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A universal transition to turbulence in
channel flow

Masaki Sano* and Keiichi Tamai

Transition from laminar to turbulent flow drastically changes
the mixing, transport, and drag properties of fluids, yet when
and how turbulence emerges is elusive even for simple flow
within pipes and rectangular channels1,2. Unlike the onset of
temporal disorder, which is identified as the universal route
to chaos in confined flows3,4, characterization of the onset of
spatiotemporal disorder has been an outstanding challenge
because turbulent domains irregularly decay or spread as they
propagate downstream. Here, through extensive experimental
investigation of channel flow, we identify a distinctive transi-
tion with critical behaviour. Turbulent domains continuously
injected from an inlet ultimately decayed, or in contrast,
spread depending on flow rates. Near a transition point,
critical behaviour was observed. We investigate both spatial
and temporal dynamics of turbulent clusters, measuring four
critical exponents, a universal scaling function and a scaling
relation, all in agreement with the (2+1)-dimensional directed
percolation universality class.

Transition to turbulence in open shear flows such as pipe
flow and channel flow has been a difficult puzzle for over 130
years1. In such flows, laminar flow becomes turbulent despite its
linear stability5–7. Also, turbulent structures tend to be localized;
laminar states do not break up into turbulent states unless they
are invaded by turbulent neighbours. If the tendency for invasion
by a turbulent state increases, the turbulent state will eventually
spread over the entire space. It is this behaviour that led Pomeau
to conjecture that the spatiotemporal intermittency observed at
the transition from laminar flow to turbulence belongs to the
directed percolation (DP) universality class8,9. DP is a stochastic
spreading process of an active (turbulent) state with a single
absorbing state10, to which diverse phenomena such as spreading of
epidemics, fires, synchronization11, and granular flows potentially
belong10. Thus, if the transition is continuous and the interaction
is short ranged, then universal critical exponents are expected10,12.
The linear stability of the laminar flow and recent experimental
findings of two competing processes (namely decaying and splitting
of a turbulent puff) in pipe flow13 qualitatively support this
analogy including other shear flows such as plane Couette and
Taylor–Couette flows14–19. However, direct characterization of the
transition has been lacking. This situation is presumably due
to the extremely long timescale of pipe flow, thereby requiring
experiments with extraordinarily long pipes to observe the critical
phenomena. To overcome this difficulty, we chose a quasi-two-
dimensional channel flow and forced the inlet boundary condition
to be an active (turbulent) state. This enabled us to study
the transition to turbulence as a surface critical phenomena.
As a result, a clear transition between decay and penetration
of the injected turbulent flow was observed. Quantification of
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Figure 1 | Apparatus and snapshot of turbulent spots. a, Schematic of the

apparatus. The aspect ratio of the channel is 2,352h×2h×360h, where the

depth 2h is 5mm. b, Turbulent spots are visualized near the middle

(x=3m) downstream location of the channel at Re=810. The turbulent

flows are injected by using a grid at the inlet (x=0) of the channel.

Visualization was assisted by means of micro-platelets and grazing angle

illumination. Scale bar, 100mm.

the order parameter and the correlation length revealed critical
behaviour of the transition in the experiment on shear flows;
three independent critical exponents support the notion that
the transition to turbulence in channel flow belongs to the DP
universality class.

In channel flow, the Reynolds number (Re) is defined as
Re=Uh/νK , where U is the centreline velocity of the parabolic
profile, h is the half-height of the channel, and νK is the kinematic
viscosity of the fluid (Fig. 1). Laminar channel flow (plane
Poiseuille flow) is linearly stable up to a Reynolds number of
ReL = 5,772 (ref. 20). However a turbulent spot excited by a finite
perturbation can grow and split to spread into extended spatial
regions because of a global nonlinear instability even if Re is
much smaller than ReL(refs 21,22). To study this transition, an
experimental set-up was configured. The flow channel has a length
of 5,880mm in the streamwise (x) direction, a cross-section of
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Figure 2 | Spatial variation of the flow across the transition. a, Snapshots taken by three CCD cameras from left to right, respectively, at Re=798. Quick

decay of turbulent flow is evident. Colour represents the normalized image intensity. A black colour is assigned to the point where the image intensity is

close to the laminar state (see the colour map). b, Snapshots at Re=842. The intermittent nature of the turbulent spots can be seen. c, Snapshots at

Re= 1,005. Saturation of the turbulent fraction is evident.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

750 800 850 900 950 1,000 1,050 1,100

Reynolds number, Re

10−1

100

10−3 10−2 10−1

Slope = 0.58(3)

Re = 803
Re = 798
Re = 797

10−3

10−2

10−1

100

0 1,000 2,000 3,000 4,000 5,000 6,000

x (mm)

D
ec

ay
 le

n
g

th
, L

 (
m

)

a b

Tu
rb

u
le

n
t 

fr
ac

ti
o

n
, ρ

Tu
rb

u
le

n
t 

fr
ac

ti
o

n
, 

(x
)

ρ

Tu
rb

u
le

n
t 

fr
ac

ti
o

n
, ρ

 = (Re − Rec)/Recε ′ = (Rec − Re)/Recε

10−1

100

101

0.01 0.1

Slope = −1.1(3)

Re = 904
Re = 856

Re = 832
Re = 825
Re = 819

Re = 842 

Figure 3 | Critical behaviour of the turbulent fraction. a, The turbulent fraction ρ versus Re is plotted at different downstream locations: x/h= 1,292

(orange square), x/h= 1,880 (blue diamond) and x/h=2,096 (green square). Error bars represent standard deviation. Inset: a log–log plot of ρ as a

function of reduced Reynolds number ε, where ε≡(Re−Rec)/Rec, with Rec=830(4). The solid blue lines are the best fit, εβ with β =0.58(3), for the data

in 10−3<ε< 10−1. Here, numbers in the parentheses denote 95% confidence intervals in the sense of the Student’s t distribution. The same applies to the

following. Note that data points below Rec are removed for fitting. A non-vanishing order parameter below Rec due to a finite size effect exists as usual;

however, relatively small systems can show remarkably clear power-law behaviour in numerical models exhibiting a DP transition (see Supplementary

Information for simulation). b, The turbulent fraction as a function of distance x from the inlet where turbulence is created by a grid. Measurements were

performed for six different x locations where the incidence angles and the reflected angles of the light were identical. The solid lines show the exponential

fittings, ρ(x)∼exp(−x/L), applied for the data satisfying x/h> 1,040. Error bars represent standard deviation. Inset: log–log plot for L versus

ε′ ≡(Rec−Re)/Rec. Error bars of the fitted values L are 95% confidence limits. The solid line is the best fit, L∼|ε′|−ν with ν = 1.1(3).

5mm in depth (the y direction), and a width of 900mm in
the spanwise (z) direction. Thus the aspect ratio of the channel
is 2,352h × 2h × 360h. The flow dynamics in the (x , z) plane
was visualized and recorded using a visualization technique and
three charge-coupled device (CCD) cameras (seeMethods). Instead
of triggering turbulent spots by a local perturbation for each
measurement, as in the previous experiments13,21, turbulent flow is
continuously excited in the buffering box through the use of a grid
and injected from the inlet (x = 0), otherwise the flow remained

laminar up to much higher Reynolds numbers (see Methods).
Figure 1 shows the visualization of turbulent spots observed near
the middle of the channel (x/h= 1,200) at Re= 810. Note that
most of the turbulent flow injected at the inlet decayed quickly
and became a laminar flow. Hence, any surviving turbulent flow
tends to be visible as localized turbulent spots characterized by
finer-scale disordered eddies surrounded by several streaks and
clear laminar flows21. The typical size of the turbulent spot is
about 40–80h.
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Figure 4 | Critical behaviour of correlation length and universal scaling. a, Laminar interval distribution N(τ ) measured at a fixed downstream location,

x/h= 1,280, for different Re. Power-law fit for Re=846–832 approaches N(τ )∼τ−µ, with µ= 1.25(5). The solid blue line corresponding to µDP
⊥ = 1.204 is a

guide for the eye. b, Complementary cumulative laminar interval distribution P(τ ). The tails show exponential decays: P(τ )∼exp(−τ/ξ). c, Correlation

length ξ versus reduced Reynolds number ε. The solid line is the fit, ξ ∼ε−ν⊥ , with ν⊥ =0.72(6). The dashed line corresponding to νDP⊥ =0.733 is a guide

for the eye. d, The data collapse for several different Re according to the scaling hypothesis. For Rec, the value estimated in the experiment was used. For ν⊥

and µ⊥, the theoretical values for (2+ 1)-dimensional DP were used to assess whether the phenomena belong to the DP class or not.

Table 1 | Summary of the critical exponents measured in this
experiment.

(2+ 1)D system β ν⊥ µ⊥ ν‖

Channel flow (present exp.) 0.58(3) 0.72(5) 1.25(5) 1.1(3)

DP theory 0.583(3) 0.733(3) 1.204(2) 1.295(6)

Numbers in the parentheses denote 95% confidence intervals in the sense of the Student’s t

distribution.

Figure 2 shows normalized intensity images of the flow pattern
for three different Reynolds numbers. As shown in Fig. 2a for
Re= 798, the injected turbulent structure separated into localized
turbulent spots which quickly decayed as they propagated with
the mean flow, and ultimately disappeared before reaching the
channel exit. For Re≥830, splitting and spreading of turbulent spots
were clearly observed (see Fig. 2b for Re= 842). These processes
contributed to the creation of turbulent clusters whose dynamics
exhibited an intermittent stochastic nature in space and time. For
sufficiently large Re values (for example, Re>900), turbulent flow
was sustained (see Fig. 2c for Re=1,005).

This set-up enabled a steady-state measurement of the area
fraction of the turbulent region (the turbulent fraction ρ) for various

values of x . The value of ρ, estimated bymeasuring the time fraction
occupied by turbulent flow averaged over a protracted time period
(approximately 40min; that is, 100 times the length of the flow
circulation time), was found to saturate for higher Re and for
larger x , as shown in Fig. 3a. Therefore, the turbulent fraction was
measured as a function of Re at several distant locations, x , satisfying
x/h>1,280 (see Fig. 3a). The area fraction of the active (turbulent)
region is an order parameter in the DP transition which increases
continuously from zero to positive values. Thus, the curves are fitted
by the function

ρ =ρ0ε
β , ε≡(Re−Rec)/Rec

in the inset of Fig. 3a, where ε is the reduced Reynolds number.
As a result, β = 0.58(3) and Rec = 830(4) were obtained as the
best fit values. The value of β was very close to the universal
exponent of (2+1)-dimensional (that is, two-dimensional in space
and one-dimensional in time) DP, βDP =0.583(3). Furthermore, the
result Rec =830(4) is consistent with the results of direct numerical
simulations for a channel flow, in which the global instability was
reported as Rec <840 (ref. 23).

Moreover, spatial variations of ρ(x) over space were investigated.
The turbulent fraction ρ(x) showed clear exponential decays for
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Re values smaller than 803, whereas ρ showed saturations at
constant values in space for Re=904, as shown in Fig. 3b. Hence,
transition between decay and penetration is evident. Thus, we
fit ρ(x) with an exponential decay; ρ(x) ∼ exp(−x/L) for the
data taken at Re<Rec. The decay length L increased as Rec was
approached, with a power-law relationship, L∼ |ε|−ν . As a result,
ν = 1.1(3) was obtained as the best fit (see the inset of Fig. 3b).
This value is close to the critical exponent characterizing the
divergence of temporal correlation length, νDP

‖
= 1.295(6). For the

temporal correlation length ξ‖ and the spatial correlation length ξ⊥,
the relations ξ‖ ∼ε−νDP

‖ and ξ⊥ ∼ε−νDP
⊥ hold, respectively, in DP.

As ε approaches 0, the spatial correlation from the active wall
becomes irrelevant compared with the temporal correlation as a
result of the relation νDP

‖
> νDP

⊥
(and thereby ξ‖ ≫ ξ⊥, for ε ≪ 1),

which holds inDP. Thus, the examination of spatial variation ofρ(x)

is actually equivalent to the examination of a quenching dynamics
of turbulence injected from the inlet that is conveyed downstream
by the flow. This is the very reason ν‖ was observed instead of ν⊥

with respect to ρ(x). Therefore, the decay length L coincides with
the survival length of the active cluster which defines the temporal
correlation length ξ‖ in DP (refs 24–26).

There are three independent static exponents that characterize
the DP universality class: β , ν‖ and ν⊥. Numerical simulation on a
simple directed bond percolation model with advection indicates
that one can estimate the remaining exponent ν⊥ by measuring
distributions of the durations τ of the laminar state (laminar interval
distribution) N (τ ) at fixed downstream locations for Re > Rec

(see Supplementary Figs 6 and 7). Therefore, the distributions
N (τ ) at x = 3,200mm were accumulated for 40 different z-
positions within a half-span width (±225mm) around the mid-
height. For small τ values, a power-law distribution is expected
near Re=Rec reflecting the scale invariance of critical clusters10.
Figure 4a shows the resultingN (τ ) dependence for several different
Reynolds numbers. We fit this by the power law N (τ ) ∼ τ−µ,
with µ = 1.25(5), which is close to the universal exponent in
DP, µDP

⊥
=1.204(2).

To observe the tail of the distributions, a complementary
cumulative probability, P(τ ) ≡

∫ ∞

τ
N (t)dt/

∫ ∞

0
N (t)dt was

calculated, as shown in Fig. 4b. We defined the correlation
length, ξ , by fitting the tail of P(τ ) with an exponential function,
P(τ )∼ exp(−τ/ξ). As the transition point (Rec) is approached, ξ

increases substantially (Fig. 4c). Thus a best fit was determined
in the form ξ ∼ ε−ν , with an exponent ν = 0.72(6) for a small
ε region (0.005 < ε < 0.06) in accordance with νDP

⊥
= 0.733(3).

Although the range of the power law is limited owing to the
finite size of the system, the obtained exponents of µ⊥, β and ν⊥

consistently satisfy the universal scaling relation µ⊥ = 2− β/ν⊥.
As such, these results encourage the further exploration of
universal features for the subject phenomena. Thus, a universal
scaling hypothesis,

P(τ )∼εν⊥(µ⊥−1)g (εν⊥τ)

for P was introduced (see Supplementary Information for a detailed
discussion and numerical validation of this hypothesis) with a
universal scaling function g (x). By plotting the rescaled probability
ε−ν⊥(µ⊥−1)P(τ ) as a function of the rescaled duration εν⊥τ , we find
that several curves overlap (see Fig. 4d) when we choose Rec =830
in accordance with the previous result shown in Fig. 3a. All these
results support that the transition can be understood as the DP
process conveyed downstream by the flow.

In conclusion, the present result strongly supports the notion
that the transitions to turbulence in shear flows belong to the
(2+1)D DP universality class (the critical exponents obtained are
summarized in Table 1). In fact, a similar conclusion has been
reported recently by Shi et al. for shallow height Taylor–Couette
flow, where (1 + 1)D DP universality was observed27. Unveiling

the ‘dynamical origin’28–30 of the critical behaviour and quantifying
dynamics by a spreading experiment are future challenges towards
a deeper insight into the onset of turbulence.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
Construction of the flow channel. The channel walls were made of 25-mm-thick
polymethyl methacrylate (PMMA) plates of optical surface quality. The entire 6m
(5,880mm) channel comprised three pieces with 1,960mm × 1,000mm slots (see
Supplementary Fig. 1). Both ends of each slot were reinforced by welding
50-mm-thick flanges to ensure the precision of the joint between two slots using an
O-ring. The side walls were made of PMMA strips with dimensions 50mm ×

5mm × 1,000mm. When constructed in this way, the precision of the depth was
±0.1mm. To avoid further deflection due to static pressure load in the channel,
cross-braces were placed at 425-mm intervals along the channel. The working fluid
is water. The channel inlet was connected to a buffering box by means of a
smoothly curved contracting joint whose area contraction ratio was 1:20. To set a
turbulent boundary condition, we placed a grid near the inlet. (When the grid is
covered with seven layers of mesh screens, the flow remained laminar in a whole
channel at least up to Re=1,400. As the covering by mesh screen was not sufficient
at the edge, turbulent flows did not decay near either end of the buffering box near
z=0mm and z=900mm at Re=1,400. Those turbulent flows injected from the
inlet gradually grew and spread. Even in that case, there was no spontaneous
nucleation of turbulent spots from the laminar state in the middle of the channel.)
Velocity control was attained by electronically controlling the speed of the pump
and the opening of the valve. We monitored the pressure gradient across the
channel. The pressure gradient was almost constant during each measurement. The
flow rate was measured by a flow meter (FD-UH40G, Keyence). The temperature
of the water was controlled at 25 ◦C within an accuracy of ±0.1 ◦C.

Visualization. As the measurement of the spatiotemporal dynamics of turbulent
spots in a large space is problematic, we used a simple visualization using tracer
particles. Metal-coated mica platelets (10–20 µm in diameter and 3 µm in
thickness, Iriodin, Merck) were added to water for visualization. The concentration
of the tracer was reduced to 0.04% in weight to keep the change of viscosity

negligible (<0.1% according to Einstein’s law23). Thin platelets tend to align
perpendicular to shear stress, which implies parallel to the x–z surface in laminar
flow states, whereas they rotate in turbulent spots. The grazing angle illumination
gave moderate light reflections from the laminar regions towards the front, whereas
scattering from the turbulent spots is omni-directional and its intensity deviated
significantly from that of the laminar regions (see Supplementary Fig. 3). Six
projectors (PJ4114NW, 3000 lumen, ultra-short focal length, Ricoh) were attached
250mm apart and 300mm above the (x , z) surfaces to illuminate the channel
surface at a grazing angle to attain a reasonably uniform intensity of illumination.
Three CCD cameras (1,608 pixels × 1,208 pixels, 10 frames s−1) facing the centre of
the x–z plane of each slot synchronously captured movies of the spatiotemporal
dynamics of the flow of each slot. For the evaluation of the turbulent fraction, p(x)

was measured at six positions (x=0.65m. 1.27m, 2.68m, 3.23m, 4.70m, 5.24m)
where the incidence angles from each of the six light sources to each measuring
position in the channel were almost equal, and simultaneously the reflection angles
from the measuring position to each of the three CCD cameras were almost
equivalent. This choice was made to avoid unwanted inhomogeneity in the
turbulent fraction ρ(x) due to the anisotropic nature of the light scattered from
the platelets.

Image analysis. Original images from movies captured by the three CCD cameras
were normalized by the background images. Background images were obtained for
the laminar state before and after each daily measurement. Next, histograms of
normalized images were calculated at each pixel by accumulating time series from
the movies for each Reynolds number. If the fluctuations of the normalized
intensities at each pixel exceeded three times the standard deviation of the
fluctuations of the laminar state, we determined that the pixel point lies in a
turbulent cluster. For the resulting cluster structures in space, we used a criterion
that the minimum size of a cluster is larger than h2. A more detailed explanation of
the image analysis is given in the Supplementary Information.
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