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A UNIVERSAL PRIOR FOR INTEGERS AND ESTIMATION BY
MINIMUM DESCRIPTION LENGTH

By JorMA RISSANEN
IBM Research, San Jose

An earlier introduced estimation principle, which calls for minimization
of the number of bits required to write down the observed data, has been
reformulated to extend the classical maximum likelihood principle. The prin-
ciple permits estimation of the number of the parameters in statistical models
in addition to their values and even of the way the parameters appear in the
‘models; i.e., of the model structures. The principle rests on a new way to
interpret and construct a universal prior distribution for the integers, which
makes sense even when the parameter is an individual object. Truncated real-
valued parameters are converted to integers by dividing them by their preci-
sion, and their prior is determined from the universal prior for the integers by
optimizing the precision.

1. Introduction. In this paper we study estimation based upon the principle of
minimizing the total number of binary digits required to rewrite the observed data, when
each observation is given with some precision. Instead of attempting at an absolutely
shortest description, which would be futile, we look for the optimum relative to a class of
parametrically given distributions. This Minimum Description Length (MDL) principle,
which we introduced in a less comprehensive form in [25], turns out to degenerate to the
more familiar Maximum Likelihood (ML) principle in case the number of parameters in
the models is fixed, so that the description length of the parameters themselves can be
ignored. In another extreme case, where the parameters determine the data, it similarly
degenerates to Jaynes’s principle of maximum entropy, [14]. But the main power of the
new criterion is that it permits estimates of the entire model, its parameters, their number,
and even the way the parameters appear in the model; i.e., the model structure. Hence,
there will be no need to supplement the estimated parameters with a separate hypothesis
test to decide whether a model is adequately parameterized or, perhaps, over parameter-
ized.

We derive the following formula for the description length:

(1.1) L(x, 8) = —log P(x | 8) + log*[C(k)(|| 8 ”}u(g))k].

Here, P(x|8) denotes the likelihood of the data x for the parameter vector § with %
components, C (k) is the volume of the k-dimensional unit ball, and || 8 ||ase) =V (6'"M (6)6)
denotes the natural norm induced by the quadratic form associated with the 2 X %k matrix
M(8) of the second derivatives of ~log P(x|#). The function log* is defined as log* y =
log y + log log y + ..., where only the positive terms are included in the sum. The
criterion (1.1) is to be minimized with respect to all the parameters, including their number
k.

The criterion (1.1), within a constant, is the negative binary logarithm of the joint
probability P(x, #) of the data and the parameters. It is obtained by optimizing the
precision needed to express the parameters, and then using a universal prior distribution
for the resulting integers, where the probability of integer n is proportional to 276", This
distribution, which is seen to modify the improper distribution 1/n of Jeffreys [18], is
derived from coding of the integers in such a manner that certain natural coding theoretic
requirements are satisfied. We argue that it correctly expresses one’s initial ignorance
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when this notion is made precise. We do this in a novel way. First, the initial knowledge is
interpreted to define a class of “test” distributions, and then a best code is found for the
worst distribution in the family. The optimum code length defines at once the sought-for
prior distribution.

Although the resulting optimum description of the integers is not unique, we show that
the code lengths for integer n, assigned by all the optimum codes, deviate only slightly
from log n, just as the case is seen to be with the log* function. This means that the
dominant terms in the description length, expressed per observation, are given by the
following expression, regardless of which optimum code is selected:

(1.2) —(1/N)log P(x | 8) + (k/2N)log(2meN/k) + (k/N)log|| 6 |lrs),

where I(8) = M(8)/N, and N denotes the number of observations. The first two terms
define essentially the criteria of Schwarz [29] and Akaike [1] originally derived only for
the Koopman-Darmois family of distributions, which now get extended to any smooth
family of distributions. In addition, the controversial and restrictive assumption that the
parameters be an outcome of a random experiment with a similar distribution, is no longer
needed. The third term also improves the earlier criterion of Rissanen [25] in making the
criterion invariant with respect to all nonsingular linear transformations.

Our approach, involving the code length of individual strings and their models, is in the
spirit of the algorithmic notion of information due to Solomonoff [30] and Kolmogorov
[20]. A major difference is that we require the class of models to be given at the outset,
which allows us to get directly applicable results. We might say that our approach is more
“statistical,” although we also need to use simple ideas from information theory. We give
at the end of Section 2 a comparative discussion of the earlier approaches that are either
similar or otherwise relevant. The main purpose of Section 2 is to develop our view of
estimation in an introductory and general way. We take pains to explain the few coding
theoretical notions needed, which even a reader without prior exposure to information
theory should be able to understand without much difficulty. After all, we never need to
actually construct the various codes; it is enough to imagine that they can be constructed
and to have an estimate of their length, which we do in the later sections. In Section 3 we
discuss the universal priors. In Section 4 we describe how the real-valued ML estimates
are truncated to an optimum precision, and we derive the two expressions (1.1) and (1.2)
for the final criterion. At the end of the section we list a few of the applications, where this
criterion is shown to lead to consistent estimates of models of considerable complexity. In
the final Section 5, we show that Jaynes’s principle of maximum entropy [14, 15, 16, 17]
may be viewed as a particular instance of ours.

2. Estimation, proper prior, and code length. We view estimation as the problem
of selecting a statistical model out of a parameterized class which best “explains” the
observed sequence of data x = x(1), -- -, x(IV) in a very concrete sense. Each observation
x(i) is either a real number such that it has no more than a fixed number of fractional
digits in its binary representation, or it is a vector of such numbers. We consider a class of
statistical models as a distributional form P(- | §), which for each parameter value 8 assigns
a distribution to the set of all possible sequences of the same length N and, hence, the
probability P(x|#) to the particular observed sequence. The distribution, in addition, is
often defined for every N, and it satisfies the compatibility conditions of a random process.
Accordingly, we may regard a model to define such a process. Clearly, the process need
not be independent nor stationary.

Often in such models the parameter § is a vector of k real-valued components, but these
may not be independent in that there are either implicitly or explicitly given equations
between them. For our purposes, however, we assume that the dependent parameters have
been eliminated, and that the remaining %2 parameters range over the k-dimensional
euclidean space R*. We regard % itself as a variable, so that there is such a set of parameters
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4 for each k. Typically, we may arrange these spaces to form a nested sequence, each being
a subspace of the next, so that § may be regarded as a vector of the type (8, ---, 8, 0,
--+). In the most general application that we are aware of, namely, modeling vector time
series with linear systems, the set of the systems of each order is an analytic manifold. But
even in that case we may regard the parameters as ranging locally over a k-dimensional
euclidean space.

Traditionally, the parameter vector # has a fixed known number of components. The
principle of the maximum likelihood (ML) due to Gauss [7] and Fisher [6] prescribes as
the estimate such a parameter value 8 which makes the probability P(x | 8) of the observed
sequence maximum. What makes this technique sound is the implicit assumption that the
distributions P(- | #) are simple enough and the number of parameters is small enough not
to permit a probability assignment one to the observed sequence. In more general
situations, where the number of the parameters also must be estimated, the complexity of
the model can no more be taken as fixed, for it clearly increases with the number of the
parameters included in it. As a result, the likelihood of the observed sequence increases
with this number, and the maximum is reached when there are as many parameters as
observations, which clearly is not an interesting nor a useful result. In some cases this
defect of the ML principle can be corrected by performing an additional hypothesis test,
but in our opinion such a combined technique does not come to grips with the real problem.

We then see that the source of the problem is an issue of complexity of the model,
which the likelihood function as such is not equipped to deal with. However, by a shift of
view the maximum likelihood principle can be reinterpreted to measure the amount of
complexity in the data, from which it can be extended to include even the complexity of
the model. Indeed, we may regard the binary logarithm, —log P(x | §), otherwise known in
information theory as the self-information and in statistics just as the negative log
likelihood, to be the number of bits it takes to redescribe or encode x with an ideal code
relative to the assumed statistical model of the data, see Rissanen and Langdon [28]. In
fact, one can show that only a vanishing fraction of long strings can be encoded with
appreciably fewer bits than —log P(x|8), and that the ideal is reachable within a small
fixed number of excess bits by use of a suitably designed coding. For a pertinent discussion
of these matters in the context of algorithmic notion of information, see Levin [23].

With this interpretation the ML principle is equivalent with selecting that probabilistic
model P(x|#) which permits the shortest ideal code length for the observed sequence,
provided that the model used in the encoding, i.e., the parameter #is given, too. Unlike the
ML principle, the new interpretation does not make appeal to one’s subjective value
judgement, and hence it seems more objective. But more importantly, now it makes perfect
sense to talk about the storage requirement in describing the model itself, which after all
must be done if the decoder wants to recreate the data x from its code. We wish to
emphasize that our information theoretic view of estimation differs in an essential manner
from the earlier approaches that depend on the mean of the self information, the entropy,
Jaynes [14], or on the so-called mutual information, Kullback [21]. In traditional infor-
mation theory, the entropy is regarded as the ideal mean code length, while the expression
—log P(x| ) has not been of direct interest in terms of a code length. With the introduction
of the powerful “arithmetic codes,” see e.g. Rissanen and Langdon [28], the measure
—log P(x|8) for the ideal code length is more appropriate. For instance, it is applicable
even when the source is non-stationary. In the currently studied case of estimation, its use
is, of course, indispensable.

If we work with a fixed family of models, such that the description of the family does
not depend on x nor the parameters, the cost of the complexity of a model may be taken
as the number of bits it takes to describe its parameters. Clearly now, when adding new
parameters to the model, we must balance their own cost against the reduction they permit
in the ideal code length, —log P(x|#), and we get the desired effect in a most natural
manner. If we denote the total number of bits required to encode the parameters § by
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L(8), then we can write the total code length as
2.1) L(x, 0) = —log P(x | 8) + L(9),

which we seek to minimize over 6. (Throughout this paper we write the binary logarithm
just as “log”). The formula (2.1) reminds us strongly of Bayes’s formula, written in a
logarithmic form. In fact, if we write @(8) for 27, then P(x, 8) = 27" becomes a joint
probability of x and 6, provided that the prior @(-) indeed is a distribution, which in
general it need not be. There are fortunately natural coding theoretic requirements, to be
discussed in a moment, that do make @ (#) a probability, and (2.1) then becomes a form of
Bayes’s law. We remind the reader that the parameters are truncated numbers, rather
than elements of a continuum, and we do not need to deal with density functions.

There are two important points worth emphasizing in this view of estimation. First, the
minimized total code length (2.1) provides a self-contained measure of the goodness of the
fitted models. Different classes of models can perfectly well be tried and their performance
compared against the same set of data. Ordinarily this is not possible because of the danger
of “tailoring” the models to the data, and a fresh batch is needed to evaluate the results.
What prevents “cheating” here is the requirement that the parameters, too, must be
described, and it does not pay to let the parameters incorporate the coding of x and hence
claim a zero length code for it. The second point is that the meaning of the description
length L(6) and the associated probability 2 *® of the parameter ¢ remain conceptually
the same, whether we assume the existence of a frequency distribution or whether we view
the parameters as individual objects for which no prior frequency distribution makes sense.
In both cases, the parameters must be described one way or another, which offers a neat
solution to the qualitative part of the bitter Bayesian—non-Bayesian dispute about priors;
the quantitative part, namely, which prior distribution to assign to the parameters, remains,
and it perhaps will never be settled to everyone’s satisfaction. However, in the next section,
we do our utmost to narrow the available rational choices to what we feel is quite irrelevant
variations from something that may be regarded as a fundamental property of the natural
numbers.

Our plan is to reduce the coding of the parameters to that of the natural numbers. In
order to get an idea of this process, suppose the parameter is a single binary number such
as 1011.11, written in two fractional places. By dividing this number by the precision % we
get the integer n(f) = 101111, which is seen to have the length 1 + [log n()] = 6, where
[ y]is the greatest integer not greater than y. Hence we conclude that to describe the scalar
parameter 6, it takes about log n(6) bits, where n(d) is obtained by dividing 6 by its
precision. The case with a vector parameter is similar, albeit more involved, and we leave
its dicussion to Section 4.

The description length of the parameters may thus be reduced to the calculation of the
length required to describe integers (provided that the precision is also communicated to
the decoder), and it may seem that this induces a natural prior distribution for them,
namely, 276" = 1/n. These inverses, however, are not summable, and they therefore do
not define a proper prior distribution. Curiously enough, Jeffreys [18] argued that for a
real valued parameter z the correct prior density, expressing complete ignorance, should
be dz/z, which for integer valued parameters gives the distribution 1/z. The fact that the
integral of dz/z diverges was not regarded as too disturbing; such priors are simply
accepted as “improper” densities. No other than a pragmatic ad hoc meaning has been
offered, however, for such “improper” densities. For an illuminating discussion of the
various approaches to capture the elusive notion of a prior that adequately reflects initial
ignorance or near ignorance about the parameters, we refer to Cox and Hinkley [3, pages
377-379].

There is a quite natural interpretation of the properness requirement in terms of code
lengths, which will allow us to modify the preliminary choice 1/n so as to give a universal
prior distribution for the integers. Since the codes of both 7(8) and x are binary strings, we
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cannot just attach them next to each other, for the decoder must be able to tell which
portion of the total code string includes the code of n(#). After all, he must be able to
decode the parameters before he can start decoding the observed sequence from the rest
of the code. We cannot use a special third symbol as a separating comma, because then the
code string is no longer binary. It is well known, see eg. Elias [5] and Chaitin [2], and with
a little thought easily appreciated, that if the decoder always reads the code string from
left to right, then a both necessary and sufficient condition for the decoder to be able to
separate the codeword from whatever binary string follows it, is that the codewords for the
integers form a prefix set. This means that no codeword is allowed to be a prefix of
another. Indeed, otherwise, how possibly could the decoder know, having reached the end
of the shorter codeword, that this is the codeword meant to stand for the encoded integer
rather than the longer one.

The prefix property has the important implication that necessarily the length L(n) of
the codeword for integer n satisfies the Kraft inequality,

(2.2) Y= 27 = 1L

To see why this is true, consider the infinite binary tree with the root node up, the nodes
marked 0 and 1 in the first level below the root, the nodes marked 00, 01, 10, and 11 in the
second level, and so on. Observe, that the sum of the terms 27 equals one, when I runs
through all the nodes at each level, and L(i) denotes the number of symbols in the marking
of node i. Now, assign any so-marked node as the codeword for the integer 1, say in the
level L(1), and prune the tree by dropping all its descendant nodes so that this node
becomes a terminal node; i.e., a “leaf.” Form the sum S = 272, Next, assign another node
to the next integer, 2, such that it is not in the path leading to any previously assigned
codeword nodes, and that when the node’s descendants are pruned, the remaining tree still
has infinitely many nodes left. That is to say, we do not “close up” the tree, which in this
case would happen only if the two first level nodes were assigned as codewords. Add the
term 27 to S. Continue by assigning codewords in this manner to all the integers, and it
is clear that S remains less than one, which implies (2.2).

In order to satisfy the requirement of a prefix code, we then must assign a longer
codeword to the integer n than [log n], the additional bits required to describe where the
codeword ends. And by (2.2) the minimum requirement is to make the numbers 27 add
up to one, which is precisely what we need in order to get a proper prior. Exactly how
prefix codes are designed for the set of integers is not an entirely trivial matter, because
clearly we cannot just list them in a table but, instead, an algorithm is needed to define
them. Although we do not actually need to construct them either, we illustrate a basic idea
which also serves another purpose. Suppose that we were to store the binary integer n =
101101000010110 in a computer, where other binary data follows it (after all, we never
have the computer for ourselves alone!). We attach in front the binary number 1111 to tell
the decoder that the next 15, or about log n symbols, define our integer. However, this is
not enough, because how do we know that the given 4 = log 15 = loglog n symbols, rather
than 3 or 5 or any other number of initial symbols, have the required length information?
So, we tell this by assigning 3 =~ log 4 symbols, namely 100, to form another preamble. We
end up assigning 22 =~ log n + loglog n + logloglog n symbols to define the integer n in a
self containing manner. (The description as given is not quite complete; for a complete
description, see Elias [5].)

We conclude this section with a review of the relevant works that may be regarded as
the predecessors of our approach. The outlined minimum description length principle to
do estimation has its roots in the algorithmic notion of information due to Solomonoff [30]
and Kolmogorov [20]; see also Chaitin [2] and Levin [24]. In that notion the information
content of a (binary) string is defined to be the length of its shortest description; i.e.,
program that generates it, in a universal computer. Hence, in a sense, any of its generating
programs may be viewed as a model for the string, and the shortest ones are the best. A
theorem of considerable conceptual importance due to Kolmogorov states that there is no
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program that would accept strings as the input and would produce as the output their
shortest generating programs. Accordingly, it would be futile to construct an optimization
problem, which seeks to isolate the best model among the class of all computable ones.
The reason we do not get into a fundamental problem of this kind is that in our set-up we
do not attempt to find the absolutely best model; rather, we seek a model within a
restricted class, whose exact specification is left to the designer to suit the application at
hand. For instance, for time series we may wish to consider the class of ARMA (Autore-
gressive Moving Average) models, without claiming that the best description of the
observed data is to be found within this class.

While the models involved in the algorithmic theory of information are non-probabilis-
tic, in the work of Solomonoff [30, 31], a very general apparatus is proposed for the
generation of probabilities for all finite strings. In essence, the idea is to assign a probability
to a given string proportional to 3 27“ where L (i) denotes the length in the ith generating
program for the string, and i runs through all such programs. Hence, a string with many
short programs in a universal computer gets assigned a high probability. This way, in
effect, each universal computer generates a random process with its probabilities, which
then can be used as a basis for inference. Because of the halting problem, however, the
resulting probability function is not computable, and certain computable approximations
are required. Much as in the algorithmic theory of information, Solomonoff seeks a globally
best probabilistic model for observed strings. While this approach has undeniable, and
should we say, philosophical appeal, it is futile to expect that one in any way would ever
be able to find all the possible generating programs for long strings, and therefore the
evaluation of the so defined universal probability assignment cannot be done, except,
perhaps, for some very special strings. And again we are led to the more modest approach,
where we consider a restricted class of models, already given in terms of probability
distributions (except for the prior for the integers, to be discussed!), whose selection
requires human ingenuity and intuition, but where the results are directly applicable.

Further, we mention the works of Good [8, 9], where information-like measures for
“explicativity” and weight of evidence are studied. Although the proposed measures do
not generally admit a description length interpretation, no more than the penalty term
added to the likelihood in Good and Gaskins [10], the deep and philosophical observations
in [8] and [9] do have some relevance to our basic notions. For example, Good in [9]
maintains that the number of dimensionless parameters in a “law” is not an adequate
measure of its complexity, because a parameter such as 5.4603 is more complex than
another such as 2. Our Section 4 deals exclusively with this issue. Good also discusses the
celebrated “Ockham’s razor,” which in its statement “plurality is not to be assumed
without necessity” aptly captures the guiding principle in this paper.

After the first writing of this paper we became aware of a beautiful study of simplicity
in induction by J. Kemeny [19], which in spirit is perhaps the closest prior publication to
ours. Criticising the naive use of “Ockham’s razor” to eliminate excess complexity in
hypotheses, Kemeny suggests the following rule for model selection: Pick the simplest
model compatible with the observed values. ‘This he argues to be the way scientists
actually construct their theories (= models). He then sets out to explicate the two vague
terms in the rule, “simplest” and “compatible.” The latter is done by declaring a hypothesis
compatible, if the observations fall within its 99 percent confidence interval, while the
notion of simplicity is entirely in line with the modern notions of complexity of description.
Moreover, at the end of the paper Kemeny suggests (crediting N. Goodman for it) that one
might try to find a criterion which combines simplicity and compatibility in an optimum
manner, which would eliminate the need for the arbitrarily selected confidence level. And
this is exactly what our principle does!

Having done a fair amount of literature search, we are led to the conclusion that while
the basic elements in the principle of minimum description length can be found in several
earlier papers, and they have been applied to various related ends, a clear formal
declaration of the principle itself as a means to do estimation does not seem to have been
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made prior to our paper in [25]. In addition, as will be evident, quite a bit is needed to
convert this commonsensical principle to an explicit formula, applicable directly to a
variety of estimation problems.

3. A universal prior for integers. Although the MDL principle appears to be free
from subjective value judgments, there still remains something to be selected, namely, the
coding of the integers. It is true that we could adopt Solomonoff’s probability assignment
to the integers, but what would be the point? We might just as well take the step all the
way and adopt his probability assignment to all strings, and there would be no need for
our MDL principle at all. It seems clear that it is at this point that we must make a
compromise and try to construct a probability assignment to the integers, or, equivalently,
a coding system, which is as free from subjective preferences as we can make it, while
giving at the same time a formula, which permits us to evaluate the probability of any
integer. Although we will have to settle for something less than a unique undisputedly
superior coding system for the integers, that would satisfy the philosophically minded
reader, we believe to have isolated the essence of such a system. This, fortunately, is all we
need, because it allows us to work out an approximation to the total description length
(2.1), which is sufficiently accurate to allow us to estimate parameters in models of
unprecedented complexity.

In this section we draw on the work of Elias [5], where several coding systems for
integers are described. Since we really do not need the codes themselves, we abstract from
them a mathematical length function, which we prove to have the desired properties. But
first we approach the problem from a different direction, mostly in order to get perspective.

Traditionally, statisticians have been concerned with the problem of how to express
one’s initial ignorance about parameters, which range over a subset Z of integers. The crux
of the problem is to define precisely the notion of “initial knowledge.” We take a direct
approach and define initial knowledge to be any set & of distributions P = (P(1), P(2),
-++) on the set Z. We call P a “test” distribution. The intent is to regard the initial
knowledge about the integers to act as constraints, so that little knowledge corresponds to
a large class, and vice versa. For example, let € consist of all non-singular distributions on
the interval [1, M ], where a distribution is non-singular if P (i) < 1 for all i. This set reflects
the initial knowledge when only the upper bound M is known about the integer.

We regard the test distributions as adversaries for the task of constructing a prefix code
for the integers, i.e., a code where the lengths of the codewords satisfy the Kraft inequality
(2.2). Instead of the entire code we really need only the sequence of the codeword lengths
L = (L(1), L(2), ---), defined on the same set of the integers as the test distributions.
Being forced to use just one code for all the test distributions, we find it sensible to look for
one which is no worse than it has to be. In other words, we seek to optimize the worst case
code performance, where the natural measure of a code’s performance is the code efficiency,
defined to be the ratio of the entropy to the mean code length, or, equivalently, its inverse

(3.1 minz supreg Yuez [P ()L (0)]/H(P).

In addition, we require L to satisfy (2.2), which the optimal code is seen to do with equality.
This causes the distribution 2", defined by the code, to be necessarily proper.
To test this approach we work out two examples.

ExamMpPLE 1. Let @ consist of the single member P, as in a Bayesian case. The solution
to (3.1) is by the fundamental inequality in information theory, Gibbs’ theorem, seen
to be L(i) = —log P(i). (This result, provable by direct optimization, states that
=Y P(i) log Q(i) = =Y P(i) log P (i) whenever the @(i)’s add up to one, and the equality
holds if and only if @ (i) = P (1), for all i.) The prior defined by L (i) is therefore P, which,
of course, is an entirely noncontroversial result.

ExampLE 2. Let Q consist of all non-singular distributions on [1, M]. Because for a
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length law there is no finite supremum to the ratio in (3.1), we restrict the test distributions
further such that H(P) = ¢. This does not, however, weaken the result, because we have
the solution: For every ¢ and every length sequence L,

(3.2) maxp(log M)/H(P) < maxp{3™, P(i)L(i)}/H(P),

where P is restricted such that H(P) = ¢. The equality holds if and only if L (i) = log M.
Hence, again, the resulting prior @ (i) = 1/M agrees with the generally accepted uniform
distribution, which, however, is usually obtained on the dubious grounds of “insufficient
reason.” This, incidentally, appears to be only the second formulation of an optimum
problem with the uniform distribution as the solution. The first was done by Jaynes; it
follows at once from the results in the last section in the absence of the constraints (5.2).

To prove (3.2), let L be a minimizing sequence, and suppose L (i) < L(k) for some
indices ¢ and %. Then for any maximizing P it must be the case that P(i) = P(k), because
a permutation of the indices does not change the entropy. Add A(Z) to L (i) and subtract
A(k) from L (k), where these increments are chosen so that the equality in (2.2) holds.
This means that within terms of order {A(i)}% A(k) = — 22720 A((). Hence, for these
increments small enough

A@YP®E) + AR)P(R) = AG){P(i) — P(k)2"P 10} <,

which reduces the right hand side ratio in (3.2) for every such maximizing P and hence
contradicts the optimality of L. Therefore, L (i) = L (k) for all i and %, and by the equality
in (2.2), L (i) =log M.

These two examples, where generally accepted priors exist, suggest that our formal
approach appears to work in the desired manner, and we are ready for the main case: the
set Z consists of all positive integers. The first task is to select the set of test distributions
to reflect the prior knowledge, which in this case amounts to ignorance or near ignorance.
In fact, we do have some idea of the integer that we expect to turn out in, say, estimation:
We expect its size to depend on the number of parameters, and hence very large integers
requiring hundreds of digits to write down may occur. Although we cannot claim that the
bigger the integer the less likely its occurrence, we still feel that this is so eventually. Such
considerations cause us to put the constraints as follows

(1) 1> P(@) foralli, and P(i) = P(i + 1), i > M, for some M,

33) (i) HP) = — Y P(i) log P(i) = .

Clearly, we have no idea of the number M. We may view the second condition, namely,
that the distributions have infinite entropy, as a technical condition, needed to get a
solution. It plays a role similar to the non-singularity condition in Example 2. One might
also justify it by saying that a finite entropy on an infinite set is a nongeneric exceptional
case, because it requires the bulk of the probability mass to lie in a finite interval. If we
knew that to be the case, we would use the solution in Example 2. The fact that the mean
ideal code length in this case is inifinite, does not, of course, lead to absurdities; every
integer still has a finite code length.

Consider a code which maps the set of all positive integers Z to the set of all finite
binary strings in a one-to-one fashion, where, moreover, the codeword lengths L(z) satisfy
the Kraft inequality (2.2) with equality. We also put 0 < L(i) < L(i + 1) for all ;. This turns
out to be a harmless restriction, because we will not find a better code even if we allow the
wider class of codes where this constraint is relaxed. Furthermore, we feel that the
universal prior 27, defined by such a code, ought to be monotone nonincreasing, for
otherwise one might wonder what the remarkable integers are where the successors have
a higher probability. Such codes were called representations of integers by Elias [5].

We are then led to considering the following problem

(34) minzsupplimy_.{ Y 1 PG)LEH}/{— Y¥: P()log P(i)},
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where P = (P(1), P(2), - - -) is a sequence of probabilities satisfying (3.3), and the monotone
nondecreasing sequence L = (L(1), L(2), --.) is to satisfy (2.2). We call any solution to
(3.4) an optimum length sequence.

Define for any positive number x, x = 1, see Leung-Yan-Cheong and Cover [22], who
used the construct to obtain lower bounds for the mean code length, log*(x) = log x +
log log x + :-., where the sum involves only the non-negative terms, whose number is
clearly finite. These authors also proved that the sum ¥ 27°6"® = ¢ is finite; in fact, we
show in Appendix A that ¢ ~ 2.865064. If we put L°(n) = log*(n) + log(c), the Kraft-
inequality holds with equality, and the sequence L° defines at once a universal prior for
the natural numbers:

(3.5) - Q) =27"" for n>0; Ln)=log*(n) + log c.
THEOREM 1. The sequence L°(n) is optimum.

The proof is given in Appendix B.
We see that @(n) is given by

(3.6) Q@) =(1/n) X (1/logn) X --- X (1/log - .- log n) X (1/c¢),

where the first factor corresponds to Jeffreys’s improper prior. The other terms reduce
this dominant factor just enough to make @(n) a proper distribution. We can extend this
prior to all non-negative integers by putting @(0) = % and replacing ¢ by 2¢. To extend this
distribution to the set of all integers, add one to L%(n), and put @(—n) = Q(n).

A coding theoretic interpretation of the length sequence L° was already given at the
end of Section 2, which, perhaps, together with Theorem 1 makes it a natural choice as the
representative of the optimum solutions. We point out that in the log* function we cannot
increase the base of the logarithm so as to generate a more efficient code without losing
the summability of 27", However, other optimum solutions exist, such as L'(n) =
log n + 2 log log n + ¢/, where ¢’ is a positive constant, but we can prove that they all have
log n as the dominant term, so that at least to a first approximation all universal priors for
the integers behave alike. One may object to the choice of L° as the representative of the
optimum solutions on the grounds that it is more complex than, say, L'. A counter
argument is that complexity here refers to the amount of computation needed to evaluate
the function, which we are not particularly concerned with. An additional supporting
argument is that L°(n) is shorter than L'(n) when the integers get larger. For example, for
n = 2" =10°, L°(n) =~ 40 while L'(n) > 42. In fact, we do not know of any other explicitly
given optimum solution which would have a shorter length than L°(n) for large integers.
For this reason, our view in the issue is this: Until someone comes up with a more efficient
representation of the integers, we might as well use the best known to us; if again the
emphasis is in simplicity of computation, we may pick as few of the leading terms as
desired, often just the first.

THEOREM 2. For every optimum length sequence L,
log n < L(n) <log n + r(n),
where r(n)/log n— 0 and r(n) — » as n — .
Proor. The first inequality follows from the fact that L(n) is monotone nondecreasing
and satisfies the Kraft-inequality. Indeed (Wyner’s inequality [33]),
1> 2—L(1} 4o ¥ 27L(n) > n2—L(n)'

To show the rest, suppose r(n)/log n > ¢ for all n. With the notations Ly = @(1)L(1)
+ .+ + Q(N)L(N) and Hy = —Q(Dlog Q(1) — --- — @(N)log Q(N), where Q(i) is from
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(3.6), we would then have
Ln/Hy > (1 + e)(TE: Q()log i)/Hy = (1 + &)(TX, gwilog 9)/(— TV guidog g — log Qu),

where @y = Q(1) + - - - + @(N) and g = Q(i)/Qn. We show in Appendix A that Hy goes
to infinity with N, which with the fact that @y — 1 implies that also the entropy in the
denominator goes to infinity. Now, by Theorem 4 in Elias [5], the right hand side ratio
tends to 1 as N grows. Hence, the sequence L(i), when applied to the distribution Q(i),
which satisfies the conditions (3.3), is seen to contradict the assumption of its optimality.
Hence, r(n}/log n — 0. Clearly, L(i} does not satisfy the Kraft-inequality unless r(n) —
o, 0O

It is worth summarizing in conclusion the meaning of the so-found prior distribution.
First, it is based upon a description of integers, and hence it is independent of the
assumptions about the role the parameters play. They may have an unknown frequency
distribution, or, more importantly, they are allowed to be unique individual objects, such
as a design parameter in a new industrial pilot plant which has never before been in
existence. In contrast to the traditional and controversial interpretation of the prior as a
subjectively selected “degree of rational belief” or “odds” in an imaginary betting game,
our view is quite concrete and objective: The parameter value, being just an integer, must
be described among all its possible values; i.e., all the integers. That the coding ought to be
done the best we know how appears only to be a prudent requirement.

Ideally, we would have liked the set of the constraints (3.3) to have ensured a unique
solution, but that was not to be. A consolation is, of course, provided by Theorem 2, which
does not permit much leeway for the universal priors. With this theorem we not only get
added confidence in using Jeffreys’ improper prior 1/n, but our interpretation also provides
a natural explanation of what is being sacrificed in this approximation: the comma between
the code of the integer and its preceding length information is being omitted. This is of
some importance, because this writer, at least, has always felt uncomfortable when a
distribution is being approximated by a nondistribution, as the case was with Jeffreys’s
interpretation.

4. Optimal precision. Having a universal distribution on the integers, we now return
to the calculation of the length L(#), required to describe vector parameters of components
that are truncated real numbers. In many cases of interest the first term in (2.1) is
dominant, and for each number of parameters the minimizing parameter values are close
to the ML estimates. Hence, the problem is to decide on the precision to be used for the
ML estimates of the vector 4. Clearly, if we use a coarse precision and describe each
parameter with only a few bits, the second term L(8) will be small, but ‘the first term will
grow from its minimum, since we in general are no longer using the correct ML estimates.
In [25], following a suggestion by Wallace and Boulton [32], we solved the optimum
precision problem in a manner which initially appeared to be adequate but which now can
be seen to have the defect that the resulting estimation criterion lacks the necessary
invariance properties (This is no reflection on the cited authors, who discuss a different
case where no such defects occur.)

Recall in Section 2 that we regard the space of the parameters 8 for each value of & to
be the space R*. The relevant point here is that the parameters are not constrained by
equations so as to make their image in R* a hyper surface. Originally, the parameters may
well be so constrained, but the parameters that we are considering here are thought to
form an independent generating set. In the following discussion let # denote the ML
estimate.

Fundamentally, a truncation process calls for a definition of an equivalence relation for
the pairs of vectors in R* and a selection of a representative in each equivalence class as
the truncated value for each of its elements. We pick the equivalence classes to be of some
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easily described type, such as translates of a k-dimensional parallelepiped A, and the
truncated value 6’ of the parameter § may be taken as the center of the parallelepiped in
which ¢ falls. Further, these representatives 8’ are converted efficiently to integers by
ordering them, and the code of 8’ is the position index of the first rectangle in the ordered
list that includes 6. Clearly, the ordering is to be done independently of any particular
element of R, except the origin, and all orderings are equivalent unless we add other
desired requirements, as we shall do in a moment when we also sketch in a bit more detail
a particular enumeration of the rectangles. We also comment on the selection of the origin
later.

The knowledge of the class of the models {P(x/8)} permits the selection of the basic
parallelepiped A to be done in a manner which in some cases is optimum and in other
cases locally optimum. For this, we assume the usual smoothness of the term
—log P(x/6), so that we can expand it around its minimizing point §, the maximum
likelihood estimate, to within second order terms as

(4.1) —log P(x/§') = —log P(x/8) + (8, M(6)5).

Here § = 6’ — 6, and (x, y) denotes the inner product. M(4) is the symmetric operator
defined by the second partials of —log P(x/#). Since we picked the truncated value 8’ as
the center of the parallelepiped of the same shape and size as A, we conclude that the
maximum value for the quadratic term results when @ falls at one corner. Instead of the
maximum value, we could calculate a mean increase by assuming some distribution for the
deviation of § from the center of its enclosing rectangle. Using the maximum value has the
advantage, however, that it is independent of such distributions. We further see that for a
fixed permitted maximum deviation d = (8, M(#)35), we achieve the coarsest precision if we
pick the parallelepiped A a rectangle within this ellipsoid so that its volume V is maximized.
Such a rectangle turns out to have the edges parallel to the principal axes of the ellipsoid,
and the maximum volume is given by

4.2) V(d) = (4d/k)V/P*/Vdet M(8).

This rectangle A may well be regarded to provide the precision on the level V(d),
depending on the parameter d, for the space. In the ideal case, where M(4) does not
depend on 8, the decoder can calculate A from the description of the model class alone.
But even in other cases in which M(#) changes smoothly with 8, we may use a fixed
approximation of the eigenvectors and eigenvalues of M(8) to provide a near optimum
truncation of #in a neighborhood, and hence to arrive at an estimation criterion to evaluate
the parameters within that neighborhood.

As stated above, the shifted rectangle in which 6 falls, and therefore its index n(8), too,
as the code of its truncation, depends on the particular way the space R* is covered by
these rectangles. Just as the universal code length for the integers is a monotone nonde-
creasing sequence, we clearly want an enumeration of the rectangles to be such that the
index grows with the distance from the origin. The question is which norm to use to
measure the distance. By and large, we will end up in a similar code length for § no matter
which norm we use, but we will get a particularly satisfying invariance property if we pick
the natural norm, || 8 || 19 = v (8, M(6)8), which also has to do with statistical “curvature,”
Efron [4]. We sketch how the rectangles are made to cover the space so as to correspond
to this norm. First, the maximal rectangle A(1) = A within the ellipsoid (y, M(8)y) = d is
centered at the origin. It cuts the principal axes at points, defined by the vectors a, of
length v(d/(kA.)), where A, denotes the ith eigenvalue of M(#). The other rectangles A(2),
A(3), - -, are translations of A to the centers z = nia; + . -+ + nzax, where n, are integers.
Moreover, we place these centers so that the set of the rectangles within each ellipsoid of
the form (y, M(6)y) = constant forms a consecutive sequence A(1), --., A(n). In other
words, we cover the space in a growing spiral fashion following the elliptic surfaces.

As a consequence of this enumeration, the index n(#) is given approximately by the
ratio of the volume enclosed by the ellipsoid (y, M(8)y) = D = (8, M(8)8) to the volume
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V(d), or n(8) = C(k)(kD/4d)** + O(| A|), where O(| A |) represents a portion of the very
last layer of the rectangles intersecting the surface of the ellipsoid. Further, |A| =
2v(d/kAmin) denotes the maximum edge of the rectangle A, where Amin is the minimum
eigenvalue of M(f). Because Amn grows asymptotically like N, | A | shrinks asymptotically
like 1/ VN. The coefficient C(k) is defined by the volume of the k-dimensional unit ball,
and it is given by
Clhy = {(277)‘1/2’k/(1/2k)!2<1/2’k, k even,
gWDE Dk sk + 1)) /(R + 1), kB odd.

Using Stirling’s formula we get
(4.3) log C(k) = — Ya(k + 1)log k + % k log(2me) + r(k),

where r(k) satisfies ¢ < r(k) < ¢ + 1 for a constant c.

From (4.2) and the just derived formula for n(f) we see that the larger the permitted
deviation d/2 is from the minimum —log P(x/#), the larger volume V(d) we get, and the
smaller the index n(#) will be. We may ask for the value of d which minimizes the sum

(4.4) log*n(8) + d/2.

The solution is easy if we replace log* by log. Omitting the term O(| A |), the optimum
value for d is by a straightforward differentiation seen to be ka, where a = 1/log e, or
about 0.693.

When the resulting optimum value is added to —log P(x/8), we get the approximation
to the total code length as

L(x, 6) = —log P(x/0) + klog |0 ||me + log C(k).
A normalization with (4.3) gives

£(x, 8) = —(1/N)log P(x/8) + (k/2N)log(2meN/k)
+ (k/N)log |16 ||re) + O((log k}/N),

where I(§) = M(8)/N. If the sum of the second and the third terms in (4.5) is negative we
drop them both, because it means that the index n(#) is one, which, in turn, means that ¢
is truncated to the 0-vector. The intended use of this criterion is to successively minimize
it for each £ = 0, 1, - .- over the parameters ¢ until a minimizing % and the associated
parameters are found.

The minimization problem (4.4), where log* is retained, can also be solved, numerically
at least, but a new difficulty arises. To illustrate this, let us use the approximation log n
+ log log n for log*. Then the minimizing value for d is given by ak(1 + a/log n(6)). The
fact that d now depends on ¢ implies that each truncated # requires its own precision. This
leads to a complex coding system, although still an implementable one. To see the
peculiarity of the resulting coding, consider the jth rectangle, j < n(6), in the sequence 1,
<+« J, =+, n(8) of the rectangles that are closet to the origin than (). This rectangle is
not the optimum equivalence class of its center, say. If we wish to encode this center
optimally, we shall have to construct a new sequence of rectangles 1, - - - , 7(6) of a different
size than those in the sequence for n(6). We might say that each point in the space carries
along its own yardstick to measure its path length to the origin. In order to avoid such a
cumbersome coding system, we use the same value for d as above, namely, d = ka, which
gives an approximation to the ideal code length as

(4.6) [*(x,0) = —(1/N) log P(x/0) + (1/N) log*{C(k)[N 4, I(6)8)]V?*}.

(4.5)

This has the advantage over (4.5) that it admits a Bayesian interpretation.

REMARKs. If the criteria (4.5) and (4.6) purport to express an intrinsic property of the
data and the given family of models, then, clearly, the result ought to be independent of
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scaling of the parameters and, more generally, of selection of coordinate systems. The
dominant first term, the maximum likelihood term, causes no problems, for any invertible
transformation g: R* — R* 8 — 6” = g(8), only relabels the same set of the parameters,
and the value of the minimum —log P (x/8) certainly does not change with such relabelings.
The second term in (4.5), clearly, remains the same if we for the moment keep the number
of the parameters fixed. The third term in (4.5) and the second in (4.6) are the ones of
possible concern, because they involve a specific functional form, namely, the quadratic.

Let g¢ R* - R”* be a twice differentiable transformation such that the Jacobian 86/06”
is nonsingular. If we differentiate —(1/N) log P (x/6") with respect to the variables §”, we
then have

4.7) ' 17(6") = (86/06")'1(6)(a6/96"),

where we used the fact that the first partials of —log P(x/6) vanish at the ML estimate 4.
The prime ’ denotes the adjoint, or the transpose of the Jacobian matrix, if we regard the
parameters as expressed relative to a coordinate system. We see immediately that the
quadratic forms (6, I(6)8) and (8", I(6”)8”) are equal if g is a non-singular linear
transformation, for example, one resulting from a coordinate change. This undoubtedly is
reassuring.

The penalty term, the second term in (4.6}, can be brought to 0 by a shift of the origin
to 8. Does this invalidate the entire process? We think not. When we selected the
enumeration of the rectangles A, we assumed that the origin of the space R, is determined
by the entire family of the models {P(x/6)} and by the functions that map the permitted
set of the independent parameters into R*. Hence the origin gets determined without
knowledge of any particular value of 4, and the decoder can calculate it from the description
of the background information, whose length adds just a constant to the criterion. If we
wish to change the origin to the minimizing parameter §, so as to make its index 1, we
clearly must describe this special choice to the decoder, in which case its cost is the same
as that of §, and nothing is saved. The situation is analogous to the choice of the universal
computer in the algorithmic theory of complexity with its representation of the integers.
It is meant to be selected impartially without having any particular integer value in mind,
whose representation we would like to and which we could make very short.

Neither does the third term in (4.5) remain invariant under invertible non-linear
transformations. Without having a clear understanding of the implications of this, we can
report a significant class of applications, where it gives the criterion (4.5) a singular power
to discriminate between “good” and “bad” models with the same number of parameters;
Rissanen [27]. These are the so-called ARMA models for vector time series, which are
described by points on an analytic manifold. To give a glimpse of the relevant point,
consider the unit circle {(x, ¥} | x* + y*> = 1} as a manifold. (We are indebted to one of the
referees for suggesting this example.) We cover the circle with two open sets defined by
one parameter each: {(x, y)= (1 — t3)/(L + £%), 2t/(1 + £%)) | —oo < t < 0} and {(x, y) =
(2s/(L + 5%, (1 — 5%)/(1 + )| —o < s < }..If we were to use the first parameterization,
then the point (x, ¥) = (=1, 0) in the manifold could be approximated well with only very
large values of ¢. The vector time series case is more complicated, because the relevant
matrix I(6) in a bad coordinate system tends to singular in such a way that its determinant
stays constant.

The behavior of the criterion (4.5), when only the first two terms are retained, has been
analyzed for scalar time series. The criterion has been shown to lead to strongly consistent
estimates of the parameters, including their number, in AR-processes, Hannan and Quinn
[12] and Rissanen [26], and in ARMA-processes, Hannan [11] and Hannan and Rissanen
[13]. In contingency tables, the criterion, measuring the total amount of information, offers
a perhaps speculative but nonetheless intriguing possibility to discover automatically
inherent links as “laws of nature” in experimentally collected data. In the usual analyses
such links had to be first proposed by humans for a statistical verification or rejection.
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5. Connection with maximum entropy principle. In this final section we show
that Jaynes’s maximum entropy principle is a special case of ours. This is of some
significance because there are a number of important applications where the ML principle
fails but where the maximum entropy formalism has been highly successful [16, 17]. The
maximum entropy principle in its general formulation is as follows. Let a random experi-
ment have ¢ possible values at each trial, and hence ¢™ values in m trials. If the value ¢ for
I < q occurs m; times in the sequence s of length m, then 8; = m,/m defines a probability
for the outcome ¢, and the associated entropy is given by

(5.1) H= _Zisq 0ilog 0;‘.

Consider the subset of all sequences s of length m which satisfy n linearly independent
constraints (n < q)

(5.2) Ziiq A,,-b?i =x; 1 Sj. =n.
The set x = {xi, - - - , x,} constitutes the observed data, measuring n “physical quantities”
defined by a known matrix with elements A;. The probabilities 8§ = (6i, - - - , ;) define the

parameters, which are to be determined so that the entropy H is maximized subject to
(5.2) and the equation that the sum of the parameters is one.

Because of the constraints (5.2) we define our model class as follows: P(x|8) = 1, for all
distributions # in the set determined by (5.2). Indeed, since for any such @ there is a unique
sequence of data x (even if we let the equations (5.2) be non-linear in ), the ideal code
length —log P(x|#) ought to be zero. Further, in this case we clearly should not use the
universal prior for the integers, which presupposes no prior knowledge, because here we
know so much more about the parameters. In fact, by the way probabilities are originally
defined, the counts m; are associated with equivalence classes of sequences, and it seems
natural to define the probability @(6) as the ratio of the number of sequences with counts
m; to the total number of sequences of length m, or Q(0) = C(m,, --., my)/q™, where
C(my, -+ ,my) = ml/m! - .. m,). Minimizing the total description length L (x, 6), (2.1), or
in this case minimizing —log @(#), is now seen to be equivalent to maximizing log
C(my, + -+ ,m,). This with Stirling’s formula amounts essentially to maximizing the entropy
(5.1). The latter will, of course, hold exactly if we divide by m and let m go to infinity, as
we should in conformity with the customary frequency interpretation of probabilities.

APPENDIX A.

We calculate the sum ¢ = ¥ 276" by sharpening the arguments given in [22]. Let log®
denote the k-fold composition of the log-function, and let exp® denote its inverse. For
example, exp @ (x) = x, exp”(x) = 2%, exp@(2) = 2* = 16, and exp®(2) = 26, For brevity,
we write e(k) = exp®(2). The derivative of the k-fold logarithm function, written as
Dlog®(x), is seen to be given by

Dlog®(x) = 1/[a*x(log x) - - (og® " (x))] = (a*)2 '™,

fore(k—2) =x=e(k—1), wherea=1/loge=.69 -..,and e(i) = 1, for i < 0. The first
equality holds for any x for which the &-fold logarithm is defined, while the second equality
holds only for the stated numbers x. Because of this we can evaluate the integral

e(k)
~log”
J 27loE Ty = ght+l
e(k—1)

which in turn gives

f 278y = g**2/(1 — a) = S(k).
e(k)
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Next observe that

n
(Al) 2flog"n <j 2—log"x< 2—log*(n—1),
n—1

which implies that we can bracket the desired infinite sum ¢ by the inequalities
(A.2) St e L Sy <e< T 278 + S(n - 1).

The difference between the two bounds is by (A.1) less than 27°""~V_ By putting n — 1
= 16 = e(2) and calculating the upper bound in (A.2), we get ¢ as 2.86 with error less than
277, By putting n — 1 = 2’ = e(3) = 65536, we get c as 2.865064 with 6 decimals.

We observe in passing that f(x) = 278576 where § = a/(1 — a) = 2.257, defines a
density function for the reals in the interval [1, «). This, moreover, can be extended to all
nonnegative reals by defining for 0 < x < 1, log*(x) = log x + log log 1/x + - - . , where the
k-fold logarithms are continued until the last positive one, and by replacing S by 2S in the
above expression for f(x). This density function is seen to modify Jeffreys’ improper
density 1/x to make its integral to unity just as the case was with the integers. Because the
probabilities of the truncated reals, resulting from this density, do not admit the same
code theoretic interpretations as those derived from our universal prior for the integers,
we do not base our estimation on this density as the prior.

We conclude this appendix by showing that the distribution @ (i) has infinite entropy,
written as H(Q), which is needed in Theorem 2. By retaining from L° only the first term

log i, we have
H@) =Y11/n+ Y52 1/nlog®(n) + Y3 +1 1/nlog® (n)) log®(n) + - -- .
The kth term is strictly greater than the quantity
(1/e(0) -+« e(k—2)) ¥ 1, 1/n>[(1/e(0) --- e(k — 2))e(k — 1) — 1]In(2) > 1.

Here we used the inequality H, > In(n) for the sum of the first n terms in the harmonic
series, and In denotes the natural logarithm.

APPENDIX B

ProOF oF THEROEM 1. Let P(n) satisfy (3.3) and let L(n) denote any sequence
satisfying the Kraft inequality. Denote Py = P(1) + .-+ + P(N), Lv=P()L(1) + --- +
P(N)L(N), and Hy = —P(l)log P(1) — ... — P(N)log P(N). We show first that

(Bl) limN_,mLN/HN =>1.
Let Qv = Q(1) + --- + Q(N), where @ (i) = 27" Then, by Gibbs’s inequality,
N, P(i)log{(@~/Pn)P(i)/Q(i)} = Ly — Hy + Pxlog(@v/Pn) = 0.

The third term goes to 0 as N goes to infinity, and (B.1) follows.
We show next that with L (i) = L°(i) the equality in (B.1) holds for all P satisfying (3.3).
We have immediately (Wyner’s inequality [33]), (/ — M) < 1/P(;), from which,

(B.2)  Hn=YNae P(Nlogli(j — M)/j) = Y Narer P(Nlog(y) —log(M + 1).
Next,
Ly <Y Nares P(Dlog(j) + st P()r(j) + C,

where r(j) = L{Jj) —log j, and C is the maximum of L (¢) for i < M. Let f (i) = r(i)/log(i),
and let K (¢) be an index such that K(¢) > M and (i) < ¢ for all i = K(¢). Clearly, such
indices exist for every positive e. Then, for N > K (),

St PO)r() < € Xilxws1 Pi)og(i) + Rie),

where R (¢) denotes the maximum value of r(i) for { = K (¢). Using this and (B.2) we get



UNIVERSAL PRIOR FOR INTEGERS 431

Ly/Hy<1+e+ {R() + C+ (1 +¢) +log(M + 1)} /Hx.

When we let N go to infinity and observe that the resulting inequality holds for every e,
the theorem follows.
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