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Abstract. A new statistical test for random bit generators is presented which, in 
contrast to presently used statistical tests, is universal in the sense that it can detect 
any significant deviation of a device's output statistics from the statistics of a truly 
random bit source when the device can be modeled as an ergodic stationary source 
with finite memory but arbitrary (unknown) state transition probabilities. The test 
parameter is closely related to the device's per-bit entropy which is shown to be 
the correct quality measure for a secret-key source in a cryptographic application. 
The test hence measures the cryptographic badness of a device's possible defect. 
The test is easy to implement and very fast and thus well suited for practical 
applications. A sample program listing is provided. 

Key word. Randomness, Random bit generator, Statistical test, Entropy, Ergodic 
stationary source, Exhaustive key search. 

1. Introduction 

A r a n d o m  bit generator  is a device that  is designed to ou tpu t  a sequence of  
statistically independent  and symmetrically distributed binary r a n d o m  variables, 
i.e., that  is designed to be the implementat ion of  a so-called binary symmetric  source 
(BSS). In contrast ,  a p seudo random bit generator  is designed to generate deter- 
ministically a binary sequence that  only appears as if it were generated by a BSS. 

R a n d o m  bit generators  have many  applications in cryptography,  VLSI  testing, 
probabilistic algorithms, and in other  fields. Their major  application in cryp- 
tography  is as the secret-key source of  a symmetric  cipher system, but  r a n d o m  bit 
generators  are also required for generating public-key parameters  (e.g., RSA- 
modulo  and for generating the keystream in the well-known one-time pad system 
(e.g., see 1-10]). In these applications, security crucially depends on the randomness  

* This work was supported by Omnisec AG, Switzerland. A preliminary version of this paper was 
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of the source. In particular, a symmetric (secret-key) cipher whose security rests on 
the fact that an exhaustive key search is infeasible may be completely insecure when 
not all keys are equiprobable. Similarly, the security of the RSA public-key crypto- 
system may be strongly reduced when, because of a statistical defect in the random 
source used in the procedure generating the primes, the two primes are with high 
probability chosen from a small set of primes only. 

This paper is concerned primarily with the application of random bit generators 
as the secret-key source of a symmetric cipher system. The paper is not concerned 
with pseudorandom bit generators, i.e., with the security evaluation of practical 
keystream generators for stream ciphers. However, it is certainly a necessary (but 
far from sufficient) condition for security that such a keystream generator pass the 
test presented here. 

Randomness is a property of an abstract mathematical model that is characterized 
by probabilities. (In the context of random number generation the term "random" 
is also used as a synonym for independent and uniformly distributed, i.e., for the 
special model of a BSS, and we make the same use of terminology.) Whether a 
probabilistic model can give an exact description of reality is a philosophical 
question related to the question of whether the universe is deterministic or not, and 
seems to be impossible to answer to everyone's satisfaction. On the other hand, 
there exist chaotic processes in nature, such as radioactive decay and the thermal 
noise in a transistor, that allow the construction of a random bit generator whose 
behavior is for all practical applications equivalent to that ofa BSS. It is a nontrivial 
engineering task, however, to design an electronic circuit that exploits the random- 
ness of a physical process in such a manner that dependencies between bits or a bias 
in the output are avoided. In a cryptographic application it is therefore essential 
that such a device be tested extensively for malfunction after production, and also 
periodically during operation. 

The new proposed statistical test for random bit generators offers two major 
advantages over the statistical tests (including the common frequency test, serial 
test, poker test, autocorrelation tests, and run test which are described in [1] and 
I-7]) used now. First, unlike these tests, the new test is able to detect any one of a 
very general class of possible defects (deviations from the statistics of a BSS) a 
generator may have, including all the defects the above-mentioned tests are designed 
to detect. This class of defects consists of those that can be modeled by an ergodic 
stationary source with limited memory, which can reasonably be argued to comprise 
the possible defects that could occur in a practical implementation of a random bit 
generator. Second, the new test measures the actual cryptographic significance of a 
defect. More precisely, the test parameter measures the per-bit entropy of a source, 
which is shown to be related to the running time of the enemy's optimal key-search 
strategy when he exploits knowledge of the secret-key source's statistical defect. In 
other words, the per-bit entropy of the secret-key source measures the effective key 
size of a cipher system under the (for this paper natural) assumption that there exists 
no essentially faster way than an exhaustive key-search for breaking the cipher. 

The outline of the paper is as follows. The concept of a statistical test for 
randomness and the theoretical and practical limitations of statistical randomness 
testing are discussed in Section 2. In Section 3 the model of an ergodic stationary 
source is introduced. An analysis of the effective key size of a cipher system with a 
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defective secret-key source is given in Section 4. Some theoretical considerations 
concerning the implementation of statistical tests are given in Section 5 and some 
previously proposed statistical tests are reviewed. The new universal statistical test 
is described in Section 6 and some conclusions are drawn in the final section. A 
reader who is interested only in the implementation of the test but not in the 
theoretical and philosophical background can skip Sections 2-5. Section 6 is almost 
self-contained and provides a sample program for implementing the test. 

2. The Concept of a Statistical Test 

In this section the problem of deciding whether a given device outputs statistically 
independent and symmetrically distributed binary digits is discussed from a theo- 
retical viewpoint. When no theoretical proof based on the device's physical structure 
can be given (which seems to be impossible), such a decision must be based on an 
observed sample output sequence of a certain length N. Let B denote the set {0, 1 }. 
A deterministic algorithm T taking as input such a sample sequence and producing 
as output a binary decision is usually called a s t a t i s t i c a l  t e s t  and can be viewed as 
a function 

T:  B N ~ {accept, reject} 

that divides the set B N of binary length N sequences s N = s~, . . . ,  SN into a (usually 
small) set 

Sr = {sS: T ( s  N) = reject} ~_ B N 

of"bad"  or "nonrandom" sequences and the remaining set of"good" or "random" 
sequences. The quotation marks refer to the fact that, as is explained below, no such 
attribute can be given to a particular sequence. Note that although the number and 
positions of output bits observed by a test algorithm may depend on the sequence 
itself, the length N of the sample sequence can nevertheless without loss of generality 
be considered to be a constant equal to the maximum possible length of an observed 
sequence. 

A binary symmetric source emits every sequence of a given length N with the 
same probability 2 -N and therefore it seems to be impossible to argue that one 
particular sequence is "more random" than another sequence. However, an interest- 
ing approach to the problem of defining randomness for finite sequences has been 
taken by Kolmogorov [81 who defined the randomness of a sequence, informally, 
as the length of the shortest possible description of a generation rule for the 
sequence. A sequence can be considered "random" if one of the shortest descriptions 
is the sequence itself. More formally, the amount of randomness (or Kolmogorov- 
complexity) of a binary sequence is defined as the length of the shortest Turing- 
machine program for a fixed universal Turing machine that generates the sequence. 
Martin-LSf showed that, in an asymptotic sense, a sequence that is random ac- 
cording to this definition satisfies all computable statistical tests for randomness 
[9,1. A minor problem with Kolmogorov's definition is that the length of the shortest 
program depends on the particular machine used. A much more severe and intrinsic 
problem, which is related to the fact that the halting problem for Turing machines 
is undecidable [6-1, is that the Kolmogorov-complexity is not computable, even 
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using infinite computing power. In other words, it is theoretically impossible, not 
only computationally infeasible, to check all possible generation rules for a given 
sequence and to choose the shortest one. 

In view of the above it seems to be somewhat surprising that statistical randomness 
tests can be successfully used in practical applications, including cryptographic 
ones. The reason is that in many cases it may be reasonable to assume that if a 
device is defective or badly designed, it behaves according to a certain probabilistic 
model with one or several unknown parameters, for instance, a binary memoryless 
source or an ergodic stationary source (see Section 3). It is only under such an 
assumption, which is usually not stated explicitly, that statistical tests can be useful. 
As a consequence of such a restrictive assumption, however, a statistical test will 
not detect other types of nonrandomness. For instance, the binary extension of ~, 
the sequence 11001001000011111101101010100 . . . .  can be generated deterministi- 
cally and hence is not random and useless for cryptographic purposes, but it has 
nevertheless all commonly considered properties of a random sequence and will 
therefore pass every "reasonable" statistical test. 

For every particular probabilistic model with specified parameters (e.g., a binary 
memoryless source emitting l's with probability 0.4 and O's with probability 0.6), 
the problem of deciding whether the tested device behaves according to this specified 
model or whether it is a BSS can be solved using the well-established framework of 
hypothesis testing (e.g., see [2]). For a parametrized model, however, statistical tests 
are generally not optimal in a hypothesis testing sense for two reasons. First, unless 
a probability distribution over the different models (or the parameters of a certain 
model) is fixed, a satisfactory overall optimality criterion cannot be defined. Second, 
as is often the case in hypothesis testing, the optimal strategy, even for a particular 
choice of parameters, may be infeasible to implement. Many statistical tests are 
therefore heuristic. Some tests (e.g., the frequency test and the serial test, see Section 
5) can be interpreted as follows: the parameters of a certain statistical model are 
estimated from the sample sequence and a single test parameter is extracted from 
the differences of these estimated parameters to those of a BSS. Based on the 
probability distribution of the test parameter for a truly random sequence, the 
sample sequence is accepted or rejected. In terms of this interpretation, the advan- 
tages of the test presented in this paper can be described as follows. First, the test 
is based on the very general model of an ergodic stationary source (see Section 3) 
whose parameters are transition probabilities. Second, the test parameter has a 
cryptographic interpretation: it is very closely related to the per-bit entropy of the 
source, which measures the effective key size of a cipher system (see Section 4). 
Although the per-bit entropy is a function of the parameters of the model (the 
transition probabilities), our test does not estimate the parameters, but rather 
estimates the per-bit entropy directly. 

3. Statistical Models for Bit Generators 

The simplest probabilistic model of a bit generator is a binary memoryless source 
(BMS) which outputs statistically independent and identically distributed binary 
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random variables and is characterized by a single parameter, the probability p of 
emitting l's. This model is denoted by BMS r Note that a BMS1/2 is equivalent to 
a BSS. Another simple model, denoted by STp, emits O's and l 's with equal prob- 
ability, but its transition probabilities are biased: a binary digit is followed by its 
complement with probability p and by the same digit with probability 1 - p. This 
is an example of a binary stationary source with one bit of memory. In general, 
the probability distribution of the ith bit of a generator's output may depend on 
the previous M output bits where M is the memory of the source. In many 
applications it is reasonable to assume that an even defective or badly designed 
random bit generator can be modeled well by such a source with relatively small 
memory. 

Consider a source S that emits a sequence U1, U2, U3 . . . .  of binary random 
variables. If there exists a positive integer M such that, for all n > M, the conditional 
probability distribution of U., given U~ . . . . .  U.- t ,  depends only on the most recent 
M output bits, i.e., such that 

Pv.lv.-l...v~(UnlUn-t "'" ux) = Pv.tv._,...v._M(unIun-I""Un-u) (1) 

for n > M and for every binary sequence (ul . . . . .  u.) e B", then the smallest such M 
is called the memory of the source S and Y.. = [U._x, . . . ,  Un_M] denotes its state at 
time n. Let E~ = [ Uo , . . . ,  U-~+I ]  be the initial state where U-M+1 . . . . .  Uo are 
dummy random variables. If in addition to (1) the source satisfies 

Pv,lz.(ul a) = Pv,lz, (ula) 

for all n > M and for all u e B and tr ~ B u, then it is called stationary. A stationary 
source with memory M is thus completely specified by the probability distribution 
of the initial state, Pz,, and the state transition probability distribution Pz21z,- The 
state sequence forms a Markov chain with the special property that each of the 2 u 
states has at most two successor states with nonzero probability. See Chapters XV 
and XVI of [5] for a treatment of Markov chains. We denote the 2 u possible states 
of the source (or the Markov chain) by the integers in the interval I-0, 2 u - 1]. 
(E. = j means that U._I . .  U.-M is the binary representation ofj.) For  the class of 
ergodic Markov chains (see [5] for a definition), which includes virtually all cases 
that are of practical interest, there exists an invariant state probability distribution 
Po . . . . .  P2 M-1 such that 

lim Pz.(J) = Pj 
n ~ O 0  

for 0 < j < 2 M - 1. Moreover, the probabilities pj are the solution of the following 
system of 2 u linear equations: 

2 M --1 

Y, pj = 1, (2) 
j = O  

2 M - 1  

P~ = ~ Pz21z~(Jlk)Pk for 0 < j  < 2 ~ -  2. (3) 
k = O  

An example of an ergodic stationary source is given at the end of the next 
section. 
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4. The Effective Key Size of a Cipher with a Defective Key Source 

A good practical cipher is designed such that no essentially faster attack is known 
than an exhaustive key search. The size of the key space is chosen large enough to 
ensure that to succeed in such an exhaustive search, even with only very small 
probability of success, requires an infeasible searching effort. If not all possible 
values of the secret key have equal a priori probability, then the enemy's optimal 
strategy in an exhaustive key search is to start with the most likely key and to 
continue testing keys in order of decreasing probabilities. Let Z denote the secret 
key, let n be its length in bits and let zl, zz . . . . .  zzn be a list of the key values satisfying 

ez(zt) > Pz(z2) > " "  > ez(z2.). 

For a given source S and for 6 satisfying 0 < 6 < 1 let Its(n, 6) denote the minimum 
number of key values an enemy must test (using the optimal key-searching strategy) 
in order to find the correct key with probability at least 6 when S is used to generate 
the n-bit key Z, i.e., 

I ts(n,c~)=min{k:~Pz(z,)>_cS}. ,~ (4) 

We define the effective key size of a cipher system with key source S to be 
log 2 #s(n, �89 i.e., the logarithm of the minimum number of keys an enemy must try 
in order to find the correct key with probability at least 50%. The choice 6 = 1/2 in 
this definition is somewhat arbitrary, but in general, for large enough n, log 2 Its(n, iS)In 
is almost independent of 6 when c5 is not extremely close to 0 or 1. Note that when 
the key is truly random, i.e., when S is a binary symmetric source, then log 2 Its(n, �89 = 
n - 1 .  

We now determine the effective key size of a cipher system whose key source is 
BMS r Without loss of generality assume that 0 < p _ 1/2. Note that the source 
STp described in the previous section can be modeled by the source BMSp with a 
summator at the output (integrating modulo 2 the output bits of the BMSp). 
Therefore the set of probabilities of keys and hence also the effective key size is 
identical for both sources. The probability distribution of Z is given by 

pz(z ) = pW~Z~(1 _ p)n-wtz), 

where w(z) denotes the Hamming weight of z. In order to succeed with probability 
approximately 1/2 the enemy must examine all keys z with Hamming weight 
w(z) < pn. The effective key size is thus well approximated by 

From equation A.21 in 113] we can derive the inequalities 

1 2"m'/" < ( : )  < ~' ( 7 )  < 2"m'/" ,=o (6) 
x/8t(n - t)/n 

for t < n/2, where H(x) is the binary entropy function defined by 

H(x) = - x  log2 x - (1 - x) log2(1 - x) (7) 
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for 0 < x < 1 and by H(0) = H(1) = 0. Note that H(x) = H(1 - x) for 0 < x < 1. 
Inequalities (6) suggest the following accurate approximation: 

which together with (5) gives 

log 2/.tausp(n , �89 ~ nil(p). 

Using (6) we can prove that this approximation is asymptotically precise, i.e., that 

lim log2 gnus~(n' t$) = H(p) 
i I ~ o o  n 

f o r 0 < 6 <  1. 
Note that the entropy per output bit of the souce BMSp, H(p), is hence equal to 

the factor by which the effective key size is reduced. Shannon proved (see Theorem 
4 of [11]) that, for a general ergodic stationary source S, 

lim lOg2 #s(n' t$) -_ Hs, 

for 0 < ~ < l, where Hs is the per-bit entropy of S defined as 

2 u - 1  2 ta - 1  

H s = -  ~., pj ~., P~l~(klj) log2P~lz~(klj), (8) 
j =o k =o 

and where the stationary state probabilities p; are for 0 _ j <_ 2 M - 1 defined by (3). 
In other words, for the general class of ergodic stationary sources the per-bit entropy 
H s is the correct measure of their cryptographic quality when they are used as the 
secret-key source of a cipher system. Conversely, the per-bit redundancy, 1 - Hs, 
is the correct measure of the cryptographic badness of a key source. Because every 
state j can have at most two successor states with nonzero probability, namely 
j* = (2j) mod 2 M and j** = (2j + 1) mod 2 M, the expression (8) can be simplified to 

2 u - I  

Hs = ~ pjn(P~2t~,(j*lj)). (9) 
j=o 

Example. Consider a source that emits independent and symmetrically distributed 
bits except when two consecutive bits are identical, in which case the next bit is 
different with probability 0.8. For  instance, when two O's have occurred, the next 
bit is 1 with probability 0.8 and 0 with probability 0.2, but when the pair 01 occurred, 
the next bit is 0 or 1 both with probability 0.5. This source is an ergodic stationary 
source with memory M = 2, and it is easy to verify that the state transition 
probabilities are given by P~I~I(010)=0.2, Pr~l~,(ll0)=0.8, P~1~1(211)=0.5, 
P~21z,(311) = 0.5, P~l~,(ll2) = 0.5, P~21~,(312) = 0.5, Pz~l~,(ll3) = 0.8, and P~21~,(313) = 
0.2. The stationary state probabilities can be obtained as a solution of the system 
(2), (3): Po = P3 = 5/26 and Pl = P2 = 4/13. The per-bit entropy is, according to (9), 
equal to 2(5/26)H(0.2) + 2(4/13)H(0.5) = (5/13)-0.7219 + (8/13). 1 = 0.893. The 
output of this source is thus 10.7~ redundant. 
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5. Review of Some Previous Statistical Tests 

As mentioned in Section 2, a statistical test T for sequences of length N is a function 
T: B N ~ {accept, reject} which divides the set B N of binary length N sequences 
s N = s l  . . . . .  SN into a (small) set 

Sr = {sN: T ( s  N) = reject} _~ n N 

of "bad" sequences and the remaining set of "good" sequences. The probability that 
a sequence generated by a BSS is rejected is 

ISrl 
P =  2 s 

and is called the r e j e c t i o n  ra te .  In a practical test, p should be small, for example, 
p ~ 0.001 .-. 0.01. 

A statistical test T for a reasonable sample length N cannot feasibly be imple- 
mented by checking a list of the set St.  Instead, a statistical test T is typically 
implemented by specifying an efficiently computable test function f r  that maps the 
binary length N sequences to the real numbers ~: 

f r :  BN ~ :~: SN~--~fr(sN)  �9 

The probability distribution of the real-valued random variable f r (R s) is deter- 
mined, where R N denotes a sequence of N statistically independent and symmetri- 
cally distributed binary random variables, and a lower and an upper threshold tl 
and t 2, respectively, are specified such that 

Pr [ f r (R  N) < t l ]  + Pr [ f r (R  N) > t2] = p .  

Usually Pr [ f r (R  N) < t l ]  ~ P r [ f r ( R  N) > t2-1 ,~ p / 2 .  The set S r of"bad"  sequences 
with cardinality ISrl = p 2  N is defined by 

S r = { s S e B N : f r ( s N  ) < t 1 or fr(s  N) > t2}. (10) 

Usually, f r  is chosen such that f r (R s) is distributed (approximately) according 
to a well-known probability distribution, most often the normal distribution or the 
X 2 distribution with d degrees of freedom for some positive integer d. Since extensive 
numerical tables of these distributions are available, such a choice strongly simplifies 
the specification of t~ and t 2 for given p and N. The normal distribution results 
when a large number of independent and identically distributed random variables 
are summed. The ~(2 distribution with d degrees of freedom results when the squares 
of d independent and normally distributed random variables with zero mean and 
variance 1 are summed. 

In the following we briefly review the most popular statistical tests for random 
bit generators. The simplest test is the f r e q u e n c y  t e s t  TF which is used to determine 
whether a generator is biased and is based on the model BMSp with one parameter. 
For a sample sequence s N = s 1 . . . . .  s s ,  the test parameter fr~(s N) is defined as 
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The number of l's in a random sequence R s = Rt, . . . ,  RN is distributed according 
to a binomial distribution which is very well approximated by the normal distribu- 
tion with mean N/2 and variance N/4 since E[R~] = 1/2 and Var[Ri] = 1/4 for 
1 < i < N. Thus the probability distribution offrF(R N) is for large enough N well 
approximated by the normal distribution with zero mean and variance 1, and 
reasonable values for the rejection thresholds in (10) are t2 = - tl ,~ 2.5-.. 3. 

In the so-called serial test Ts with parameter L, the sample sequence s s is cut into 
N / L  consecutive blocks of length L (e.g., L = 8), and the number n~(s N) of occur- 
rences of the binary representation of the integer i is determined for 0 < i < 2 ~ - 1. 
fr~ is defined as 

L2 L2 t ni(s s) -L~ 
frs(sN) = N -  ,=o -- " 

A slightly simplified explanation of this formula is that the term N/(L2 L) is the 
expected value of ni(sN), and the purpose of the term L2L/N is to normalize the 
(unsquared) terms in the sum, which have zero mean, to have variance 1. The 
probability distribution of frs (R N) is for large N very well approximated by the X z 
distribution with 2 L - I degrees of freedom. The serial test is based on the difficult 
to motivate statistical model of a source that emits statistically independent blocks 
of length L. 

In the run test TR with parameter L, the number n~ N) of 0-runs of length i and 
similarly the number n~(s N) of 1-runs of length i in the sample sequence s N are 
determined for 1 < i < L (e.g., L = 15). frR is defined as 

,o x 
and the probability distribution of frR(R N) is for large N very well approximated 
by the X z distribution with 2L degrees of freedom because the terms in the sum are 
the squares of independent random variables that are virtually normally distributed 
with zero mean and variance 1. 

An autocorrelation test with delay ~ for the sequence s N = sl . . . .  , SN is a frequency 
test for the sequence sl fi) sl+~, s2 0) s2+~, . . . ,  SN-, ~ SN, where ~) denotes addition 
modulo 2. This test is used to detect a possible correlation between bits at distance 

and is for z = 1 based on the model STp (see Section 3). 
In many practical applications a combination of several of these tests is used 

which corresponds to a single test T for which the set Sr  is defined as the set of 
sequences that pass all these tests. Note that in general it is difficult to determine 
the rejection rate for such a combined test because the tests are not independent. 

6. The New Universal Statistical Test Tu 

The new statistical test T. proposed in this section offers two main advantages over 
the statistical tests discussed in the previous section: 

(1) Rather than being tailored to detecting a specific type of statistical defect, the 
new test is able to detect any one of the very general class of statistical defects 
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that can be modeled by an ergodic stationary source with finite memory, 
which includes all those detected by the tests discussed in the previous 
section and can reasonably be argued to comprise the possible defects 
that could realistically occur in a practical implementation of a random bit 
generator. 

(2) The test measures the actual amount by which the security of a cipher system 
would be reduced if the tested generator G were used as the key source, i.e., 
it measures the effective key size go(n, �89 of a cipher system with key source 
G (see Section 4). Therefore, statistical defects are weighted according to the 
potential damage they would cause in a cryptographic application. 

These two advantages are due to the fact that for the general class of binary ergodic 
stationary sources with finite memory M < L (see Section 3), where L is a parameter 
of the test, and for an arbitrary (unknown) choice of the conditional probabilities 
of the model, the resulting test parameter fru is closely related to the per-bit entropy 
H s of the source (see Section 4). This claim will be justified after the following 
description of the test. (In another context, a completely different use of entropy in 
a statistical test has previously been proposed in I-3].) 

The test T o is specified by the three positive integer-valued parameters L, Q, and 
K. To perform the test To, the output sequence of the generator is partitioned into 
adjacent nonoverlapping blocks of length L. The total length of the sample sequence 
s N is N = (Q + K)L,  where K is the number of steps of the test and Q is the number 
of initialization steps. Let 

bn(s N) = [sL(.-1)+, . . . . .  sL.] 

for I < n < Q + K denote the nth block of length L of the sample sequence s N = s 1, 
. . . .  sN. For n = Q + 1, . . . ,  Q + K, the sequence is scanned for the most recent 
occurrence of the block b.(sN), i.e., the least positive integer i < n is determined such 
that b~(s N) = b._~(sN). Let the integer-valued quantity A.(s N) be defined as taking 
on the value i if the block b.(s N) has previously occurred and otherwise let A.(s N) = n. 
The test function fro(s N) is defined as the average of the logarithm (to the base 2) 
of the K terms AQ+I (sN), A e +2(s N) . . . . .  A e +x(sN). More formally, the test function 
fro: BN ~ #~: s~-~fro(sN) is defined by 

1 Q+K 
fr~ = K n=~+l l~ A"(SN)' (11) 

where, for Q + 1 < n < Q + K, A~(s N) is defined by 

I 
n if there exists no positive 

i < n such that 
A.(s N) = b.(sN) = b._,(sN) ' (12) 

rain{i: i >__ 1, b.(s N) = bn_i(s2V)} otherwise. 

Rather than by scanning the previous blocks bn_t(st~), b._2(s N) . . . .  for the most 
recent occurrence of the block b~(sN), for every n, the test T U can be implemented 
much more efficiently by using a table (denoted in Fig. 1 as tab) of size V = 2 L that 
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program UniversalTest(input, output); 
eonst L = 8; V = 256; Q = 2000, K = 20000; 
var i, n: integer, sum, fTU: real; 

tab: array [0 . .  V - 1] of integer; 
block: array [1 . .  max] of integer; 

bagin 
for i := 0 to V - 1 do tab[i] := O; (, initialization ,) 
for n := 1 to Q do tab[block[n]] := n; (, initialization ,) 
sum := 0.0; 
forn  := Q + 1 toQ + K do begin 

sum := sum + ln(n - tab [block In] ] ); 
tab[block[u]] := n; 

end; 
fTU := (sum/K)/ln(2.0); writeln(fTU); 

end. 

Fig. 1. Listing of a PASCAL program for computing the test parameter fru(s s) for a given sequence 
s N = sl ..... sN that is assumed to be stored bloekwise in the array block. (b.(s ~) = [su._l~+ 1 .. . . .  st.] is 
stored in block [n] .) 

stores for each L-bi t  b lock the t ime index of its mos t  recent occurrence.  F o r  each 
block b.(s N) the procedure  consists of  two simple steps: 

(1) A.(s N) is easily compu ted  as n - tab(b,(sN)) and  the te rm log2 A.(s N) is added 
to an accumula tor ,  and  

(2) tab(b.(sN)) is upda ted  to the new mos t  recent t ime index n of  the block b.(sN). 

A sample  P A S C A L  p r o g r a m  for implement ing  the test is listed in Fig. 1. The  
sequence s N is for i l lustration purposes  assumed to be s tored blockwise in the a r ray  
block,  i.e., b l o c k [ n ]  contains  the integer whose binary representat ion is b.(sS). 
Clearly, in a realistic implementa t ion ,  the sequence s t~ m a y  be too long to be s tored 
completely.  In  such a case there will, for example,  be a function which, when called, 
increments  the index n and  returns the nth  block b.(s N) of s N. The function In 
computes  the na tura l  logar i thm. No te  tha t  log2(x) = ln(x)/ln(2). 

Fo r  performing a statistical r andomness  test we need to know the dis tr ibut ion of 
the test pa rame te r  for a truly r a n d o m  sequence in order  to specify the acceptance 
and rejection regions for the test pa rame te r  of  a sample sequence. The  mean  and 
variance of a single te rm log 2 A,(R N) of the sum defining fro(R N) can be compu ted  
for Q ~ oo according to (16) and (17) below. Because the expected value of the 
average of several r a n d o m  variables is equal  to the average of the expected values, 
the expected value E[fru(RN)] of the test pa rame te r  f ro  for a r a n d o m  sequence R N 
is equal  to E[log2 A.(RN)]. The  variance of the sum of statistically independent  
r a n d o m  variables is equal  to the sum of the variances. However ,  the quanti t ies 
A.(R N) are not  complete ly  independent ,  and  as a consequence,  the var iance of 
f ru(R s)  is somewha t  smaller  than  expected. Let c(L, K) denote  the factor by which 
the s tandard  deviat ion o f f r o ( R  s)  is reduced compared  with what  it would be if the 
terms A.(R N) were independent ,  i.e., let 

Var[fru(RN)] = c(L, K) 2 Var[ l~  A"(RN)] 
K 
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Table 1. Expected value of fr~(R s) and variance of log 2 A,(R s) for the test To with 
parameters L, Q --, 0o and K, where R s is a truly random sequence. Var[fro(RS)] is equal 

to c{L, K)2 �9 Var[Iog2 AdRS)] where c(L, K) is well approximated by (13). 

L E[fru(RN)] VarElog2 A,(RS)] L EEfru(RN)] Var[log 2 A,(RX)] 

1 0.7326495 0.690 9 8.1764248 3.311 
2 1.5374383 1.338 10 9.1723243 3.356 
3 2.4016068 1.901 11 10.170032 3.384 
4 3.3112247 2.358 12 11.168765 3.401 
5 4.2534266 2.705 13 12.168070 3.410 
6 5.2177052 2.954 14 13.167693 3.416 
7 6.1962507 3.125 15 14.167488 3.419 
8 7,1836656 3.238 16 15.167379 3.421 

For L > 3, c(L, 2 L) is very close to 0.8, and for K >> 2 r, c(L, K) is close to 0.5, 0.6, 
and 0.65 for L = 4, L = 8, and L = 12, respectively. Extensive simulations have 
suggested that, for K > 2 r, 

c(L, K) "~ 0.7 -- - -  + 1.6 + - -  (13) 

is a good approximation for the constant c(L, K). In summary, the distribution of 
the test parameter fru (RN) for a truly random sequence has a mean value of precisely 
E[fru(RN)] and is very well approximated by the normal distribution with standard 
deviation 

= c(L, K) ~r176  (14) 

where E[fru(RN)] and Var[log2 A,(RN)] are listed in Table 1 for 1 < L < 16. 
To implement the test T u we recommend choosing the parameters L between 6 

and 16, inclusive, Q _> 10.2 L, and K as large as possible (e.g., K = 1000- 2r). This 
choice for Q guarantees that, with high probability, every L-bit pattern occurs at 
least once in the first Q blocks of a random sequence. We also recommend choosing 
a rejection rate of p ~ 0.001... 0.01, depending on the application. A device should 
be rejected if and only if either fru(s x) < tl or fro(S N) > t2, where the thresholds tl 
and t 2 are defined by 

t I = E[fru(RS)] - ya and t 2 = E[fTu(RN)] + ytr, 

where the standard deviation a is given by (14) and where y, the number of standard 
deviations that fro(s N) is allowed to be away from the mean value, must be chosen 
such that X ( -  y) = p/2. JV'(x) is the integral of the normal density function and is 
defined as 

1 f f  e -r d~. X(x) = ~ oo 

A table Of ~ ' (x)  can be found in almost every book on statistics or probability 
theory (e.g., see p. 176 of [5]). For  example, to obtain a rejection rate of p = 0.01 
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or p = 0.001 we must choose y = 2.58 or y = 3.30, respectively. Note that tr decreases 
like 1 / x / ~  when K increases. Like for any other statistical test, increasing the length 
of the sample sequence reduces the standard deviation and therefore allows the 
detection of smaller deviations from the statistics of a BSS. Note that the fact that 
c(L, K) is only approximately known can lead to a rejection rate that is slightly 
different from p, but has no other effect on the test. The precise computation of the 
constants c(L, K) would require a considerable if not prohibitive computing effort. 

The definition of T v is based on the idea, which was independently suggested by 
Ziv [14], that a universal statistical test can be based on a universal source coding 
algorithm. A generator should pass the test if and only if its output sequence cannot 
be compressed significantly. However, instead of actually compressing the sample 
sequence we only need to compute a quantity that is related to the length of the 
compressed sequence. The formulation of our test was motivated by considering 
the universal source coding algorithms of Elias [4] and of Willems [12], which 
partition the data sequence into adjacent nonoverlapping blocks of length L. For  
L ---, oo, these algorithms can be shown to compress the output of every discrete 
stationary source to its entropy. The universal source coding algorithm due to Ziv 
and Lempel [15] seems to be less suited for application as a statistical test because 
it seems to be difficult to define a test function f r  such that the expected value of 
f r (R s) can be computed. No indication of the suitability of the Ziv-Lempel algorithm 
for a practical implementation of a statistical test is given in [14]. 

In the following we derive expressions and numerical values for the quantities 
E[frv(RN)] and Var[log2 An(RN)] under the admissible assumption that Q --. ~ .  
For  a source emitting the sequence of binary random variables U N = U1, U2 . . . . .  
Us we have 

PrEAn(U N) = i] 

= ~, Pr[b.(U N) = b, b._l(U N) ~ b . . . . .  b._i+~(U N) ~ b, b,_i(U N) = b] 
b e B N  

for i >  1. When the blocks b.(U N) are statistically independent and identically 
distributed, then the above probability factors: 

PrEAn(U N) = i] = ~ (Pr[b.(U N) = b])2.(1 - PrEb.(U N) = b]) i-1 (15) 
b e B  N 

for i ~ 1. For  a binary symmetric source we thus have 

PrEA.(R N) = i] = 2-r(1 - -  2 - L )  i - 1  

for i > 1. Hence 

E[frv(RN)] = E[log 2 An(RN)] = 2 -L ~ (1 - 2-I") i-1 log 2 i. (16) 
i = 1  

The variance of log 2 A~(R N) is 

Var[logz A.(RN)] = E[(log2 A.(RN)) 2] - (E[log 2 A.(RN)]) 2 

= 2 -~ ~ (1 - 2-L)i-l(log2 i)2 _ (E[fr~(RN)])z. (17) 
i = 1  
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Table 1 was compiled using (16) and (17) and summarizes E[fro(RN)] and 
Var[log2 A.(R~)] for 1 < L < 16. Note that E[fro(RN)] is closely related to the 
entropy of a block, which is L bits. In fact, it is shown below that E[fro(RN)] - L 
converges to the constant -0 .8327 as L --. oo. 

In order to show that, for L ~ oo, E[fro(RN)] - L and Var[log2 A.(RS)] con- 
verge (exponentially fast) to constants, let v(r) and w(r) be defined as 

v(r) A_ r ~,, (1 - -  r) i-1 log 2 i ( 18 )  
i=1  

and 

w(r) ~- r ~ (1 -- r)i-1(log2i) 2. (19) 
i = l  

We can show that 

f: lira [v(r) + log 2 r] = lira e -~ log 2 ~ d~ = -0.832746 ~ C (20) 
r"*0 r~O 

and 

f 
oo 

lim [w(r) - (log 2 r) 2 + 2C log 2 r] = lim e-r ~)2 d~ 
r--*O r ~ 0  d r  

= 4.117181 ~ D. (21) 

Note that E[fro(RN)] = v(2 -L) and hence it follows from (20) that 

lim (E[fro(RN)] - L) = C. 
L~co 

From (17) it follows that Var[log 2 A.(RN)] = w(2 -L) - v(2-L) 2 which together with 
l i m L ~  [w(r) - v(r) 2] = limL~oo [w(r) - (C - log2 r) 2] and (21) gives 

lim Var[log2 A~(RN)] = D - C 2 = 3.423715. 
L~oo 

We now analyze the performance of the test for a biased binary memory-  
N 

less source BMSp with output sequence UBmp. The blocks bn(Ugmp) are sta- 
tistically independent and thus using (15), (20), and the fact that, for L---, oo, 
Pr[bn(Ugusp) = b] ~ 0 for all b ~ B L we can show that 

lim (E[fru(U~mp)] - Lh(p)) = C 
L ~ o o  

for 0 < p < 1. This demonstrates that the test Tu measures the entropy of any binary 
memoryless source up to a constant. Table 2 summarizes E[fru(U~Msp)], Lh(p) + C, 
and Var[log2 An(Ugm,)] for L = 8 and L = 16 and for several values of p and 
demonstrates the close relationship between the expected value of the test parameter  
and the entropy of the source BMS r Some entries of Table 2 were computed by 
Maarten van der H a m  on a CRAY Y/MP computer at CWI,  Amsterdam. 

By arguments similar to those used in [121 we can prove that, for every binary 



A Universal Statistical Test for Random Bit Generators 

Table 2. Relation between the per-bit entropy of a biased binary memory- 
less source BMS~ and the expected value E[fro(U~m,)] of the test parameter 

for the output of such a source. 

L p EEfru(Ut~m,)] Lh(p) + C Var[log2 A,(V~us,)] 

8 0.50 7.18367 7.16725 3.239 
8 0.45 7.12687 7.10945 3.393 
8 0.40 6.95559 6.93486 3.844 
8 0.35 6.66713 6.63980 4.561 
8 0.30 6.25683 6.21758 5.482 

16 0.50 15.16738 15.16725 3.421 
16 0.45 15.05179 15.05165 3.753 
16 0.40 14.70268 14.70246 4.733 
16 0.35 14.11275 14.11234 6.319 
16 0.30 13.26886 13.26791 8.425 

103 

ergodic stationary source S with output sequence U~ r, 

lim E[fTu(U~)] = Hs. 
L -* oO L 

We conjecture that this asymptotic relation between E[fru(Ut~)] and Hs can be 
made even more precise, namely that 

lim (E[fTu(U~)I - Lh(p)) = C. 
L"*  oo 

7. Conclusions 

The new statistical test described in this paper is based on a more general statistical 
model than those previously considered in the context of statistical tests, namely an 
ergodic stationary source with memory  M < L, where L is a parameter  of the test. 
This model can reasonably be argued to comprise most defects that can realistically 
be expected in a practical implementation of a random bit generator based on a 
chaotic physical process such as the thermal noise in a transistor. Another novel 
feature of the test is that it measures the actual cryptographic significance of a 
possible defect, namely the per-bit redundancy. 

The performance of a statistical test depends in a crucial manner  on the statistical 
model on which the test is based. The more general the model, the wider is the class 
of possible defects that can be detected. On the other hand, the more restricted the 
model, the better a test based on this model is generally suited for detecting a defect 
that can be described by the model, i.e., a shorter sample sequence is needed to 
detect a defect. When designing a statistical test for testing the randomness of a 
device's output sequence it is therefore very important  that an appropriate model 
is used. To illustrate this, consider the performances of the frequency test and of our 
new test on a device that can be modeled as a binary memoryless source emitting 
l 's with probability 0.45 and O's with probability 0.55. Because the per-bit entropy 
H(0.45) = 0.9928 of this source is very close to 1, the universal test will need a much 
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longer sample sequence to detect the nonrandomness of this source with the same 
detection probability as a frequency test. For this example and for L = 8 we can 
show that the sequence must be 29 times longer for the universal test. On the other 
hand, the frequency test is unable to detect any dependencies between consecutive 
bits. Therefore, if for a certain application a bias in the distribution of O's and l's is 
the only defect that can reasonably be expected, a frequency test is optimal. Note 
also that because the per-bit entropy measures the effective key size, using the above 
biased source would only slightly reduce the security of a cipher system. Of course, 
we do not suggest that a source with such a bias be used in practice because any 
deviation from the statistics of a BSS may indicate that there exists a possibly much 
stronger hidden defect. 
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