mapping problem (¢) for
G. Thus (i) holds.

For (ii), let (K,n) be a covering group for G, let (M, u) € ¢(K), Y
= Ker(u) and let X = Ker(u°m) where pomn:M— G is an epi-
morphism. Clearl : X— Ker(n)isontoand Y = Ker(u) = Ker
=M'NZM) sin%gll)f(§ X. Also(',f)M, X]*= [K X¥] =(‘[L%(, Ker(n()TIi)
1 since Ker(n) = Z(K). Hence [M,X] =Y and [M,X,M] =1=
[X, M, M]. Thus M stabilizes the chain 1 = Y = X and M’ centralizes
X by the three subgroup lemma ([3, III, 1.10(b))]). Moreover Y =
Z(M), X/Y = H)G,C*) has order 8 and M/M’'= K/IK' = G/G’'
has order a. Hence, as is well known, it follows from a theorem of
Burnside ([3, IV, 2.6]) that there exists characteristic subgroups X,
Xy of X such that X=X, X X,, (|X4],8) =1, X\, =Y=Z(M), X,
is a w(B)-group and such that X,/(X, NY) = X/Y. But [M',X] =1
= [X,, M], M stabilizes the chain 1=X,NY=X, and (|X,],
IMIM']) = 1. We conclude that X = Z(M). Also, setting M = M/Y,
we have |X| = 8 while M/M’ = M/M’' has order a, since Y= M"'.
Thus X = M' N Z(M) and hence (M, p°n) € ¢(G). Now Lemma
1 (i) implies that |X| = |H%G, C*)| = |X/Y|. Hence Y = Ker(u) =
1, p is an isomorphism and (ii) holds.

An alternate proof to (ii) can be given by using [4, Theorem 2.1].
For, under our hypotheses, it is easy to prove that the abelian group
of all pairings P(G, H¥G, C*); CX), (cf. [4, p. 131]) is trivial.

Note that, in general, covering groups are not necessarily centrally
closed. In fact, as we have seen in Corollary 1.2, a group may possess
both a centrally closed and a non-centrally closed covering group.

We shall close our discussion with another example.

Let S = Sz(8), let P € Syly(S) and let G = Ng(P). Then, as is well
known, P = O,(G) is special with P/P’ = P' = Z(P) elementary abelian
of order 8, G/P of order 7, G/P acting irreducibly on P/P’ and Z(P)
and with G’ = P. Also [3,V, 25.1 and 25.3(a)] implies that H*(G, CX)
is a 2-group and hence G has a unique covering group. Letting (K, 7)
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denote a covering group of G, we conclude that K is centrally closed
and, from [1, pp. 518-519], that Ker(n) = H*G,CX) is a four-
group. Also G, K possess automorphisms 7, 7*, respectively, of order
3 such that 7* o n = 9o 7 and such that 7* is transitive on the three
involutions of Ker(n) = H*(G, C¥). Let Z denote an arbitrary proper
subgroup of Ker(n), let K= K/Z and let 7 : K— K/Z = K denote the
canonical epimorphism. Then K’ = 04(K), |KIK'| = 7,Z = H%K, CX)
and K has a unique covering group. Letting Z, = Z'* and 7, denote
the canonical epimorphism 7, : K— K/Z;, we conclude that 7* in-
duces an isomorphism 7 : K/Z— K/Z,, such that wo7 = 1*om
We have illustrated both Corollaries 2.1 and 2.2. Moreover, this
example and Theorem 3 show that these corollaries are proper gen-
eralizations of the results of Alperin and Thompson mentioned above.

Our final results are obtained by applying Corollary 2.1 and
Theorem 3(i).

THEOREM 4. Let G be a finite group such that (|GIG'|, |H¥(G, C*)|)
= 1. Let (K, k) be a covering group of G, let | = Ker(x), let K= K/J
and let A= {a € Aut(K)|J* = J}. Clearly K= G, Aut(K) = Aut(G)
and A acts on K. Lety : A — Aut(K) denote the induced homomor-
phism. Then (i) y : A— Aut(K) is an isomorphism, and (ii) Z(K) =
Z(K)]].

Proor. Let a € A be such that [K,a] = J. Note that J= K' N
Z(K). Let k,, k, be arbitrary elements of K. Thus (k,ky)~1(k,ky)* =
ky 'k, =k ko= = (k,~k,*)(ky ko) and hence the mapping 8: K— |
defined by kB = k~'k= for all k € K is a homomorphism. Since J =
Ker(k) = H%G, C*)and G/G’ = K/K', we have (|K/K'|, |J|) = 1. Thus
B is trivial, y is a monomorphism and (ii) holds.

Suppose that t € Aut(K). Letting 7 : K— K= K/J denote the
natural epimorphism, it follows from Theorem 3(i) and Corollary 2.1
that there is a t* € Aut(K) such that t*o 7 = 7 t. Hence t* € A,
t* o y = t and the proof is complete.

CoroLLARY 4.1. Let G be a finite group such that G = G' and Z(G)
= 1. Let (K,x) be a covering group of G. Then Z(K) = Ker(x) and
Aut(K) = Aut(G).

We conclude the paper with an example of Theorem 4 in which A
is a proper subgroup of Aut(K).

To this effect, let ¢ denote an odd prime power such that q & {3, 9}
and let K be a group that is the direct product of two distinct normal
subgroups H,, H, such that H, = H, = SL(2,q). Clearly H;" = H;
and |Z(H;)| = 2fori = 1,2. Let K= K/Z(H,) and letx : K— K denote
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the natural epimorphism. Clearly K= K’ = SL(2,q) X SL(2,q),
K= K’ =PSL(2,q) X SL(2,q) and (K «) is a covering group of K
by [3, V, 25.5, 25.7 and 25.10]. Since Aut(K) contains an involution
X such that H» = H,, it follows that |Aut(K)| < |Aut(K)| and we are
done.
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