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Abstract. It is shown that every separable Banach space X universal for the
class of reflexive Hereditarily Indecomposable space contains C[0, 1] isomor-
phically and hence it is universal for all separable spaces. This result shows
the large variety of reflexive H.I. spaces.

1. Introduction

In 1980 J. Bourgain [B] proved that every separable Banach space X containing
an isomorphic copy of any separable reflexive space must also contain isomorphically
any separable Banach space. This theorem extended previous results proven by
W. Szlenk [S]. Our goal, in this paper, is to show that the conclusion of Bourgain’s
theorem remains valid if we assume that X contains a subclass of separable reflexive
spaces, namely the class of reflexive Hereditarily Indecomposable (H.I.) spaces. We
recall that a Banach space X is H.I. if every infinite dimensional closed subspace Y
of X has no non-trivial decomposition into a direct sum of two Banach spaces. A
classical result, due to J. Lindenstrauss [L], states that every non-separable reflexive
Banach space X contains a complemented separable subspace. Hence the class of
reflexive H.I. Banach spaces contains only separable spaces. The concept of an H.I.
space followed the construction of the celebrated W. Gowers - B. Maurey example
of a Banach space with no unconditional basic sequence [G-M]. Since then the class
of H.I. spaces has been studied by several researchers. We refer the reader to [A-F]
where the development of the theory is explained. In the same paper the following
dichotomy is proved: Every Banach space X either contains an isomorphic copy
of `1 or else it has an infinite dimensional closed subspace which is a quotient of
an H.I. Banach space. This theorem yields that separable H.I. Banach spaces are
not just certain scattered examples but define a large class of Banach spaces. The
result that we obtain in this paper is another strong evidence of this assertion.

Our proof depends on Bourgain’s techniques of constructing reflexive Banach
spaces connected to well founded trees and also it makes use of results contained
in [A-F]. The paper is organized into two sections. The first is devoted to recalling
definitions and results contained in [B], with some small modifications which are
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3232 SPIROS A. ARGYROS

neccessary for our proofs. The second section contains results from [A-F], as well
as the proof of the theorem mentioned in the abstract. The precise statement is as
follows.

Theorem 1.1. Every separable Banach space X containing an isomorphic copy of
any reflexive H.I. Banach space also contains an isomorphic copy of any separable
Banach space.

2. Bourgain’s class {Rξ(Y )}ξ<ω1

This section is devoted to the construction of a family of Banach spaces (Tξ)ξ<ω1

of well-founded trees and a family (Rξ(Y ))ξ<ω1 where Y is a Banach space with a
Schauder basis. Our approach closely follows J. Bourgain’s ideas [B].

2.1. Well-founded trees. We begin by recalling certain definitions concerning
the well-founded trees.
Definition 2.1. (i) A tree T is any partially ordered set, such that for every t ∈ T

the set {s ∈ T : s < t} is well ordered. A tree is called well-founded provided
there is no strictly increasing sequence {tn}n∈N of elements of T .

(ii) An element t of a well-founded tree T is called maximal if for every s ∈ T
with t ≤ s we have that t = s.

(iii) For a well-founded tree T we define T ′ = T \{t ∈ T : t is maximal} and then
we inductively define

T (0) = T, T (ξ+1) = (T (ξ))′, T (ξ) =
⋂
ζ<ξ

T (ζ)

where the last definition concerns limit ordinals ξ.
(iv) The order o(T ) of a well-founded tree is defined as:

o(T ) = min{ξ : T (ξ) = ∅}.
It is clear that for every well-founded tree T the order o(T ) is well defined
and further if T is a countable set, then o(T ) is a countable ordinal.

(v) In the sequel for t ∈ T we set |t| = #{s ∈ T : s < t} which, in the case of a
well-founded tree T , is always a natural number. Further a segment of T is
a subset of the form S = {t : s1 ≤ t ≤ s2}. An initial segment is a segment
for which s1 is a minimal element of T .

Next we define a family (Tξ)ξ<ω1 of well-founded trees, such that each Tξ is a
countable set and o(Tξ) = ξ for every ξ < ω1. The existence of such a family is well
known but we recall its definition since we shall use certain of its properties.

We set T0 = ∅. If Tξ has been defined we set Tξ+1 = {tξ+1} ∪ Tξ where tξ+1

denotes a new object not belonging to Tξ. We define an order on Tξ+1 as follows.
For every t, s ∈ Tξ t <ξ+1 s iff t <ξ s while if t ∈ Tξ we set tξ+1 <ξ+1 t. It is easy
to check that Tξ+1 is a tree and o(Tξ+1) = o(Tξ) + 1 = ξ + 1. If ξ is a limit ordinal
and {Tζ}ζ<ξ have been defined we choose a strictly increasing sequence (ζn)n∈N
such that lim ζn = ξ. We may also assume that (Tζn)n∈N are pairwise disjoint and
we define Tξ =

⋃∞
n=1 Tζn ordered in the natural manner. It is also easy to see that

Tξ is well-founded and o(Tξ) = ξ. The following properties are straightforward
consequences of the inductive definition. We state them explicitely for later use.

The family (Tξ)ξ<ω1 satisfies the following:
(i) Each Tξ is a countable set.
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(ii) If ξ = ζ + 1, then Tξ = {tξ} ∪ Tζ.
(iii) If ξ is a limit ordinal, then Tξ =

⋃∞
n=1Qn such that {Qn}n∈N are pairwise

incomparable subtrees (i.e. for n1 6= n2, t1 ∈ Qn1 , t2 ∈ Qn2 then t1, t2 are
incomparable) and o(Qn) < ξ.

2.2. Tree representation of Banach spaces. Let X be a Banach space. Fol-
lowing J. Bourgain [B] we consider the tree TX =

⋃∞
n=1X

n ordered by the relation
(y1, . . . , ym) < (x1, . . . , xn) iff m < n and for all 1 ≤ i ≤ m, yi = xi. Next for X,Y
Banach spaces, (yn)n a Schauder basis of Y and ε > 0, we define

T (X,Y, (yn), ε)

=

{
(x1, . . . , xn) ∈ TX : ε‖

n∑
k=1

akyk‖ ≤ ‖
n∑
k=1

akxk‖ ≤ ε−1‖
n∑
k=1

akyk‖
}
,

where the inequalities hold for all (ai)ni=1 ∈ Rn.
It follows that T (X,Y, (yn), ε) is a subtree of TX and further on, the space

Y is not isomorphic to a subspace of X iff for all ε > 0 the corresponding tree
T (X,Y, (yn), ε) is well-founded. Moreover, J. Bourgain has proved that:

Theorem 2.2. Let X,Y be separable Banach spaces such that Y has a Schauder
basis (yn)n and X contains no isomorphic copy of Y . Then for every ε > 0

o(T (X,Y, (yn)n, ε)) < ω1.

As a consequence of this theorem we have the following corollary.

Corollary 2.3. Let Y be a separable Banach space with a Schauder basis (yn)n.
Then Y is isomorphic to a subspace of a separable space X if and only if for all
ξ < ω1 there exist ε > 0 and a subtree Sξ ⊂ T (X,Y, (yn)n, ε) with Sξ well-founded
and o(Sξ) ≥ ξ.

The family {Rξ(Y )}ξ<ω1 . For the remaining of the paper Y will denote a sep-
arable Banach space with a fixed Schauder basis (yn)n. We also recall that for
a non-empty set T , c00(T ) denotes the vector space of all finitely supported real
valued functions defined on T . For t ∈ T we denote by et the characteristic function
of {t}. For an infinite countable ordinal ξ we define the following norm on c00(Tξ).
(Tξ denotes the well-founded tree defined above.) For x ∈ c00(Tξ) we set

‖x‖ξ = sup


(∑̀
i=1

‖
∑
t∈Si

x(t) · y|t|+1‖2
)1/2

:

{Si}`i=1 are pairwise incomparable segments of Tξ

 .

Finally we denote by Rξ(Y ) the completion of (c00(Tξ), ‖ · ‖ξ).

Proposition 2.4. For every ω ≤ ξ < ω1 and every Y the following hold:

(i) Rξ(Y ) is a reflexive space.
(ii) There exists ε > 0 such that Tξ is embedded as a subtree in T (Rξ(Y ), Y ,

(yn)n, ε).
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Proof. (i) We make the following inductive assertion:
For every ω ≤ ξ < ω1 and every Y the space Rξ(Y ) is reflexive. This will be

shown by induction.
We begin with ξ = ω. From the definition of Tω we have that Tω =

⋃∞
n=1 Tn

such that each Tn is a well-ordered finite set. Now for any Y with a Schauder basis
(yn)n∈N we observe that

Rω(Y ) =

( ∞∑
n=1

⊕Rn(Y )

)
2

.

In the above each Rn(Y ) is a finite dimensional space isomorphic, with constant
M > 0, independent to n, to a subspace of Y generated by {y1, . . . , ykn} where
kn = dimRn. Hence Rω(Y ) is a reflexive space. To treat the general case assume
that for all ζ < ξ and all spaces Y the space Rζ(Y ) is reflexive. We first consider
the case of a successor ordinal ξ = ζ + 1.

In this case Rξ(Y ) ∼= R ⊕ Rζ(Y ′) where Y ′ = 〈{yn}n≥2〉 and by the inductive
assumption we have that Rζ(Y ′) is reflexive. This yields the reflexivity of Rξ(Y ).
Next if ξ is a limit ordinal and (ζn)n is the sequence of ordinals used in the definition
of Tξ, then we easily conclude that

Rξ(Y ) =

( ∞∑
n=1

⊕Rζn(Y )

)
2

and by the inductive assumption each Rζn(Y ) is reflexive. Thus Rξ(Y ) is also
reflexive and this completes the proof for (i).

(ii) Consider the set

S
′

ξ = {(et1 , et2 , . . . , etn) : {ti}ni=1 is an initial segment of Tξ} .

Then clearly S
′

ξ defines a subtree of TRξ(Y ) isomorphic to Tξ. Moreover every
(eti , . . . , etn) in S

′

ξ is M -equivalent to (y1, . . . , yn), the initial segment of the basis
(yn)n of the space Y , with M independent to n. This shows that for ε = 1

M the
tree S

′

ξ is a subtree of T (Rξ(Y ), Y, ε) and this completes the proof.

3. Hereditarily indecomposable spaces

We start by recalling, from [A-F], the definitions of thin and a-thin sets.

Definition 3.1. Let W be a convex, symmetric, bounded and closed subset of a
Banach space X . Then:

(a) The set W is said to be thin if for every Y infinite dimensional subspace of
X there exists ε > 0 such that for all λ ∈ R, BY 6⊂ λW + εBX .

(b) The set W is a-thin where a = (an) is a null sequence of positive real numbers
provided the equivalent norms {‖·‖n}n defined by Minkowski’s gauges {2nW+
anBX}n are not uniformly bounded on BY for every infinite dimensional
subspace Y of the space X .

The concepts of thin and a-thin sets play a key role in the study of quotients of
H.I. Banach spaces. Thin sets were introduced in [N] while the notion of a-thin sets
is due to B. Maurey ([A-F]). It follows readily from the definition that every thin
set is also a-thin for every null sequence a = (an)n. Further if W is a-thin, then it
is also b-thin for every sequence b = (bn)n with 0 < bn ≤ an.
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Next we briefly recall how the a-thin property of a set W is used in [A-F].
Suppose that W is an a-thin set in a separable Banach space X . We denote by

Xn the space (X, ‖ · ‖n) where ‖ · ‖n denotes the equivalent norm defined by the
gauge 2n ·W + anBX . Consider the vector space (

∑∞
n=1⊕Xn)00 of all sequences

(xn)n∈N which are eventually zero. One of the main results in [A-F] is the following.

Theorem 3.2. There exists a norm defined on (
∑∞

n=1⊕Xn)00 such that if we de-
note by X̃ = (

∑∞
n=1⊕Xn)∗ its completion, then the following hold :

(i) The sequence (Xn)n defines a Schauder decomposition of X̃ (i.e. every x̃ ∈ X̃
has a unique representation of the form

∑∞
n=1 xn, with xn ∈ Xn).

(ii) If we denote by ∆X̃ the closed subspace of X̃ consisting of all elements of the
form (x, x, . . . , x, . . . ), x ∈ X, with finite norm, then ∆X̃ is an H.I. space.

(iii) Moreover if the initial space X is reflexive, then the same holds for the space
X̃ and hence ∆X̃ is also reflexive.

Let us observe that for x ∈ W we have that ‖(x, x, . . . )‖∗ ≤ 1 and therefore
it belongs to ∆X̃ . Furthermore the projection j : ∆X̃ → X1 is a bounded linear
injection. Hence the above theorem yields the next.

Theorem 3.3. Let X be a separable Banach space and let W be an a-thin subset
of X. Then there exists an H.I. space ∆ and a bounded linear one-to-one operator
j : ∆→ X such that j(B∆) contains the set W . If X is reflexive, then ∆ can also
be chosen to be reflexive. Moreover, if F is a finite dimensional subspace of X such
that BF ⊂W , then j−1 : F → ∆ defines an isomorphism with ‖j−1|F ‖ ·‖j|F‖ ≤M
with M independent of F .

We now return to the family (Rξ(Y ))ω≤ξ<ω1 with the following.

Definition 3.4. Let ω ≤ ξ < ω1 be an ordinal and let Y be a separable Banach
space with a Schauder basis (yn)n. In the space Rξ(Y ), defined in the previous
section, we define a set Wξ(Y ) as follows. First we consider the set Mξ = {S ⊂
Tξ : S is a maximal initial segment of Tξ}. Given S ∈ Mξ we denote by BS the
unit ball of the (finite dimensional) subspace generated by the set {et : t ∈ S}.
Finally we set

Wξ(Y ) = co(
⋃
{BS : S ∈ Mξ}).

Observe that Wξ(Y ) is a closed, bounded, symmetric, convex subset.

The following will be proved.

Proposition 3.5. For all ω ≤ ξ < ω1 and every separable space Y with a basis
(yn)n the set Wξ(Y ) is a thin subset of Rξ(Y ).

Let us point out that Proposition 3.5 in conjunction with Proposition 2.4 and
Theorem 3.3 yield

Theorem 3.6. For every ω ≤ ξ < ω1 and every separable space Y with a basis
(yn)n there exists a Banach space Hξ(Y ) satisfying the following:

(a) Hξ(Y ) is a reflexive H.I. space.
(b) There exists ε > 0 and

Sξ ⊂ T (Hξ(Y ), Y, (yn)n, ε)

such that Sξ is a well-founded subtree of T (Hξ(Y ), Y, (yn), ε) and o(Sξ) ≥ ξ.
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Proof of Theorem 1.1. Observe that applying Theorem 3.6 for the space Y = C[0, 1]
and any Schauder basis (yn)n of Y , we obtain a family {Hξ(Y )}ω≤ξ<ω1 of reflexive
H.I. spaces such that if a separable Banach space X contains an isomorphic copy
of each Hξ(Y ), then Bourgain’s theorem (Theorem 2.2) enforces the embedding of
C[0, 1] into X . Thus X is universal for the class of separable Banach space. This
completes the proof of Theorem 1.1.

Hence it remains to show how we obtain Proposition 3.5. We start with the
following known Ramsey type result.

Lemma 3.7. Let X, {Xi}ni=1 be Banach spaces and assume that there exists an
isomorphic embedding T : X →

∑n
i=1⊕Xi. Then there exists an infinite dimen-

sional subspace Y of X and 1 ≤ i ≤ n such that Pi ◦T : Y → Xi is an isomorphism,
where Pi is the natural projection onto Xi.

Proof. Observe that it is enough to prove the statement for n = 2. In this case,
assuming that P1◦T is a strictly singular operator we obtain a normalized sequence
(yn)n∈N in X which is Schauder basic and such that

∞∑
n=1

‖T (yn)− (0, P2 ◦ T (yn))‖ ≤ 1.

Then by standard arguments (cf. [L-T]) we obtain a subsequence (yn)n∈M such that
P2 ◦ T : Y → X2 is an isomorphism. In the above Y denotes the space 〈{yn}n∈M 〉.

Before passing to the proof of Proposition 3.5 we make some preparatory obser-
vations concerning the structure of Rξ(Y ). In the sequel, two finitely supported
elements z1, z2 of Rξ(Y ) (i.e. zi ∈ c00(Tξ), i = 1, 2) will be called incomparable iff
for every ti ∈ suppzi, i = 1, 2, we have t1 is incomparable to t2. A similar definition
holds for R∗ξ(Y ).

Lemma 3.8. Let (zn)n∈N be a seminormalized sequence of pairwise incomparable
elements of Rξ(Y ). Then there exists a sequence (z∗n)n∈N in R∗ξ(Y ) such that the
following are fulfilled :

(i) Each z∗n has finite support. This means that each z∗n is a linear combination
of {e∗t : t ∈ Tξ}.

(ii) The sequence (z∗n)n∈N consists of pairwise incomparable elements.
(iii) ‖z∗n‖ ≤ 1 and z∗n(zn) > ‖zn‖

2 .

Proof. It follows from the definition of ‖ · ‖ξ on Rξ(Y ) that if {Si}`i=1 are incom-
parable segments such that

‖zn‖
2

<

(∑̀
i=1

‖
∑
t∈Si

zn(t) · y|t|+1‖2
)1/2

,

then there exists z∗n supported by
⋃`
i=1{e∗t : t ∈ Si} with ‖z∗n‖ ≤ 1 and z∗n(zn) >

‖zn‖
2 . Also we can assume that the collection {Si}`i=1 satisfies the following:
For each i = 1, 2, . . . , ` there exist t(i, 1), t(i, 2) in supp zn such that

t(i, 1) ≤ minSi ≤ maxSi ≤ t(i, 2).

The last condition yields that if (zn)n∈N are pairwise incomparable, then the same
holds for the sequence (z∗n)n∈N and this completes the proof.
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Remark 3.9. A direct consequence of the definition of the norm of Rξ(Y ) is that for
every bounded, seminormalised sequence (zn)n∈N of pairwise incomparable elements
of Rξ(Y ) the following hold:

(i) The space Z = 〈(zn)n〉 is isometric to `2.
(ii) If (z∗n)n∈N denotes a sequence in the dual R∗ξ(Y ) such that (z∗n)n∈N are pairwise

incomparable, ‖z∗n‖ ≤ 1 and z∗n(zn) > ‖zn‖
2 > ϑ > 0, then the map P (x) =∑∞

n=1
z∗n(x)·zn
z∗n(zn) defines a bounded projection

P : Rξ(Y )→ Z.

(iii) Furthermore for for every S ∈ Mξ and x ∈ BS (Definition 3.4) we have
P (x) = λ · zn for some n ∈ N, λ ∈ R and |λ| ≤ ϑ−1.

Proof of Proposition 3.5. First we prove the following:
Claim 1. For every ω ≤ ξ < ω1 and every infinite dimensional closed subspace

B of Rξ(Y ) there exists a seminormilized bounded sequence (zn)n∈N of pairwise
incomparable elements of Rξ(Y ) such that if P : Rξ(Y )→ Z = 〈(zn)n〉 denotes the
projection defined above, then there exists a closed subspace C of B such that P |C
is an isomorphism between the spaces C and Z.

To prove the claim we proceed by induction.
Case 1. ξ = ω.
Observe the following:
(i) Rω(Y ) = (

∑
n⊕Rn(Y ))2 with each Rn(Y ) being of finite dimension.

(ii) For every z1, z2 finitely supported vectors of Rω(Y ) we denote by

Ai = {n ∈ N : πn(zi) 6= 0}, i = 1, 2,

where πn : Rω(Y ) → Rn(Y ) are the natural projections. If the sets A1, A2

are disjoint, then z1, z2 are incomparable.
Now consider B an infinite dimensional subspace of Rω(Y ). Since each Rn(Y )

is a finite dimensional space, using a sliding hump argument we obtain a sequence
(vk)k∈N ⊂ B and a sequence (zk)k∈N in Rω(Y ) with the properties:

(a)

‖vk‖ = 1,
∞∑
k=1

‖vk − zk‖ <
1
8
.

(b) If Ak = {n : πn(zk) 6= 0}, then (Ak)k∈N consists of successive disjoint finite
subsets of N. Observation (ii), above, yields that (zk)k∈N consists of pairwise
incomparable elements of Rω(Y ).

Now consider the projection P : Rω(Y ) → Z = 〈(zn)n〉 defined in Remark 3.9
(ii). By standard arguments (cf. [L-T]) one can show that P |〈(vk)k〉 defines an

isomorphism between C = 〈(vk)k〉 and Z.
This completes the proof for the case ξ = ω.
Case 2. ξ = ζ + 1.
We may assume that the claim holds for Rζ(Y ), for any space Y .
Let B be a closed infinite dimensional subspace of Rξ(Y ). As we have shown in

Section 2

Rξ(Y ) ∼= R⊕Rζ(Y
′
)
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where Y
′

= 〈(yn)n≥2〉. Then clearly there exists a closed subspace B1 of B such
that the natural projection π : Rξ(Y ) → Rζ(Y

′
) defines an isomorphism on B1.

Now the result follows from the inductive assumption.
Case 3. ξ is a limit ordinal.
For this case we need to work a little more. First we recall that Rξ(Y ) =

(
∑∞

n=1⊕Rξn(Y ))
2
. Denote by Pn the natural projection

Pn : Rξ(Y )→
(

n∑
`=1

⊕Rξ`(Y )

)
2

.

For a given subspace B of Rξ(Y ) we consider the following subcases.
Subcase 3.1. There exist n0 ∈ N and a subspace B1 of B such that

Pn0|B1 : B1 →

∑
`≤n0

⊕Rξ`(Y )


2

is an isomorphism.
Then Lemma 3.7 yields the existence of a further subspace B2 of B1 and 1 ≤

`0 ≤ n0 so that π`0 : B2 → Rξ`0 (Y ) is an into isomorphism. The desired result
follows from our inductive assumption.

Subcase 3.2. Assume that for all n ∈ N, Pn : B → (
∑
`≤n⊕Rξ`(Y ))2 is a

strictly singular operator.
This is, of course, the negation of Subcase 3.1 and it means that for every

subspace B1 of B, every n ∈ N and ε > 0 there exists v ∈ B1 with ‖v‖ = 1 and
‖Pn(v)‖ < ε. This permits us to apply a sliding hump argument to obtain two
sequences (vk)k∈N, (zk)k∈N such that:

(a) (vk)k ⊂ B, ‖vk‖ = 1,
∑∞

k=1 ‖vk − zk‖ < 1
8 .

(b) Each zk is finitely supported and if Ak = {n ∈ N : πn(zk) 6= 0}, then {Ak}∞k=1

consists of successive disjoint subsets of N.
From (b) we conclude that (zk)k∈N are pairwise incomparable. Hence if we

consider the projection P : Rξ(Y ) → Z = 〈(zk)k〉 defined in Remark 3.9 (ii) then
from (a) we also obtain that P |C is an isomorphism between C and Z.

In the above C denotes 〈(vk)k〉. This completes the proof of Claim 1.
We pass now to the last step of the proof by showing.
Claim 2. For all ω ≤ ξ < ω1 the set Wξ(Y ) is a thin subset of Rξ(Y ).
Proof of Claim 2. Assume on the contrary that there exist ω ≤ ξ < ω1 and

a separable Banach space Y such that W = Wξ(Y ) is not a thin subset of Rξ(Y ).
Therefore there exists a subspace C of Rξ(Y ) such that for every ε > 0 we can find
λε ∈ R with BC ⊂ λεW + ε ·BRξ(Y ).

Claim 1 yields a sequence (zk)k∈N of pairwise incomparable elements of Rξ(Y )
and a closed subspace D of C such that if P : Rξ(Y )→ Z is the projection defined
in Remark 3.9, then P |D : D → Z is an onto isomorphism. Choose λ ∈ R such that
λ · P (BD) contains BZ and then choose ε > 0 such that

ε · λ · P
(
BRξ(Y )

)
⊂ 1

2
BZ .(3.1)

Next choose λε ∈ R such that

BD ⊂ λεW + εBRξ(Y ).(3.2)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



REFLEXIVE HEREDITARILY INDECOMPOSABLE BANACH SPACES 3239

Hence (3.1) and (3.2) yield that

BZ ⊂ P (λBD) ⊂ λ · λεP (W ) + ε · λ · P
(
BRξ(Y )

)
⊂ λ · λεP (W ) +

1
2
BZ .

Therefore, by well known arguments (see also [A-F]) we obtain that BZ ⊂ 2 ·λ ·λε ·
P (W ).

Now, Remark 3.9 (iii) implies that there exists ϑ > 0 such that P (W ) ⊂
co{±ϑ−1zn}n. Therefore BZ ⊂ co{±ϑ−1zn} which of course derives a contradiction
since otherwise the `2-norm would be equivalent to the `1-norm.

This completes the entire proof of the proposition.

We would like to thank Ioannis Gasparis and the referee for their comments on
the content of the present paper.
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