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Abstract

Knowledge representation has gained in relevance as data from the ubiquitous digitization

of behaviors amass and academia and industry seek methods to understand and reason

about the information they encode. Success in this pursuit has emerged with data from natu-

ral language, where skip-grams and other linear connectionist models of distributed repre-

sentation have surfaced scrutable relational structures which have also served as artifacts

of anthropological interest. Natural language is, however, only a fraction of the big data del-

uge. Here we show that latent semantic structure can be informed by behavioral data and

that domain knowledge can be extracted from this structure through visualization and a

novel mapping of the text descriptions of elements onto this behaviorally informed represen-

tation. In this study, we use the course enrollment histories of 124,000 students at a public

university to learn vector representations of its courses. From these course selection

informed representations, a notable 88% of course attribute information was recovered, as

well as 40% of course relationships constructed from prior domain knowledge and evaluated

by analogy (e.g., Math 1B is to Honors Math 1B as Physics 7B is to Honors Physics 7B). To

aid in interpretation of the learned structure, we create a semantic interpolation, translating

course vectors to a bag-of-words of their respective catalog descriptions via regression. We

find that representations learned from enrollment histories resolved courses to a level of

semantic fidelity exceeding that of their catalog descriptions, revealing nuanced content dif-

ferences between similar courses, as well as accurately describing departments the dataset

had no course descriptions for. We end with a discussion of the possible mechanisms by

which this semantic structure may be informed and implications for the nascent research

and practice of data science.

Introduction

The emergence of data science [1] and the application of word vector models for representation

learning [2–4] have, together, focused attention on surfacing structure from big data in ways

that are scrutable and show signs of being able to contribute to domain knowledge [5, 6]. These

neural models, stemming from cognitive theories of distributed representation [32], have been

shown to encode a surprising portion of linguistic relationships learned directly from text [7].

They contribute to part of a quickly growing field around computational text and natural
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language modeling. While much of the recent focus of the field has centered on advancements

in deep models for text generation and translation [8, 9], a separate thread of research has

worked to explore and inspect the semantics and lexical relationships that can be surfaced,

favoring simpler linear neural models for their interpretability and scrutability [10–13]. It is in

the vein of this thread of research, and forwarding the general interest of data science to make

meaning from observational data, that we conduct our study generalizing the application of

computational text methods to a dataset of behaviors outside of the domain of language.

An embedding, or neural representation learned from sequential data, can be framed as an

informational artifact mapping elements in a sequence to parts of a semantic structure formed

by element contexts in the sequence [14–16]. In our study of the topical regularities of this

semantic structure, the elements are courses appearing in the historic enrollment sequences of

tens of thousands of students. Learning a course embedding, constructed from these sequences

of course IDs, is learning a mapping of courses onto a semantic space informed by students’

preferences, their knowledge of courses at the time of enrollment, and the relationship of those

courses to the curricular structure of degrees. Using this embedding, we highlight the breadth

of information that can be communicated by student course selections using a model of dis-

tributed representation applied to a dataset of modest size. In addition to validating the model

for what propositional domain knowledge it has encoded, we provide opportunities for addi-

tional topical regularities to surface through visualization and a mapping of the abstract course

vector space onto a natural language space.

Our work relates to the field of learning analytics, where historical enrollment data have

been used to predict the next courses a student will take [17, 18], the grade they may receive in

those courses [19–21], and the prerequisites that may prepare them to achieve their goals [20,

22]. We contribute methods for learning the underlying semantics of curricular resources

from data, a phase outlined in an early learning analytics vision document [23] as coming after

predictive modeling and preceding adaptive course sequencing.

The workflow of our methodology is as follows: (1) process enrollment data into chronolog-

ical sequences grouped by student (2) learn several neural embeddings of courses using differ-

ent hyperparameter sets (3) draw on domain knowledge to create propositions to validate the

embeddings against (4) conduct model selection based on validation scores (5) explore the

relationships between courses, visually and algebraically (6) investigate the semantics of sparse

areas of the course vector space by mapping them onto a space of course catalog descriptions

and interpolating.

Data, models, and optimization

Originally conceived of for natural language, the skip-gram and continuous bag-of-words

(CBOW) models embed words into a high-dimensional vector space, with model weights

adjusted through backpropagation to predict word contexts across a corpus. They can be

posed as a three-layer neural network (Fig 1), similar in objective to an autoencoder [24], cre-

ating a lower dimensional representation of the input in the hidden layer by attempting to re-

construct it in the output. Unlike autoencoders, skip-grams process a single input word (I) at a

time (t) and capture chronology by predicting only c number of words to the left and right of

the input word in calculating the loss (Eq 1). The intuition is that the meaning of a word can

be inferred from the contexts in which it has been used and that those contexts can be summa-

rized using neural networks.

loss ¼ �
X

d2D

1

jdj

X

jdj

t¼1

X

t�c�j�tþc;j 6¼t

log pðdtþjjdtÞ ð1Þ
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The objective function of the model (Eq 1) is to increase the predicted probabilities of the

words within the context (dt±j) of the input word, dt. The size of the context window is deter-

mined by j, a hyperparameter of the model. Every document in a corpus (d 2 D) is used for

training, with each word at each position of the document serving as the input word once per

training iteration, or epoch. For example, given the sentence, “All happy families are alike” Fig

1 shows how a skip-gram might predict the context words given families as the input word.

The input word is first processed into one-hot form, denoted by the δ notation. This one-hot

vector, which is as long as the total number of unique words used in the corpus, is multiplied

by the weight coefficient matrix (wih) representing the edge weights between the input layer

nodes and the hidden layer nodes. The result is a vector of length equal to the number of hid-

den layer nodes. This vector length is a hyperparameter of the model. The vector is then multi-

plied by the weight coefficient matrix (who) representing the edge weights between the hidden

later and the output layer. The output layer contains the same number of nodes as the input

layer. Given that the word happy appears in context with the input word, it will be included in

the loss calculation. The higher the output value of the context word, converted to a probability

via the softmax function (Eq 2), the lower the loss. Both weight matrices are trained to mini-

mize the loss through stochastic gradient descent. If the one-hot input layer of the model were

directly connected to the one-hot output layer forming a multinomial logistic regression, the

Fig 1. Skip-grammodel. The three-layer neural network architecture of a skip-grammodel. An example input word, families, is
depicted with a one-hot representation as well as example weight coefficient matrices used to produce an output value prediction for the
word happy.

https://doi.org/10.1371/journal.pone.0233207.g001
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weights (wio) would simply be the distribution of target words across all the input word’s con-

texts. The insertion of a hidden layer of a lower dimensionality than the input and output lay-

ers adds a layer of shared featurization in which regularities, or patterns, must be captured in

order to reduce the loss. The input-to-hidden-layer edge weights (wih), after training, yield the

continuous vector representations of the words, the collection of which is an embedding. The

lack of non-linear activations in this model, unlike a deep network, imparts the embedding

with the properties of a vector space. These properties allow for semantics to be retained after

arithmetic and scalar manipulation of word vectors in this space. We apply this modelling

approach to the extra-linguistic sequences of course enrollments from each student’s course

history, as opposed to its traditional application to the sequences of words from documents.

We used student enrollment data from UC Berkeley, a public research university in the

University of California system. The data spanned from Fall 2008 through Spring 2016 for a

total of 23 semesters including summer sessions, with 2,129,810 class enrollments made by

124,203 anonymized undergraduate students in 163 degree programs. Considering courses

that undergraduates enrolled in, graduate courses included, there were 7,997 unique lecture

courses across 197 subject areas. A subject area is the most granular category of academic unit

at UC Berkeley, followed by department, division, and college. Professional schools are stand-

alone units but will be counted in analyses as both subjects and divisions.

Courses designated as “special topics” have not yet received an approved unique course

number and instead use the same generic course number in each department. To differentiate

between these courses, we appended the course identifier with the instructor’s name. The

robustness of a skip-gram model can deteriorate when there are too few data points for ele-

ments in the vocabulary (i.e., course ID tokens). To reduce this source of noise, we filtered out

courses that had less than 20 total enrollments in the eight year span of the dataset. Addition-

ally, we removed enrollments for non-lecture credit, such as independent research and senior

theses, decreasing the unique course IDs in the model from 7,997 to 4,349.

We encoded each course taken by a student as a one-hot, allowing an undergraduate career

to be represented as a sequence, S, of one-hots, serializing courses taken at the same time by

randomizing their within-semester order. Every occurrence of a course in every student’s

enrollment sequence represents a training instance, with the prediction targets being the

courses in the enrollment sequence prior to and after the input course within a specified win-

dow (dt±j). After training, the input-to-hidden-layer edge weights (wih) yield the continuous

vector representations of courses. Our open-source tool, used for learning course representa-

tions and interactive visual exploration, can be found online [25].

This collection of course vectors, and the relationships they may encode, is the component

of interest, as opposed to the model’s predictions of the courses in context. It is necessary,

therefore, to tune hyperparameters of the model to maximize the validity of the encoded rela-

tionships as opposed to maximizing its accuracy in predicting courses in context. In word

representation learning, a sampling of propositions in the broad categories of semantic and

syntactic word relationships are hand defined and serve as the set of ground truth relationships

with which the embedding can be validated against [2]. Given our novel application to univer-

sity enrollment data, finding sources of validation in this domain was a challenge.

One source of validation we identified was the set of cross-listed courses, which are courses

with multiple listings in different departments (e.g., Economics C175 and Demography C175

correspond to the same course). If two course listings were not explicitly cross-listed with each

other but were cross-listed with a shared third course, we considered the set of three to be

cross-listed. This produced a validation set of 1,472 cross-listed pairs enumerated from 443

cross-listed sets of two or more courses.
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For a second validation set, we collected sets of credit equivalent courses. These 128 sets

consisted of 250 courses across 48 subjects. Courses within these sets were considered so simi-

lar in content to one another by faculty that the Office of the Registrar will not give a student

credit for taking both (e.g., Linear Algebra is credit equivalent or credit “restricted” with Hon-

ors Linear Algebra). The data were collected from a course information system website of the

University and manually parsed. We chose to treat all levels of equivalency (full, partial, condi-

tional) the same, assuming all equivalencies exhibited enough conceptual similarity to be of

use in validating the models. We applied the transitive property, that two courses would be

considered equivalent if they shared a third course that was equivalent with the two. This set

distinguishes itself from the cross-listed pairs in that the courses in those pairs are the same,

not just equivalent. This produced a validation set of 381 credit-equivalent pairs enumerated

from 128 credit-equivalent sets of two or more courses.

We optimized choice of model architecture (skip-gram vs CBOW) and six hyperparameters

of the representation learning model: window size (1 to 32), vector size (2 to 300), the use of

hierarchical softmax, the use of negative sampling, the number of noise words drawn for nega-

tive sampling, and the threshold for down-sampling higher-frequency words. Using the cross-

listed course pairs and the credit equivalency pairs, we queried the models for the nearest

neighbors of each course in the pair, taking the rank of the expected course for each, then tak-

ing the median rank across all pairs (Algorithm S1). Because optimizing by a different metrics

could yield a different top model, we allowed the optimization metric to be another point of

comparison. The nearest neighbor rank of one course in the validation pair to the other was

determined using cosine similarity, using the median rank across pairs in a validation set as

the error metric for that set, performed both ways for each pair since the mutuality of nearest

neighbors is not assumed. This would be comparable to performing model selection of lan-

guage models by choosing the model with the highest median similarity based on pairs of syn-

onymous words.

Algorithm S1 Validation Score
1: procedure VALIDATION SCORE(validation_set)
2: medians  new list
3: for 8sets 2 validation_set do
4: scores  new list
5: for 8 course pc 2 s do
6: for 8 course c0 2 s, c 6¼ c0 do
7: scores.add(rank of c0 using nearest neighbor to c)
8: set_score  median(scores)
9: medians.add(set_score)
10: validation_score  median(medians)
11: return validation_score
We experimented with treating cross-listed courses in one of two ways. The cross-listed

sets of courses could be collapsed into a single course with only one distinct course ID in our

enrollment data or they could be treated as individual courses belonging to the respective

departments in which they were listed. The decision could have an impact on the resultant

course vector space. An embedding based strictly on course content would place individually

treated cross-listed courses (e.g., Economics C110 and Political Science C135) into the exact

same point in a semantic space, however, this is unlikely to occur in practice since students

majoring in Economics and Political Science tend to favor enrollment in the course listing that

is within their home department. The difference in major distributions for each listing would

change the course enrollment contexts of each, resulting in different learned vector representa-

tions. Alternatively, collapsing the cross-listed courses would force these courses to share all

course enrollment histories. This could have the result of bringing many Economics and
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Political Science courses closer to one another since they would now have a mutual course in

common. We tested which approach led to a better embedding by collapsing none, half, and

all cross-listed courses in the enrollment data and comparing the performance of models

trained on each version of the data. A model with no collapsed cross-listed courses would have

the full set of cross-listed courses available to validate against while a model with all cross-listed

courses collapsed would have none. To compare across the models optimized by different met-

rics and different cross-list collapse proportions, we held out 20% of the validation sets to serve

as test sets.

We ran 400 models with different hyperparameters for each cross-list collapse experiment.

The best performing model by overall validation score for each validation set and each cross-

list percentage within that validation set is shown in Table 1 along with its respective scores on

the test sets. The models trained with no collapsing of cross-listed courses produced the best

overall test scores on both the equivalencies and cross-listings sets. Among those models, the

best performing model on equivalencies also performed well on cross-listings; however, the

opposite was not true. The distribution of the model equivalency validation scores for 0%

cross-list collapse, from which the best model was selected, is shown in Fig 2.

Table 1. Best models by overall validation score (median rank) for each validation set and cross-list collapse percentage.

Model Selection
Metric

Proportion of Collapsed
Cross-listed Courses

Cross-lists
Validation Score

Equivalencies
Validation Score

Overall
Validation Score

Cross-lists
Test Score

Equivalencies Test
Score

Overall Test
Score

Cross-lists 0% 12 47.5 29.75 19.5 181 100.25

Cross-lists 40% 10 48.5 29.25 16.5 303.5 160

Cross-lists 100% 42 42 303.5 303.5

Equivalencies 0% 23.5 17 20.25 28 31.5 29.75

Equivalencies 40% 16.5 16.5 16.5 33 33 33

Equivalencies 100% 16 16 38 38

https://doi.org/10.1371/journal.pone.0233207.t001

Fig 2. Histogram of course equivalency scores.Distribution of course equivalency validation scores from 400 model experiments,
calculated as the median similarity rank of each pair. Lower is better. Scores> 50 omitted due to high skew.

https://doi.org/10.1371/journal.pone.0233207.g002
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A skip-gram model (vector size = 229, window = 8, and negative sampling = 15, hierarchi-

cal softmax = 0, down-sampling threshold = 7.356e-4) performed best in minimizing the com-

bined ranks of the two test sets and was the best model on the equivalencies test set. Students

in our dataset took an average of four courses per semester, thus the empirically arrived at win-

dow size of eight is equivalent to two academic years of context. Selecting a model that exhib-

ited generalizability within the equivalency and cross-listing task was important, as it would

be used in subsequent exploratory analyses and to generalize to different tasks [26]. With a

learned embedding in hand, optimized using relationships between a wide swath of courses

across subjects, we proceed to scrutinize the embedding for other forms of topical and peda-

gogical regularity. Note that while we aimed to represent a wide variety of courses and disci-

plines at UC Berkeley in the following analyses, several comparisons and exemplars were

chosen based on the authors’ personal domains of familiarity and input from several faculty

subject matter expert colleagues.

Analogy validation

We created an analogy validation set consisting of five course relationship categories to evalu-

ate if the embedding encoded additional domain knowledge of courses. We sought to define

course relationship categories which involved many departments on campus and which were

as objective as possible in nature. The relationships between courses and their honors version

and between courses and their online counterpart were two categories defined from superficial

course number prefixes, while pairs of courses in a sequence,mathematical rigor pairs, and top-

ical relationships were categories defined using first-hand institutional prior knowledge.

Sequence relationships were between courses to be taken in adjacent semesters in a pre-

scribed order. For example,Mathematics 1A followed by 1B in the next semester. Physics 7A

and 7B follow the same pattern, which can form the analogical relationship, “Mathematics 1A

is toMathematics 1B as Physics 7A is to Physics 7B,” represented in vector arithmetic form as,

“vec[Mathematics 1B]—vec[Mathematics 1A] + vec[Physics 7A] is most cosine similar to!

vec[Physics 7B]” seen in Table 2 and visualized, in part, using PCA in Fig 3. In this approach,

the representation ofMathematics 1A is removed fromMathematics 1B, leaving the vector off-

set representing the concept of sequence. This sequence vector is added to the Physics 7A vec-

tor, intending to yield a vector nearest to the target Physics 7B vector. The lower the nearest

neighbor rank of the target course, the better the model has captured this relationship from

isomorphisms in the vector space formed from patterns of enrollment behavior. To visualize

Table 2. A selection of analogy results from each of the six relationship categories.

Relationship Results (examples)

Honors MathematicsH1B—Mathematics 1B + Physics 7B! Physics H7B

Online African American StudiesW111—African American Studies 111 + Engineering 7!
EngineeringW7

Sequence Mathematics 1B—Mathematics 1A + Physics 7A! Physics 7B

Mathematical Rigor MathematicsH1B—Mathematics 1B + Economics 140! Economics 141

Topical (with 2
subjects)

Economics C110 (game theory)—Statistics 155 (game theory) + Statistics 151A (linear
modeling)! Economics 141 (linear modeling)

Psychology 102 (computing)—Psychology 1 (introductory) + Statistics 134 (introductory)!
StatisticsH194A (honors seminar) [intended course was Statistics 133 (computing), rank 8]

Topical (with 3
subjects)

Computer Science 189 (machine learning)—Statistics 154 (machine learning) + Statistics 150
(random processes)! Electrical Engineering 126 (random processes)

History of Art 34 (Chinese art)—Chinese 1A + Japanese 1A! History of Art 62 (Italian
Renaissance art) [intended course was History of Art 35 (Japanese art), rank 2]

https://doi.org/10.1371/journal.pone.0233207.t002
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the regularities in the space enabling analogy completion, we reduced the dimensionality of

vector offsets (i.e., vec[Course A]—vec[Course B]) as well as the vectors of Physics 7A, Physics

H7A, Physics 7B, and PhysicsH7B to two dimensions using PCA. We then visualized these

points in Fig 3, which depicts the Sequence and Honors relationships, creating an imperfect

formation of a parallelogram representing an analogy constellation from Physics courses.

We defined the relationship category of mathematical rigor by identifying course pairs that

shared content but utilized varying degrees of math. For example, while Economics 140 and

141 both cover Econometrics, 140 approaches it with a greater focus on principles with scalar

operations whereas 141 uses rigorous proofs with linear algebra and probability theory.

The final relationship categoriy we coded was topical similarity between courses offered in

two or three different subjects; Statistics 155 and Economics C110, for example, both cover

game theory. The course relationship categories are listed in Table 2 in decreasing order of the

prior domain knowledge expected to be held by students. Online and Honors courses are

Fig 3. PCA analogy visualization. PCA of vector offsets with a Sequence and Honors constellation depicted using Physics courses.

https://doi.org/10.1371/journal.pone.0233207.g003
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easily knowable from the coding syntax of the course number in the catalog. Sequence and

rigor relationships, however, do not have consistent coding, but are communicated both for-

mally by course descriptions and degree programs, and colloquially by peers and advisers.

Sequences are often identifiable through suffixes (B course usually follows the A), but are

sometimes less obvious, such as Korean 111 following Korean 102. Likewise, mathematical

rigor (when not also an honors relationship) requires significant domain knowledge of the

subject to identify. Cross-subject topical relationships are the most complex, requiring famil-

iarity with the course offerings of two or three different subject areas. We might expect all

students to understand the honors and online relationships, however, it is unlikely that any

student not studying Korean would fully know the course sequences in that department, and a

very limited number of students could connect courses across multiple disciplines by topic,

making these relationship analogies a test of uncommon knowledge on courses and their

relationships.

For all but the topical relationships, we tested the analogies in round-robin fashion (e.g.,

comparing one sequence pair with every other sequence pair and finding its rank for each).

With 23 sequence pairs, 18 mathematical rigor pairs, 14 honors pairs, and 12 online pairs, we

generated 1008, 576, 364, and 264 analogy equations respectively. Since topical relationships

required two comparable course pairs and therefore lacked the fungibility of the other relation-

ship categories, we generated 4 × N analogies using N = 11 quadruples for a total of 44 analogy

equations. We considered the analogy completion to be successful if the rank 1 nearest neigh-

bor was the anticipated target course to complete the analogy.

The accuracy of the course embedding in completing all 2,256 analogies generated from

permutations of the 77 relationship pairs was 40%. The median rank of the intended target

course in honors, online, sequence, mathematical rigor, and topical relationships were 4, 5, 1,

5, and 15, respectively, with accuracies (% rank 1) of 28.98%, 29.17%, 58.23%, 13.37%, and

17.5%. This overall accuracy rivals the 61% accuracy seen on syntactic and semantic lexical

relation validations of word embeddings [2] which were trained on a dataset three orders of

magnitude larger (1B words vs. 3.7M enrollments) with three times the average number of

observations per element (1,400 per word vs. 462 per course). There are no results of greater

similarity to compare to as this is the first-time representations learned from behavior have

been quantitatively validated against propositions from the domain.

Course prerequisite and degree requirement evaluation

American liberal arts universities, such as UC Berkeley, are known for their high degree of

elective choice afforded to students [27, 28]. This permits students to choose from many

courses in order to satisfy most university and degree-specific graduation requirements. It

can therefore be hypothesized that the individual enrollment choices made within this high

degree of freedom are an important signal that contributes to the information embedded in

the learned course representation. An alternative hypothesis is that the majority of the infor-

mational signal comes from prerequisite and degree requirement structures governing student

choice. If this were true, enrollment data, which are difficult to obtain, could be replaced with

often public prerequisite and degree structure information. We evaluate the relative informa-

tion communicated by prerequisites and degree requirements compared to the addition of

enrollment choices by synthesizing course sequences sampled from these structures and re-

learning course representations from the sampled sequences. These representations are then

evaluated on our analogy and equivalencies validation sets and compared with the results from

the enrollment-based representation on the same sets.
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Prerequisite-based course sequence generation. There are 5,612 prerequisite course

pairs in total at UC Berkeley. We denote the prerequisite course pairs as a tuple set P = {(p1,

t1), (p2, t2), . . ., (pn, tn)}, where pi is the prerequisite course of ti and n denotes the total number

of prerequisite course pairs. Here we take pi as a prerequisite course and ti as a target course.

The goal is to generate all the possible longest prerequisite course sequences from P based on

the rule that any course i in the sequence should be the prerequisite course of the course right

after course i. Any generated sequence should not be a sub-sequence of any sequence in the

generated sequences set. For instance, it is intuitive to construct all the sequences from the set

{(A, B), (A, C), (B,D), (C, D), (D, E)}, which are [A, B, D, E] and [A, C, D, E]. Here, a sequence

such as [A, B, D] should not be included in the final sequences set because it is a sub-sequence

of [A, B, D, E]. When the number of prerequisite course pairs increases, the pairs in P consti-

tute a large complex graph G. Exact enumeration of all the sequences from a large graph is NP-

hard. An algorithm combining a random walk and skip-gram model [29] was therefore used

to learn node embeddings from our prerequisite graph. A walk uniformly samples from the

neighbors of the last vertex visited until the maximum length is reached to generate a sequence.

Our approach differs from [29] in that: (1) We choose the start vertex to be a root prerequisite

course that is a prerequisite for a course but does not itself have any prerequisites, as opposed

to any arbitrary course serving as the start vertex (2) The end vertex of a prerequisite course

sequence is a leaf course that has at least one prerequisite but is not itself a prerequisite, as

opposed to a maximum length specification as was done in [29]. This process generated 4,001

sequences and learned course representations using the skip-gram model. Given that these

sequences were different in length and number of unique courses from the real student dataset,

a mild hyperparameter search of 20 random hyperparameter settings from the sets evaluated

on real student data was conducted, keeping the best average scoring setting on the validation

sets. There were 1,426 courses in the 4,001 generated sequences, compared with the 1,467

courses in the prerequisite courses graph.

Degree requirement-based course sequence generation. There are 223 undergraduate

degrees at UC Berkeley, also known as academic plans listed in the dataset that drives the

University’s Academic Guide [30]. There are 1,108 unique requirement categories and 7,317

courses satisfying one or more requirement categories in these data. The median number of

requirement categories per degree is eight, with a median of four courses per requirement cate-

gory as choices to satisfy the requirement. Our data regarding the structure of degrees did not

contain information about the number of courses from each requirement category needed to

satisfy the category, though notes in the Academic Guide suggest that this number is typically

one or two. There is not a perfect match between these degree requirement data and our his-

toric enrollment dataset, as some students in our historic dataset may have declared majors

that are no longer offered and some departments have recently created new majors or courses

for which we have no data.

To produce a dataset of synthesized student enrollment sequences generated purely from

degree structure information, we iterated through each of the 223 degrees, randomly sampling

two courses from each of the degree’s requirement categories and from the College-level

breadth requirement categories, of which there were typically seven. Though there are norma-

tive orders in which students are advised to satisfy requirements, our degree requirements

data do not encode a suggested ordering. This lack of ordering could negative affect the ability

of a skip-gram model to pickup on signal from our generated sequences. Course prerequisites

are a source of ordering information and were added to address this potential issue. If a ran-

domly sampled course was a prerequisite of a course already added to the synthetic student’s

sequence, the sampled course was placed immediately prior to that course in the sequence.

After a single synthetic student’s enrollment sequence was generated for each of the 223
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degrees, the process was repeated until the total number of enrollments in this synthetic data-

set equalled or exceeded 2.1 million, approximately the number of enrollments in our real stu-

dent historical data. A skip-gram model, using the same hyperparameters as the best real data

model, was trained on these synthetic sequences to learn course representations.

Validation results of structure and enrollment informed representations. We first eval-

uate the validation set performance of the embedding learned from sequences generated from

prerequisite structure. After filtering out courses from the equivalency and analogy validation

sets that are not among the 1,467 in the model trained on prerequisite sequences, 415 equiva-

lency course pairs remain along with 1,500 analogy completions. The accuracy of the skip-

gram model trained on the prerequisite course sequences on the equivalency and the analogy

validation sets is 4.58% and 8.8%, respectively. The accuracy of the skip-gram model trained

on the student enrollment sequences, using the same reduced validation sets, is 7.47% on the

equivalency and 46.4% on the analogy set. This translates to an improvement of 63% (equiva-

lency) and 427% (analogy) using student enrollments over prerequisite structure.

We next evaluate the validation set performance of the embedding learned from sequences

generated from degree requirement structure with the addition of prerequisite ordering infor-

mation. After filtering out courses from the validation sets that are not in the model learned

from these sequences, 229 equivalency course pairs remain along with 700 candidate analogy

completions. The accuracy of the skip-gram model trained on these synthetic sequences is

8.30% on the course equivalency validation set and 9.29% on the analogy set. The accuracy of

the skip-gram model trained on real student enrollment sequences, using the same reduced

equivalency and analogy validation sets, is 10.48% and 46.71%, respectively. This translates to

an improvement of 26.27% (equivalency) and 403% (analogy) using student enrollments over

degree requirement structure with prerequisite ordering information. Comparing the prereq-

uisite structure-only model on this same validation subset results in an equivalency set accu-

racy of 6.99% and analogy set accuracy of 9.71%. These results suggest that individual student

course selections play a significant role in informing the course representations and convey a

substantially higher amount of information about course relationships (i.e., analogy validation)

and moderately more information about course similarities (i.e., equivalency validation) than

do degree and prerequisite structures.

Concept decompositions

The ability to perform vector arithmetic analogies suggests that distributed representation of

concepts are encoded in this space [31, 32]. Vector spaces are subject to standard linear algebra

techniques, including projections which can isolate a concept, such as the degree of gender

bias encoded in a word [33]. Representing a concept as a vector and projecting a course onto it

can, ideally, suggest the degree to which a course is comprised of that concept. In our analysis,

the concepts are subject vectors created by taking the average of course vectors in the subject

(i.e., centroid). Individual courses are then projected onto the concept vectors and the magni-

tude of incident with the concept vector is plotted.

We explored this approach on the subjects ofMathematics and Education and their respec-

tive courses (Fig 4A). Most of the courses stay high in their own subject magnitude (e.g.,

‘Unraveling Education’ and ‘Topology & Analyses’ were highest in their respective subjects)

and low in the other (e.g., ‘Critical Studies in Education’ and ‘Differential Manifolds’ were

respectively lowest in their opposing subject). Certain courses are shown to be appropriately

high in both subjects, such as aMathematics course titled, ‘School Curriculum,’ taken by

Mathematics majors with a teaching concentration and a course in Education titled, ‘Special

Problems fromMathematics, Science and Technology Education’.
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We also projected courses from Economics, a highly mathematical social science, onto Sta-

tistics and Public Policy as shown in Fig 4B. We find that the vector representations were able

to capture the balance between Statistics and Public Policy well. Theory courses such as ‘Econo-

metrics’, ‘Economic Theory’, and ‘Intro Math Economics’ were mapped high in the Statistics

dimension, while courses such as ‘Economics of Discrimination’ were mapped highly in Public

Policy. Courses regarding development studies and inequality closely mapped to the diagonal,

suggesting relatively equal representation. Notably, the Public Policy course on ‘Applied

Econometrics and Public Policy’ ranked the highest towards Statistics among Public Policy

courses and ‘Foundations of Data Science’ ranked highest in Public Policy among Statistics

courses.

Fig 4. Conceptual decompositions. Conceptual decompositions of courses in the Subjects of (A)Mathematics and
Education, (B) Economics, Public Policy, and Statistics and (C) all subject vectors.

https://doi.org/10.1371/journal.pone.0233207.g004
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We performed the same exploratory analysis on all subjects in the University, breaking

them down in terms of their magnitude ofMathematics and Philosophy (Fig 4C). Physics, Sta-

tistics, and engineering subjects had the highest proportion ofMathematics, while Creative

Writing, Rhetoric, and East European Studies had Philosophy in highest proportion (furthest

from the 45˚ line). The subject of Cuneiform, an ancient system of writing, is arguably semanti-

cally misplaced. It appears high inMathematicsmagnitude, though it is also moderately high

in Philosophy.

In another exploration of the rationality of the subject vectors, we queried the embedding

to describe a subject as a combination of two other subjects. The combination was calculated

by adding element-wise, the two subjects’ vectors and finding the closest subject vector to this

sum. Expectations for these subject combinations were not pre-defined, as the purpose of this

experiment was exploratory, presenting the results for evaluation based on their face validity.

A sampling of these results (Table 3) suggest that there are topical regularities encoded not

only at the micro level of the embedding, shown in the course decompositions, but also more

globally, as demonstrated by conceptually rational arithmetic closure at the subject level. Full

pairwise subject composition results can be found in Supporting Information.

Visual mapping

We visualized the course embedding to surface the primary factors which dictate vector prox-

imity in the space using Barnes-Hut t-SNE [34] for dimensionality reduction. This allowed for

observation of micro, meso, and macro scale relationships not hypothesized and produced a

first-of-its-kind view of the University and the relationships between its disciplines. Each data

point in Fig 5A is a course, colored by the division it belongs to, with labels added for subject

groupings. The t-SNE algorithm prioritizes the retention of local structure from the high-

dimensional space in its manifold projection to the two-dimensional space (e.g., keeping data

points close in the low-dimensional space that were close in the high-dimensional space) [35].

At the micro-level, the visualization reveals salient conceptual relationships between indi-

vidual courses. Zooming into the History cluster, the courses organize roughly into a rotated

map of the globe (Fig 5B). Starting at the top right are the East Asian countries: Japan and

Korea with China to their west. Below them are Southeast Asian countries such as Vietnam

and India to its west. Towards the west, we find Eastern Europe, Western Europe, and finally

the United States, though some clusters do not adhere perfectly. This geographical layout can

be explained by the tradition among historians to specialize in a time and a place with interest

typically only extending to adjacent geographic regions and not to general themes that might

Table 3. Exemplar subject compositions.

Subject Compositions

Earth & Planetary Science + Physics ! Astronomy

Asian Studies + Religious Studies ! Buddhist Studies

Asian Studies + Classics ! East Asian Languages

Business Admin + Statistics ! Economics

Art Practice + History ! History of Art

Business Admin + Computer Science ! Information

Rhetoric + Political Science ! Legal Studies

Health & Medical Sciences +Mathematics ! Molecular & Cell Biology

Philosophy +Mathematics ! Physics

Demography +Mathematics ! Statistics

https://doi.org/10.1371/journal.pone.0233207.t003
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cut-across disperse regions. Where the norms of theHistory department placed courses geo-

graphically, Near Eastern Studies separates them temporally, with a boundary between courses

covering modern and ancient civilizations (Fig 5C). We find that ancient literature, religions,

and societies such as Egypt, map towards the lower right whereas modern languages and reli-

gions such as Arabic and Islam, populate the top left, representing the discipline’s bi-modal

foci.

Logical meso-level relationships can also be seen, with Statistics situated betweenMathe-

matics and Economics and Physics betweenMathematics and Astronomy (Fig 5A). An interest-

ing path begins in Chemistry, traversing throughMolecular & Cell Biology, Integrative Biology,

Environmental Science & Policy Management, Geography, City & Regional Planning, and ter-

minating at Architecture. The subjects progress with conceptual coherence between neighbors

such that, though Chemistry and Architecture have little in common, the relationship between

each intermediary subject is logical. This adjacency of disciplines naturally bears resemblance

Fig 5. t-SNE 2-d projections. (A) all course vectors with close-ups of the departments of (B)History and (C) Near
Eastern Studies.

https://doi.org/10.1371/journal.pone.0233207.g005
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to relationships seen in the broader study of academic citation networks [36–38]. While the

majority of courses group by subject and department, interdisciplinary groupings are observed

in the thematic areas of Race & Gender Studies, European Language and Culture, and Asian

Language and Culture (Figs 5A, 6 and 7).

A noticeable feature of the visualization is the unstructured cloud of largely Lower Division

level courses near the origin, contrasted against the more structured clusters of Upper Division

courses outside of it. Berkeley classifies Lower Division courses as part of the introductory

sequence to an academic discipline often taken by prospective students of the associated major

or to fulfill Colleges’ mandatory breadth requirements. Lower Division courses generate a high

degree of variance in the enrollment contexts in which they appear due to being taken by a

wide variety of majors. Because of this, they may exhibit fewer distinguishing regularities and

structure, as opposed to Upper Division courses which often build on prior knowledge and are

mostly taken by students within a major associated with the course’s department.

Finally, at the macro level, a bisection of the entire map divides subjects considered to be

Science, Technology, Engineering, and Math (STEM) [39] on the left side from Liberal Arts

subjects on the right. Courses offered by the College of Engineering reside close to the bottom

left quadrant, Natural Sciences to the upper left, Social Sciences to the upper right, and Arts &

Humanities to the bottom right. Departments under the Social Sciences Division are largely

found in the Liberal Arts hemisphere with the exceptions of Psychology and Economics, both of

which have highly statistical facets. Though the STEM classification of courses in our embed-

ding is not new knowledge, it demonstrates that the embedding can capture information not

Fig 6. Close-up of race & gender studies cluster.

https://doi.org/10.1371/journal.pone.0233207.g006
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likely fully known by any of the individuals whose actions it was produced from. This observa-

tion also underscores the impressive ability of t-SNE to render a single projection with concep-

tual coherence retained at several levels of scale.

The salience of clustering by subject in the t-SNE visualization begged the question of what

other course attribute information was encoded in the higher-dimensional space. To quantify

the information captured, we trained multinomial logistic regression models [40] using course

vectors as the input to regress to six different categorical attributes kept by the Registrar’s

Office and found in our enrollment metadata. This model performed well in predicting the

attribute values of a held-out test set of courses, with the subject of a course predicted with

84.19% accuracy based on its vector compared to 3.01% when predicting using the most com-

mon subject. Overall, attribute values were predicted with 87.95% accuracy using the embed-

ding compared to 30.63% by majority class (Table 4).

Semantic mapping

While rich in structure, the vector values of an embedding alone lack interpretability. In the

previous sections, we added semantic meta information, such as course titles and subject

membership to facilitate interpretation of relative course vector proximities as depicted visu-

ally with t-SNE and algebraically using subject vector centroids. The interpretations ofHistory

and Near Eastern Studies close-ups (Fig 5B and 5C) were facilitated by experts, identified in

Acknowledgements, whose consultations effectively served as an addition of semantics to the

Fig 7. Close-up of Asian languages & culture cluster.

https://doi.org/10.1371/journal.pone.0233207.g007
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space. In this section, we use course catalog descriptions, collected from Berkeley’s Course API

and concatenated with course titles, to automatically add fine-grained semantics to the vector

space, provided by an expert (i.e., the course creator). This semantic mapping of a vector

space, which can be algebraically queried, can itself be seen as an expert informational repre-

sentation, with epistemic expertise defined by the ability to justify knowledge with proposi-

tions in the domain [41]. This is in contrast to deep neural networks, where expertise is

commonly demonstrated by the ability to perform [42–45]. Both types of neural-based experts

have distributed representation at the core of their generalizing principle.

To map semantics onto the embedding, we trained a multinomial logistic regression map-

ping course vectors to their bag-of-words course descriptions sourced from the University

course catalog. This was a neural machine translation, not between languages [46], but

between a course representation space formed from behaviors and a semantic space con-

structed from instructors’ natural language descriptions of each course. This mapping allowed

arbitrary vectors in the space to be semantically described using keywords, those words regu-

larized by way of their regression from the feature space of the embedding. To control the level

of specificity of the words output by the model, we introduced a bias parameter (Eq 3). A

higher bias would result in less common and more distinct words that could be considered dis-

cipline-specific jargon, while a lower bias would produce descriptions using more common

vocabulary. While we initially applied tf-idf [47], the brevity of course descriptions usually

yielded at most one instance of each word in a description, effectively nullifying the term-

frequency weight component and reducing tf-idf to only idf. Experimentally, we found that

treating the entire collection of descriptions as one document and exponentiating the raw fre-

quency to a negative number yielded a desirable spectrum of word specificity.

tf -bias ¼
number of occurrences of word

total word count

� ��bias

ð3Þ

We removed stop-words, stemmed words using the snowball algorithm, and used iterative

bi-gram phrase detection to tokenize phrases before collecting tokens into bag-of-words vec-

tors. To remove overally general words and words related to course logistics, we filtered words

across four different metrics, taking only the top 100 words in each and hand-selecting words

to be excluded from the set (Table 5). We kept words that could be meaningful in certain con-

texts even if they could also be generic in other contexts. For example, the phrase ‘web site’

may in some contexts indicate logistics of course taught through an online modality, but could

also be more distinctly relevant in subject areas such as design, media, and information, where

‘web site’ may describe part of the subject matter of the course.

Using the final processed descriptions, we trained a multinomial logistic regression model

where the course vectors were used as input features and their corresponding tf-bias processed

Table 4. Results of predicting attributes from course vectors.

Attribute Unique Values Majority Logistic

Subject 197 3.01% 84.19%

Department 81 5.01% 87.06%

Division 20 27.15% 84.92%

College 16 64.61% 94.60%

Course Level 3 57.11% 91.06%

Modal Major 114 26.88% 85.86%

Average 30.63% 87.95%

https://doi.org/10.1371/journal.pone.0233207.t004
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course description words were used as outputs. We refer to this as the semantic model. We

trained several models, varying tf-bias and max epoch values. Manual qualitative inspection of

a sampling of trained models suggested that lower tf-bias and training epochs produced more

general words whereas higher tf-bias and training epochs produced more specific words.

To explore the ability of the semantic model to resolve vectors from the embedding to sensi-

ble natural language semantics, we first ran subject centroid vectors through the model to see

whether the highest probability output words appropriately described each subject. Table 6

compares biases 0.5 and 1 across three exemplar subjects. A bias of 0.5 preferred broader

words such as “Algorithms”, “Markets”, and “Society” to describe the Computer Science, Eco-

nomics, and Sociology vectors, respectively. Alternatively, a bias of 1 surfaced “Robotics”,

“Game Theory”, and “Comparative perspective” as predicted words for those subjects. Particu-

larly frequent descriptions appeared in both bias lists, such as “Computer”, “Industrial organi-

zation”, and “Inequality”.

We then queried the model to describe the vector centroids of three subjects (Design Inno-

vation, Neuroscience, and Plant Biology) for which not a single course’s description from the

subject was included in the training of the semantic model. The catalog descriptions of courses

in these particular subjects were missing due to a limitation of the API used to access the cata-

log at the time, creating a naturally occurring opportunity for an experiment. Neuroscience, for

Table 5. Rules for preprocessing the semantic model training corpus.

Target Sorting Metric Reason Top Removed Top Kept Total
Removed

Phrases Number of
occurrences

Common phrases are
more likely to reflect
logistics

Freshman sophomore seminar Case study 68 phrases

Phrases with at
least 20
occurrences

Number of words Longer phrases are
more likely to reflect
logistics

Structure vocabulary cultural social appropriate context
speaking listening ability development oral exercises class
discussion recordings available Berkeley language center
reading writing development class exercises independent
reading project composition

African American
Asian American

78 phrases

Words Number of
occurrences

Common words are
more likely to be vague

Course Development 51 words

Words Number of
subjects they
appear in

Breadth of words
suggest vagueness and
logistics

Covered Current 76 words

https://doi.org/10.1371/journal.pone.0233207.t005

Table 6. Semantic model descriptions of subject vectors using biases of 0.5 and 1.

Computer Science Economics Sociology

0.5 1 0.5 1 0.5 1

Computer Algorithms Economic Economic Sociological Sociological

Design Computer Theory Industrial organization Social Inequality

Algorithms Computer science Analysis Size Inequality Social change

Techniques Program language Determinants Linear regression models Social change Social

Models Implementation Policy Pricing Society Hypotheses

Control Codes Markets Boom Theory Trends

Data Machine Development Econometric Institutions Thought

Applications Privacy Pricing Income Thought Dominant

Structure Artificial intelligent Industrial organization Game theory Trends Comparative perspective

Project Robotics Size Valuation Within European countries

https://doi.org/10.1371/journal.pone.0233207.t006
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example, produced words such as “brain”, “physiology”, “sensory”, and “neuroanatomy,”

words likely borrowed from other subjects in biology. Design Innovation produced apt words

such as “team”, “user”, “technology”, “interface”, and “robotics.” These descriptions, in

Table 7, demonstrate the model’s ability to interpolate semantic meaning across sparse regions

of the space.

An emergent [48] set of regularities highlighted by the course analogies were the vector off-

sets between two courses which represented a relationship (e.g., vec[Honors Linear Algebra]—

vec[Linear Algebra]). The accuracy of the course analogies, and patterns observed in the space

(Fig 3), suggest that these vector offsets are themselves representative of a shared distributed

concept or regularity. We used the trained semantic model to attempt to describe these vector

offsets. For instance, subtracting Japanese 1A (‘Elementary Japanese’) fromHistory of Art 32

(‘Art and Architecture of Japan’) produced a vector described by the model as, “tumuli”, “Neo-

lithic”, “art-architecture”, and “realism,” words appropriate for describing art history. While

we ascribed the relationship between Economics 141 and 140 as a more mathematically “rigor-

ous” treatment of Econometrics, the semantic model succeeded in articulating granular topical

differences, using words like “vectors,” “discrete-continuous,” and “conditional expectations”

to accurately describe the content that is in 141 but not in 140. This offset vector, produced by

subtracting ECON 140 from ECON 141, had two Linear Algebra courses, MATH 110 and

MATH 113, as its nearest neighbors. Other words that appeared, such as “quadratic forms”

and “eigenvectors,” while not explicitly taught as part of the course material, are related to

linear algebra, the topic only found in the more advanced offering (Table 7). The semantic

model, leveraging regularities formed from enrollment choices, surfaced topical differences

not found in either course’s catalog description. The original descriptions are shown below

with words underlined that are not shared between the two descriptions:

Economics 140: Introduction to problems of observation, estimation, and hypothesis testing

in economics. This course covers the linear regression model and its application to empiri-

cal problems in economics.

Economics 141: Introduction to problems of observation, estimation, and hypothesis testing

in economics. This course covers the statistical theory for the linear regression model and

its variants, with examples from empirical economics.

The ability to describe any arbitrary vector allows for queries that have no correspondence

to a particular course, but are conceptually interesting nonetheless. The origin vector (i.e.,

all zero vector) could be interpreted as the center of UC Berkeley’s academic, liberal arts

Table 7. Semantic model description of missing subjects, the origin vector, and course vector differences (0.5 bias).

Design Innovation Neuroscience Plant Biology Origin Vector ECON 141—ECON 140 MATHH113—MATH 113 ARTHIST 32—JAPAN 1A

Team Brain Microbial Cultural Variants Enjoy Tumuli

Enable Human brain Molecular History Vector Hidden Seventeenth

User Physiology Preservation World Theorem Hard Newcomers

Share Neurological Plant Social Mathematical Beauty Neolithic

Innovation Sensory Biotechnology Development Quadratic forms Corresponding Nineteenth century

Perception Biology science Habitat Society Eigenvectors Recommended Proceed

Technology Neural Metabolic Language Discrete continuing Honors Art architecture

Interface Neuroanatomy Genomics Political Integer Rigorous Chronological

Robotics Neurophysiology Genetics Modern Function complex variables Inclination Focus particular

Vision Anatomy Biology Human Conditions expected Greater Realism

https://doi.org/10.1371/journal.pone.0233207.t007
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demography, but otherwise has no educational meaning. The semantic model describes the

origin with the words “cultural,” “history,” “world,” “social,” and “development” as the top five

results.

Discussion

Visualization of the course embedding at several scales evokes images of cell-cultures in a petri

dish under a microscope or a deep field view of constellations through a telescope. Our domain

of study can be viewed analogically as elements—courses—introduced into the social system

of a university with human factors serving as the forces dictating the movement of the ele-

ments and their positionality in the structure as a whole. This representational structure, illu-

minated by data and studied through the instrument of a learned embedding analysis, is

analogous to the physical structures studied with instruments from the natural sciences and is

part of a larger universe of explorable structure expanding at the speed of data collection. A

question of natural concern to the developing notion of data science is whether truths can be

learned from behavioral data through this particular lens of a representation analysis. Our

study used a variety of inference types to interrogate the embedding for such truths: abductive

inference to describe patterns in the visual mapping, inductive inference to define subjects by

an aggregation of their courses using concept decompositions, and deductive inference to vali-

date analogies (i.e., by syllogism). If known truths about courses were to be defined exclusively

as the instructors’ catalog descriptions, then the semantic interpolation was able to successfully

surface previously unknown truths about the topics of courses with no catalog description in

the data and about topical differences between courses not found in their descriptions. We

conclude that considerable knowledge is made accessible using these methodologies from rep-

resentational structure formed by enrollment histories; with the validity of individual infer-

ences dependent on the veracity of the regularities, known to increase with data volume. It is

expected that when applied to other data contexts, semantics about elements truly unknown to

a domain could be revealed.

A corpus is considered to be unstructured data in computational fields. This is not to dis-

count that there are well known structures which guide production of natural language in a

corpus. Grammatical structures provide a base level of constraint, on top of which social struc-

tures govern the topics which are discussed and the norms of how they are discussed. Finally,

individual preferences and expression of an author, and perhaps editor and reviewer, ulti-

mately decides what is written. This is not unlike our dataset of unstructured enrollment histo-

ries. Degree requirements and prerequisites provide a grammar-like constraint, on top of

which social norms for course taking may be informed by peers and incentivised by employers

and graduate schools. At universities in the United States, it is ultimately the student’s individ-

ual preferences, given what is available and advisers’ reviewer-like suggestions, that decide

which courses will be taken. In both the language and university domain, much is already

known about the structures which guide behavior. Our work demonstrates that more can be

described about a domain from by studying behaviors within these structures than by studying

the structures alone. The types of structures (e.g., rules, policies, and constraints) that allow for

desirable regularities to form out of behavior is a topic for future work.

Data science methodologies will continue to advance in their ability to faithfully derive

structure from unstructured data. Neural language models based on contextual embeddings

(e.g., BERT [9]) have shown promise in their ability to perform well at prediction tasks, with

nascent work showing evidence of capturing syntactic structure [49] and linearities in the sub-

spaces of these deep models [50, 51] that may make them amenable to the more epistemic eval-

uation and semantic exploration performed in this paper. Domains that may most benefit
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from structure learning approaches (i.e., neural embeddings) are those in which unstructured

data is all that has been observed, or where the structures governing production of the data are

scarcely observed or understood.

An embedding learned from behavioral data may encode attributes and aggregated tacit

knowledge by mechanisms such as the wisdom of crowds [52, 53], distributed cognition [54],

or the combination of expert opinions [55] or classifiers [56, 57]. However, like the cultural

biases reflected in word embeddings [33, 58], a course embedding too has an anthropological

epistemology. It is perhaps most aptly characterized as students’ perceptions of courses at the

time of enrollment, influenced by peer testimonials and degree requirements (faculties’ repre-

sentations of their relatedness). With social-behavioral data, the embedding, and data science

itself, takes on a dual identity of aiding in the pursuit of truths on one hand and on the other,

reflecting the disposition of the individuals and society whose data it is constructed from.

Since this work began [59], the course vector representations have been integrated into a

campus course recommendation system [17], allowing students to explore courses with con-

ceptual overlap with a favorite course of theirs [60]. The semantic mapping technique has been

used to augment course catalog descriptions with searchable inferred course topics [61], and

translation between two institutions’ course vector spaces has been shown to be capable of

surfacing academically equivalent courses to expand transfer student pathways, a processes

known as course articulation [62].
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