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1 Introduction

Attempts to construct explicit meta-stable de Sitter (dS) vacua in string theory face a

number of well-known theoretical and computational challenges. In recent years, various

approaches have addressed these challenges and led to a number of interesting construc-

tions and successful models (see, e.g., [1–34]). Despite this encouraging progress, however,

it remains fair to say that we are still far away from a full classification of the whole

landscape of possible dS vacua in string theory. Many interesting questions are related

to this issue: which other mechanisms for dS vacua, if any, exist in string theory? What

are the minimal ingredients a compactification requires in order to admit dS vacua? Is it

possible to construct simpler models than those already known, perhaps even some that

are fully explicit at the 10d level? How are observables such as the cosmological constant,

moduli masses or the supersymmetry breaking scale distributed across the landscape (see,

e.g., [35–37] for recent work)? etc.

Given the vast amount of possible string vacua, a promising strategy to address such

questions would be to identify universal, model-independent constraints. These may help

to rule out cosmological solutions in whole regions of the landscape and, even more impor-

tantly, point us to interesting regions where such solutions do exist.

A number of such no-go theorems is known in the literature, which constrain either

the existence or the stability of dS solutions in certain corners of the landscape. Well-

known examples of the first kind are the 11d/10d supergravity no-go theorems of [38–40]

and the HKTT no-go theorem [41]. In recent years, many more no-go theorems have been

formulated for type II [42–51] and heterotic string theory [52–55].

In the present paper, we are instead concerned with the (meta-)stability of given dS

solutions. Due to the necessarily broken supersymmetry, one generically expects this to

be an issue, and indeed tachyons are notoriously difficult to evade in many explicit string

compactifications to lower-dimensional dS space-times. To some extent, this difficulty is

explained by the fact that meta-stability is in general statistically unlikely [56–59]. In

addition, however, there may also be structural reasons for the appearance of tachyons

that are not captured by postulating a completely random supergravity potential. For

example, extensive scans of flux compactifications in the classical regime have discovered

numerous dS critical points but not a single meta-stable one [45–48, 60, 61]. On the other

hand, constructions employing instanton effects or non-geometric fluxes are more successful

in achieving meta-stability. It is of obvious importance to understand this, as unnecessary

scans in inadequate corners of the landscape can then be avoided and one may focus on

more promising ones instead.

Stability constraints have been addressed previously in several works, with a focus on

those moduli that are universally present in all string compactifications. Constraints from

the volume and dilaton moduli were worked out in [62], and the volume moduli associated

to the cycles wrapped by O-planes were addressed in [63]. Furthermore, it was argued

in [64, 65] that the sgoldstino is the most dangerous modulus to become tachyonic near a

supersymmetric/no-scale Minkowski point (see also [66–71] for earlier work and [72] for a

recent extension to bending trajectories during inflation). In [73], it was shown that the ar-

– 2 –



J
H
E
P
0
7
(
2
0
1
8
)
0
7
8

gument of [64] has to be generalized in the generic case where the mass matrix of the sgold-

stino and the orthogonal moduli is non-diagonal. The tachyon is then not the sgoldstino

but a different mode, which only aligns with the sgoldstino in the Minkowski limit. Based

on explicit examples, it was furthermore conjectured in [73] that this mode is the reason

why many compactifications do not admit meta-stable dS vacua even though they evade the

known no-go theorems from the volume, the dilaton and the sgoldstino. It is the purpose

of the present work to perform a general, model-independent analysis of this tachyon.

More precisely, we consider dS solutions which are obtained as a small deformation

away from a no-scale Minkowski vacuum, e.g., by turning on additional fluxes or non-

perturbative corrections in the superpotential. No-scale Minkowski vacua are abundant in

the large-volume regime of string compactifications due to the form of the corresponding

Kähler potential. Moreover, the vicinity of such points in moduli space is generally attrac-

tive since it may allow a controlled uplift of the vacuum energy. Indeed, moduli which are

stabilized already at the Minkowski point are guaranteed to remain stabilized at the dS

solution if the deformation is small enough. It is then sufficient to ensure that the originally

massless moduli are stabilized as well. One therefore expects that meta-stable dS vacua are

more likely to exist in the vicinity of such special points than at generic points in moduli

space. Indeed, explicit scans suggest that the number of dS vacua rapidly drops to zero as

one moves away from a Minkowski point (see, e.g., [21]).

Specifically, we will consider string compactifications which admit a description in

terms of 4d N = 1 supergravity with an F-term scalar potential and have a no-scale

Minkowski vacuum somewhere in their parameter space. Our main result is that meta-

stable dS vacua near such a no-scale Minkowski point are forbidden, unless perturbative

string corrections to the Kähler potential are non-negligible, the superpotential contains a

specific type of coupling between the no-scale and the perpendicular moduli, or at least one

of the perpendicular moduli is unstabilized at the Minkowski point. We find that otherwise

there is at least one tachyon in the spectrum, with second slow-roll parameter η ≤ −4
3 . The

tachyon is universal in the sense that its appearance can be proven model-independently.

Its particular direction in moduli space is, however, model-dependent. The tachyon can

be shown to align with the sgoldstino in the Minkowski limit but rotates away from it as

one moves away from the Minkowski point. We also show that the sgoldstino itself can

nevertheless be stable in the dS vacuum due to mixing effects in the mass matrix.

Apart from ruling out cosmological solutions in a large region of the landscape, our

result may also help to explain why the program of finding classical dS vacua initiated

in [41, 42] remained unsuccessful [45–48, 60, 61]. The idea there is to construct simple and

explicit dS vacua from geometric flux compactifications including only minimal ingredients

(i.e., NSNS, RR and metric fluxes as well as O-planes and possibly D-branes), but without

employing perturbative or non-perturbative string corrections or “exotic” objects such as

non-geometric fluxes. We argue that, in type IIA string theory, it is difficult — in some cases

impossible — for such setups to evade our tachyon. Constructions involving instantons or

non-geometric fluxes, on the other hand, can evade our no-go theorem, which is consistent

with known examples using these ingredients.
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This paper is organized as follows. In sections 2 and 3, we spell out our assumptions and

establish the no-go theorem. In section 4, we discuss possibilities to evade the tachyon. In

section 5, we apply our results to classical dS solutions. We conclude in section 6 with a dis-

cussion of our results. Several longer computations are relegated to appendices A, B and C.

2 Preliminaries

2.1 Setup

Our starting point is 4d N = 1 supergravity with an F-term scalar potential

V = eK
(

gIJ̄DIWDJ̄W̄ − 3|W |2
)

= eG
(

GIG
I − 3

)

(2.1)

in Planck units, where DIW = WI +KIW and G = K + ln |W |2. Indices are raised with

the hermitian field space metric gIJ̄ = KIJ̄ . Here and in the following, we use subscripts to

denote partial derivatives with respect to the ΦI moduli (e.g., KI = ∂IK, KIJ̄ = ∂I∂J̄K,

etc., and similar for G, V and W ).

For constant scalar fields, the equations of motion are

VI = GIV + eGGI + eGGIJG
J − eGKIJK̄GJGK̄ = 0 (2.2)

and its complex conjugate. The components of the mass matrix are given by

VIJ̄ = KIJ̄V + eGKIJ̄ + eGGIGJ̄ + eGGIJGJ̄G
J + eGGIJGJ̄

J − eGGI
K̄KJ̄K̄JG

J

− eGKIJK̄GJ̄
JGK̄ − eGKIJK̄GJ̄G

JGK̄ − eGKIJ̄JK̄GJGK̄ + eGKIJK̄KJ̄K
JGKGK̄

+ eGKIJK̄KJ̄L̄
K̄GJGL̄, (2.3)

VIJ = GIJV + 2eGGIJ + eGGIGJ + eGGIKGJG
K + eGGIJKGK − eGGI

K̄KJK̄KGK

− eGKIJK̄GK̄ − eGKIKK̄GJ
K̄GK − eGKIKK̄GJG

KGK̄ − eGKIJKK̄GKGK̄

+ eGKILK̄KJK
LGKGK̄ + eGKIKK̄KJL̄

K̄GKGL̄ (2.4)

and their complex conjugates, where we have used that the superpotential is holomorphic

to simplify the expressions.

2.2 No-scale Minkowski vacua

Let us now consider Minkowski vacua of the potential (2.1) with a no-scale property [74, 75].

To this end, we split the moduli ΦI into two sectors

ΦI = {Φm,Φa} , (2.5)

where we label the fields with the no-scale property (2.6) by m,n, . . .. In the following,

we will refer to them as no-scale moduli. The fields labelled by a, b, . . . denote possible

orthogonal fields which are generically present in a given compactification and which we

will assume to be stabilized at the Minkowski solution.
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In order to admit a no-scale Minkowski vacuum, the Kähler potential and the super-

potential need to satisfy the off-shell properties

KmKm = 3, W = W (Φa). (2.6)

Moreover, we assume that the Kähler potential separates and has an axionic shift symmetry

as it is typical for bulk moduli in string compactifications,

K = K1(Φ
a + Φ̄a) +K2(Φ

m + Φ̄m). (2.7)

The scalar potential (2.1) then reduces to

V = eGGaG
a. (2.8)

One can then check that, for Ga = 0, all equations of motion are indeed satisfied at a

Minkowski vacuum, V = 0.

The components of the mass matrix at the Minkowski solution are

Vāb = eGGāb̄g
b̄cGcb + eGgāb, Vab = 2eGGab (2.9)

and Vmn = Vm̄n = Vam = Vām = 0. Hence, the Φm moduli are massless, as expected

from the no-scale property. The Φa moduli are stabilized if their mass matrix has no zero

eigenvalues, which is equivalent to demanding

det

(

Vā
b̄ Vā

b

Va
b̄ Va

b

)

= det eG

(

δb̄ā Gā
b

Ga
b̄ δba

)2

6= 0. (2.10)

Using that det
(

A B
C D

)

= det(AD − BC) for commuting matrices C,D, we arrive at the

stability condition

det
(

δca −GabG
bc
)

6= 0. (2.11)

Let us finally mention that any non-trivial no-scale Minkowski vacuum in string theory

must have a superpotential which is at least quadratic in some of the Φa moduli, i.e.,

Wab 6= 0 (2.12)

off-shell, where by non-trivial we mean that the superpotential is not identically zero. This

property will be used in section 5 and is proven in appendix A.

2.3 Assumptions

In this paper, we will analyze the stability of dS solutions which are obtained as a defor-

mation away from a no-scale Minkowski point in moduli space. Specifically, we will make

the following assumptions:

• eK is a real homogeneous function of the moduli such that

Km(Φm + Φ̄m̄) = −3. (2.13)
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This assumption is satisfied by string compactifications in the limit of large volume

and small coupling, where α′ and gs corrections are negligible and the Kähler po-

tential is of the usual log form. A simple example would be the potential K =

−3 ln(Φ1 + Φ̄1̄)− ln(Φ2 + Φ̄2̄)− 3 ln(Φ3 + Φ̄3̄), where either Φ1 or Φ3 would play the

role of the no-scale modulus Φm, and the remaining two moduli would correspond

to the Φa. In the following, we will only assume the more general property (2.13) to

hold, which captures models with an arbitrary number of moduli. Also note that the

Kähler potential need in general not be a sum of terms involving only one modulus

each. Instead, the above assumption is also satisfied, e.g., for Calabi-Yau compactifi-

cations with general intersection numbers. In section 4, we will consider more general

Kähler potentials violating (2.13) and see that our no-go theorem can be evaded if

perturbative string corrections are large enough.

Eq. (2.13) implies the useful identities

KmKm = 3 (2.14)

and

KmKmn = Kn, KmKmnl = 2Knl, KmKmnlp = 3Knlp, KmlKln = δmn . (2.15)

Analogous identities hold for contractions involving the barred indices. Note that

mixed components such as Kam vanish. Also note that all of the above identities for

K and its derivatives hold off-shell.

• The model has a no-scale Minkowski point somewhere in parameter space,

KmKm = 3, lim
λ→0

W (Φa,Φm;λ) = W (Φa), (2.16)

at which all Φa moduli are stabilized, cf. (2.11). Here, λ is a deformation parameter

which we will explain momentarily.

Assumption (2.16) is typically true for flux compactifications in the large-volume

regime or at large complex structure. For particular choices of the flux numbers,

they are known to admit Minkowski vacua, which indeed have a no-scale structure

(see, e.g., [76–80] for examples). As one turns on additional fluxes and/or non-

perturbative corrections in the superpotential, the no-scale structure can be broken

such that the resulting scalar potential has AdS or dS extrema. We parametrize such

a general deformation by a parameter λ, which we define such that the Minkowski

point is located at λ = 0.

As stated above, also corrections to the Kähler potential can break the no-scale struc-

ture, but for the moment we will assume that this is not the case and defer a discussion

of more general Kähler potentials to section 4. In other words, at finite λ, the Kähler

potential is still of the above form and satisfies the off-shell identities (2.13)–(2.15),

while the superpotential can acquire a Φm dependence.

– 6 –
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• The dS solution is close to the no-scale Minkowski vacuum in the sense that

λ ≪ 1. (2.17)

We can then perform a systematic expansion of the on-shell values of the superpo-

tential and the Kähler potential and their derivatives around the Minkowski point.

As stated above, the off-shell superpotential receives a λ-dependence by turning on

combinations of fluxes and/or non-perturbative corrections. Through the equations

of motion, the λ-deformation then back-reacts on the vevs of the scalar fields and,

hence, on the on-shell values of the superpotential and the Kähler potential and their

derivatives. Hence, we can write

W = W (0) + λW (1) +O(λ2) (2.18)

for the on-shell superpotential. Using that, at the Minkowski solution for λ = 0,

Wm = Wam = Wmn = 0 and Ga = 0, the on-shell values of the derivatives of the

superpotential can furthermore be expanded as

Wa = −K(0)
a W (0) +O(λ), Wab = W

(0)
ab +O(λ), Wam = λW (1)

am +O(λ2),

Wm = λW (1)
m +O(λ2), Wmn = λW (1)

mn +O(λ2), . . . (2.19)

and analogously for higher derivatives.1 Similarly, the on-shell Kähler potential and

its derivatives can be expanded as

K = K(0) +O(λ), Ka = K(0)
a +O(λ), Km = K(0)

m +O(λ), . . . (2.20)

etc. Note that, by assumption, the contraction identities (2.14) and (2.15) hold to

all orders in the λ-expansion (on-shell as well as off-shell).

To summarize the discussion, we are close to a no-scale point in the above sense if

the dependence of the superpotential on the no-scale moduli is small, i.e., Wm

W ≪ 1,
Wmn

W ≪ 1, etc., where the physical interpretation of λ depends on the considered

setup.2 A simple example can be found in [73], where the parameter is related to

certain flux numbers, which in turn determine cycle volumes in the compactification

manifold.

1In order to avoid confusion, note that W
(1)
m in our notation is the first order coefficient in the expansion

of the on-shell value of Wm, which is not the same as ∂m(W (1)) (and analogous for the other coefficients).
2In the special case where the λ-deformation is purely generated by turning on additional fluxes, one

might wonder whether flux quantization might be an obstruction to making λ small. Two comments are

in order here. First, we regard the issue of flux quantization as an additional obstacle that a consistent

dS vacuum needs to surpass, on top of solving the equations of motion and having a positive definite mass

matrix. What we show in this paper is that, even ignoring this additional difficulty, there is already a

no-go theorem for a large class of string compactifications. Second, even if λ & O(1) due to quantized

fluxes in a given model, the corresponding dS vacuum may still be close to a no-scale Minkowski point if

W (0) ≫ λW (1). This is the case, for example, when the flux numbers generating W (0) are large. Rescaling

the full superpotential by an overall factor (which leaves the equations of motion invariant), one can map

such a setup to one with λ ≪ 1. Hence, our arguments then still apply.
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• The superpotential satisfies

W (1)
amn = 0 (2.21)

on-shell. This is in particular true if mixed couplings between the no-scale moduli

and the Φa moduli generating the above term are absent in the superpotential. As

we will discuss in section 5, this is indeed the case in type IIA models where the

superpotential is purely generated by geometric fluxes. Also note that, in models

where the potential for the no-scale directions is generated by non-perturbative terms,

it is often assumed that the Φa-dependence of the one-loop determinant is negligible.

In such models, the above term then vanishes as well. In a general situation including

all types of fluxes and non-perturbative terms, however, Wamn can be non-zero and

relevant. In section 4, we will relax the assumption (2.21) and see that this can help

to evade our no-go theorem if Wamn is sufficiently large.

3 A universal tachyon

In order to establish our no-go theorem, we will now compute the mass of a field, Ψ, which

we define as the combination

Ψ := TIΦ
I , ΦI =

T IΨ

TJT J
. (3.1)

Here, TI is a vector in field space given by

TI = δmI Km + δaIYa (3.2)

with a priori undetermined Ya, which we define such that it goes to zero in the limit λ → 0,

i.e.,

Ya = λY (1)
a +O(λ2). (3.3)

Substituting the λ-expansion into (3.2), we thus have

TI = δmI K(0)
m + λδmI K(1)

m + λδaIY
(1)
a +O(λ2). (3.4)

The masses of the real and imaginary parts of Ψ after canonical normalization are

m2
ReΨ =

1

2TIT I

(

VĪJT
ĪT J + VIJ̄T

IT J̄ + VIJT
IT J + VĪ J̄T

ĪT J̄
)

, (3.5)

m2
ImΨ =

1

2TIT I

(

VĪJT
ĪT J + VIJ̄T

IT J̄ − VIJT
IT J − VĪ J̄T

ĪT J̄
)

. (3.6)

As we will see momentarily, ReΨ and ImΨ imply the existence of a tachyon if TI (i.e., Ya)

is chosen appropriately.

3.1 Case 1: Wmn = Wmnr = 0

Let us first consider the case where the superpotential is linear in the Φm moduli or, more

generally, satisfies

Wmn = Wmnr = 0 (3.7)

– 8 –
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at the dS solution. As we will discuss in more detail in section 5, this is the case relevant,

e.g., for many geometric flux compactifications. Note that we do not make any assumption

about the Φa dependence of the superpotential, except that the Φa moduli are all stabilized

at leading order O(λ0).

Substituting (2.3), (2.4) and (3.2) into (3.5), we find that, up to quadratic order in λ,

m2
ReΨ = −4

3
V +

1

3
eG
∣

∣

∣
Ga + Ya −Gab

(

Gb − Ȳ b
)
∣

∣

∣

2
+O(λ3), (3.8)

where we repeatedly used the equations of motion and the identities (2.14) and (2.15)

to simplify the expression. Since the computation is rather tedious, we have relegated

the details to appendix B for the interested reader.3 Analogous manipulations in (3.6)

furthermore show that the mass of the imaginary part of Ψ is manifestly non-negative at

the quadratic order,

m2
ImΨ =

1

3
eG
∣

∣

∣
Ga + Ya +Gab

(

Gb − Ȳ b
)
∣

∣

∣

2
+O(λ3). (3.9)

Note that the squared terms in (3.8) and (3.9) differ by a relative sign. In order not

to clutter the equations with indices, we have refrained from explicitly substituting the λ-

expansion in (3.8) and (3.9). However, one can check that each term on the right-hand sides

of both equations is of the order λ2. For the squares |. . .|2, this follows from Ga ∼ Ya ∼ λ.

The on-shell scalar potential, on the other hand, is naively of the order λ since

V = eG
(

Km
W̄m

W̄
+KmWm

W

)

+O(λ2). (3.10)

However, the equations of motion (2.2) imply that this vanishes at linear order:

0 = KmVm = 2eG
(

Km
W̄m

W̄
+KmWm

W

)

+O(λ2). (3.11)

Note that this does in general not mean that W
(1)
m = 0 but only that the particular

combination in (3.11) is of order λ2.

Hence, if we can find a Ya minimizing the square on the right-hand side of (3.8),

∃Ya : Ga + Ya −Gab

(

Gb − Ȳ b
)

= 0, (3.12)

then m2
ReΨ is proportional to the on-shell scalar potential. By substituting (3.12) back into

itself, we can decouple Ya from its complex conjugate and arrive at

Ya −GabG
bcYc +Ga − 2GabG

b +GabG
bcGc = 0. (3.13)

A system of linear equations such as (3.13) always has a solution provided that the deter-

minant of the coefficient matrix is non-zero, det
(

δca −GabG
bc
)

6= 0. Recalling (2.11), this

is indeed true whenever all Φa moduli are stabilized at leading order.

3The computation can conveniently be done using the Mathematica xTensor package

http://www.xact.es/xTensor/.
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Hence, one can always choose a Ya such that the square on the right-hand side of (3.8)

vanishes. This implies that, at any dS critical point, V > 0, the mass matrix contains a

tachyon with

η ≤ −4

3
, (3.14)

where η is the second slow-roll parameter. The direction of the tachyon in field space

depends on the solution Ya in (3.12) and, hence, on how the Φa moduli are stabilized. It

is therefore model-dependent. The appearance of the tachyon is, however, universal. It

is important to note that it does not matter whether ReΨ is an eigenmode of the mass

matrix. Any direction with a negative m2 implies the existence of at least one negative

eigenvalue of the full mass matrix. This is a consequence of Sylvester’s criterion.

Note that (2.11) implies that also the square in (3.9) can be set to zero for a certain

choice of Ya (which is in general different from the Ya that sets the square in (3.8) to zero).

This again follows from solving a system of linear equations for Ya and demanding that the

determinant of the coefficient matrix is non-zero. At least one combination of the moduli

therefore remains massless at O(λ2) if all Φa moduli are stabilized at leading order.

We should furthermore stress that, under our assumptions, the above result also ex-

cludes slow-roll inflation. Away from a critical point VI = 0, the on-shell identity (3.8)

receives corrections proportional to VI such that (3.14) becomes η ≤ −4
3 + O(

√
ǫ), with

ǫ the first slow-roll parameter. We thus cannot have both ǫ and |η| small and sustained

slow-roll is not possible.

Let us now compare this to the sgoldstino mass. The sgoldstino S is defined as the

direction in field space along which supersymmetry is broken,

S = GIΦ
I , ΦI =

GIS

GJGJ
. (3.15)

The vector GI can be written as

GI = δmI Km + δmI
Wm

W
+ δaIGa, (3.16)

where we remind the reader that Wm

W ∼ λ, Ga ∼ λ. Comparing this to (3.1) and (3.4),

we thus conclude that the tachyon aligns with the sgoldstino in the limit λ → 0. One

furthermore checks that the sgoldstino mass is (cf. appendix B)

m2
ReS = −4

3
V +

4

3
eGGaG

a +O(λ3), m2
ImS =

4

3
eGGaG

a +O(λ3). (3.17)

The sgoldstino itself is thus stable except in the special case where SUSY breaking along

the Φa directions is zero or sufficiently small. This phenomenon is indeed realized in explicit

models [73] and explained by mass mixing effects as follows. At the Minkowski point, the

no-scale moduli are massless, while the Φa moduli are stabilized. One may then suspect

that only the no-scale moduli are in danger of being destabilized by a small λ-deformation.

In fact, the only vector one can construct model-independently atO(λ0) isKm such that the

only model-independent combination of the no-scale moduli is the sgoldstino. According

to this logic, a universal tachyon, if existent, could only be the sgoldstino. However, in
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a general model, the λ-deformation does not only enter in the mass terms of the Φm and

Φa moduli but also in off-diagonal terms in the mass matrix. It can then happen that the

sgoldstino itself is stabilized by the deformation, while a particular combination of the Φm

and Φa moduli is destabilized. As we have just shown, this is precisely what happens in

any string compactification with eGGaG
a > V (as, e.g., in [73]).

Finally, note that, as λ is increased beyond the regime λ ≪ 1, higher order corrections

to the leading order tachyon mass become relevant. In order to still infer η ≤ −4
3 , one

then needs to take into account higher order corrections to the field direction defined by

TI such that the property m2
ReΨ = −4

3V remains intact. Such corrections were successfully

computed in [73] for a particular flux compactification of type IIA string theory. We leave

a general derivation of such corrections for future work. Furthermore, for large enough λ,

the λ-expansion may break down altogether. It would be very interesting if one could find

an all-order resummation of our result that is also valid outside the convergence radius of

the λ-expansion.

3.2 Case 2: Wmn 6= 0,Wmnr = 0

We now discuss what happens when we allow the superpotential to be quadratic in the

no-scale moduli, i.e.,

Wmn 6= 0, Wmnr = 0 (3.18)

at the dS solution. In that case, we find the leading order result

m2
ReΨ = −4

3
eG
(

Km
W̄m

W̄
+KmWm

W

)

+O(λ2). (3.19)

Unlike above, the right-hand side does not vanish at linear order by the equations of motion

anymore since now

0 = KmVm = eG
(

2Km
W̄m

W̄
+ 2KmWm

W
+KmKnWmn

W

)

+O(λ2). (3.20)

Rewriting m2
ReΨ in terms of the on-shell scalar potential, we find

m2
ReΨ = −4

3
V +O(λ2) (3.21)

such that we again have a tachyon with η ≤ −4
3 . Note that, unlike for the case Wmn = 0,

the leading order tachyon mass is not sensitive to the subleading correction Ya to the

tachyon direction. This implies that the tachyon is present independently of whether the

Φa moduli are stabilized at leading order or not.

A special case occurs when KmKnWmn

W vanishes on-shell at linear order in λ, which

happens if W
(1)
mn = 0 or, more generally, Km(0)Kn(0)W

(1)
mn = 0. By (3.19) and (3.20), one

then has m2
ReΨ ∼ O(λ2). This case is a bit more involved and discussed in full generality

in the next subsection.
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3.3 Case 3: Wmnr 6= 0

Let us now consider a completely general Φm-dependence in W in the sense that we also

allow

Wmnr 6= 0 (3.22)

along with Wmn 6= 0 at the dS solution. As the only remaining restriction, we do not

yet allow W
(1)
amn 6= 0 (as explained in section 2.3). Note that at most third derivatives of

W appear in the mass matrix. In order for the dependence of the superpotential on the

no-scale moduli to vanish at the Minkowski point, we require that Wmnr is non-zero earliest

at linear order in the λ-expansion, Wmnr = λW
(1)
mnr +O(λ2).

We now consider the mass of a specific combination of ReΨ and ImΨ, i.e., the field

Re(e−iϕ/2Ψ) = cos(ϕ/2)ReΨ+ sin(ϕ/2)ImΨ. The mass, m2, of this field can be computed

analogously to m2
ReΨ and m2

ImΨ and reduces to these masses for, respectively, ϕ = 0 and

ϕ = π. For the details of the mass computation, we again refer to appendix B.

We distinguish four cases:

3.3.1 Case 3a: KmKnWmn

W
= O(λ), KmKnKpWmnp

W
= O(λ)

Assuming KmKnWmn

W = O(λ), V is non-vanishing already at linear order in λ, and the

mass at this order is

m2 = −2

3
(1 + cosϕ)V +

1

6
eG
(

e−iϕKmKnKr
W̄mnr

W̄
+ eiϕKmKnKrWmnr

W

)

+O(λ2).

(3.23)

Defining

KmKnKrWmnr

W
= |w|eiδ, (3.24)

this becomes

m2 = −2

3
(1 + cosϕ)V +

1

3
eG|w| cos(ϕ+ δ) +O(λ2). (3.25)

The first term on the right-hand side is proportional to V and thus negative for all ϕ 6= π

at a dS solution at linear order in λ. The second term, on the other hand, is periodic

and necessarily negative for a finite range of ϕ-values. Hence, there is always a linear

combination of ReΨ and ImΨ which is tachyonic at linear order in λ.

3.3.2 Case 3b: KmKnWmn

W
= O(λ), KmKnKpWmnp

W
= O(λ2)

In this case, the potential V at the de Sitter solution is still of linear order in λ, but the

second term in (3.23) is subleading, so that we always have a tachyon at linear order in λ

for any choice ϕ 6= π, just as in case 2.

3.3.3 Case 3c: KmKnWmn

W
= O(λ2), KmKnKpWmnp

W
= O(λ)

In this case, V is at least of quadratic order in λ so that the second term in (3.23) dominates

and always gives rise to a tachyon at linear order in λ, as one can always choose ϕ such

that cos(ϕ+ δ) is negative.
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3.3.4 Case 3d: KmKnWmn

W
= O(λ2), KmKnKpWmnp

W
= O(λ2)

A special case occurs when both KmKnKr Wmnr

W and KmKnWmn

W vanish at linear order

in the λ-expansion, i.e., KmKnKr Wmnr

W = O(λ2) and KmKnWmn

W = O(λ2). As discussed

previously, the latter implies V = O(λ2) by the equations of motion. The leading terms in

m2 are therefore now quadratic in λ,

m2 = −2

3
(1 + cosϕ)V +

1

6
eG
(

e−iϕKmKnKr
W̄mnr

W̄
+ eiϕKmKnKrWmnr

W

)

+
1

6
eG
(

e−iϕ W̄
mnrKmKnWr

WW̄
+ eiϕ

WmnrK
mKnW̄ r

WW̄

)

− 1

3
eG
(

e−iϕ W̄
mnKmWn

WW̄
+ eiϕ

WmnK
mW̄n

WW̄

)

+
1

3
eG
∣

∣

∣
Ga + Ya − eiϕGab

(

Gb − Ȳ b
)
∣

∣

∣

2
+O(λ3). (3.26)

The last term on the right-hand side vanishes if we choose Ya appropriately. A tachyon

then follows again from the same argument that we made above. We first write

KmKn

(

Kr +
W̄ r

W̄

)

Wmnr

W
− 2

WmnK
mW̄n

WW̄
= |w|eiδ. (3.27)

We thus find

m2 = −2

3
(1 + cosϕ)V +

1

3
eG|w| cos(ϕ+ δ) +O(λ3). (3.28)

The first term on the right-hand side is proportional to V and thus negative for all ϕ 6= π

at a dS solution. The second term, on the other hand, is either identically zero (for

|w| = 0) or periodic and necessarily negative for a certain ϕ. Hence, there is always a

linear combination of ReΨ and ImΨ which is tachyonic at quadratic order in λ.

To conclude this section, we discuss a few special cases of our no-go theorem that were

addressed in the literature before. We first consider a model where supersymmetry breaking

only happens along the no-scale direction, i.e., Ga = 0. The square in (3.8) can then be set

to zero by choosing Ya = 0, independent of whether the Φa moduli are stabilized at leading

order. One thus has a tachyon along the sgoldstino direction such that the argument

of [64] applies. As a second example, consider a model with a single no-scale modulus

and a quadratic superpotential. Our discussion above then again implies a tachyon, which

reproduces a no-go theorem in [66]. Finally, consider a model with one no-scale modulus

and a superpotential such that W
(1)
m = W

(1)
mn = W

(1)
am = . . . = 0. We then recover the

scenario studied in [13], which was argued to admit meta-stable dS vacua upon a small

tuning of parameters. The equations of motion Va = 0 then imply Ga + GabG
b = O(λ2)

and, hence, Ga −GabG
bcGc = O(λ2). Thus, the matrix δca −GabG

bc has at least one zero

eigenvalue at leading order, i.e., at least one of the Φa is not stabilized at leading order.

The scenario of [13] thus consistently evades our no-go theorem.

Let us summarize this section. We have shown that, under the assumptions spelled out

above, it is not possible to obtain meta-stable dS vacua or solutions suitable for inflation

close to a no-scale Minkowski solution. If the superpotential is linear in the no-scale
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moduli or, more generally, satisfies KmKnKr Wmnr

W = O(λ2) and KmKnWmn

W = O(λ2),

the tachyon is present whenever the Φa moduli are stabilized at leading order, where its

specific direction in field space is model-dependent. The tachyon aligns with the sgoldstino

in the Minkowski limit, while the sgoldstino itself can be stable in the dS vacuum. If, on

the other hand, the superpotential has a general dependence on the no-scale moduli with

KmKnKr Wmnr

W = O(λ) and/or KmKnWmn

W = O(λ), the tachyon is present independently

of whether the Φa moduli are stabilized or not at leading order.

4 Evading the no-go theorem

In this section, we will discuss the possibilities to evade our no-go theorem under the

assumption that the scalar potential is still a pure F-term scalar potential and that the dS

vacuum is close to a no-scale Minkowski vacuum. Specifically, we will show that at least

one of the following three necessary conditions then needs to be satisfied:

• The Kähler potential receives sizable perturbative corrections breaking the no-scale

structure.

• The superpotential has couplings such that Wamn is non-zero at linear order in the

λ-expansion.

• At least one (linear combination) of the Φa moduli is not stabilized at leading order.

Here and in the following, by “unstabilized Φa” we mean that either ReΦa or ImΦa or

a linear combination of them is not stabilized at leading order, while the orthogonal

combination is stabilized. One can check using (2.9) that, for non-zero eG, it is not

possible to have both ReΦa and ImΦa unstabilized.

For simplicity, we will only consider each of these possibilities individually as this is suffi-

cient to evade our no-go theorem.

4.1 Corrections to the Kähler potential

We now study how the tachyon mass is affected by α′ or gs corrections to the leading

Kähler potential. We consider a small correction k of the form

K̂ = K1(Φ
a + Φ̄a) +K2(Φ

m + Φ̄m) + k(Φa, Φ̄a,Φm, Φ̄m), (4.1)

where we denote the corrected Kähler potential by K̂ and the leading potential is given by

K = K1+K2 satisfying (2.13). Note that k can in general depend on both the Φa and the

Φm moduli such that it generates non-zero mixed components gām of the field space metric.
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Repeating our computation of the Ψ mass, we find that it receives a correction

∆m2
ReΨ =

1

6
eG
(

kmnrK
mKnKr + 7km̄nrK

m̄KnKr + 7km̄n̄rK
m̄K n̄Kr + km̄n̄r̄K

m̄K n̄K r̄
)

− 1

6
eG
(

km̄nrsK
m̄KnKrKs + 2km̄n̄rsK

m̄K n̄KrKs + km̄n̄r̄sK
m̄K n̄K r̄Ks

)

+O(k2, kλ), (4.2)

∆m2
ImΨ = −1

6
eG
(

kmnrK
mKnKr − km̄nrK

m̄KnKr − km̄n̄rK
m̄K n̄Kr + km̄n̄r̄K

m̄K n̄K r̄
)

+
1

6
eG
(

km̄nrsK
m̄KnKrKs − 2km̄n̄rsK

m̄K n̄KrKs + km̄n̄r̄sK
m̄K n̄K r̄Ks

)

+O(k2, kλ), (4.3)

where for simplicity we have only written down corrections linear in k and leading in λ.

Note that only derivatives with respect to the Φm moduli appear at the above leading order.

For a correction which respects the shift symmetry of the axionic parts of the moduli,

we can write

k = k(Φa + Φ̄a,Φm + Φ̄m). (4.4)

The corrections to m2
ReΨ and m2

ImΨ then simplify,

∆m2
ReΨ =

8

3
eGkmnrK

mKnKr − 2

3
eGkmnrsK

mKnKrKs +O(k2, kλ), (4.5)

∆m2
ImΨ = O(k2, kλ). (4.6)

Hence, k only helps to stabilize ReΨ but not ImΨ, as expected from (4.4).

So far, we did not make any assumption about the particular form of the correction k.

For the sake of an explicit example, we will now assume that the correction takes the form

k(Φa, Φ̄a,Φm, Φ̄m) = −ξ(Φa, Φ̄a)eK2(Φm+Φ̄m)/2. (4.7)

A well-known example for a correction of the above type is the O(α′3) BBHL correction

to Calabi-Yau orientifold compactifications of type IIB [81] (see also [82]). The no-scale

moduli Φm are then the Kähler moduli of the Calabi-Yau, and

ξ = −χ(Σ)ζ(3)

2
e−3φ0/2, K2 = −2 lnV . (4.8)

Here, φ0 is the dilaton, χ(Σ) is the Euler characteristic of the Calabi-Yau, and V is its

classical volume, which implicitly depends on the Kähler moduli.

From (4.7), (2.14) and (2.15), we can derive the identities

kmnrK
mKnKr =

105

8
k, kmnrsK

mKnKrKs =
945

16
k (4.9)

and analogous for contractions involving barred indices. The correction to the mass term

of ReΨ thus becomes

∆m2
ReΨ = −35

8
eGk +O(k2, kλ). (4.10)
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Depending on the how large the correction k is and which sign it has, it may therefore

stabilize the tachyon. The correction has a stabilizing effect whenever ξ > 0. For the case

of a IIB Calabi-Yau orientifold, this corresponds to a negative Euler characteristic. This

is indeed assumed in the familiar large-volume scenario [3] (which in addition utilizes the

effect of non-perturbative corrections to the superpotential and an uplifting term).

As a second example, let us consider a correction of the form

k(Φa, Φ̄a,Φm, Φ̄m) = −ξ(Φa, Φ̄a)eK2(Φm+Φ̄m)/3. (4.11)

Note the different factor 3 in the exponential compared to (4.7). We then find

kmnrK
mKnKr = 6k, kmnrsK

mKnKrKs = 24k. (4.12)

Substituting this into (4.5), we observe that such a correction does not affect the tachyon

mass at linear order in k. The correction is thus of the extended no-scale type, which

was discussed in [83, 84] in the context of O(g2sα
′2) corrections to type IIB Calabi-Yau

orientifolds.

4.2 Non-zero Wamn

Let us now discuss the possibility of a superpotential with mixed couplings between the

Φm and the Φa such that Wamn 6= 0. As we will see momentarily, a tachyon can then be

evaded if these terms contribute at linear order in the λ-expansion,

W (1)
amn 6= 0. (4.13)

In order to evade a tachyon already at order O(λ), we furthermore require

KmKnKrWmnr

W
= O(λ2), KmKnWmn

W
= O(λ2). (4.14)

We can then again compute the mass of the field Re(e−iϕ/2Ψ) = cos(ϕ/2)ReΨ +

sin(ϕ/2)ImΨ, which we already discussed in section 3.3. Under the above conditions,

this becomes

m2 = −2

3
(1 + cosϕ)V +

1

6
eG
(

e−iϕKmKnKr
W̄mnr

W̄
+ eiϕKmKnKrWmnr

W

)

+
1

6
eG
(

e−iϕ(Ga + 2Ya)KmKn
W̄ amn

W̄
+ eiϕ(Ga + 2Ȳ a)KmKnWamn

W

)

+
1

6
eG
(

e−iϕ W̄
mnrKmKnWr

WW̄
+ eiϕ

WmnrK
mKnW̄ r

WW̄

)

− 1

3
eG
(

e−iϕ W̄
mnKmWn

WW̄
+ eiϕ

WmnK
mW̄n

WW̄

)

+
1

3
eG
∣

∣

∣
Ga + Ya − eiϕGab

(

Gb − Ȳ b
)
∣

∣

∣

2
+O(λ3). (4.15)

Note that this is the same expression as in (3.26), except for the term due to Wamn in the

second line, which now contributes at order O(λ2) as it is contracted with Ga or Ya.
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The last term on the right-hand side of (4.15) vanishes if we choose Ya appropriately.

The solution for Ya is then ϕ-dependent and takes the general form

Ya = ya + eiϕza, (4.16)

where ya, za do not depend on ϕ and satisfy

Ga + ya +Gabz̄
b = O(λ2), za −Gab

(

Gb − ȳb
)

= O(λ2). (4.17)

Furthermore, we can write

KmKn

(

Kr +
W̄ r

W̄

)

Wmnr

W
+ (Ga + 2ȳa)KmKnWamn

W
− 2

WmnK
mW̄n

WW̄
= |w|eiδ. (4.18)

Substituting this together with (4.16) into (4.15), we find

m2 = −2

3
(1 + cosϕ)V +

1

3
eG|w| cos(ϕ+ δ) +

1

3
eG
(

zaKmKn
W̄ amn

W̄
+ z̄aKmKnWamn

W

)

+O(λ3). (4.19)

The first term on the right-hand side is proportional to V and thus negative for all 0 ≤ ϕ <

π at a dS solution. The second term is either identically zero (for |w| = 0) or necessarily

negative for a certain ϕ. However, unlike in section 3.3, we now also have a third term,

which is due to the presence of Wamn and does not depend on ϕ. Hence, one may in

principle evade the tachyon, provided that the size and the sign of Wamn can be chosen in

a given model such that the third term overcompensates the negative contributions of the

first two terms. As Wamn does not enter the equations of motion, this can in general be

done by dialing suitable coefficients in the superpotential.

4.3 Unstabilized Φa moduli

Another way to circumvent the appearance of the universal tachyon is to relax the as-

sumption that the Φa moduli are all stabilized at the Minkowski point. Any unstabilized

modulus receives corrections to its mass at linear or higher order in the λ-expansion and

is therefore in danger of becoming tachyonic at the dS solution (see, e.g., [30] for a recent

analysis). One therefore expects that meta-stable dS vacua are more likely to obtain if we

stabilize as many of the Φa as possible already at the Minkowski point. Hence, the minimal

way to evade our no-go is when exactly one of the Φa is not stabilized at leading order.

According to our discussion in section 2, the matrix

δca −Ga
b̄Gb̄

c (4.20)

then has exactly one zero eigenvalue at leading order in the λ-expansion. There are indeed

examples of models where it is possible to stabilize all but one of the Φa at leading order [13]

such that there is no general obstruction to such a stabilization scheme.

It follows from our discussion of case 2 and 3 in section 3 that we also need to impose

KmKnKrWmnr

W
= O(λ2), KmKnWmn

W
= O(λ2) (4.21)
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since otherwise there is a tachyon independently of whether the Φa are stabilized or not.

As we will now explain, we then still require one additional condition in order to avoid a

tachyon.

Let us go to a basis where Ga
b̄ is diagonal in the no-scale Minkowski vacuum at λ = 0

and call the unstabilized direction the 1 direction. Recall that this means that one linear

combination of the two real degrees of freedom in the complex Φ1 is unstabilized. Eq. (4.20)

then implies that G1
1̄G1̄

1 = 1 and, hence, G1
1̄ = eiχ at leading order in the λ-expansion,

where χ is an arbitrary angle.

We now consider again the mass of a specific combination of ReΨ and ImΨ, i.e., the

field Re(e−iϕ/2Ψ) = cos(ϕ/2)ReΨ+ sin(ϕ/2)ImΨ. The mass of this field can be computed

analogously to our computation in section 3. This yields

m2 = −2

3
(1 + cosϕ)V +

1

6
eG
(

e−iϕKmKnKr
W̄mnr

W̄
+ eiϕKmKnKrWmnr

W

)

+
1

6
eG
(

e−iϕ W̄
mnrKmKnWr

WW̄
+ eiϕ

WmnrK
mKnW̄ r

WW̄

)

− 1

3
eG
(

e−iϕ W̄
mnKmWn

WW̄
+ eiϕ

WmnK
mW̄n

WW̄

)

+
1

3
eG
∣

∣

∣
Ga + Ya − eiϕGa

b̄
(

Gb̄ − Ȳb̄
)

∣

∣

∣

2
+O(λ3). (4.22)

Note that this is the same expression as in (3.26).

Now recall that a system of linear equations can always be solved as long as the

eigenvalues of the coefficient matrix are non-zero. For all a ≥ 2, we can therefore always

choose a Ya such that the equation in the square is solved, again analogous to our argument

in section 3. Hence,

m2 = −2

3
(1 + cosϕ)V +

1

6
eG
(

e−iϕKmKnKr
W̄mnr

W̄
+ eiϕKmKnKrWmnr

W

)

+
1

6
eG
(

e−iϕ W̄
mnrKmKnWr

WW̄
+ eiϕ

WmnrK
mKnW̄ r

WW̄

)

− 1

3
eG
(

e−iϕ W̄
mnKmWn

WW̄
+ eiϕ

WmnK
mW̄n

WW̄

)

+
1

3
eG
∣

∣

∣
G1 + Y1 − eiϕG1

1̄
(

G1̄ − Ȳ1̄
)

∣

∣

∣

2
+O(λ3). (4.23)

Let us now set Y1 = 0 and use the above expression for G1
1̄ to simplify the mass term.

Furthermore, we can write G1 = |G1|eiγ and

KmKn

(

Kr +
W̄ r

W̄

)

Wmnr

W
− 2

WmnK
mW̄n

WW̄
= |w|eiδ. (4.24)

We thus find

m2 = −2

3
(1 + cosϕ)V +

1

3
eG|w| cos(ϕ+ δ) +

1

3
eG
∣

∣

∣

(

1− ei(ϕ+χ−2γ)
)

G1

∣

∣

∣

2
+O(λ3). (4.25)
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u = O(λ2) u = O(λ2) u = O(λ2) u = O(λ1) u = O(λ1)

v = O(λ2) v = O(λ2) v = O(λ1) v = O(λ2) v = O(λ1)

|w| = 0 |w| 6= 0

All Φa stabilized Tachyon O(λ2) Tachyon O(λ2) Tachyon O(λ1) Tachyon O(λ1) Tachyon O(λ1)

(det(δa
c −GabG

bc) 6= 0)

One Φa unstabilized Tachyon O(λ2) Possibly no Tachyon O(λ1) Tachyon O(λ1) Tachyon O(λ1)

2γ − χ 6= π tachyon

(δ + 2γ − χ) ∈ (−π
2
, π
2
)

One Φa unstabilized Tachyon O(λ2) Tachyon O(λ2) Tachyon O(λ1) Tachyon O(λ1) Tachyon O(λ1)

2γ − χ 6= π

(δ + 2γ − χ) /∈ (−π
2
, π
2
)

One Φa unstabilized Possibly no ta- Possibly no Tachyon O(λ1) Tachyon O(λ1) Tachyon O(λ1)

2γ − χ = π chyon, but O(λ2) tachyon if

massless mode (δ + π) ∈ (−π
2
, π
2
)

≥ 2 Φa unstabilized Possibly no Possibly no Tachyon O(λ1) Tachyon O(λ1) Tachyon O(λ1)

2γA − χA not all equal tachyon tachyon

≥ 2 Φa unstabilized As for one unstabilized Φa

2γA − χA all equal

Table 1. Stability constraints for uncorrected Kähler potential and W
(1)
amn = 0, with u =

KmKnWmn

W
, v = KmKnKr Wmnr

W
, eiχ = G1

1̄, eiγ = G1

|G1|
and w, δ as in (4.24).

The first term on the right-hand side is proportional to V and thus negative for all 0 ≤
ϕ < π at a dS solution. In order that no linear combination of ReΨ and ImΨ is a tachyon,

the sum of the other two terms thus needs to contribute positively for all these values of ϕ.

However, we observe that the second term, i.e., the contribution of Wmnr and/or Wmn

and their complex conjugates, is positive only for −π
2 < ϕ + δ < π

2 . This covers only half

of the possible ϕ range and can thus never suffice to remove the tachyon for all ϕ. We thus

in any case need the third term, consistently with our discussion of case 3 in section 3. On

the other hand, we observe that this term vanishes for the choice ϕ = 2γ − χ. The second

term needs to be positive for this choice of ϕ, which implies δ + 2γ − χ ∈ (−π
2 ,

π
2 ). We

conclude that there are two different cases to consider:

• In the generic case 2γ−χ 6= π, we require two contributions to avoid a tachyon for all

ϕ: the one from the unstabilized Φ1 and the one due to Wmnr and/or Wmn. The su-

perpotential thus needs to be at least quadratic in the no-scale moduli. Furthermore,

we require δ + 2γ − χ ∈ (−π
2 ,

π
2 ).

• For 2γ − χ = π, the contribution from Wmnr and/or Wmn is not necessary. The

square in (4.25) then only vanishes for ϕ = π such that it may help to stabilize the

mass for all ϕ 6= π and we cannot conclude the existence of a tachyon. The mode

with ϕ = π is then massless at quadratic order in the λ-expansion and needs to be

stabilized at a higher order.

For convenience, we have summarized the different conditions under which a tachyon may

be evaded in table 1.

Note that, if (4.20) has more than one zero eigenvalue, the contributions from Wmnr

or Wmn to the mass term are generically not necessary to stabilize Ψ. Let us count the
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zero eigenvalues by an index A. We then have GA
Ā = eiχA , GA = |GA|eiγA . Setting

Wmnr = Wmn = 0, the mass term is then given by

m2 = −2

3
(1 + cosϕ)V +

1

3
eG
∣

∣

∣

(

1− ei(ϕ+χA−2γA)
)

GA

∣

∣

∣

2
+O(λ3), (4.26)

where |. . .|2 denotes an implicit contraction with KAB̄. Unless χA − 2γA takes the same

value for all A, there is no way to choose ϕ such that the square vanishes. It may therefore

be possible to lift the tachyon even in models in which the superpotential is only linear in

the no-scale moduli. We are not aware of a model in which this scenario is realized, but it

would be interesting to explore this further.

As a notable special case, let us finally discuss models as in [13], where, in addition

to (4.21), also W
(1)
m = W

(1)
mn = W

(1)
am = W

(1)
mnr = 0 holds. The equation of motion Va =

0 then yields Ga + GabG
b = O(λ2) and, hence, Ga − GabG

bcGc = O(λ2). (4.20) thus

necessarily has at least one zero eigenvector at leading order in the λ-expansion. In such

models, our assumption that at least one Φa is unstabilized at the Minkowski point is

therefore automatically satisfied, which confirms an observation in [13]. Substituting Ga+

GabG
b = O(λ2) into (4.22) together with ϕ = π and Ya = 0, we furthermore find m2

ImΨ =

−1
6e

G
(

KmKnKr
W̄mnr

W̄
+KmKnKr Wmnr

W

)

+O(λ3). In the absence of a cubic term in the

superpotential, such models therefore always have an unstabilized mode at quadratic order

in the λ-expansion, regardless of how many zero eigenvalues (4.20) has. This is not the

case in the model of [13], where a cubic term arises from a non-perturbative contribution

to the superpotential.

5 Classical dS vacua?

As an application of our general result, we explain in this section why classical type IIA

dS vacua are difficult to obtain close to a no-scale Minkowski point. More generally, the

intention of this section is to illustrate in examples how our no-go theorem may constrain

or even rule out classes of string models without requiring tedious scans of the whole

parameter space.

Starting with [41, 42], the idea of constructing simple dS vacua from classical type II

flux compactifications has received a lot of interest in past years. The term “classical dS

vacua” usually refers to models that may involve the standard NSNS, RR and metric fluxes

as well as O-planes and D-branes, but no “exotic” ingredients such as non-geometric fluxes

and no relevant perturbative or non-perturbative quantum corrections. Interestingly, all

dS solutions found in such models so far are unstable [45–48, 60, 61] even though they

evade the known no-go theorems against meta-stability from the volume/dilaton moduli

and the sgoldstino.

Although we do not have a general proof that classical type IIA dS vacua are impossible,

our results rule them out in the important case where the Φa are all stabilized at the nearby

no-scale Minkowski point. As we will explain below, one then requires couplings in the

superpotential that are not present in classical models. The same conclusion generically

applies in the case where one of the Φa is not stabilized at leading order. We will illustrate
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these points in section 5.1. Our conclusion may be evaded in non-generic cases where

the superpotential of a model satisfies certain extra conditions (in particular, 2γ − χ = π

in section 4.3). However, we will argue in section 5.2 using a simple example that these

conditions may be difficult to satisfy for classical models since they do not have enough

tuning freedom (see also [21] for similar arguments). This may explain the absence of

classical dS vacua in type IIA even in such non-generic cases.

5.1 ≤ 1 unstabilized Φa at leading order — generic case

Let us first discuss the case where all Φa are stabilized at the no-scale Minkowski point.

Since corrections to the Kähler potential are assumed negligible in classical models, our no-

go theorem can then only be evaded if Wamn 6= 0 on-shell (cf. our discussion in section 4).

This means that the superpotential needs to be at least quadratic in the no-scale moduli.

A similar conclusion applies when one of the Φa is not stabilized at leading order but only

at a higher order in the λ-expansion. According to our discussion in section 4.3, one then

again generically (i.e., in the notation of section 4.3, for 2γ−χ 6= π) needs a superpotential

which is at least quadratic in the no-scale moduli. Furthermore, the existence of a no-scale

Minkowski solution requires the superpotential to be at least quadratic in the Φa moduli

(cf. appendix A). A meta-stable dS solution in the vicinity of a no-scale Minkowski point

thus generically requires

Wab 6= 0, Wmn 6= 0 (5.1)

off-shell.4 Analyzing the known expressions for flux superpotentials in type IIA string

theory, one finds that the above is not possible with only NSNS, RR and metric fluxes.

Although quadratic and cubic terms are generated by these ingredients, they only suffice

to satisfy one of the two conditions but not both at the same time. Stable dS vacua may

therefore be allowed for superpotentials involving non-perturbative effects or non-geometric

fluxes, but not for “classical” superpotentials in the above sense.

To see this, consider the Kähler potential and superpotential for a general SU(3)-

structure flux compactification in type IIA (see, e.g., [85–89]),

K = K(zK + z̄K̄)− ln
[

κijk(t
i + t̄i)(tj + t̄j)(tk + t̄k)

]

, (5.2)

W = −zK
(

ihK + riKti
)

+ f6 + if4it
i − 1

2
κijkf

i
2t

jtk − i

6
f0κijkt

itjtk, (5.3)

where the ti are the analogues of the Kähler moduli on SU(3)-structure orientifolds, the

zK contain the dilaton and the analogues of the complex structure moduli, and the κijk
are the triple-intersection numbers. The flux parameters f0, f

i
2, f4i, f6, hK and riK are

related to RR, NSNS and metric fluxes, respectively.

One verifies that the only way to satisfyWmn 6= 0 in this class of models is to take Φm =
{

ti
}

, Φa =
{

zK
}

. This implies, however, Wab = 0. Hence, no-scale Minkowski vacua where

the ti are the no-scale moduli are not possible in these compactifications. Alternatively,

one may consider a subset of the zK as the no-scale moduli such that KmKm = 3 is

satisfied. The remaining zK and the ti are then the Φa moduli. In that case, Wab 6= 0 can

4This is true modulo a special case described at the end of appendix A.
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be satisfied such that no-scale Minkowski vacua are possible, but one then immediately

sees that Wmn = 0. We therefore conclude that SU(3)-structure compactifications in type

IIA cannot avoid our tachyon by turning on terms in the superpotential that are at least

quadratic in the no-scale moduli. This is consistent with the absence of meta-stable dS

vacua in explicit scans [45, 60, 61, 63, 73].

A simple example confirming this behavior is the isotropic compactification of massive

type IIA on SU(2)×SU(2) which was studied in [60] (see also [45, 61, 63, 73]). This model

admits unstable dS extrema close to a no-scale Minkowski point in moduli space at which

the Φa moduli are all stabilized. Its Kähler potential and superpotential read [45, 63]

K = − ln(z1 + z̄1)− 3 ln(z2 + z̄2)− 3 ln(t+ t̄) + 4 ln(2), (5.4)

W = iλ1t
3 + 3t(λ2t+ z1 + z2)− iλ3(z1 − 3z2), (5.5)

where the λi are flux numbers. Taking Φm = {z2}, Φa = {t, z1}, we observe that the

superpotential is linear in the no-scale modulus. According to our discussion of case 1 in

section 3, we therefore expect a tachyon along a direction in moduli space which aligns

with the sgoldstino in the Minkowski limit, whereas the sgoldstino itself can be stable in

the dS vacuum. This was indeed shown to be true in [73] by an explicit analysis of the mass

matrix.5 In [73], the same behavior was furthermore found to be true in another example

in type IIB, which also admits an unstable dS solution [48]. While we have not studied type

IIB models in detail, our no-go theorem explains the appearance of the tachyons in type IIA

string theory on general grounds. According to our theorem, any classical dS extremum in

type IIA close to a no-scale Minkowski point with stabilized Φa will have such a tachyon.

In models where the complex-structure and Kähler sectors of the Kähler potential are

further separable (i.e.,K = K1(z
A+z̄A)+K2(z

α+z̄α)−ln(t1+t̄1)−ln
[

κ1jk(t
j + t̄j)(tk + t̄k)

]

with
{

zK
}

=
{

zA, zα
}

and j, k = 2, 3, . . .), it is sometimes also possible to choose com-

binations of the zK and ti to be the no-scale moduli such that KmKm = 3 is satis-

fied. In such models, our above arguments do therefore not immediately apply. Choosing

Φm =
{

zA, tk
}

,Φa =
{

zα, t1
}

, one verifies using (5.3) that the equations of motion for the

Φa moduli yield Wab = 0 at leading order such that no-scale Minkowski vacua do not exist.

Choosing instead Φm =
{

zA, t1
}

,Φa =
{

zα, tk
}

, no-scale Minkowski vacua are possible.

However, one can check that our conclusion then still holds if all Φa moduli are stabilized

at the Minkowski point: using again (5.3), one finds Wamn = 0, which, according to our

no-go theorem, implies a tachyon.6

5The Minkowski limit of this model is singular, i.e., the moduli blow up near the Minkowski point.

However, this can be mapped to a regular solution by an appropriate rescaling of the fluxes.
6However, unlike for all other models discussed in this section, there is no simple argument addressing the

case where one Φa modulus remains unstabilized at the Minkowski point since both Wab 6= 0 and Wmn 6= 0

are possible in this special class of models. For the group/coset manifolds that have been analyzed in classical

dS scans, the Kähler potential takes the simple form K = − ln
[

Π4
K=1(z

K + z̄K)
]

− ln
[

Π3
i=1(t

i + t̄i)
]

, and

one verifies that then at least two Φa moduli remain unstabilized at the Minkowski point. However, for

more general manifolds, this may not necessarily be the case.
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5.2 ≥ 1 unstabilized Φa at leading order — non-generic case

As discussed in section 4.3, there are (non-generic) circumstances under which it is possible

to evade the tachyon even when the superpotential is only linear in the no-scale moduli,

namely when one Φa is unstabilized with 2γ − χ = π or when more than one Φa are

unstabilized at leading order. Our no-go theorem does then not generally rule out classical

dS vacua. However, satisfying the conditions for meta-stability then requires a tuning

freedom that may not be available in some classical models.

Let us illustrate this in the simple model

K = − ln(S + S̄)− 3 ln(T + T̄ )− 3 ln(U + Ū), (5.6)

W = a0 + ia1U + a2U
2 + ia3U

3 + iS
(

b0 + ib1U + b2U
2 + ib3U

3
)

+ iT
(

c0 + ic1U + c2U
2 + ic3U

3
)

, (5.7)

which is known as the isotropic STU model. Note that, for U = t, S = z1, T = z2 and

a0 = a1 = b2 = b3 = c2 = c3 = 0, we recover the geometric type IIA example discussed

around (5.4) and (5.5). Some of the flux parameters ai, bi, ci, however, correspond to non-

geometric fluxes (see [21] for a complete dictionary in type IIA and IIB7). Including such

non-geometric fluxes, meta-stable dS vacua were found in this model in [18, 19, 21, 26]. In

the following, we will show that this is not possible using only geometric fluxes, at least

near a no-scale Minkowski point.

In order that Wab 6= 0, we are led to consider T as the no-scale modulus. We then

have to set ci = 0 at the no-scale point such that the superpotential does not depend on

T . The equations of motion are satisfied together with V = 0 for

GU = 0 = − 3

U + Ū
+

WU

W
, GS = 0 = − 1

S + S̄
+

WS

W
. (5.8)

Using this in Gab, we find the leading order expressions

GUU = − 6

(U + Ū)2
+

WUU

W
, GUS = − 3

(S + S̄)(U + Ū)
+

WUS

W
, GSS = 0. (5.9)

The eigenvalues of (4.20) are

1− 1

2
GUU (K

UŪ )2GŪŪ −GUSK
SS̄GS̄ŪK

UŪ

± 1

2
KUŪ

√

(

GUUKUŪGŪŪ

)2
+ 4GUUKUŪGŪŪGUSKSS̄GS̄Ū . (5.10)

In order to evade our no-go theorem, one or both of these eigenvalues must be zero at the

Minkowski point.

Let us first consider the case where both S,U are unstabilized. For finite Kähler metric,

this yields

GUU = 0, GSUGS̄Ū = KS̄SKŪU . (5.11)

7Our definition of the complex moduli is related to the one in [21] by a factor i.
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One checks that these equations cannot be solved together with the equations of motion

for the given superpotential. Hence, it is not possible to have a no-scale Minkowski vacuum

with both S,U unstabilized in this model.

Now we turn to the case with one unstabilized modulus. One of the two eigenvalues

is zero if
√

GUUGŪŪ = ±
(

GSUK
SS̄GS̄Ū −KUŪ

)

. (5.12)

As we discussed in section 4.3, for models with one unstabilized Φa, there is always a choice

of ϕ and Ya such that the equation

Ga + Ya − eiϕGab

(

Gb − Ȳ b
)

= O(λ2) (5.13)

can be solved, which with Wmnr = Wamn = Wmn = 0 implies a tachyon with m2 =

−2
3(1 + cosϕ)V . The only loophole is when the equation is solved for the particular value

ϕ = π. The tachyon then becomes massless at order λ2 and might be stabilized at a higher

order. Hence, we need to ask if we can solve the equation

Ga +GabG
b + Ya −GabȲ

b = O(λ2) (5.14)

in this model. Its components are

GU +GUUK
UŪGŪ +GUSK

SS̄GS̄ + YU −GUUK
UŪ ȲŪ −GUSK

SS̄ȲS̄ = O(λ2), (5.15)

GS +GSUK
UŪGŪ + YS −GSUK

UŪ ȲŪ = O(λ2). (5.16)

Solving the second equation for YS and substituting this into the first one yields

GU +GUUK
UŪGŪ + 2GUSK

SS̄GS̄ + YU −GUUK
UŪ ȲŪ +GUSK

SS̄GS̄ŪK
UŪGU (5.17)

−GUSK
SS̄GS̄ŪK

UŪYU =O(λ2).

Using (5.12) in the equation and adding to it ∓
√
GUU√
GŪŪ

times its complex conjugate, we

arrive at

√

GŪŪGU ∓
√

GUUGŪ +
√

GŪŪGUSK
SS̄GS̄ ∓

√

GUUGŪ S̄K
SS̄GS = O(λ2), (5.18)

where the sign depends on the sign in (5.12). As expected, unlike in the case where all the

moduli are stabilized, one can in general not find a Ya such that (5.14) is solved. Instead,

there is one additional condition (5.18) that needs to be fulfilled (which corresponds to the

condition 2γ − χ = π of section 4.3).

One can check that, if only geometric fluxes are turned on, this condition cannot be

satisfied together with V > 0 in this model such that meta-stable dS vacua are forbidden,

at least up to quadratic order in the λ-expansion. This statement is true both for type IIA

and type IIB. The details of the computation are presented in appendix C. If, on the other

hand, one adds a non-perturbative term Wnp = Ae−aT to the superpotential, it is known

that all conditions can be satisfied. In particular, it was found in [13] that meta-stable dS

vacua near a no-scale Minkowski point can be constructed in this model if one includes
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the term Wnp. Meta-stable dS vacua near a no-scale Minkowski point were furthermore

constructed in [26] using non-geometric fluxes.

To summarize, our no-go theorem offers an explanation for why meta-stable dS vacua of

classical, geometric flux compactifications are difficult to obtain near a no-scale Minkowski

point. For the case where all Φa are stabilized at the Minkowski point, we were in fact able

to rule out such vacua in type IIA. Thus, our no-go theorem also explains the appearance

of tachyons in known setups such as the type IIA example discussed around (5.4) and (5.5).

For the case where some of the Φa are unstabilized at the Minkowski point, we do not have a

full proof. However, our arguments indicate that some geometric flux compactifications do

not have enough free parameters to satisfy the necessary conditions to avoid our tachyon. It

would be interesting to see whether this can be proven in general or whether other regions of

the parameter space are less constraining. Interestingly, all of our arguments also apply to

compactifications involving localized sources such as NS5-branes or KK-monopoles, which

to our knowledge have not been systematically studied so far. These objects only source

NSNS and metric fluxes and do therefore not lead to new terms in the superpotential.8

An important caveat is that we restricted to dS vacua in the vicinity of no-scale

Minkowski points in moduli space. Interesting solutions might therefore still exist far away

from such points, where our systematic expansion breaks down. Furthermore, it would be

interesting to see whether our results also shed light on the tachyons in SU(2)-structure

compactifications in type IIB [48], which we have not studied in detail.

6 Conclusions

In this work, we studied string compactifications with an F-term scalar potential and

analyzed to what extent they admit meta-stable dS vacua near a no-scale Minkowski point

in moduli space. We showed that this is not possible for a large class of models due to a

universal tachyon with second slow-roll parameter η ≤ −4
3 . Our result thus also excludes

slow-roll inflation for those cases. The tachyon is present unless the Kähler potential has

sufficiently relevant α′ or gs corrections, and/or the superpotential satisfies Wamn 6= 0,

and/or there is at least one unstabilized modulus at the Minkowski point perpendicular to

the no-scale directions.

The direction of the tachyon in field space is model-dependent and aligns with the

sgoldstino in the no-scale Minkowski limit. The sgoldstino itself, however, can be stable

in the dS vacuum, as is indeed the case in explicit models. Among other applications, our

result offers an explanation for why classical dS vacua in type IIA string theory are elusive,

and why additional ingredients such as instanton corrections, non-geometric fluxes and/or

perturbative corrections seem to be required.

8Note that the superpotential does not depend on any brane tensions but only on flux numbers. This

is explained by the fact that the scalar potential obtained from a dimensional reduction of the 10d action

is matched to the 4d F-term scalar potential using tadpole conditions (see, e.g., [90]). Since the expression

for (5.3) is valid independently of the brane content [85, 91], branes only affect the F-term scalar potential

indirectly via the fluxes their presence admits.
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Our work suggests several avenues for further research. First, it would be interesting

to perform an analogous computation for models with a more general scalar potential, e.g.,

including constrained multiplets or D-terms. Such models were argued to admit meta-stable

dS vacua, e.g., using anti-D3-branes [1, 92, 93], magnetized D7-branes [2] or T-branes [31].

It would be interesting to perform a general stability analysis of scenarios including such

objects. It could also be useful to employ similar techniques to study the stability of dS

solutions near other special points in moduli space which do not have a no-scale structure.

Finally, it would be interesting to extend our result to all orders in λ and thus study dS

vacua and inflation far away from the no-scale Minkowski limit. We hope to come back to

some of these ideas in future work.
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A No-scale Minkowski solutions in string theory

Here, we will show that no-scale Minkowski vacua in string theory necessarily have Wab 6= 0

off-shell unless the superpotential is identically zero. To this end, let us assume that

Wab = 0 off-shell and that the model has a no-scale Minkowski vacuum. The superpotential

must then be of the form

W = caΦ
a + C (A.1)

with ca, C coefficients. Since the equations of motion yield Ga = 0, we furthermore have

Wa = −KaW (A.2)

at the solution. Using (A.1) in (A.2), we find

ca = −Ka

(

cbΦ
b + C

)

. (A.3)

Note that non-perturbative corrections such as instantons are exponential in the moduli

such that Wab 6= 0. In order to prove our initial claim, it is therefore sufficient to focus

on compactifications without such terms. The coefficients C and ca are then related to

fluxes in string theory. In type IIA, for example, the superpotential can receive a constant

contribution from F6 flux and linear terms from H3 or F4 fluxes. Since flux numbers are

constrained to be real, C and ca cannot be arbitrary complex numbers. In our conventions

for the moduli, C is real and the ca are imaginary (up to an overall irrelevant factor in

W ). This can be understood from the fact that the superpotential must be invariant under

a combined shift symmetry of the axions and the fluxes, which descends from a gauge

symmetry of the 10d parent supergravity theory. A shift of an axion caΦ
a → ca(Φ

a + iξa)
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is then absorbed by a compensating shift in a flux, C → C − icaξ
a. This can only work if

there is a relative factor i between C and ca. Furthermore, the superpotential is constrained

by dualities such as T-duality, which relate the prefactors of terms involving different types

of axions. All flux superpotentials in string theory known to us satisfy this property, and

we will assume it to hold in the following.

We can then multiply (A.3) by Φa + Φ̄a to find

ca
(

Φa + Φ̄a
)

= d
(

cbΦ
b + C

)

, (A.4)

where we use the notation d = −Ka(Φ
a+Φ̄a). Let us first discuss the case d = 0. We then

have ca
(

Φa + Φ̄a
)

= 0. Since ca is imaginary and C, Ka are real, it follows from (A.1)

and (A.3) that W is imaginary on-shell. Hence, W = iIm (caΦ
a + C) = 1

2ca
(

Φa + Φ̄a
)

= 0

on-shell. From (A.2), we then find that Wa = ca = 0. Substituting this back into W , we

have W = C = 0. Hence, the superpotential is trivial in this case.

We now discuss the general case d 6= 0. (A.4) then yields

C =
1− d

d
caΦ

a +
1

d
caΦ̄

a. (A.5)

Since ca is imaginary and d is real, we can rewrite (A.5) into

C = −2

d
Re (caΦ

a) +
2− d

d
caΦ

a. (A.6)

For C real, it then follows that caΦ
a is real as well and, hence, C = −caΦ

a. From W =

caΦ
a + C and Wa = ca = −KaW , it then follows

ca = C = 0. (A.7)

Hence, we have shown that there are no no-scale Minkowski solutions in string compact-

ifications where Wab = 0 off-shell, except for the trivial case where the superpotential is

identically (off-shell) zero.

Interestingly, one can also show that Wab 6= 0 is a necessary condition for the Φa

moduli to be stabilized at the no-scale Minkowski point. Using (A.2), we can write Gab =

Kab −KaKb +Wab/W on-shell. For Wab = 0, (2.11) would thus reduce to

det
(

δca −GabG
bc
)

= det
[

(2−KbK
b)KaK

c
]

= 0, (A.8)

where we used that KabK
bc = Kab̄K

b̄c = δca, KaK
ab = KāK

āb = Kb and the fact that an

outer product of two vectors has rank 1 and thus zero determinant. Note that the last

conclusion only holds if the number of Φa moduli is larger than 1. However, we are not

aware of any string compactification with a single Φa modulus. Hence, a necessary (but

not sufficient) condition for the Φa moduli to be stabilized is that Wab is non-zero on-shell,

which can only be true if it is also non-zero off-shell. Let us stress here that by Wab 6= 0 we

mean that W is (at least) quadratic in some of the Φa, but not necessarily in all of them.

Finally, note that the argument below (A.6) can be avoided at a special point in moduli

space where d = −Ka(Φ
a + Φ̄a) = 2, which implies KaK

a = 2. However, (A.8) then still
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applies. Furthermore, for compactification manifolds with a lot of isometries (such as

group or coset manifolds), a point with d = 2 does often not exist due to the simple form

of the Kähler potential (see, e.g., the model discussed around (5.4)). As another example,

consider a Calabi-Yau compactification where the Φm are the Kähler moduli and the Φa

correspond to the complex structure moduli and the dilaton. In the large complex-structure

limit, one then has −Ka(Φ
a + Φ̄a) = 4.

B Derivation of tachyon mass

In this appendix, we show how to compute the mass, m2, of the scalar field Re(e−iϕ/2Ψ),

where Ψ = TIΦ
I with TI = δmI Km + δaIYa. For ϕ = 0 and ϕ = π, this gives the mass of

Re(Ψ) and Im(Ψ), respectively.

To this end, we insert the equation of motion (2.2) in (2.3) and (2.4) to simplify the

mass matrix,

VIJ̄ = (KIJ̄ −GIGJ̄)V + eG
[

KIJ̄ +GIJGJ̄
J −GI

K̄KJ̄K̄JG
J −KIJK̄GJ̄

JGK̄

−KIJ̄JK̄GJGK̄ +KIJK̄KJ̄K
JGKGK̄ +KIJK̄KJ̄L̄

K̄GJGL̄
]

, (B.1)

VIJ = (GIJ −GIGJ)V + eG
[

2GIJ +GIJKGK −GI
K̄KJK̄KGK −KIJK̄GK̄

−KIKK̄GJ
K̄GK −KIJKK̄GKGK̄ +KILK̄KJK

LGKGK̄

+KIKK̄KJL̄
K̄GKGL̄

]

. (B.2)

As a preparation for computing

m2 =
1

2T ITI

[

2VĪJT
ĪT J + eiϕVIJT

IT J + e−iϕVĪ J̄T
ĪT J̄

]

(B.3)

from the above mass matrix, we first collect some more useful identities that follow from

the equation of motion (2.2).

B.1 Useful identities

As V is at least of order λ, eq. (2.2) implies for I = a

GamKm = −(Ga +GabG
b) +O(λ2). (B.4)

From KmVm = 0, on the other hand, one obtains

2

(

KmWm

W
+Km̄ W̄m̄

W̄

)

+KmKnWmn

W

= −
∣

∣

∣

∣

Wm

W

∣

∣

∣

∣

2

−
∣

∣

∣

∣

KmWm

W

∣

∣

∣

∣

2

− 3GaG
a −KmWmn

W

W̄n

W̄

−KmGmaG
a +O(λ3), (B.5)

implying

2

(

KmWm

W
+Km̄ W̄m̄

W̄

)

+KmKnWmn

W
= O(λ2). (B.6)
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Contracting (B.4) with Ga and eliminating GaGamKm with (B.5) gives

∣

∣

∣

∣

KmWm

W

∣

∣

∣

∣

2

= −2e−GV +

∣

∣

∣

∣

Wm

W

∣

∣

∣

∣

2

+GaGabG
b −KmKnWmn

W

−KmWmn

W

W̄n

W̄
+O(λ3). (B.7)

Special case: KmKnWmn

W
= O(λ2). In the special case KmKnWmn

W = O(λ2), some

of the above identities simplify. In particular, (B.6) becomes

KmWm

W
+Km̄ W̄m̄

W̄
= O(λ2), (B.8)

which implies V = O(λ2) as well as

(

KmWm

W

)2

=

(

Km̄ W̄m̄

W̄

)2

+O(λ3) = −
∣

∣

∣

∣

KmWm

W

∣

∣

∣

∣

2

+O(λ3). (B.9)

To lowest order in λ, one furthermore obtains from Vm = 0

Wmn

W
Kn =

Wm

W
+Kmn

W̄n

W̄
+O(λ2), (B.10)

which implies
∣

∣

∣

∣

KmWml

W

∣

∣

∣

∣

2

=

(

KmWml

W

W̄ l

W̄
+ c.c.

)

+O(λ3). (B.11)

B.2 The mass

We first consider the special case KmKnWmn

W = O(λ2), which includes the case Wmn = 0

and implies via (B.6) that V is at least quadratic in λ. We thus need to consider in general

all terms in the mass (B.3) up to quadratic order in λ. Using (B.1), one then finds

Vmn̄K
mK n̄ = −6V + eG

[

−
(

KmKnWmn

W
+ c.c.

)

− 2

(

KmWml

W

W̄ l

W̄
+ c.c.

)

−2

(

KmWm

W

)2

− 2

(

Km̄ W̄m̄

W̄

)2

− 6

∣

∣

∣

∣

KmWm

W

∣

∣

∣

∣

2

+

∣

∣

∣

∣

KmWml

W

∣

∣

∣

∣

2

+ 2

∣

∣

∣

∣

Wm

W

∣

∣

∣

∣

2

+
∣

∣

∣
Ga +GabG

b
∣

∣

∣

2
]

. (B.12)

Using (B.9) and the real part of (B.7) to eliminate the terms in the second line and (B.11)

to eliminate the first term in the third line, one ends up with

Vmn̄K
mK n̄ = −2V + eG[GaG

a +GabG
bGacGc]. (B.13)

We next determine from (B.2)

VmnK
mKn = −6V + eG

[

2

(

KmWm

W

)2

− 2KmKnWmn

W
+KmKnKpWmnp

W
+ 2

∣

∣

∣

∣

Wl

W

∣

∣

∣

∣

2

+KmKnWmnp

W

W̄ p

W̄
+KmKnWmna

W
Ga − 4KmWmn

W

W̄n

W̄

]

. (B.14)
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With (B.9) and (B.7), this becomes

VmnK
mKn = −2V + eG

[

KmKnKpWmnp

W
+KmKnWmnp

W

W̄ p

W̄

+KmKnWmna

W
Ga − 2GaGabG

b − 2KmWmn

W

W̄n

W̄

]

. (B.15)

Next, using (B.1) and (B.4), one obtains

VmāK
mY ā = eG(Gā +Gāb̄G

b̄)Y ā − eG(Ga +GabG
b)Y āGā

a (B.16)

and analogously for the complex conjugate. The remaining terms that appear in m2 are

Vab̄Ȳ
aY b̄ = eG

[

YaȲ
a + Ȳ aGacY

b̄Gb̄
c
]

, (B.17)

2VmaK
mȲ a = 2eGKmKnȲ aWmna

W
, (B.18)

VabȲ
aȲ b = 2eGȲ aȲ bGab. (B.19)

Inserting now (B.13) and (B.15)–(B.19) into (B.3) gives

m2 = −2

3
(1 + cosϕ)V +

1

6
eG
(

e−iϕKmKnKr
W̄mnr

W̄
+ eiϕKmKnKrWmnr

W

)

+
1

6
eG
(

e−iϕ(Ga + 2Ya)KmKn
W̄ amn

W̄
+ eiϕ(Ga + 2Ȳ a)KmKnWamn

W

)

+
1

6
eG
(

e−iϕ W̄
mnrKmKnWr

WW̄
+ eiϕ

WmnrK
mKnW̄ r

WW̄

)

− 1

3
eG
(

e−iϕ W̄
mnKmWn

WW̄
+ eiϕ

WmnK
mW̄n

WW̄

)

+
1

3
eG
∣

∣

∣
Ga + Ya − eiϕGab

(

Gb − Ȳ b
)∣

∣

∣

2
+O(λ3), (B.20)

which is eq. (4.15).

Note that when, as assumed here, KmKnWmn

W = O(λ2), the only term in the above

expression that could possibly be of order O(λ1) is the term involving KmKnKpWmnp

W and

its complex conjugate.

In the special case that W is at most linear in the Φm and upon choosing ϕ = 0, the

above mass reduces to

m2
ReΨ = −4

3
V +

1

3
eG
∣

∣

∣
Ga + Ya −Gab

(

Gb − Ȳ b
)∣

∣

∣

2
+O(λ3), (B.21)

which is (3.8).

We now finally consider the case KmKnWmn

W = O(λ1). In that case, (B.6) implies that

V = O(λ1), and one only has to keep terms linear in λ in m2. Going through the same

steps as above, most terms then are of higher order and can be dropped leaving

m2 = −2

3
(1 + cosϕ)V +

1

6
eG
(

e−iϕKmKnKr
W̄mnr

W̄
+ eiϕKmKnKrWmnr

W

)

+O(λ2), (B.22)

which is (3.23). Eq. (3.19) instead follows if ϕ = 0 is chosen and if Wmnp = 0, or, more

generally, if KmKnKpWmnp

W = O(λ2).
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C STU model near a no-scale Minkowski point

To simplify the calculation, let us first set the moduli to 1 at the critical point, U =

S = T = 1. This can be done without loss of generality thanks to an invariance of the

superpotential under a combination of shifts and rescalings of the flux numbers. One verifies

that the superpotential is invariant under the change of variables (S, T, U, ai, bi, ci) →
(S′, T ′, U ′, a′i, b

′
i, c

′
i) with

S = S′σ1 + iσ2, T = T ′τ1 + iτ2, U = U ′ξ1 + iξ2 (C.1)

and

a′0 = a3ξ
3
2 − b0σ2 − c3ξ

3
2τ2 + c2ξ

2
2τ2 + a0 − b3ξ

3
2σ2 + b2ξ

2
2σ2 + b1ξ2σ2 − a2ξ

2
2 − c0τ2

+ c1ξ2τ2 − a1ξ2,

a′1 = −b1ξ1σ2 + 3b3ξ1ξ
2
2σ2 − 2b2ξ1ξ2σ2 − 2c2ξ1ξ2τ2 − c1ξ1τ2 + 2a2ξ1ξ2 − 3a3ξ1ξ

2
2

+ 3c3ξ1ξ
2
2τ2 + a1ξ1,

a′2 = 3c3ξ2ξ
2
1τ2 + a2ξ

2
1 − 3a3ξ2ξ

2
1 − c2ξ

2
1τ2 − b2ξ

2
1σ2 + 3b3ξ2ξ

2
1σ2

a′3 = −c3ξ
3
1τ2 + a3ξ

3
1 − b3ξ

3
1σ2,

b′0 = −b2ξ
2
2σ1 + b3ξ

3
2σ1 − b1ξ2σ1 + b0σ1, b′1 = b1ξ1σ1 + 2b2ξ1ξ2σ1 − 3b3ξ1ξ

2
2σ1,

b′2 = −3b3ξ
2
1ξ2σ1 + b2ξ

2
1σ1, b′3 = b3ξ

3
1σ1,

c′0 = c3ξ
3
2τ1 − c2ξ

2
2τ1 − c1ξ2τ1 + c0τ1, c′1 = c1ξ1τ1 + 2c2ξ1ξ2τ1 − 3c3ξ1ξ

2
2τ1,

c′2 = −3c3ξ
2
1ξ2τ1 + c2ξ

2
1τ1, c′3 = c3ξ

3
1τ1, (C.2)

where σi, τi, ξi are real parameters that can be chosen freely. Note that the Kähler potential

transforms as K → K − lnσ1 − 3 ln τ1 − 3 ln ξ1 under this variable change. Derivatives of

the Kähler potential are therefore not affected such that the equations of motion remain

invariant.

At the no-scale Minkowski point, we require ci = 0 and GU = GS = 0. For U = S =

T = 1, this yields

a0 = −b3, a1 = b2, a2 = −b1, a3 = b0. (C.3)

Demanding that one of the Φa is unstabilized at the Minkowski point furthermore im-

plies (5.12). This holds if the flux parameters satisfy one of the following possible condi-

tions:

{b0 = 0, b3 = 0} , {b0 = b2, b3 = 0} , {b1 = 0, b2 = 0} ,

{b1 = −3b3, b2 = 0} ,
{

b1 =
b23 + b20 − b2b0

b3

}

,

{

b0 = −1

3

b21 + b22 + 3b3b1
b2

}

. (C.4)

As an example, let us consider the first possibility. Together with (C.3), we thus have the

choice of parameters

a0 = 0, a1 = b2, a2 = −b1, a3 = 0, b0 = 0, b3 = 0 (C.5)

at the no-scale Minkowski point.
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We now attempt to construct a dS vacuum in the vicinity of the no-scale Minkowski

vacuum. To this end, we perform an expansion in λ,

a0 = a01λ+ a02λ
2 +O(λ3), a1 = b20 + a11λ+ a12λ

2 +O(λ3), (C.6)

a2 = −b10 + a21λ+ a22λ
2 +O(λ3), a3 = a31λ+ a32λ

2 +O(λ3), (C.7)

b0 = b01λ+ b02λ
2 +O(λ3), b1 = b10 + b11λ+ b12λ

2 +O(λ3), (C.8)

b2 = b20 + b21λ+ b22λ
2 +O(λ3), b3 = b31λ+ b32λ

2 +O(λ3), (C.9)

c0 = c01λ+ c02λ
2 +O(λ3), c1 = c11λ+ c12λ

2 +O(λ3), (C.10)

c2 = c21λ+ c22λ
2 +O(λ3), c3 = c31λ+ c32λ

2 +O(λ3). (C.11)

We would like to focus on solutions in which the superpotential is not trivial at leading

order, i.e., we assume at least one of its flux parameters to be non-zero. We first consider the

case where both b10, b20 are non-zero. Note that the equations of motion are invariant under

a rescaling of the superpotential by an overall factor. We can therefore set b10 = 1, b11 =

0, b12 = 0 without loss of generality. Solving the equations of motion up to quadratic order

in λ then fixes most of the higher order coefficients. In order to evade a tachyon, we also

need to satisfy the condition (5.18) at the dS solution, which fixes another coefficient. We

thus find two possible solutions for the scalar potential up to quadratic order in λ:

solution 1: V = 0 +O(λ3),

solution 2: V = −(b220 + 1)(7b220 + 1)(b220 + 7)c231
24b220(b

2
20 + 3)2

λ2 +O(λ3). (C.12)

Next, we consider the case where b10 = 0 and b20 6= 0. Rescaling the superpotential, we

can set b20 = 1, b21 = 0, b22 = 0. Solving again the equations of motion and (5.18), we find

solution 3: V = −(5b31 + c31 + 5a01)(b31 − c31 + a01)

192
λ2 +O(λ3). (C.13)

Hence, V can only be positive at this order if c31 6= 0, which corresponds to a non-geometric

flux (see, e.g., table 1 in [21]). Finally, let us consider the remaining case where b20 = 0

and b10 6= 0. Setting b10 = 1, b11 = 0, b12 = 0 and solving again the equations of motion

together with (5.18), we find

solution 4: V = −(5b01 + c01 − 5a31)(b01 − c01 − a31)

192
λ2 +O(λ3). (C.14)

In order that the non-geometric fluxes c21, c32 are zero in this solution, one furthermore

finds that b01 = a31 and c01 = 0 is required such that V vanishes. We conclude that, in the

absence of non-geometric fluxes and non-perturbative corrections to the superpotential,

the scalar potential cannot be made positive at this order in the λ-expansion. Analogous

conclusions are reached if one considers one of the other possibilities in (C.4).
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[79] J. Bl̊abäck, U.H. Danielsson, D. Junghans, T. Van Riet, T. Wrase and M. Zagermann,

Smeared versus localised sources in flux compactifications, JHEP 12 (2010) 043

[arXiv:1009.1877] [INSPIRE].
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