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A Universal Noise Removal Algorithm

with an Impulse Detector
Roman Garnett, Timothy Huegerich, Charles Chui, Fellow, IEEE, and Wenjie He*, Member, IEEE

Abstract— We introduce a local image statistic for identifying noise

pixels in images corrupted with impulse noise of random values. The

statistical values quantify how different in intensity the particular pixels

are from their most similar neighbors. We continue to demonstrate

how this statistic may be incorporated into a filter designed to remove

additive Gaussian noise. The result is a new filter capable of reducing

both Gaussian and impulse noises from noisy images effectively, which

performs remarkably well, both in terms of quantitative measures of

signal restoration and qualitative judgements of image quality. Our

approach is extended to automatically remove any mix of Gaussian

and impulse noise.

Index Terms— impulse noise, Gaussian noise, mixed noise, image

restoration, nonlinear filters, bilateral filter, denoising

I. INTRODUCTION

N
OISE can be systematically introduced into images during

acquisition and transmission. A fundamental problem of

image processing is to effectively remove noise from an image

while keeping its features intact. The nature of the problem depends

on the type of noise added to the image. Fortunately, two noise

models can adequately represent most noise added to images:

additive Gaussian noise and impulse noise.

Additive Gaussian noise is characterized by adding to each image

pixel a value from a zero-mean Gaussian distribution. Such noise

is usually introduced during image acquisition. The zero-mean

property of the distribution allows such noise to be removed by

locally averaging pixel values. Ideally, removing Gaussian noise

would involve smoothing inside the distinct regions of an image

without degrading the sharpness of their edges. Classical linear

filters, such as the Gaussian filter, smooth noise efficiently but blur

edges significantly. To solve this problem, nonlinear methods have

to be used, most notably the anisotropic diffusion technique of

Perona and Malik [1]. Another interesting method is the bilateral

filter studied by Tomasi and Manducci [2] based on the original

idea of Overton and Weymouth [3]. The essence of these methods

is to use local measures of an image to quantitatively detect edges

and to smooth them less than the rest of the image.

Impulse noise is characterized by replacing a portion of an

image’s pixel values with random values, leaving the remainder

unchanged. Such noise can be introduced due to transmission

errors. The most noticeable and least acceptable pixels in the noisy

image are then those whose intensities are much different from their

neighbors.

The Gaussian noise removal methods mentioned above cannot

adequately remove such noise because they interpret the noise
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pixels as edges to be preserved. For this reason, a separate class of

nonlinear filters have been developed specifically for the removal of

impulse noise; many are extensions of the median filter [4], [5], or

otherwise use rank statistics [6], [7], [8]. The common idea among

these filters is to detect the impulse pixels and replace them with

estimated values, while leaving the remaining pixels unchanged.

When applied to images corrupted with Gaussian noise, however,

such filters are not effective, and in practice leave grainy, visually

disappointing results.

Not much work has been carried out on building filters that can

effectively remove both Gaussian and impulse noise, or any mixture

thereof. Such “mixed noise” could occur, for instance, when send-

ing an already noisy image over faulty communication lines. Peng

and Lucke suggested a fuzzy filter designed specifically for mixed

noise [9]. Additionally, in 1996 Abreu, et al., proposed the median-

based SD-ROM filter to remove impulse noise, and their method

proved quite effective [10]. They also gave quantitative measures

demonstrating the SD-ROM filter’s ability to remove Gaussian

noise as well as mixed Gaussian and impulse noise. Although

their filter has impressive quantitative results, when applied to

images with Gaussian or mixed noise it often produces visually-

disappointing output similar to that of other median-based filters.

In this paper we introduce a framework for creating a universal

noise removal filter that is based on a simple statistic to detect im-

pulse noise pixels in an image. Instead of applying the “detect and

replace” methodology of most impulse noise removal techniques,

we show how to integrate such a statistic into a filter designed to

remove Gaussian noise. The behavior of the filter can be adaptively

changed to remove impulses while retaining the ability to smooth

Gaussian noise. Additionally, the filter can be easily adapted to

remove mixed noise.

This paper is arranged as follows: in the next section we

introduce a local image statistic for detecting impulses. In section

III we briefly explain the bilateral filter and describe how to

incorporate the statistic into the filter to create a universal filter.

Finally, in section IV we provide visual examples and numerical

results that demonstrate our method’s soundness.

II. A NEW STATISTIC FOR DETECTING IMPULSES

A. Noise models

Throughout this paper, we will use standard matrix notation for

images. For example, when u is an image, ui,j will represent the

intensity value of u at the pixel location (i, j) in the image domain.

For the case of additive Gaussian noise, the noisy image, u, is

related to the original image, u0, by

ui,j = u0
i,j + ni,j

where each noise value n is drawn from a zero-mean Gaussian

distribution.

Impulse noise, again to be denoted by n, is characterized by

replacing a portion of the original pixel values of the image

with intensity values drawn from some distribution, usually either

a uniform or discrete distribution n over the intensity range.
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Throughout this paper we consider the uniform noise distribution

model, although the methods we discuss could be used without

modification for the discrete model.1 Therefore, for images cor-

rupted with impulse noise, the noisy image u is related to the

original image u0 by

ui,j =

{

ni,j with probability p
u0

i,j with probability (1 − p).

B. Motivation of the impulse detection scheme

The problem of deciding which pixels in an image are impulses

is clearly not well-defined. In particular, Roy Lichtenstein or

George Seurat might be dismayed if he saw one of his paintings

“denoised.” Therefore we must be content with detecting pixels that

are like impulses, that is, pixels that vary greatly in intensity from

most surrounding pixels. Thankfully, uncorrupted natural images

rarely contain details isolated to a single pixel and generally have

few impulse-like pixels.

Impulse noise removal methods use many different techniques

to determine whether a given pixel is an impulse in this sense.

These approaches vary in complexity from being relatively simple

to highly complex. The most basic impulse detectors are based

on two-state methods that attempt to definitively characterize each

image pixel as either an impulse or an unaffected pixel. The

underlying goal of these two-state methods is to find pixels that are

significant outliers when compared to their neighbors. One of the

simplest and most intuitive method is to compare a pixel’s intensity

with the median intensity in its neighborhood, as in [5]. Other

methods, such as the two-state SD-ROM filter of Abreu, et. al [10]

and the recent CSAM filter of Pok, et. al [8], use more complex

criteria to judge whether a pixel is an impulse. The advantage

of these two-state methods is their simplicity, which makes them

easily customizable.

More complex methods are naturally more successful for detect-

ing impulses in general, but there is a tradeoff for this improvement

in detection. The most complicated methods require training proce-

dures to make an optimal classification based on measures of pixels

and their neighbors. Methods that require training are bound to be

less easily controlled and more unpredictable than simpler methods.

If a method is trained on an image with many impulse-like pixels

(such as an image with many fine details), its ability to detect

and remove actual impulse noise from a different image will be

inhibited. On the other hand, if the method is trained on a smooth

image with few impulse-like pixels, it will overly smooth an image

with many fine details that could otherwise be preserved. Even if

care is taken to select an appropriate training image—assuming one

is available—the performance of an automatically trained filter is

essentially unpredictable.

An additional concern with existing methods arises from the fact

that when impulse noise is introduced to an image, a portion of

the pixels will be replaced with intensities only slightly different

from their original values. Two-state detectors, with or without

training, will most likely fail to detect such small impulses since

they look exclusively for large outliers. They remove the most

conspicuous noise, but the lesser impulses remain, creating a grainy

appearance. In response to this problem, we adopt a continuous

function to represent how impulse-like a particular pixel may be.

1In contrast, Conditional Signal-Adaptive Median (CSAM) filtering [8],
is designed for salt-and-pepper noise, a discrete impulse noise model in
which the noisy pixels take only the values 0 and 255. It can remove
salt-and-pepper type noise pixels very well, but it cannot perform similarly
for uniformly distributed impulse noise and is outperformed by even the
median filter.

Fig. 1. Closeups of an artificially added impulse (upper left), and a typical
edge pixel (lower right). ROAD of impulse: 525; ROAD of edge pixel: 88.
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Fig. 2. Demonstrating how to calculate ROAD.
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Fig. 3. The mean ROAD values of noise pixels and uncorrupted pixels in
the Lena image as a function of the impulse noise probability, with standard
deviation error bars demonstrating the significance of the difference.

By considering the magnitude of this function, we can adapt the

behavior of the filter in a straightforward way according to how

impulse-like each pixel is.

C. Definition of the ROAD statistic

Let x = (x1, x2) be the location of the pixel under consideration,

and let

Ωx(N) := {x + (i, j) : −N ≤ i, j ≤ N} (1)
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be the set of points in a (2N+1)×(2N+1) neighborhood centered

at x for some positive integer N . In the following discussion, let us

only consider N = 1, though the same procedure can be extended

to any N > 1. Hence,

Ω0
x = Ωx(1) \ {x},

represents the set of points in a 3 × 3 deleted neighborhood of x.

For each point y ∈ Ω0
x, define dx,y as the absolute difference in

intensity of the pixels between x and y, i.e.

dx,y = |ux − uy|.

Finally, sort the dx,y values in increasing order and define

ROADm(x) =

m
∑

i=1

ri(x), (2)

where 2 ≤ m ≤ 7 and

ri(x) = ith smallest dx,y for y ∈ Ω0
x.

We call the statistic defined in (2) ROAD (“Rank-ordered Absolute

Differences”). In this paper, we will consider m = 4 only, and set

ROAD(x) = ROAD4(x).

The ROAD statistic provides a measure of how close a pixel

value is to its four most similar neighbors. The logic underlying

the statistic is that unwanted impulses will vary greatly in intensity

from most or all of their neighboring pixels, whereas most pixels

composing the actual image should have at least half of their

neighboring pixels of similar intensity, even pixels on an edge.

Fig. 1 shows examples from the Lena image comparing a typical

impulse noise pixel to an edge pixel. Notice that the edge pixel has

neighbors of similar intensity despite forming part of an edge, and

thus has a significantly lower ROAD value. Fig. 2 demonstrates

how the latter value was calculated.

We illustrate numerically that the ROAD statistic is a good

indicator of impulse noise. Ideally we want our statistic to be very

high for impulse noise pixels and much lower for uncorrupted

pixels. Fig. 3 displays quantitative results from the Lena image.

The upper dashed line represents the mean ROAD value for noise

pixels as a function of the amount of impulse noise added, and the

lower dashed line represents the mean ROAD value for uncorrupted

pixels. The noise pixels consistently have much higher mean ROAD

values than the uncorrupted pixels, whose mean ROAD values

remain nearly constant even with very large amounts of noise.

III. INTRODUCING THE ROAD AND TRILATERAL FILTERS

It would be relatively simple to introduce the ROAD statistic

into many existing filtering techniques, allowing them to detect and

properly handle impulse-like pixels in a noisy image. For example,

one could modify the popular anisotropic diffusion method to

utilize the ROAD statistic. Below we describe how one might

extend the bilateral filter to create a filter capable of removing

both impulse and additive Gaussian noise from images. We begin

with a brief introduction to the bilateral filter.

A. The bilateral filter

The bilateral filter, as described in [2], applies a nonlinear

filter to u to remove Gaussian noise while retaining the sharpness

of edges. Each pixel is replaced by a weighted average of the

intensities in a (2N+1)× (2N+1) neighborhood. The weighting

function is designed to smooth in regions of similar intensity while

keeping edges intact, by heavily weighting those pixels that are

both near the central pixel spatially and similar to the central pixel

radiometrically.

More precisely, let x be the location of the pixel under consid-

eration, and let

Ω = Ωx(N) (3)

be the pixels in a (2N + 1) × (2N + 1) neighborhood of x. The

weight of each y ∈ Ω with respect to x is the product of two

components, one spatial and one radiometric:

w(x,y) = wS(x,y)wR(x,y), (4)

where

wS(x,y) = e
− |x−y|2

2σ2

S (5)

and

wR(x,y) = e
−

|ux−uy|2

2σ2

R (6)

The weights must be normalized, so the restored pixel ũx is

given by

ũx =

∑

y∈Ω
w(x,y)uy

∑

y∈Ω
w(x,y)

(7)

The wS weighting function decreases as the spatial distance

between x and y increases, and the wR weighting function

decreases as the radiometric “distance” between the intensities ux

and uy increases. The spatial component of the weight decreases

the influence of pixels far away from x to generally reduce blurring,

while the radiometric component diminishes the influence of pixels

with significantly different intensities to keep the edges of distinct

image regions sharp. Notice that the wS and wR weighting func-

tions need not be Gaussians—any suitable nonnegative functions

that decrease to zero may be used instead.

In our particular weighting functions, the parameters σS and σR

control the behavior of the weights. They are the values at which

the respective Gaussian weighting functions take their maximum

derivatives, so they serve as rough thresholds for identifying pixels

sufficiently close spatially or radiometrically. Note, in particular,

that as σR → ∞ and radiometric differences are rendered irrelevant

by this high threshold, the bilateral filter approaches a Gaussian

filter of standard deviation σS . As both σR, σS → ∞ so that all

neighboring pixels easily meet both thresholds, the bilateral filter

approaches the mean filter.

The idea for bilateral filtering was originally introduced in 1979

by Overton and Weymouth [3] as a simple image preprocess-

ing tool to remove noise. In 1998, Tomasi and Manduchi [2]

provided the name “bilateral filtering” and improved the method

in several aspects. Specifically, they used Gaussian functions in

the weighting functions (instead of the rational functions used in

[3]) to improve the filter’s performance, analyzed the interaction

between the weighting functions, and proposed metrics to be used

for color images. Elad [11] established a connection between

bilateral filtering and several other methods in terms of minimizing

functionals.

B. A new weighting function

We incorporate the ROAD statistic into the bilateral filtering

framework by introducing a third weighting function influenced

by how impulse-like each pixel of the image is. The “impulsive”

weight, wI , at a point x is given by:

wI(x) = e
−ROAD(x)2

2σ2

I . (8)

The σI parameter determines the approximate threshold above

which to penalize high ROAD values.
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Fig. 4. The original Lena image, the image corrupted with impulse noise (p = 20%), and the result after trilateral filtering.

We would like to integrate this impulsive component into a

nonlinear filter designed to weight pixels based on their spatial,

radiometric, and impulsive properties. Unfortunately, the impul-

sive component is not directly compatible with the radiometric

component already present in the bilateral filter. To illustrate this

observation, let us consider black impulses on a white background.

If the point x under consideration were such an impulse, the

radiometric component would weight any other black impulses in

the neighborhood of x much more than the white background pixels

we desire. As a result, the black impulses remain black impulses.

The radiometric weight works contrary to our goal because it

was not designed to remove impulse noise. However, if used

selectively, the radiometric weight can still be helpful for removing

impulse noise. It can help smooth impulses that are only slightly

different from their surrounding pixels without blurring edges,

while the impulsive weight works to remove the larger outliers.

If we can use the radiometric component for only small impulses,

we can improve upon the common two-state methods for impulse

noise removal by not only removing the larger outliers, but also

smoothing away smaller impulses.

To add the impulsive weight while still retaining the radiometric

component of the bilateral filter, we introduce a switch to determine

how much to use the radiometric component in the presence of

impulse noise. If x is the central pixel under consideration, and

y ∈ Ωx(N) is a pixel in the neighborhood of x, we define the

“joint impulsivity” J of y with respect to x as

J(x,y) = 1 − e
−

(

ROAD(x)+ROAD(y)
2

)2

/2σ2
J

. (9)

The J(x,y) function assumes values in [0, 1]. The σJ parameter

controls the shape of the function. Again, any suitably nonnegative

function that decreases to zero may be used in place of the

Gaussian. If at least one of x or y is impulse-like and has a high

ROAD value with respect to σJ , then J(x,y) ≈ 1. If neither pixel

is impulse-like, and thus neither has a high ROAD value, then

J(x,y) ≈ 0.

We would like to use the radiometric weight more heavily when

J(x,y) ≈ 0 to smooth regions without large impulses and less

heavily when J(x,y) ≈ 1, because if either pixel is an impulse,

the radiometric weight fails to function correctly as illustrated

above. Conversely, we would like to use the impulsive weight less

heavily when J(x,y) ≈ 0 and more heavily when J(x,y) ≈ 1,

to suppress large impulses. With this in mind, we define the final,

“trilateral” weight of y with respect to the central point x as:

w(x,y) = wS(x,y)wR(x,y)1−J(x,y)wI(y)J(x,y). (10)

Referring to the Gaussian forms of wR and wI , we see that

raising these functions to the specified exponents has the effect of

modifying their effective standard deviations or “thresholds”. When

J(x,y) ≈ 1 so that 1 − J(x,y) ≈ 0, the radiometric threshold

becomes very large so that radiometric differences become irrele-

vant, while the impulsive weight is unaffected. When J(x,y) ≈ 0,

the opposite happens and only the radiometric weight is used to

distinguish pixels because the effective impulsive threshold is so

high. In this way, the appropriate weighting function is applied on

a pixel-by-pixel basis. We will call the nonlinear filter of form (7)

with the weighting function w(x,y) given in (10) the “trilateral

filter,” since it combines three different measures of neighboring

pixels in determining its weights.

In general, the trilateral weighting function works well to remove

impulse noise without compromising the bilateral filter’s ability

to remove Gaussian noise. For images with no impulse noise—

and thus few points with high ROAD values–the J(x,y) term in

(10) effectively “shuts off” the impulsive component of the weight

and only uses the radiometric and spatial weights. Essentially, the

trilateral filter reverts to the bilateral filter when processing images

without impulse noise.

The J(x,y) function also allows for future work to further

extend the filter. Specifically, we are exploring methods to auto-

matically choose the control parameters σS , σR, σI , and σJ locally.

This would allow us to remove different types of noise from the

same image, as well as mixed Gaussian and impulse noise in a

single pass.

We have found that even for very high levels of impulse noise,

one pass of the trilateral filter will remove almost all of the noise.

However for p > 25%, a few spots of unremoved impulses

often remain. This happens because impulses sometimes “clump”

together in the original noisy image to form regions of similar

intensity so large that they are mistaken for meaningful features.

To remove such residual spots, it is often helpful to process the

image with an iterative version of the filter. We simply run the

image through the trilateral filter several times, using the output of

the previous iteration as the input of the next. For low and moderate

levels of noise (p ≤ 25%), one iteration is sufficient and usually

provides the best results. For high levels of noise (p > 25%),

applying two to five iterations provides better results.

C. Removing Mixed Gaussian and Impulse Noise

The trilateral filter can be easily extended to remove any mixture

of Gaussian and impulse noise. The ideal solution would be to

locally vary parameters so that they are finely tuned to remove the
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Closeup of Lena image corrupted with Restored with SD-ROM filter Restored with trilateral filter

impulse noise (p = 50%) with training

Fig. 5. The Lena image corrupted with a high level of impulse noise and the results of applying several filters.

TABLE I

RESULTS AFTER APPLYING VARIOUS FILTERS TO IMAGES CORRUPTED WITH IMPULSE NOISE

Lena Image Bridge Image
Method p = 20% p = 30% p = 40% p = 50% p = 20% p = 30% p = 40% p = 50%

3 × 3 Median Filter 31.23 dB 28.05 dB 24.61 dB 21.53 dB 24.76 dB 23.14 dB 21.20 dB 19.04 dB

5 × 5 Median Filter 29.87 dB 28.97 dB 27.61 dB 25.45 dB 23.26 dB 22.73 dB 21.95 dB 20.72 dB

Median Filter with
Adaptive Length a [4] 31.51 dB 29.49 dB 27.75 dB 26.33 dB 25.14 dB 23.70 dB 22.08 dB 21.03 dB

Sun and Neuvo

Switching Scheme I a,b [5] 32.15 dB 29.69 dB 27.97 dB 25.54 dB 26.16 dB 24.34 dB 22.75 dB 21.02 dB

Rank Conditioned

Rank Selection Filter d [7] 31.81 dB 30.01 dB 27.72 dB 25.92 dB 24.76 dB 23.68 dB 22.52 dB 20.88 dB

SD-ROM
without training a,c [10] 33.98 dB 31.06 dB 28.30 dB 25.57 dB 26.57 dB 24.82 dB 23.17 dB 21.40 dB

SD-ROM

with training a,d [10] 34.23 dB 31.64 dB 29.19 dB 26.63 dB 26.24 dB 24.98 dB 23.66 dB 22.19 dB

Trilateral Filter e 35.03 dB 33.16 dB 31.36 dB 29.44 dB 27.55 dB 25.99 dB 24.55 dB 23.17 dB

aImplemented recursively.
bImplemented using a 5 × 5 window for Lena with p ≥ 30%, and using a 3 × 3 window otherwise
cUsing the thresholds suggested in [10].
dThe Lena image was trained on the “bridge” image with 35% noise, and the “bridge” image was trained on the Lena image with 35% noise.
eImplemented iteratively for p ≥ 30%.

precise amount and type of noise present in each section of the im-

age. This solution, however, would require a deep statistical study

of the ROAD statistic for the automatic selection of parameters,

and the best way to do this is not immediately clear.

A simpler, yet still quite effective solution to restore an image

corrupted by mixed noise is to apply the trilateral filter twice with

two different values of σS—once with a smaller value of σS , to

remove the impulse noise, and another time with a larger value of

σS , to smooth the remaining Gaussian noise. A myriad of other

options are available for altering the parameters between filtering,

but our simple approach produces visually appealing results and

only requires changing one parameter.

IV. RESULTS

We have extensively tested the noise removal capabilities of the

trilateral filter and compared the results with several existing meth-

ods. Our method produced results superior to the other methods

we tested in both visual image quality and quantitative measures

of signal restoration. Among the many images we tested are the

512×512 8-bit grayscale Lena image, available online from Mike

Wakin at Rice University [15], and the 512× 512 “bridge” image,

available online from the UEA Signal and Image Processing Group

[16].

A. Implementation and Testing Procedure

Our implementation of the trilateral filter used a 5 × 5 window

size and performed multiple iterations when it provided better

results (for p > 25%). Image boundaries were handled by assuming

symmetric boundary conditions.

In each of our experiments we strove to be impartial while

collecting data. For each method tested, we varied its parameters

exhaustively (as suggested by its author(s)) to obtain the best

possible result. Furthermore, to eliminate the bias created by

different manifestations of noise, we created a standard set of

noisy images. Five noisy images were created for each test image

and noise level, and formed the common input to each method.

The numerical results shown are the average results for these five

images.

B. Image Quality

Our first goal was to ensure that our approach provides visually

pleasing output. The trilateral filter can restore images corrupted

with low to moderate levels of impulse noise (p ≤ 25%)
with virtually unblemished results. Fig. 4 shows the Lena image

corrupted with 20% impulse noise and the result after trilateral

filtering. Comparing with the original, it is clear that the trilateral
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Image corrupted by Gaussian noise Restored with SD-ROM filter Restored with Trilateral filter

(σ = 10) with training [10]

Image corrupted by mixed noise Restored with SD-ROM filter Restored with Trilateral filter

(σ = 10, p = 20%) with training [10]

Fig. 6. Comparing the trilateral filter and SD-ROM filter on images with Gaussian noise and mixed Gaussian and impulse noise.

filter can eliminate a fair amount of noise while preserving edge

boundaries and fine details.

Although exceptional for lower impulse noise levels, our filter

truly excelled when treating highly corrupted (p > 25%) images.

Fig. 5 shows the Lena image with 50% impulse noise and compares

the outputs of the trilateral filter with the output of the SD-ROM

filter of Abreu, et al. The trilateral filter’s output has fewer spots

and other artifacts and is generally more pleasing.

We also verified that the trilateral filter retains the ability to

remove Gaussian noise and that it can effectively remove mixed

noise. Fig. 6 shows the Lena image corrupted with Gaussian

noise and mixed noise and the outputs of the SD-ROM and

trilateral filters. The trilateral filter continues to adequately suppress

Gaussian noise, even after the introduction of the impulsive weight

and the joint impulsivity function.

For both Gaussian and mixed noise, the trilateral filter leaves

less noise in the restored image than the SD-ROM filter, and its

output is generally more visually appealing. However, some fine

details are lost in the process. For example, the individual strands

of hair in the image are better kept in the SD-ROM filter’s output,

at the expense of a less smooth and less pleasing output.

C. Signal Restoration

Once the visual quality of images restored by the trilateral filter

had been confirmed, we concentrated on directly comparable, quan-

titative measures of signal restoration. In particular, we measured

the peak signal-to-noise ratio (PSNR). If u0 is the original m× n

image and ũ is a restored image of u0, the PSNR of ũ is given

by:

PSNR(ũ) = 10 log10

(

∑m,n

i,j=1
2552

∑m,n

i,j=1
(ũi,j − u0

i,j)
2

)

. (11)

Larger PSNR values signify better signal restoration. We tested

each method on impulse noise levels from p = 0% (that is,

no noise) to p = 50% in steps of 5%. Table I compares

the mean PSNR values of the five restored test images for

p ∈ {20%, 30%, 40%, 50%}. Again, the trilateral filter provided

results with higher PSNR values than the results of the other meth-

ods tested, especially for very high levels of noise. In particular,

for the Lena image with 50% noise, the trilateral filter produces

PSNR values almost a full three decibels higher than the closest

competing method.

We also compared the performance of the trilateral filter with the

performance of the previously tested filters on images corrupted

with Gaussian noise (σ = 10) and mixed noise (σ = 10, p =
20%). The trilateral filter consistently yielded the highest PSNR

for each image and noise level. Table II shows the results for the

3 × 3 median filter, the trilateral filter, and the previously-tested

methods with training procedures: the RCRS and SD-ROM filters.

Notice that the other methods generally performed only slightly

better than the median filter for mixed noise.

V. CONCLUSIONS

Many noise removal algorithms, such as the bilateral filtering,

tend to treat impulse noise as edge pixels, and hence end with
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TABLE II

PSNR VALUES (IN DECIBELS) OF NOISY IMAGES RESTORED WITH

VARIOUS FILTERS

Gaussian Noise Mixed Noise
σ = 10 p = 20%, σ = 10

Filter Lena Bridge Lena Bridge

3 × 3 Median 30.92 25.93 29.02 24.20

RCRS b [7] 31.00 27.38 29.55 24.46

SD-ROM a,b [10] 32.20 28.85 29.87 25.10

Trilateral c 33.23 29.33 31.64 26.29

aImplemented recursively.
bThe Lena image was trained on the “bridge” image, and the “bridge” image

was trained on the Lena image with the same level of noise.
cImplemented iteratively.

unsatisfactory results. In order to process impulse pixels and edge

pixels differently, we introduce a new statistic based on rank-

ordered absolute differences (ROAD) in some neighborhood of a

pixel. This statistic represents how impulse-like a particular pixel

is in the sense that the larger the impulse, the greater the ROAD

value.

We then incorporate the ROAD statistic into the bilateral filtering

by adding a third component to the weighting function. The

new nonlinear filter is called the trilateral filter, whose weighting

function contains spatial, radiometric, and impulsive components.

The radiometric component combined with the spatial component

smooths away Gaussian noise and smaller impulse noise; while the

impulsive component removes larger impulses. A switch based on

the ROAD statistic is adopted to adjust weight distribution between

the radiometric and impulsive components. The resulting trilateral

filter performs well in removing Gaussian and mixed noise as well

as in removing impulse noise.

REFERENCES

[1] P. Perona and J. Malik, “Scale-space and edge detection using
anisotropic diffusion,” IEEE Trans. Pattern Anal. Machine Intell., vol.
12, pp. 629–639, 1990.

[2] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color
images,” Proc. 1998 IEEE Int. Conf. Computer Vision, pp. 839–846.

[3] K. J. Overton and T. E. Weymouth, “A noise reducing preprocessing
algorithm,” Proceedings of the IEEE Computer Science Conference on

Pattern Recognition and Image Processing, pp. 498–507, Chicago, IL,
1979.

[4] H. Lin and A. N. Willson, Jr., “Median filters with adaptive length,”
IEEE Trans. Circuits Syst., vol. 35, pp. 675–690, June 1988.

[5] T. Sun and Y. Neuvo, “Detail-preserving median based filters in image
processing,” Patt. Recogn. Lett., vol. 15, pp. 341–347, Apr. 1994.

[6] A. C. Bovik, T. S. Huang, and D. C. Munson, “A generalization of
median filtering using linear combinations of order statistics,” IEEE

Trans. ASSP, vol. 31, pp. 1342–1350, Dec. 1983.

[7] R. C. Hardie and K. E. Barner, “Rank conditioned rank selection filters
for signal restoration,” IEEE Trans. Image Processing, vol. 3, pp. 192–
206, Mar. 1994.

[8] G. Pok, J. Liu, and A. S. Nair, “Selective removal of impulse noise
based on homogeneity level information,” IEEE Trans. Image Process-

ing, vol. 12, pp. 85–92, Jan. 2003.

[9] S. Peng and L. Lucke, “Multi-level adaptive fuzzy filter for mixed noise
removal,” Proc. IEEE Int. Symp. Circuits Syst., Seattle, WA, vol. 2, pp.
1524–1527, Apr. 1995.

[10] E. Abreu, M. Lightstone, S. Mitra, and K. Arakawa, “A new efficient
approach for the removal of impulse noise from highly corrupted
images,” IEEE Trans. Image Processing, vol. 5, pp. 1012–1025, June
1996.

[11] M. Elad, “On the origin of the bilateral filter and ways to improve it,”
IEEE Trans. Image Processing, vol. 11, pp. 1141–1151, Oct., 2002.

[12] R. L. Lagendijk, J. Biemond, and D. E. Boekee, “Regularized iterative
image restoration with ringing reduction,” IEEE Trans. Acoustics,

Speech, Signal Processing, vol. 36, pp. 1874–1887, Dec. 1988.

[13] M. J. Black and G. Sapiro, “Edges as outliers: anisotropic smoothing
using local image statistics,” Scale-Space Theories in Comput. Vision,
Second Int. Conf., Scale-Space ’99, Corfu, Greece, LNCS 1682, pp.
259–270, Springer, Sept. 1999.

[14] J. Immerkær, “Fast Noise Variance Estimation,” Comput. Vision and

Image Understanding, vol. 64, pp. 300–302, Sept. 1996.
[15] M. Wakin, “Standard test images - Lena,” available online:

http://www-ece.rice.edu/˜wakin/images/.
[16] UEA Signal and Image Processing Group, “Standard Image Page,”

available online:
http://www.sys.uea.ac.uk/Research/researchareas/

imagevision/images ftp/.

PLACE
PHOTO
HERE

Roman Garnett recieved the A.B. degree in
mathematics and the M.Sc. degree in computer
science from Washington University in Saint
Louis, May 2004.

The work for this paper was completed while
he was a research aide at The Institute for Com-
putational Harmonic Analysis at the University of
Missouri–Saint Louis.

His research interests include image and video
processing, and computer vision.

PLACE
PHOTO
HERE

Timothy Huegerich recieved the B.S. degree in
physics from Rice University in Houston in May
2004.

The work for this paper was completed while
he was a research aide at The Institute for Com-
putational Harmonic Analysis at the University of
Missouri–Saint Louis.

His research interests include mathematical
ecology and epidemiology.

PLACE
PHOTO
HERE

Charles Chui (Fellow, 94) received his higher ed-
ucation from the University of Wisconsin, Madi-
son (B.S, M.S. and Ph.D.) and is currently Cu-
rators’ Professor at the University of Missouri,
St. Louis, and Consulting Professor of Statistics
at Stanford University. He is co-editor-in-chief of
Applied and Computational Harmonic Analysis,
and serves on the editorial board of seven other
journals. In addition, he is editor of three book
series, as well as editorial advisor of Elsevier
book publication in Electrical Engineering. His

research interests are in the areas of Approximation Theory, Computational
Harmonic Analysis, Surface Subdivisions, and Mathematics of Imaging.

PLACE
PHOTO
HERE

Wenjie He received the B.S. degree in mathemat-
ics from Peking University, Beijing, China in 1988
and the Ph.D. degree in mathematics from the
University of Georgia, Athens, Georgia in 1998.

He is currently Assistant Professor of Computer
Science at the University of Missouri-Saint Louis.
His research interests include wavelets, wavelet
tight frames, computer graphics, and image pro-
cessing.




