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ABSTRACT
Accurate models of the structural evolution of dark matter subhaloes, as they orbit
within larger systems, are fundamental to understanding the detailed distribution of
dark matter at the present day. Numerical simulations of subhalo evolution support
the idea that the mass loss associated with tidal stripping is most naturally under-
stood in energy space, with the particles that are the least bound being removed first.
Starting from this premise, we recently proposed a zero-parameter “energy-truncation
model” for subhalo evolution. We tested this model with simulations of tidal stripping
of satellites with initial NFW profiles, and showed that the energy-truncation model
accurately predicts both the mass loss and density profiles. In this work, we apply the
model to a variety of Hernquist, Einasto and King profiles. We show that it matches
the simulation results quite closely in all cases, indicating that it may serve as a uni-
versal model to describe tidally stripped collisionless systems. A key prediction of the
energy-truncation model is that the central density of dark matter subhaloes is con-
served as they lose mass; this has important implications for dark matter annihilation
calculations, and for other observational tests of dark matter.
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1 INTRODUCTION

In the Λ-Cold Dark Matter (ΛCDM) framework, positive
density fluctuations present in the matter distribution at
early times gradually break away from the cosmological ex-
pansion and collapse into roughly spherical dark matter
haloes. These haloes merge hierarchically on progressively
larger scales as the Universe expands, giving rise to the
galaxy, group and cluster-scale haloes known today. Halo
mergers are relatively ineffective at mixing infalling mate-
rial, and the central parts of smaller haloes merging into
a larger system can survive for many orbits as self-bound
subcomponents, or ‘subhaloes’.

It is critical to understand precisely how subhaloes
evolve after a merger, since a number of important tests
of dark matter, including dark matter annihilation signals
(e.g. Stref et al. 2019; Delos 2019), gravitational lensing
(e.g. Limousin et al. 2005; Baltz et al. 2009; Sereno et al.
2016), and the imprint of substructure on stellar streams
(e.g. Carlberg 2020; Bonaca et al. 2020) depend sensitively
on the properties of the subhalo population. The exact in-
ternal structure and abundance of small subhaloes is highly
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uncertain, however; in particular, there are concerns that
substructure seen in cosmological simulations may still be
significantly affected by artificial (numerical) disruption (e.g.
van den Bosch et al. 2018; Errani & Navarro 2021). These
uncertainties, together with baryonic effects, contribute to
the small-scale structure problems often cited as one of the
main challenges to the ΛCDM model (see, e.g. Bullock &
Boylan-Kolchin 2017, for a review of these problems).

Given the complexity of cosmological structure forma-
tion and the relatively poor resolution of large-volume simu-
lations, subhalo evolution has often been studied using sim-
plified simulations of a single (sub)halo evolving in a fixed
background potential (e.g. Hayashi et al. 2003; Kazantzidis
et al. 2004; Boylan-Kolchin & Ma 2007; Kampakoglou &
Benson 2007; Peñarrubia et al. 2008a,b, 2009; Choi et al.
2009; Peñarrubia et al. 2010; Drakos et al. 2017; Ogiya et al.
2019; Delos 2019; Errani & Navarro 2021). These studies
have produced a number of models for tidal stripping and
structural evolution that describe how mass is lost as a
function of radius. These models generally remain empiri-
cal, however, i.e. they contain free parameters or functional
forms that are adjusted to match specific simulation results.
Thus, while accurate for the specific cases considered, these
models are restricted to the particular systems simulated
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(which are typically isotropic systems with NFW profiles;
e.g. Hayashi et al. 2003; Green & van den Bosch 2019).

As first pointed out by Choi et al. (2009), tidal stripping
of subhaloes is well approximated as a monotonic, outside-
in process in energy space. Extending this idea, in Drakos
et al. (2017)—Paper I hereafter—we showed that truncation
of the particle distribution function (DF) in a dark matter
halo, via a ‘lowering’ operation, produces a set of density
profiles very similar to those measured for tidally stripped
systems in numerical simulations. This approach has sev-
eral advantages over models based on simulation data alone,
as it predicts the evolution of the central regions of haloes
below the resolution limit of numerical simulations, and it
is easily generalized to other profiles, or to anisotropic sys-
tems. It also has a clear physical interpretation, namely that
as mass is lost from a subhalo, the energies change more-
or-less uniformly within the system, pushing particles close
to the threshold for unbinding over this limit, and thus re-
moving them from the system. In subsequent work (Drakos
et al. 2020, Paper II hereafter), we developed a full model
for tidal stripping that combines this lowering approach with
a simple estimate of the mass loss rate. The model has no
free parameters, and agrees well with simulations of mass
loss from systems with NFW profiles. Since then, a num-
ber of other authors have successfully studied the evolution
of tidally stripped systems using an energy-based approach
(e.g Stücker et al. 2021; Amorisco 2021; Errani et al. 2021).

The aim of the current study is to test whether the
energy-truncation approach and the mass-loss model pre-
sented in Papers I and II are valid for a broader range of
tidally stripped collisionless systems. The structure of this
paper is as follows: first, in Section 2 we review the energy-
based truncation method introduced in Paper I and the
mass-loss model from Paper II. In Sections 3 and Section 4
we summarize the collisionless systems we consider in this
paper, and the idealized N -body simulations we use to test
our models, respectively. In Section 5 we calculate from en-
ergy truncation the expected evolution of the density profiles
of these systems, and compare these predictions to the sim-
ulations in Section 6. We show our model predictions for the
central density of subhaloes in Section 7. Finally, we explore
the physical interpretation of this model in Section 8, and
discuss our results in Section 9. In a companion paper, we
explore the implications of this work for dark matter annihi-
lation and galaxy-galaxy lensing signal predictions (Drakos
et al. 2022, in prep).

2 REVIEW OF ENERGY-TRUNCATION MODEL

In this section we briefly review the energy-based description
of tidal truncation introduced in Paper I, and the mass-loss
model developed in Paper II.

2.1 Review of distribution functions of isolated spherical
systems

Systems of particles can generically be described by a distri-
bution function (DF) f(r, t) = dm/dr3dv3 which specifies
the mass per unit volume dr3dv3 at a given location in phase
space (r, t). For isolated, spherically symmetric and isotropic
systems, the DF can be written as a function of a single

variable f(r, t) = f(r, v) = f(E), where E = Ψ(r) − v2/2
is the (conserved) relative energy and Ψ(r) is the relative
potential, defined as Ψ(r) = −Φ(r) + Φ0. Here Φ(r) is the
usual gravitational potential, while Φ0 is a reference poten-
tial, usually taken to be the value of Φ at the outer boundary
of the system. Given the sign convention in the definition of
the relative energy, it is positive for all bound particles and
represents the binding energy needed to remove the particle
from the self-bound system. With these definitions, f(E) > 0
when E > 0, and f(E) = 0 otherwise.

In terms of these quantities, we can calculate the density
profile ρ(r) corresponding to a given distribution function

ρ(r) = 4π

∫ Ψ(r)

0

f(E)
√

2(Ψ(r)− E)dE (1)

or we can invert this relationship to determine the isotropic
distribution function corresponding to a given density profile

f(E) =
1√
8π2

[∫ E
0

1√
E −Ψ

d2ρ

dΨ2
dΨ +

1√
E

(
dρ

dΨ

)
Ψ=0

]
,

(2)

where Φ(r) (and thus Ψ = Ψ(r)) is calculated from ρ(r),
using Poisson’s equation ∇2Φ(r) = 4πGρ(r) (see Binney &
Tremaine 1987, for the derivation of these results).

2.2 Lowering the DF to represent tidal truncation

Subhaloes are clearly not isolated throughout their evolu-
tion, and the relative energy defined above will vary with
time for each individual particle, due to changes in the self-
bound potential, and the effects of tidal heating. The ap-
proach of Paper I was to assume that over the course of
a full orbit, the relative energies of all particles change by
a constant ‘tidal energy’ ET . Considering the system near
apocentre, where heating is minimal, it can then be treated
as approximately isolated, with f ∼ f(E), where the po-
tential used to calculate E is that of the particles remaining
bound at that time, and all the energies have been shifted by
ET with respect to the previous apocentre. By that point,
tidal stripping will have removed from the system all the
particles in a range of E between zero and ET .

To estimate the resulting adjustment of the distribution
function, we ‘lower’ it by a tidal energy ET , and use this
modified form to recover the new, tidally stripped density
profile. This method is similar to how the well-known King
model for truncated stellar systems was derived by lowering
the DF of an isothermal sphere (King 1966). It was originally
proposed in Widrow & Dubinski (2005) as a way to truncate
NFW profiles for use as initial conditions (ICs) in isolated
simulations.

In terms of the original distribution function, the low-
ered version is defined as

fET (E) =

{
f0(E + ET)− f0(ET ) E ≥ 0

0 E ≤ 0 ,
(3)

where f0(E) is the DF of the original system, and ET is the
truncation or tidal energy.

Given the lowered distribution function, we could in
principle calculate the density profile from Equation (1), but
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Tidally stripped systems 3

we would need the relative potential Ψ(r), which itself de-
pends on ρ(r) through Poisson’s equation. Substituting the
spherical form of Poisson’s equation on the left-hand side of
Equation (1), we can eliminate ρ and write:

d2Ψ(r)

dr2
+

2

r

dΨ(r)

dr

= −16π2G

∫ Ψ(r)

0

fET (E)
√

2(Ψ(r)− E)dE .
(4)

This differential equation, together with the boundary con-
ditions Ψ(0) = Ψ0(0) − ET , dΨ(0)/dr = 0 (where Ψ0(r) is
the relative potential of the original, un-truncated system) is
easily solved by conventional techniques (see Paper I). Once
we have solved for Ψ(r), the truncation radius rt is given by
the condition Ψ(rt) = 0, and the truncated density profile
ρ(r) can be calculated from Poisson’s equation.

2.3 Predicting the mass-loss rate

As explained in Paper II, our proposed mass-loss model is
based on the Jacobi model for tidal truncation on a circular
orbit (Binney & Tremaine 1987; Taylor & Babul 2001). A
tidal or limiting radius rlim is defined such that:

ρ̄sat(rlim) = ηeff ρ̄H(Rp) (5)

where ρ̄sat(rlim) is the mean density of the satellite interior
to the tidal radius and ρ̄H(Rp) is the mean density of the
host halo interior to the pericentre of the satellite’s orbit.
Throughout this paper, we use R when referring to the ra-
dius with respect to the centre of the host halo, and r when
referring to the radius within the satellite.

The tidal radius, rlim, and resulting bound mass of the
system, Mbnd, are then given by the following system of
equations:

Mbnd =
4

3
r3
limρ̄sat(rlim)

Mbnd = ηeffMH(< Rp)
r3
lim

R3
p

(6)

We emphasize that the tidal radius rlim is not the same as
the truncation radius rt defined in the previous section.

The constant, ηeff is defined as the orbital average of
the instantaneous, spherical η value defined in King (1962):

ηeff =
1

torb

∫ torb

0

(
ω2

ω2
c

− 1

ω2
c

d2ΦH
dR2

)
dt , (7)

where ω = |V×R|/R2 is the instantaneous angular velocity
of the satellite, ωc = GMH(< R)/R3 is the angular velocity
of a circular orbit, and ΦH(R) is the potential of the host.
For a spherically symmetric system, dΦH/dR = GMH(<
R)/R2 As demonstrated in Paper II, with this definition of
η, we obtain a good match to the mass-loss rates measured
in our simulations without needing to add or adjust any free
parameters. Recently, Stücker et al. (2021) proposed that
a more natural way to truncate tidally stripped profiles in
energy space is using the “boosted potential”. We consider η
determined from the boosted potential in Appendix B, and
compare it to the η values found from the energy-truncation
model.

Given a tidal radius defined as in Equation (5), we as-
sume the mass outside this radius is lost over the course of

an orbit. We adjust the tidal energy ET in Equation (3) until
it produces a satellite with this lowered mass. This gives a
full model for the stripped system, allowing us to specify the
total mass, distribution function and density profile by the
end of the orbit. We apply this stripping model at succes-
sive apocentres, since this is the point at which the profile
is expected to reach equilibrium. As the system continues to
orbit, each successive pericentric passage will decrease rlim

and increase ET .1

2.4 Algorithmic description of method

In practice, given an orbit and a set of initial conditions, the
energy-truncation model can be performed using the follow-
ing steps:

(i) Compute ηeff by integrating over the orbit using Equa-
tion (7).

(ii) Solve for the bound mass Mbnd and tidal radius, rlim,
using Equation (6). Note that rlim is not needed in the fol-
lowing steps.

(iii) Compute the tidal energy that corresponds to Mbnd.
There is a monotonic relationship between Mbnd, rt and ET ,
and any one of these three variables can be used to uniquely
describe the truncated profile. We create a lookup table to
map between Mbnd to ET 2.

(iv) Using ET , compute the lowered DF in Equation (3).
(v) Calculate Ψ(r) by solving the ODE in Equation (4).
(vi) Compute the corresponding truncated profile ρsat us-

ing Equation (1).
(vii) Go to ii, and repeat for as many orbits as desired.

3 COLLISIONLESS SATELLITE MODELS

The main goal of this paper is to examine how well sharp
truncation of the distribution function at a tidal energy, and
the mass-loss model reviewed in the previous section, de-
scribe the evolution of a range of different collisionless sys-
tems3, including common models for CDM haloes such as
the NFW, Hernquist, Einasto models, but also models for
stellar systems such as the King model. In this section we
review the properties of each of these model systems.

3.1 NFW

In Papers I and II, we restricted our attention to the NFW
profile,

ρ(r) =
ρ0r

3
s

r(r + rs)2
, (8)

1 We take advantage of the fact that truncating the profile first
at energy E1, then truncating the new truncated profile a second

time at E2 is mathematically equivalent to truncating the original
profile at E1 + E2. Therefore, though rlim is calculated using the

most recent, stripped density profile, the new profile is always

calculated by lowering the original, untrucated DF.
2 For convenience, Paper I provides an empirical relationship to
map between these variables.
3 A collisionless system is one in which interactions between in-

dividual particles are negligible, and thus the gravitational force
acting on each particle can be treated as a smooth density field

rather than a collection of individual particles.
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Figure 1. Top: Energy-truncated NFW profiles, ρ (solid lines) and
the analytic fit, ρfit (dotted lines). Bottom: Residuals in the fits,

measured as (ρfit/ρ − 1). The 1 per cent errors are shown with

dashed black lines. The analytic fit agrees well with the energy-
truncated model inside ∼ 0.5rt.

where ρ0 is a characteristic density and rs is the scale ra-
dius, describing the point where the logarithmic slope is
d log ρ/d log r = −2.

For convenience, we provide an analytic description of
an energy-truncated NFW profile, using the functional form

ρNFWT =
e−x/y

[1 + (x/y)]a
ρNFW , (9)

where x = r/re is the radius normalized by an effective ra-
dius, re, and y = Mbnd/MNFW(< rs) is the bound mass of
the truncated profile, normalized by the mass of the untrun-
cated profile within the NFW scale radius, rs. This func-
tional form was chosen as we found it empirically yielded a
good fit, and conserves the central density as r → 0.

The parameters re and a can be expressed as follows:

log10 re = 0.0811y3 + 0.358y2 + 0.0781y − 0.201

a = 0.179y3 + 0.379y2 − 0.524y − 0.952 .
(10)

As shown in Fig. 1, this analytic fit generally agrees with
the energy-truncated model to within 5 per cent, except at
large radii (r & 0.5rt), where the density is very low. Our
model predicts a conserved central density, which is captured
in Equation (9); this differs from empirical models calibrated
to simulations, which typically include an explicit drop in
the central density (e.g. Hayashi et al. 2003; Green & van
den Bosch 2019). This point will be discussed further in
Section 7.

3.2 Hernquist

The Hernquist profile (Hernquist 1990) was originally used
to describe spherical galaxies, but it is also a reasonable
approximation for cosmological dark matter halo profiles.
The density profile is given by:

ρ(r) =
Mtot

2π

a

r(r + a)3
, (11)

where Mtot is the total mass and a is a characteristic radius,
that encloses a mass of Mtot/4.

The advantage to this model is that it has simple an-
alytic expressions for many of its properties, including its
DF:

f(E) =
M

8
√

2π3a3v3
g

1

(1− q2)5/2
(12a)

×
(

3 sin−1 q + q(1− q2)1/2(1− 2q2)(8q4 − 8q2 − 3)
)

q =

√
aE
GM

(12b)

vg =

(
GM

a

)1/2

. (12c)

3.3 Einasto

The Einasto profile was first used to describe star counts in
the Milky Way (Einasto 1965). However, this profile is often
a better description of cosmological dark matter halo profiles
than the well-known NFW profile (e.g. Navarro et al. 2004;
Gao et al. 2008; Klypin et al. 2016). The Einasto profile has
the following form:

ρ(r) = ρ−2 exp

(
− 2

α

[(
r

r−2

)α
− 1

])
, (13)

where α is the Einasto shape parameter and r−2 is the radius
where the logarithmic slope is −2. Compared to the NFW
profile, the Einasto profile has an extra parameter, α, that
controls the inner slope of the density profile, and may reflect
the mass accretion history of the halo (e.g. Klypin et al.
2016).

3.4 King

The King model resembles an isothermal sphere at small
radii, but has a finite mass within a well-defined tidal radius.
This model is typically used to describe truncated stellar
systems such as globular clusters or elliptical galaxies (King
1966). The King model is derived by lowering the DF of an
isothermal sphere:

f(E) = ρ1(2πσ2)−3/2(eE/σ
2

− 1) , (14)

where σ is the velocity dispersion, ρ1 is a characteristic den-
sity.

The density profile of the King model can then be cal-
culated from the DF using Equation (1), which gives:

ρ(Ψ) = ρ1

[
eΨ/σ2

erf

(√
Ψ

σ

)
−
√

4Ψ

πσ2

(
1 +

2Ψ

3σ2

)]
. (15)

To relate the relative potential energy, Ψ(r), to the den-
sity of the profile, Ψ(r) can be solved numerically using Pois-
son’s equation (Equation (4)). There are many possible pa-
rameterizations of the King model, but it can be uniquely
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Tidally stripped systems 5

defined by the total mass, tidal radius, rt and a dimension-
less central potential P0 = Ψ(0)/σ2. Alternately, King mod-
els can also be characterized by a total mass, tidal radius
and a concentration parameter, cK , which depends on the
‘King radius’ r0. The latter quantities are defined as:

cK = log10

(
rt

r0

)

r0 =

√
9σ2

4πGρ0
.

(16)

where ρ0 is the central density of the halo.

4 SIMULATIONS

The simulations were performed using a version of the N -
body code gadget-2 (Springel 2005), modified to contain a
fixed background potential corresponding to the host halo.

4.1 Initial halo models

We considered four different satellite models for our ini-
tial conditions (ICs), as described in the previous section.
The ICs were created using our public code Icicle (Drakos
et al. 2017). For all models, we define the mass unit to be
the initial mass of the satellite, Munit = Msat. We define
the length unit to be runit = a for the Hernquist model,
runit = r−2 for the Einasto models, and runit = 0.1 rt

for the King models. Then the density, time and energy
units are ρunit = Munitr

−3
unit, tunit =

√
r3
unit/GMunit and

Eunit = GMunit/runit, respectively. We calculated the soft-
ening length for each profile as ε = 0.5rhN

−1/3,where rh is
the radius enclosing half of the total mass, as in van Kampen
(2000).

For the NFW profile, we used the same set of simula-
tions described in Paper I. Since NFW profiles are infinitely
extended with divergent mass as r goes to infinity, these ICs
were truncated as described in Paper I. The resulting models
resemble a truncated NFW profile with an energy truncation
of ET ≈ 0.27. Though the simulation results can be scaled
by the length and mass units, for the Einasto models, there
is one free parameter, α, to fix; we chose values of α = 0.15
and 0.3, as these are representative of the range found in
simulations (Gao et al. 2008). The King models also have
an additional free parameter (which could be specified as
r0, P0 or c); we used P0 = 3 and P0 = 12, which correspond
to King concentrations of cK = 0.7 and cK = 2.7. These
concentrations are typical of globular clusters and elliptical
galaxies, respectively (Binney & Tremaine 1987). A sum-
mary of the IC properties are given in Table 1. To check the
stability of the ICs, they were evolved for t = 1000 tunit in
isolation using the N-body code gadget-2 (Springel 2005),
as shown in Fig. 2. All four profiles are extremely stable
outside runit = 0.1 at t = 1000 tunit.

4.2 Satellite orbits

Each satellite model was evolved on two different orbits, cor-
responding to the ‘Fast’ and ‘Slow’ Simulations in Paper II
(Simulations 3 and 4 from Paper I), which are representa-
tive of orbits that lose mass quickly and slowly, respectively.

10-1 100 101

r/runit

10-5

10-4

10-3

10-2

10-1

100

101

ρ
/ρ

u
n
it

NFW
Hern
EinHigh
EinLow
KingHigh
KingLow

Figure 2. Stability of ICs. Solid lines are the profile at t = 0 tunit;
points are the profile at t = 1000 tunit.

In Papers I and II we found that the sharp energy trunca-
tion model is a better descriptor of orbits which are losing
mass slowly. The infinitely extended host halo was assumed
to have an NFW profile for all simulations, with a mass
Mhost = 300Munit and a scale radius of 6.69 runit. The or-
bits in the Slow and Fast Simulations have an apocentre of
ra = 300 runit, and pericentres of Rp = 50 runit and 10 runit,
respectively. The simulations are summarized in Table 2.

Subhalo centres and bound particles were identified sim-
ilarly to the method described in Papers I and II. Consider-
ing only particles that were bound in the previous snapshot,
the centre of the satellite was defined as the densest point
in position and velocity space. The densest point was cal-
culated using the centre of mass (COM) in progressively
smaller spheres, as originally described in Tormen et al.
(1997). Initially, the sphere was centred on the COM of all
particles, and the radius was defined as the distance to the
furthest particles. The radius was decreased by 90 per cent
and recentered on the COM, until there were fewer than 100
particles in the sphere. The velocity frame was calculated in
the same way, by using progressively smaller spheres to find
the densest point in velocity space.

Once the frame of the satellite was defined, we found
the self-bound particles. First, the energy of each particle
was calculated in this frame, assuming a spherical potential
(in Paper II we showed the results are insensitive to this
assumption):

Pi ≈ −Gm

N(< ri)

ri
+

N∑
j,rj>ri

1

rj

 , (17)

where ri is the distance of particle i from the center of the
system. Particles were iteratively removed, and energies re-
calculated, until convergence. The bound satellite mass is
the mass of the remaining bound particles.

MNRAS 000, 1–19 (2021)



6 N. E. Drakos et al.

Table 1. Summary of the parameters used for the ICs; all satellites have an initial mass of Msat = 1. The columns list (1) the name of the

ICs, (2) the number of particles, (3) the radial unit, (4) specified profile parameters, (5) derived profile parameters, and (6) Gadget-2

softening length, roughly equivalent to the Plummer softening length.

Profile Name N runit IC Parameters Derived Parameters ε/runit

NFWT ≈ 1.3× 106 rs rcut = 10 runit ρ0 = 0.08 ρunit 0.01

Hern 106 a —– —– 0.01

EinHigh 106 r−2 αE = 0.3 ρ−2 = 0.01 ρunit 0.02
EinLow 106 r−2 αE = 0.15 ρ−2 = 0.005 ρunit 0.07

KingHigh 106 rt/10 P0 = 12 ρ1 = 0.003 ρunit, r0 = 0.02 runit, cK = 0.7 0.01

KingLow 106 rt/10 P0 = 3 ρ1 = 0.001 ρunit, r0 = 2.13 runit, cK = 2.7 0.01

Table 2. Summary of orbital parameters for the Fast and Slow Simulations. Columns give (1) the simulation name (2) the apocentric
distance (3) the pericentric distance (4) the tangential velocity at apocentre (5) the tangential velocity at pericentre (6) the (radial)

orbital period (7) mass-loss factor, ηeff

.

Simulation Name Ra/runit Rp/runit Va/Vunit Vp/vunit torb/tunit ηeff

Slow Simulation 100 50 1.42 2.84 185.4 2.34

Fast Simulation 100 10 0.51 5.10 129.7 1.72

5 PREDICTED PROFILE EVOLUTION

In the energy truncation approach described in Section 2.1,
the evolution of the stripped system depends on a single
parameter, which can be expressed as the tidal energy ET .
First, we explore how the NFW, Hernquist, Einasto and
King models evolve when truncated as function of ET . We
note that applying energy truncation to a King model simply
results in another King model, with parameters modified as
follows:

P0,T = P0 − ET
ρ1,T = ρ1 exp(ET )

r0,T = r0

√
ρ(P0)

ρT (P0,T )
.

(18)

For the other profiles, the truncated version no longer has a
simple analytic description, but can be calculated from the
lowered distribution function. For convenience, we provided
an analytic fit to our lowered NFW profile in Section 3.1.

Though the model presented in Section 2.1 most nat-
urally expresses the lowered density profiles in terms of a
truncation energy, ET , the model can alternatively be pa-
rameterized by either the truncation radius, rt, or the to-
tal bound mass of the satellite, Mbnd. In Fig. 3 we show
the relationship between these three parameters. Generally,
there is a monotonic relationship between the bound mass
and the tidal energy or the tidal radius. An exception is the
tidal radius for the KingLow models; interestingly in this
case rt increases for large values of ET/Ψ(0). We will show
in Section 5 that this prediction is also consistent with the
simulation results.

In Fig. 4 we show the truncated density profiles and
various related quantities, coloured by the tidal energy, ET
normalized by the relative potential of the untruncated pro-
file at r = 0, Ψ(0). For most of the halo models, as the
satellites are stripped they decrease in density at all radii,
though most of this decrease is at large radii. An exception
is the KingLow models, where rt increases, with a corre-
sponding increase in density at larger radii. We note that

when the density profile is cored (as in the centre of the
King models), the central density decreases significantly as
mass is lost, while for the cuspier profiles the central density
is conserved. This is consistent with results from Peñarrubia
et al. (2010).

We also find that the scale radius of the NFW, Hern-
quist and Einasto profiles (the point where the logarithmic
slope of the density profile is −2, estimated from the loca-
tion of the maximum of ρr2) decreases as the halo becomes
tidally stripped. In principle, this could lead to an increase
in the concentration parameter, though the virial radius is
also decreasing; we examine halo concentrations further in a
companion paper (Drakos et al. 2022, in prep). Finally, the
location and amplitude of the peak of the circular velocity
curve both decrease with increasing ET /Ψ(0) for all profiles
except KingLow.

6 MODEL COMPARISON TO SIMULATIONS

We have already demonstrated in Papers I and II that the
energy truncation approach provides an excellent description
of the evolution of systems with NFW profiles. The purpose
of this section is to test whether this approach, and the
mass loss model developed in Paper II, works as well for
the other satellite models described in Section 3. We start
by comparing the predicted and observed mass-loss rates,
before returning to the profile evolution.

6.1 Mass-loss rates

In Fig. 5 we compare the bound mass of the simulated satel-
lites versus time, calculated as described in Section 4.2, to
the predictions of the mass loss model summarized in Sec-
tion 2.3. We assume the mass loss predicted by the model on
each orbit is removed by the time the system reaches apoc-
entre. With this convention for the Slow Simulation (left
column), we get excellent agreement (the bound mass is pre-
dicted to 5 per cent or better accuracy over the first 5 orbits)
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Figure 3. Relationship between the tidal energy ET , the bound
mass of the satellite (top), and the tidal radius (bottom) for dif-

ferent initial satellite profiles. The relative energy, E, has been

normalized by the relative potential of the untruncated profile at
r = 0, Ψ(0). Note that since the NFW profile has a divergent mass

profile, we have chosen Munit to correspond to an NFW profile

truncated at ET = 0.27; therefore, Mbnd/Munit can be greater
than 1 (dotted line). In general, the bound mass and trunca-

tion radius decrease with tidal energy, with the exception of the

KingLow profile. The KingLow profile is the only cored profile,
and its truncation radius increases as it is tidally stripped.

for the NFW, Hern and EinLow profiles and good agreement
(10 per cent or better accuracy over the first 5 orbits) for the
EinHigh and KingHigh profiles. We get less accurate predic-
tions (≤20 per cent accuracy over the first 5 orbits) for the
KingLow models. In all cases, mass loss is slightly faster in
the simulations than predicted by the model.

For the Fast Simulations (right column), the observed
mass-loss rates are slightly slower than predicted, particu-
larly on the first few orbits, where the predictions for most
models overestimate mass loss by 15–20 per cent. After a
few orbits, however, the simulations have caught up with
the model predictions, and we once again get good agree-
ment (≤10 per cent accuracy) for all models. Additionally,
the model correctly predicts the complete disruption of the
KingLow profile by the second pericentric passage.

While our model does a reasonable job of predicting the
evolution of the mass distribution of the remnants, there are
some discrepancies between the total mass-loss rates pre-

dicted by the model and the rates measured in the simula-
tions. Defining which particles are bound to the simulated
subhalo is not a straightforward procedure, however, and
often includes particles that are temporarily bound but in
the process of leaving the system (Peñarrubia et al. 2009).
We show evidence below that marginally bound mass in the
outer parts of the satellites may indeed affect the predicted
mass-loss rates (see e.g. Fig. 6).

The mass-loss picture is further complicated by the fact
that it is often difficult to determine whether mass loss in
simulations is due to physical processes or numerical arte-
facts (e.g. van den Bosch et al. 2018; van den Bosch & Ogiya
2018). Additionally, our mass loss model does not include
dynamical friction, which will cause the pericentric radius
to decrease in time. While dynamical friction can largely be
neglected, as the host halo is modelled as a smooth poten-
tial, there is some self dynamical friction, from the remnant
orbiting through tidal debris (e.g. Miller et al. 2020).

6.2 Profile evolution

In addition to predicting mass loss, our model also predicts
the tidal energy on each orbit, and thus the full structural
evolution of the satellite. In Fig. 6, we show how the density,
mass and circular velocity profiles of the simulations com-
pare to the model predictions, for the Slow (top panels) and
the Fast (bottom panels) simulations. For the Slow Simula-
tions, the agreement is excellent, with the only significant
discrepancy being at large radii for the EinLow profile.

In the Fast Simulations, the agreement is also excellent
at small radii, with the exception of a slight disagreement in
the circular velocity curves of the KingHigh profiles at small
radii; we suspect this is due to numerical relaxation in the
simulation. There are more significant discrepancies at large
radii for most of the profiles. The density profiles measured
in the simulations drop abruptly close to the predicted tidal
radius, but then they extend well beyond this radius with
a shallower slope. As discussed in Paper II and in Peñar-
rubia et al. (2009), this part of the profile includes tran-
sitional material that is still bound but moving outwards,
and will be lost mostly on the next orbit. Refining the pro-
cedure we use to identify bound particles in the simulation
might resolve these discrepancies, and improve the agree-
ment between predicted and observed mass-loss rates in the
case of orbits with rapid mass loss. It may also be the case
the energy-truncation fails to accurately predict the evolu-
tion of the outskirts of the profile, due to the equilibrium
assumptions inherent in the model. Understanding the de-
tailed mass-loss and time scales is an interesting question,
and one we leave to future work.

Overall, our model appears to be universally valid for
a wide range of density profiles. The predictions for the
mass loss rate are generally very accurate, and especially
so for the models that might describe dark matter structure
(NFW, Hernquist and Einasto), predicting the reminding
bound mass to within 5-10 per cent or better in most cases
over the first 5 orbits. The predictions for the structure of
the bound remnants are accurate except in the outer regions
close to the tidal radius; the latter discrepancy might be re-
solved by adding a timescale for mass loss to our model,
or refining our definition of bound mass in the simulations.
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Figure 4. Predicted evolution for different initial density profiles (columns), assuming sharp truncation of the distribution function in

energy. The EinLow and EinHigh profiles have α values of α = 0.15 and 0.3, respectively, while KingHigh and KingLow profiles have

central potentials of P0 = 12 and 3, respectively. The curves are coloured by the value of the tidal energy, ET , normalized by the relative
potential of the untruncated profile at r = 0, Ψ(0). The density profile goes to zero at the truncation radius, rt. The relation between

the tidal energy, truncation radius and bound mass is given in Fig. 3.

The success of the energy-truncation model is particularly
impressive given that it has no free parameters to adjust.

7 CENTRAL DENSITY PREDICTIONS

The main difference between the energy-truncation model
and previous empirical models of mass loss in the literature
is that it predicts a conserved central density in the tidally
stripped systems, even for small bound mass fractions. This
is illustrated in Fig. 7, where we compare our NFW model
predictions to empirical models of stripped NFW systems
from Hayashi et al. (2003), Peñarrubia et al. (2010) and
Green & van den Bosch (2019).4 As shown in Paper II,
the recent model from Green & van den Bosch (2019) is
likely the most accurate description of tidally stripped NFW
haloes from single-subhalo simulations, while the model from
Hayashi et al. (2003) underestimates the central density.

While the empirical models capture by design the re-
sults of the underlying idealized simulations, it is unclear

4 Note that the bound mass fraction is defined in these papers
as M/MNFW(< rcut). In the following discussion, we convert all
bound mass fractions to M/Munit.

whether these simulations accurately describe realistic cos-
mological situations. Empirical fits to simulations will also
fit numerical artefacts present in the results. For instance,
Hayashi et al. (2003) used an approximation in their initial
conditions which caused a drop in the central density in their
simulated haloes that was numerical in nature; this in turn
is reflected in their empirical model for the stripped profile
(Kazantzidis et al. 2004). While the more recent paper by
Green & van den Bosch (2019) uses simulations carefully
calibrated to understand the effects of numerical relaxation
on mass loss (Ogiya et al. 2019), it is still unclear how the
very central regions of the haloes are affected. Indeed, sep-
arate work from Errani & Peñarrubia (2019) supports the
idea that centrally-divergent cusps are never disrupted.

Following Binney & Tremaine (1987), given the number
of particles within radius r, N(< r), each of mass m, we can
calculate a relaxation time scale,

trel(r) ≈ 0.1

√
N(< r)

lnN(< r)

√
r3

Gm
, (19)

which is the time it takes for a typical particle’s velocity to
change by an order of itself, and an evaporation time scale,
tevap(r) ≈ 136 trel(r), which is the time for a typical par-
ticle to reach escape speed. Since both times increase with
radius, given a time, t, we can then calculate relaxation and
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Figure 5. Bound satellite mass as a function of time in the Slow and Fast Simulations, calculated as described in Section 2 (points),

compared to predictions of the mass loss from our model (grey lines). The black crosses correspond to the model prediction at apocenter.
Each row corresponds to a different density profile, as indicated. In general, the energy-truncation model agrees with the simulation

results to within 20 per cent or better.

evaporation radii such that t = trel(rrel) and t = tevap(revap),
respectively. This will give us an indication of the radii inside
which resolution effects might dominate the evolution. Note
that in Fig. 7, we cannot determine at which radius numer-
ical relaxation and evaporation will dominate, since there is
no temporal information; the time for a subhalo to reach the
indicated mass fraction would depend on the specific orbit
and background potential considered.

The slow mass loss case is the one in which the assump-

tions of the energy-truncation model appear most valid (Pa-
per II), such that we might expect the central density to be
conserved. The relative relaxation rate increases as the num-
ber of particles in a system decreases, however, and we are
unable to evolve subhaloes to very low masses for the Slow
Simulation and still have enough particles to preserve the
subhalo against numerical effects. Thus, we cannot reliably
measure the central density of the halo at late times in the
slow mass-loss simulations.
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Figure 6. Comparison of simulation results (points) and the energy-truncation model (lines) for the Slow (top) and Fast (bottom)
Simulations. Different curves correspond to successive apocentric passages. The energy-truncation model agrees well with simulations,

except close to the truncation radius where some additional mass appears to be temporarily bound in the simulations. Note that for the
cored KingLow profile (last column, bottom panel), our model correctly predicts the observed drop in the central density. Residuals for
the density and mass profiles are shown in Appendix A.
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Figure 7. Our model prediction (DTB20) for the density profile of a tidally stripped NFW system, compared to previous empirical models

of the stripped profile, including Hayashi et al. (2003) (H03), Peñarrubia et al. (2010) (P10) and Green & van den Bosch (2019) (G19).

Each column is a different bound mass fraction. The bottom panels show the residuals, calculated as ρmodel/ρx − 1, where ρmodel is
our model from Paper I, and ρx are the empirical models. Our model predicts larger central densities and slightly sharper truncation

compared to the others, particularly at low bound mass fractions.

We can, however, use our analytic mass-loss model, as
outlined in Section 2, to predict the density profile after 10,
50, 100, 250 and 500 orbits. Fig. 8 shows this prediction for
the orbit of the Slow Simulation. Additionally, we show the
profile predicted from Green & van den Bosch (2019) (using
the same enclosed mass), and the relaxation and evapora-
tion radii (vertical lines). The simulations used to calibrate
the model in Green & van den Bosch (2019) were run at a
similar resolution to ours (∼ 106 particles), and therefore
should have similar resolution effects. With the exception
of the density at large radii (which depends on the details
of how bound mass is calculated), the results of Green &
van den Bosch (2019) are nearly indistinguishable from our
model for r > revap. They differ significantly from the model
predictions at smaller radii, but this is precisely where we
expect relaxation to affect the results.

In summary, while we cannot resolve the question of
central density conservation definitively with our own sim-
ulations, we have shown the previous predictions in the in-
nermost parts of the profile need to be treated with caution,
and that the question is not yet resolved by previous work in
the literature. In a companion paper (Drakos et al. 2022, in

prep), we explore the sensitivity of dark matter annihilation
rates and galaxy lensing signals to the assumed behaviour
of the innermost part of the density profile.

8 PHYSICAL INTERPRETATION

In the previous sections, we demonstrated the overall accu-
racy of the energy-truncation model for a broad range of
profiles. In this section, will consider the physical justifica-
tion for this model in more detail. As demonstrated in Choi
et al. (2009) and Paper II, during tidal stripping, mass loss
appears to be ordered primarily by the original relative en-
ergy of the particles. The energy-truncation model captures
this trend by shifting the relative energy of all particles by
a constant amount over each orbit, and unbinding those un-
der some threshold binding energy. However it does not ex-
plicitly state why the ordering in relative energy should be
conserved, or equivalently, why the change in relative energy
is approximately constant.

In general, over the course of an orbit, a particle can
become unbound from a subhalo because (1) the velocity of
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Figure 8. The evolution of the density profile, as in Fig. 7, but comparing our model with the model of Green & van den Bosch (2019),

after the number of orbits labelled. The dotted grey lines and dashed black lines show the relaxation radius and evaporation radius,

respectively. The difference in central density between our model and the model of Green & van den Bosch (2019) generally lies at radii
unresolved in the simulations.

the particle changes, e.g. due to a kick from a rapid pertur-
bation or, (2) the potential of the system changes, due to
a change in the external field, or due to mass loss from the
subhalo itself. When estimating the relative contributions
of these effects, we have to be clear which frame is used
to calculate kinetic energies, and which mass is included in
the calculation the potential. In this section, we will always
define particle velocities v and radii r in the frame of the
satellite, and will we calculate the satellite potential from
the self-bound mass defined previously.

Given these conventions, we can write the two contri-
butions to the change in energy as

∆E = ∆EK + ∆EP , (20)

where

∆EK = −
[

1

2
(v0 + ∆v)2 − 1

2
v2

]
= −v·∆v− 1

2
(∆v)2 , (21)

assuming the velocity of the particle has changed from v to
v + ∆v.

If we make the impulse approximation — assuming the
satellite undergoes a perturbation or ‘shock’ much shorter
than most other timescales in the problem, so particle posi-
tions are approximately constant throughout the event (e.g.
Taylor & Babul 2001) — we can get an estimate of the en-
ergy change from the shock by treating it as a point-mass
perturber Mp, passing by the satellite on a linear trajectory
with a velocity vp and an impact parameter b. Tidal heat-
ing from the shock should accelerate particles, imparting a

change in velocity

∆v =
2GMp

vpb2
[−x, y, 0] , (22)

where (x, y) is the position of the particle in the plane of the
encounter (see, e.g. Mo et al. 2010). Since ∆v ∼ r, v2 ∼ r2,
and the impulse approximation predicts that |∆EK | ∝ r2 at
large radii, and that it may also have some additional energy
or velocity dependence from the first term on the right-hand-
side of Equation (21). On the other hand, at small radii, adi-
abatic shielding prevents particles from experiencing much
net acceleration, since their internal orbital timescales be-
come shorter than the timescale of the changing tidal field
close to the centre of the satellite (e.g. Gnedin & Ostriker
1999). Thus the change in EK should be approximately zero
in this limit. After this instantaneous change in kinetic en-
ergy, the system re-virializes. The negative heat capacity of
the system suggests that there will be a resulting decrease
in kinetic energy (an increase in ∆EK).

Fig. 9 shows the change in the specific energy of the
bound particles over 5 orbits. The top panels show the
change in relative energy as a function of initial radius (left-
hand) and initial energy (right-hand panels), while the bot-
tom panels show how the mass is distributed in the system,
as a function of the same variables. While there some vari-
ation in |∆E| across the satellite (for particles that remain
bound to the system, |∆E| decreases with radius and also
with binding energy), overall it is fairly constant, varying
by ∼ 10 per cent over the range of radius or energy that
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contains most of the mass5. We see larger variations only at
large radii or low binding energies, where particles are close
to being stripped. Overall, the mean shift in relative energy
from orbit to orbit is fairly constant as a function of particle
radius or initial energy, and also from particle to particle,
even after 5 orbits. This shows why the energy truncation
model produces a good approximation to the rate and radial
dependence of the actual mass loss, particularly in the slow
mass-loss case. The largest variations in |∆E| are close to
the edge of the system, where particles are close to being
stripped.

The weak and declining dependence of |∆E| on parti-
cle radius may seem counter-intuitive, since the particles at
large radii are expected to get larger velocity kicks in the
satellite frame. Overall, the change in relative energy does
not scale with radius as expected for at least two reasons.
First, particles at small radii tend to be more bound, and
therefore can experience more acceleration and still remain
bound, while particles at large radii that receive large kicks
will be lost from the system. We do not track this unbound
material in our model. This mass loss reduces the average
energy change in the material that remains bound, and may
also explain why the energy change decreases in magnitude
quite rapidly close to the boundary of the system. The sec-
ond reason is that the main contribution to the relative en-
ergy change is actually from the potential term, which de-
creases more or less uniformly over the whole inner part of
the satellite, as mass is stripped primarily from the outside
in. This term will deviate from a constant only in the outer
part of the satellite where some but not all of the mass is
lost, so here too this contributes to the rapid change in |∆E|
at large radii.

We can also consider which particles are removed in
phase space. In Fig. 10 we show the average change in rela-
tive energy as a function of initial particle position. Close to
the phase-space boundary of the system (at a constant rela-
tive energy), the change in relative energy is constant. The
decrease in relative energy in the centre of the system is due
to the overall mass of the system decreasing, causing par-
ticles to become less bound. This figure demonstrates that
∆EP for the self-bound particles mainly depends on their
initial energy, especially for the Slow Simulation.

In summary, there are several reasons why the energy-
truncation model provides a good estimate of the rate and
radial dependence of mass loss, or equivalently, why mass
loss remains ordered by the original relative energy to a sig-
nificant degree. While simple arguments predict that tidal
heating should depend on particle radius and possibly also
on energy, this variation is reduced by selective mass loss
at large radii and/or low energies, and the net variation in
the remaining bound mass is much smaller. Furthermore,
the total change in relative energy is actually dominated
by the potential energy change, which is relatively constant
throughout the inner part of the satellite.

Overall, the physical picture for mass-loss in our frame-
work is that as the satellite moves through the background
potential, the tidal fields heat its particle orbits and deform

5 Note that in Paper II, we showed that the scatter in the initial
relative energy of particles stripped on a given orbit was also ∼ 10

per cent – see Fig. 5 of Paper II.

its self-potential (see Appendix B). The lowest E particles
rapidly escape, since they are no longer bound to the satel-
lite. Once this mass loss has occurred, however, the potential
well of the system decreases by a roughly constant amount,
and the energies of all the particles are consequently shifted
while remaining ordered. Our model approximates this pro-
cess by assuming the initial distribution function is low-
ered by a constant amount on each orbit. As discussed in
Section 9, future work will focus on improvements to this
energy-truncation model, for instance by adding scatter to
the change in relative energy.

9 DISCUSSION

In Paper I, we described an approach to modelling tidal mass
loss based on truncating and lowering the subhalo DF by a
specified tidal energy. In Paper II we used this approach to
develop a model for mass loss with zero free parameters,
and showed that it provided a good description of the evo-
lution of subhaloes with NFW density profiles. In this work,
we have demonstrated that energy truncation and our mass
loss model can be applied to a wide range of other density
profiles, with similar accuracy. We found the model does
an excellent job of describing the density, mass and veloc-
ity profile evolution in all the tested cases. Additionally, our
model naturally captures the effect that cuspy profiles con-
serve central density, while cored profiles have a large de-
crease in central density, as described in Peñarrubia et al.
(2010).

Idealized simulations of individual subhaloes (such as
the ones used in this paper) require an assumption about the
initial profile; this is typically taken to be NFW, despite evi-
dence that dark matter haloes are probably better described
by Einasto profiles (e.g. Navarro et al. 2010; Klypin et al.
2016). Additionally, a recent study by Brown et al. (2020)
indicates that the universal profile might be due to the nar-
row range of initial conditions used in simulations, and the
diversity of dark matter profiles should be much larger than
previously thought. Regardless, the density profile of dark
matter haloes in cosmological N -body simulations is never
resolved below the scale of the softening length. To estab-
lish the true behaviour of haloes in their innermost regions,
we will likely need a theoretical model for the origin of the
universal density profile.

As discussed in Paper II, mass loss predictions are sen-
sitive to the central density of the system. Artificial disrup-
tion is likely a huge problem in cosmological simulations on
subhalo scales (van den Bosch et al. 2018; Errani & Peñar-
rubia 2019; Errani & Navarro 2021; Green et al. 2021) and
is thought to be caused by artificial constant-density cores
on the scale of the resolution limit of the simulation that
drive enhanced tidal disruption. Controlled simulations sug-
gest that centerally-divergent profiles can never be fully dis-
rupted by a smooth potential (e.g. Kazantzidis et al. 2004;
Errani & Peñarrubia 2019). Similarly, Amorisco (2021) re-
cently argued that the conditions of (1) a centrally divergent
density profile ρ ∼ r−1 and (2) an isotropic phase space dis-
tribution are sufficient to ensure that subhaloes can never be
disrupted. These finding are in agreement with the energy-
truncation model, which predicts that systems will naturally
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Figure 9. The average change in relative energy of the satellite self-bound particles (∆E). Note that negative changes in energies correspond

to particles becoming less bound to the satellite. Specific energies are calculated for both the Slow Simulation (top) and Fast Simulation
(bottom) after one, three and five orbits. Shaded regions show the 1−σ standard deviation in each bin. We also show the mass distribution

of particles as a function of initial radius (left) and initial energy (right).

always retain a bound remnant as long as ρ̄(r) → ∞ as
r → 0.

These issues are particularly interesting in the context
of microhaloes. These structures form early in the universe,
and their size is determined by the free streaming scale of the
dark matter particles. Assuming dark matter particles have
a mass of 100 GeV, the mass of the smallest microhaloes is
approximately an Earth mass (e.g. Diamanti et al. 2015).
These early haloes probably have cuspy profiles, with an in-

ner slope of ∼ −1.5 (e.g. Ogiya et al. 2016). Most evidence
suggests that the steep central cusps of microhaloes are not
conserved, and mergers are thought to drive profiles towards
the universal density profile, with an inner slope of −1. For
instance, Ishiyama (2014) show that the cusp slope grad-
ually becomes shallower with increasing halo mass. More
recently, by using cosmological zoom-in simulations, Wang
et al. (2019) were able to simulate Earth-mass haloes at red-
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Figure 10. The average particle change in relative energy, ∆E, as a function of the initial location in phase space for the self-bound

remnant. We plot contours of constant energy in an NFW profile with dashed lines. The change of energy is constant along the edge of

the system, which roughly corresponds to a constant energy, indicating that change in relative energy is primarily a function of particles
initial energy. The decrease in E in the center of the system (initial (r, v) ≈ (0, 0)) is due to the decreased self-bound mass of the satellite.

shift zero, and find that they look NFW (with an inner slope
of −1).

Generally, it is thought that major mergers are respon-
sible for this flattening (e.g. Ogiya et al. 2016; Angulo et al.
2017; Delos et al. 2019). Contrary to this picture, however,
isolated simulations of major mergers show that the inner
densities of haloes are typically conserved (e.g. Kazantzidis
et al. 2006; Drakos et al. 2019a,b). A possible solution to
this discrepancy is that isolated binary merger simulations
are overly simplistic, and do not take into account the com-
plex gravitational interactions to which haloes are subject.
However, it is also possible that high central densities are
not conserved in cosmological simulations due to numeri-
cal artefacts. The central densities of these microhaloes are
especially important to dark matter annihilation calcula-
tions. For instance, Ishiyama (2014) found that microhaloes
had higher densities than expected from extrapolations of
the low-redshift concentration–mass–redshift relation, while
Okoli et al. (2018) showed that if these densities are con-
served, it could increase estimates of the dark matter anni-
hilation boost factor by up to two orders of magnitude.

Overall, there is a growing body of evidence that the
evolution of the inner central density of haloes and their
concentrations are not well understood. This is particularly
concerning since models of substructure evolution are key in-
gredients in lensing predictions and dark matter annihilation
constraints. The consequences of this are examined in a com-
panion paper, where we show that while lensing constraints
are not particularly sensitive to assumptions about subhalo

central density, dark matter annihilation signals depend very
sensitively on this quantity, and derived constraints on dark
matter properties are therefore still uncertain (Drakos et al.
2022, in prep).

The energy-truncation model used in this work is a
promising approach to modelling substructure evolution.
As examined thoroughly in Paper II, the energy trunca-
tion model includes a number of simplifying assumptions
which could be relaxed to make more accurate predictions. A
straightforward extension of the model would be allow some
additional particle-to-particle scatter in the energy change
between orbits; equivalently, we could remove particles from
the DF using a more gradual cut-off in energy, rather than
an abrupt truncation. Additionally, we only consider mass
loss in discrete steps once per orbit, at the time of pericen-
tric passage. Continuous models for tidal mass loss are often
created by dividing the orbital period into discrete steps and
assuming a fraction of the mass outside the tidal radius is
lost at each of these steps, according to a characteristic time
scale for mass loss (e.g. Taylor & Babul 2001). We found
in Paper II that a continuous mass-loss model of this kind
requires an additional free parameter, calibrated to simula-
tions, and thus we decided to use the discrete orbit-averaged
model instead. However, this is clearly a simplification, and
we aim to improve the mass-loss model in future work.

While our findings support the assertion that our
energy-truncation model is universal, we have only con-
sidered spherical, isotropic subhaloes, evolving in an NFW
main potential. Examining more complicated ICs (including
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anisotropic and multicomponent systems) will be the focus
of future work. Another interesting extension would be to
include a disk potential to the host halo, as it has been
shown that including an embedded central disk potential to
dark-matter-only simulations increases the rate of subhalo
disruption (e.g. Garrison-Kimmel et al. 2017). For example,
recent work by Webb & Bovy (2020) considers more real-
istic external tidal fields, including baryonic bulge and disk
components, and finds that the baryonic components lead
to more subhalo disruption and lower mass subhaloes. Since
the energy-truncation model works well for a wide range
of collisionless systems, it may also be useful for predicting
the evolution of multiple-component systems. For instance,
tidal stripping is thought to be a likely mechanism for cre-
ating observed dark-matter-deficient ultra-diffuse galaxies
(e.g. Ogiya et al. 2021b,a). In future work, we will exam-
ine the evolution of these galaxies in energy space.

Overall, a growing body of evidence suggests that the
central density and concentration of dark matter haloes are
not well understood. Physically-based models for subhalo
evolution are critical for correctly predicting density profile
evolution at small radii, as these regions cannot be resolved
in simulations. The theoretically-based energy-truncation
model offers a convenient tool to study the evolution of col-
lisionless systems as they are tidally stripped, allowing us to
work towards a complete understanding of how subhaloes
evolve, and to ultimately place more robust and accurate
constraints on the properties of dark matter.
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APPENDIX A: ACCURACY OF PROFILE
PREDICTIONS

Fig. A1 shows the residuals in the density and mass pro-
files of the energy-truncation model compared to the sim-
ulation results. Residuals are calculated as the difference
between the model predictions and simulations, divided by
the model predictions. We note that there is very little mass
within ∼ runit—particularly for the EinLow and KingLow
simulations—which makes the relative errors in the mass
profiles untrustworthy at low radii. Nonetheless, these resid-
ual plots offer important insights into the accuracy of the
energy-truncation model.

The Slow Simulation (top), generally captures the
model to within ∼ 10 per cent, except when r approaches
the truncation radius. An exception is the KingLow profile,
whose central density is very sensitive to the total mass of
the system. In general, for the Slow Simulation, the energy-
truncation model over-predicts central density and mass of
the stripped satellite. The Fast Simulations (bottom), shows
a larger disagreement with the energy-truncation model (but
the central density is still fairly well predicted, to within
∼ 20 per cent or better). Since this simulation was chosen
as a case where the energy-truncation model does not work
as well (see Papers I and II), this is expected. In general,
large deviations between the model and simulations can be
seen at radii larger than ∼ 2 runit. At these larger radii,
the energy-truncation model predicts too much mass for the
Slow Simulation, and too little mass for the Fast Simulation.
This result is consistent with the mass-loss curves shown in
Fig. 5.

This paper has mainly focussed on predicting the cen-
tral density of satellites, which the energy-truncation model
does fairly well. The material at large subhalo radii are more
dynamically complicated, and are sensitive to how we define
bound particles. Future work will focus on understanding
the detailed time scales of mass loss for all particles, and
whether some of the bound mass is in the process of leaving
the system.

APPENDIX B: THE DEFORMING BOWL PICTURE OF
TIDAL MASS LOSS

Stücker et al. (2021) recently proposed that there is a nat-
ural energy at which particles will be lost, calculated from
the “boosted potential”. They advocate for a model for tidal
stripping in which mass loss is explained by a lowering of
the escape energy caused by the tidal field termed the “de-
forming bowl” picture. This naturally leads to the concept
of a “truncation energy”.

In tidal stripping analyses, we often only consider the
self potential of the satellite. However, the satellite exists
within the large scale potential of the host it is orbiting,
as illustrated in Fig. B1. This figure shows an (infinitely
extended) NFW potential of mass Msat located at RP =
50 runit of the host halo (MH = 300Msat).

To account for the affect of the host potential on the
satellite, Stücker et al. (2021) define the boosted potential
as:

Φboost(x) = Φ(x) + x · a0 (B1)

where Φ is the total (host plus satellite) potential and a0 is
an additional apparent acceleration. Thus, in our example,
the boosted potential subtracts the local large scale gradient
of the host halo from the total potential.

Under the assumption of spherical symmetry for both
the host and satellite halo, and assuming that the satellite is
located at pericentre, Stücker et al. (2021) define the boosted
potential of the satellite system as:

Φboost(R) =ΦH(R) + Φsat(r)

− (R−Rp)
GMH(< Rp)

R2
p

− ΦH(Rp) ,
(B2)

where R = Rp + r. The final term has been subtracted to
give the self-potential of the satellite. Solving for the saddle
points of Equation (B2) gives:

ρ̄sat(r) = ±
[
Rp
r
−

R3
p

r(Rp ± r)2

MH(< Rp ± r)
MH(< Rp)

]
ρ̄H(Rp) .

(B3)

Fig. B2 shows the boosted potential of an NFW satel-
lite. For this example, the saddle points are located at
r = −7.3 runit and 8.4 runit. In the deforming bowl picture,
particles are lost as they spill over the top of this bowl.

This picture of mass-loss can be easily integrated into
our energy-truncation model with the observation that
Equation (B3) is in the form of Equation (5), with

ηboost = ±
(
Rp
rlim
−

R3
p

r(Rp ± rlim)2

MH(< Rp ± rlim)

MH(< Rp)

)
.

(B4)

Other common definitions of η, as discussed in detail in
Paper II, include the well-known Roche (η = 2) and Jacobi
limits (η = 3),

η1 = 2− d lnM

d lnR
, (B5)

which describes a satellite and host with extended bodies,
and

η2 =
ω2

ω2
c

− 1

ω2
c

d2Φ

dR2
, (B6)
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Figure A1. Residuals in the density profiles and mass profiles of the tidally stripped systems, when comparing the energy-truncation

model to the Slow (top) and Fast (bottom) Simulations, as shown in Fig. A1. The shaded regions correspond to 10 per cent (dark grey)
and 20 per cent (light grey) agreement. In general, the model does a fairly good job at predicting the central density (within ∼ 2 runit).

At larger radii, there are significant deviations between the energy-truncation model and the self-bound remnant from simulations. The
exact origin of these deviations are unclear, but are likely tied to the detailed mass-loss timescales of each particle, and how the bound
particles of the satellite are defined.

which includes the centrifugal force.

In Paper II we found that in the energy-truncation
framework, η2 overestimates mass-loss rates and work the
best for circular orbits, while η1 underestimates mass loss
and work the best for radial orbits. The value we adopt,
ηeff , is the orbital average of the instantaneous value of η2

(Equation (7)). In practice, we found ηeff (which lies between
η1 and η2) worked best to describe mass-loss.

There are important differences between Equation (B4)
and the alternate η definitions listed above. First, there are
two ηboost values, reflecting the fact that the tidal field is
stronger on the side of the satellite closer to the host halo.
We will take ηboost to be the negative root, as this corre-

sponds to stronger tidal forces. Secondly, since the value of
rlim depends on the satellite model, ηboost does not only de-
pend on the host halo and orbit, but also on the details of
the satellite profile.

In Fig. B3 we compare ηboost to ηeff as well as commonly
used values in the literature. We consider both the Slow and
Fast Simulation, and use an infinitely extended NFW profile
to calculate the ηboost values. We find that the boosted po-
tential calculation predicts an η value between η1 and ηeff .
Since we interpret ηeff as being the“true”value, this suggests
that ηboost underestimates mass-loss in our framework.

Although ηboost (and effectively the truncation energy)
calculated from this formulation of the boosted potential

MNRAS 000, 1–19 (2021)
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Figure B1. The global potential around an NFW satellite located
at R = 50 runit of its host halo. The potential from the host halo

strongly effects the local potential of the satellite.
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Figure B2. The potential of an NFW satellite (dashed grey line)

and the boosted potential (solid black line). In the “deforming
bowl” picture, particles outside the saddle points of the boosted

potential are lost.

underestimates the best-fit value (which is expected to be
roughly equivalent to ηeff), the boosted potential framework
seems to be a natural extension to the energy-based tidal
stripping model we advocate. A potential explanation for
why ηboost is too low is because we neglected the centrifugal
term; i.e. we could subtract a term 1

2
|ω × R|2 from Equa-

tion (B2) to account for the corotating potential. We leave

ηeff η1 η2 ηboost
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Figure B3. Values of η used in the mass-loss prescription, Equa-

tion (6). From left to right (1) ηeff is the value we use in Equa-

tion (7) shown to match well with simulations (Paper II) so can be
considered close to the ”true” value (2) η1, Equation (B5), which

works well for radial orbits (3) η2, Equation (B6), which works

well for circular orbits and (4) ηboost, Equation (B4), which is
calculated from the boosted potential. For comparison, we also

show the Roche (η = 2) and Jacobi (η = 3) limits. ηboost is lower

than the “true” value, ηeff , and therefore under-predicts mass loss
in the energy-truncation framework.

more detailed explorations of the boosted potential to future
work.

This paper has been typeset from a TEX/LATEX file prepared by

the author.
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