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Summary. An estimate of the convergence speed in the multidimensional 
invariance principle is obtained. Using this estimate, we can prove strong 
invariance principles for partial sums of independent not necessarily identi- 
cally distributed multidimensional random vectors. 

1. Introduction and Main Results 

We denote by (F,J,I" l) the d-dimensional euclidean space. Let Ca[0, 1] be the 
space of all continuous Na-valued functions on [0,1] endowed with the sup- 
norm [l" II. Log t stands for log(max(t,e), t>0 .  

Let 41 . . . . .  4,: ~2-*IRa be independent random vectors with zero means, 
n 

COV(~k)=0.2I, l<_k<_n and ~0.2=1,  where I denotes the d-dimensional unit 
1 

matrix. 
Let S(,): f 2~  Ca[0, 1] be the partial sum process which is defined by 

?n 

( 1 . 1 )  S(.)(t):=~k-4 t--tin ~rn+l, t,n~t<=tm+l, 
1 tm+ 1 --tin 

O<m<n, wheret,,,=~o- 2,0<-m<n.  ~k:= 0"2:=0 . 
1 

Denote by WrlB(Ca[O, 1] ) the Wiener-measure with covariance matrix F, 
i.e. the unique p-measure on the Borel-0.-algebra of Ca[0,1 ] such that Wo~r~ 
=N(0, tF), 0_<t_<l and {zc~: tel0,  1]} is a stochastic process with independent 
and stationary increments under Wr, where rot; 0_<t_<l are the canonical 
projections (i.e. rot(f): =f ( t ) ,  f~  C d [0, 1], 0 < t =< 1). Let W = W I. 

If Q~IB(Ca[O, 1]), i=  1, 2, are p-measures, we put for each 3 > 0: 

( 1 . 2 )  )~(Q1,Q2,3):=sup{QI(A)-Q2(A~): A~_ Ca[O, 1 ] closed}, 

where A~:={g~Ca[0 ,1]: 3feA, I lg-f] l  <3}. 
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Call 2(Q1, Q 2 '  6 )  the "6-distance" of Q1 and Q2. 
These b-distances have turned out to be extremely useful especially in 

treating the Prohorov-distance of p-measures (cf. [3, 4, 10, 11, 13]). 
In this paper we prove an inequality for the 6-distances of the partial sum 

process S(n ) from the Wiener-measure W (see Theorem 1). Our result concerns 
independent not necessarily identically distributed d-dimensional random vec- 
tors and does not require higher than second moments. Thus our inequality 
can be applied to rather different problems. Our inequality yields a multi- 
dimensional version of Prohorov's invariance principle for triangular arrays of 
rowwise independent r.v.'s fulfilling the Lindeberg-condition (see Corollary 4) 
as well as unimprovable estimates of the Prohorov-distance of the p-measures 
PoS(,)JB(Ca[O , 1]) and WIB(Ca[O, 11) (see Corollary 2); it can be used to obtain 
strong approximation results (see Theorems 2, 3, 5, 6) as well as functional 
(compact) laws of the iterated logarithm (see Corollaries 5/6). 

Sahanenko (cf. [13]) obtained in the 1-dimensional case (i.e. d = l )  the 
following estimate of the 6-distances of PoS(,) and W: 

(1.3) 2(PoS(,), W, 6) < c(s) 6-  S Ks,, s>2 ,  

n 
_ _  8 where K s , : - ~ E [ [ ~ k  ] 1, c(s) is a positive constant depending on s only. 

1 

He used in his proof a refinement of the already rather complicated com- 
mon probability space method of Koml6s et al. (1976), which is restricted to 
the 1-dimensional case. The question remained open, whether (1.3) holds true 
in the multidimensional case (cf. [41, p. 64). 

Using a recent result in connection with the multidimensional central limit 
theorem (cf. [81, Theorem 6), we now obtain by a comparatively simple 
construction method, which is related to the method of Cs6rgo and R6v6sz 
(1975), Theorem 1 below enabling us to extend Sahanenko's result to the 
multidimensional case, if 2 < s < 4 .  At the same time, we are able to prove (1.3) 
for s > 4 in the multidimensional case, if 6 is sufficiently large - in particular, if 

=Ks , ,  where 7<1/ (2s -4) .  This shows that (1.3) can be obtained for any 
given s > 2  by a much easier construction method than that in [13], if 6 is 
large. On the other hand, it can be shown by similar arguments as in [2, 
Remark 3] that it is impossible to prove (1.3) by such a simple method if 6 is 
small and s > 4. 

Theorem l. Let ~1,. . . ,~,: ~ 2 ~ d  be independent random vectors with zero 
n 

2 ~2~ Cd[O , 1] be defined by means, cov(~k)=a2I, l <k  <=n, and ~ a k =1. Let S(,): 
1 

(1.1). Let s>2 ,  0 < 7 < 1 / ( 2 s - 4 ) .  Then we have for 6>(Ks,(6)+6~-Z L,(6))~: 

(1.4) 2(PoS(,,), W,c 1 6)<c2(6-~Ks.(6) + 6-2 L.(6)), 

n n 

where Ks,,(6): =~E[lCkl  ~ 1 {l~kl <6}1, L,,(6)." =~EKl~kl 2 1 {l~kl > O}]. c 1 =c~(~,s, d) 
1 1 

>0 and c2 =c2(y,s,d)>O are constants depending, on ~, s and d only. 
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Corollaryl .  Let  S(.): f 2~Ca[0 ,1  ] be as in Theorem 1. Let  2 < s < 4 .  Then we 
have for  3 > 0 :  

(1.5) 2(Po S(,), W, c s 6) < c , ( 8 - s  Ks,(8) + 3-  2 L,(8)), 

where c 3 =c3(s,d),  c 4 =c4(s ,d  ) are positive constants depending on s and d only. 

Since 8 - S K ~ , ( 6 ) + 8 - 2 L , ( 8 ) < 8 - ' K ~ , ,  8>0 ,  we easily obtain from (1.5) a 
multidimensional version of (1.3), if 2 < s < 4 .  Furthermore, Theorem 1 implies 
the following unimprovable estimate of the Prohorov distance of PoS(,) and W: 

Corollary2. Let  S(,): O ~ C a [ O ,  1 ] be as in Theorem 1. Then we have for  
2 < s < 5 :  

K1/(s+ 1) (1.6) p(PoS(~), W ) < c  5 --s~ , 

where c s =c5(s ,d)>O.  

Thus we have obtained as a byproduct of (1.4) an improvement of the main 
result of Borovkov and Sahanenko (1980) (cf. [3], Theorem 4). 

Recall that the Prohorov-distance of two p-measures QilB(C d [0, 1]), i = 1, 2, 
is defined by 

P(Q1, O2) = inf{6 > 0: 2(Q1, Q2,8) ~ 8}. 

Furthermore, it easily follows from Theorem 1: 

Corollary3. Let  S(,): f2-+Ca[0,1 ] be as in Theorem 1, let 2 < s < 4 .  Set e.'= 
e(s) :=(s+ 1)/(s-2). Suppose that L , (6  ~) < 83. Then: p(PoS(.),  W) < c 6 8, where 
c6=c6(s,d ) is a positive constant depending on s and d only. 

An immediate consequence of Corollary 3 is the above announced in- 
variance principle for triangular arrays of rowwise independent random vectors 
fulfilling the Lindeberg-condition. 

Corollary4. Let  {~.k: l < k < k . } ,  n ~ N ,  be a triangular array of  rowwise inde- 
k~ 

C __ 2 2 pendent random vectors with zero means OV(~.k)--~r.kF , l < k < k .  and ~ ~r.k 
= 1 (n~N). Let  S(~): f2--+ Ca[O , 1] be defined by k= 1 

t - trim 
S(,)(t):= ~,k-+ ~,,~+ a, t , ,~<k<t~m+i ,  

k= 1 tnm+ 1 --tnm 

m 
O < m < k n ,  where tnm:= Z = a,k, O<m<<-k,, n ~ N .  2 

k = l  

Assume that for  all 3 > 0  the following is true: 

kn 

L,(6) := ~ E[l~nkl 2 l{ lCnkl>0}]~0 
k = l  

as n - ,  oo. 

Then PoS(.)IB(Ce[O , 1]) converges weakly to WrlB(Ca[O , 1]). 
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Theorem 1 is now used to obtain strong invariance principles for partial 
sums of independent not necessarily identically distributed d-dimensional ran- 
dom vectors. 

We denote in the sequel by ~ the set of all continuous functions H: 
[0, oQ)~[0, oo) such that t -ZH(t )  is non-decreasing and t-4+rH(t) is non- 
increasing for some r > 0. 

Theorem2. Let {~k} be a sequence of independent random vectors with zero 
means and cov(~k)=a~F, keN.  Assume that the following holds true for some 
se(2, 4): 

co 

~ auS E[l~kr 1 {l~kl <=ak} ] < O0 
i 

(1.7) 

and 
oo 

(1.8) ~ a ~  z E [l~kl 2 1 {f~kl >ak}] < ov 
1 

where 0 < a k ~ or. 

Then one can construct a p-space ((2o, d o, Po) and two sequences of independent 
random vectors {Xg}, {~} with PooXk=PO~k, Po o Yk=N(0,~ZF), keN,  such that 

n n 

the partial sums S , ,=  Z Xk, T,:= 2 Yk fulfill: 
1 1 

(1.9) S, - T, = o(a,) a.s. 

Remark. It is easy to see that the conditions (1.7) and (1.8) are fulfilled if 

oo 

(1.10) ~H(ak) -1 E [H(l~k[) ] < oo 
1 

for some H e ~ .  

From Theorem 2 we obtain 

Theorem3. Let {~k} be a sequence of independent random vectors with zero 
means and COV(~k)-- Z --~k F, k eN .  Let f: [0, oo)~(0,  oo) be a non-decreasing func- 

1 
tion such that ~ - - <  oo. Assume that c~,:=~E[H(J~k[)] ~ 0% where H E ~ .  

. h i ( n )  1 

Then a construction is possible such that 

(1.11) S - T = o ( H - I ( a , f ( ~ , ) ) )  a.s. 

Let {~k} be a sequence of independent random vectors such that 

0 < l i m  E[H([~kD] <l im E[H([~gD] < or. According to (1.11), a construction is 
k k 

possible such that 

1 
(1.12) S - T , = o ( H - l ( n f ( n ) )  a.s., if Z ~ < o v .  

. n j  tn) 

Since f (n)/ log n ~  oc as n ~  oo by Kronecker's Lemma, the convergence rate is 
considerably worse than that in the strong invariance principle for partial sums 
of i.i.d, random vectors. Recall that it was shown in [8], Theorem 2 for the 
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i.i.d, case that if HEogg such that t - 2 (LogLo g t ) - l H( t )  is non-decreasing, a 
construction with error term o(H-l(n)) is possible. If / /EYf such that 
r Z ( L o g L o g t ) - l H ( t )  is non-increasing it is still possible to obtain a con- 

/H 1 n 1 / L o g L o g n \  struction with error term o [  - ( ) V  h ~  ) '  where h( t ) :=r2H( t ) ,  t>O 
(cf. [8], Theorem 3). 

The following Theorem 4, however, shows that under the above assump- 
tions no better convergence rate than (1.12) can be reached in general. 

1 
Theorem 4. Let o < f ,  T oo be such that --2 -~, = oo. Let HE 2/f . There exists a 

sequence of independent r.v.'s ~k: f 2 ~ N ,  k e N  with zero means, E [ ~ 2 ] = l  and 
g[H(l~k[)] < 1 +H(1), keN,  such that for all sequences of independent r.v.'s {Xk} 
with PoOXk=PO~k, k e N ,  and for all sequences of i.i.d, r.v.'s {Yk} with Po o Y1 
= N(0, 1), where (f2o, ~r Po) is an arbitrary p-space, the following holds true: 

(1.13) lira IS"-Z"l 
H -  1 (n f,) -- oo a.s. 

Our next result implies the above announced functional law of the iterated 
logarithm. To simplify our notations, we set Log 2 t: =Log(Log t), t >0. 

TheoremS. Let {~k} be a sequence of independent random vectors with zero 
n 

2if, keN .  Assume B,:= ~ a~ ~ ~ ,  means and COV(~k)= a k 
1 

(1.14) 

and 

(1.15) 

oo 

~ ( B  k Log 2 Bk) -s/2 E [1r s 1 {Igkl <-]/Bk Log2 Bk}] < cO 
1 

co 

~.(Bg Log 2 Bk) -1 E[l~kl 2 1 {l~kl > ]/Bk L~ Bk} ] < o0. 
1 

Then a construction is possible such that 

S, - T, = o(]/B, Log 2 B,) (1.16) 

(1.14) and (1.15) are fulfilled if 

a . s .  

r 

(1.17) ~,(BkLOgaBk)-S/2E[l~k[S]<oO for some s>2.  
1 

for some s > 2 

0 

1 

Bm~t~Bm+l, 

0=<m< o% where B 0 

m 
S(t)'. = ~ ~k t - Br, 

"4- B2+-I Z-Bm ~m+ 1, 

Let o ~ be the set of all absolutely continuous functions f:  [0, 1] -~IR d such that 
1 

f(0) =0  and S [f'(t)[ 2 dt < 1. Denote by ~r  the functions {t ~F1/2f( t ) ,  f E Y } .  
0 

Furthermore, we set: 
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C o r o l l a r y 5 .  Let {~k} be as in Theorem 5. Let U(,): ~--*Cd[0,1 ] be defined by 
U(n)(t):=(2BnLog2Bn)-x/zS(Bnt), 0-<t-<l. Suppose that (1.14) and (1.15) hold 
true, B n ~ ~ and 

(1.18) lim Bn+l _ _  ~ CZ). 

B~ e x p ( ~  

With probability one, {U~): n~IN} is relatively compact in Ca[O , 1] and the set of 
its limit points coincides with ~r .  

Corollary 5 implies immediately the following compact law of the iterated 
logarithm: 

Corollary 6. Under the assumptions of  Corollary5 we have with probability one: { n } 
(2B~Log2B,)-I /2~,~k:  n s N  is relatively compact in IR a and the set of  its 

1 

limit points coincides with {F 1/a x: Ixl _-< 1}. 

Thus we have obtained a strong extension of [15], Theorem 1.2, which was 

" " B oo" proved in [15] under the more restrictive assumptions hm ( ,+ 1lB,)< and 
n 

(1.17), if 2 < s < 4 .  Furthermore, we have shown that [15] Theorem 1.2 remains 
valid for any s > 4 and that the condition "E [X 2] =0  (n~N)" can be omitted. 

As a last application of Theorem 1 we present a sufficient condition which 

guarantees that in the strong invariance principle the convergence rate o(1/~, ) 
can be reached. 

Theorem6. Let {~k} be a sequence of independent random vectors with zero 
means and COV(~k) 2 = a  k F, k~lN. 

Assume that B ~ oo and 

(1.19) ~ B~S/2 E[l~k[S]< oo for some s>2 .  
k = l  

Then a construction is possible such that 

S. - T, = o (l /~,)  a.s. 

Using Kronecker's lemma, we obtain from (1.19): 

t~ 

~ E [ I G I  s] =o(B~/2) for some s>2 ,  
1 

i.e. Lyapunov's condition - a well known sufficient condition for the invariance 
principle (in distribution). 

The paper is now organized as follows: In Sect. 2 we prove Theorem 1 and 
its corollaries. Some more or less known lemmas needed here are formulated 
and proved in Sect. 6. In Sect. 3 we infer from Theorem 1 the above strong 
invariance principles for partial sums of independent random vectors (i.e. 
Theorems 2, 3, 5 and 6). Theorem 4 is proved in Sect. 4, whereas the proof of 
Corollaries 5 and 6 is given in Sect. 5. 
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2. Proof of Theorem 1 and its Corollaries 

Main tool of the proof  is the following Theorem 7, which is related to [8], 
Theorem 7. 

Theorem7. Let 41 .. . . .  4,: (2--*]Rd be independent random vectors with zero 
means. Assume 2 /A,  > 1/2, where 2,(A,) is the smallest (largest) eigenvalue of F,: 
= c o v ( 4 ~ + . . . + 4 , ) .  Let 3_<_&-<4, s>g.  There exist positive constants c 7 

=cT(Y,s,d), cs=cs(g,s,d ) such that, if I~kl<c7t/2, Logl/p~, a.s., l <k<n ,  where 

Ps,: =2n s/2 2 E[14klS], the following holds true: 
1 

One can construct a p-space (f2o,SCo,Po) and random vectors S,, T,:f2o~IR d 
n 

such that PooS,=PO~ 4k, Poo T, = N(0, F.), E[lS.-rnlq <~=~ ~s ~A~/2"d+l/~', ~,~, and E[IS, 
1 

- T, t2] <= c s A," p~,l+"for some r/ = t/(Y, s) > 0. 

Proof(cf. [8] ,Theorem 7). We denote by c 9, . . . ,c1r constants depending on 3-,s 
and d only. Since by Lemma l(b) 

(2.1) 

we have 

(2.2) 

p : = p 3  <c9 pl/!~-Z)<Clo ~1/(s-2) 

Log 1/p,> c11. Log 1/p~,. 

Setting cv :=  (c11] 1/2. (4 - ~  (s + 1) -z,  we infer from (2.2): 
\ g d !  

4 - y  
(2.3) [ 4 k l < l f ~ ( s +  l)Z l /2 ,  Logl /p  . a.s., l _<k<n .  

By [-8], Theorem 6 (applied with e: =(4-s-)/s) we have: 

1 - e D S ( S +  1) (2.4) 2 PoF,-1/2~4k, N(O,I),c12p, <c13~, 
1 

Thus we can obtain from the Strassen-Dudley theorem (cf. [7], Theorem 2) a 
t/ 

p-space (f2o, d o ,  Po) and random vectors S,, T,: O o ~ Na with Po ~ S, = Po ~ 4k, 
1 

Po ~ T, = N(0, F,), such that 

(2.5) Po (Is. - T.I > c ~  A~/~ pl-~)  _-<c1~ p2 s+ 1~. 

Since 

E l l s . -  r.lSl 

~xs+gvIs-Z,l~§247 - r,[ >x}  1/(~+1) 

< x.  + 2 s -  l (E  [ iS.P § llS/(,§ 1) + g [I T, I "§ 11~/(~+ 1)) Po { IS. - Z.I > x} 1/(s+ 1) 
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for x > 0, we easily obta in  f rom an obvious  modif ica t ion of [8], L e m m a  3: 

(2.6) E[IS , -T . I  s] <~14,~," As/Z,,s-~4-~)v, . 

Using (2.1), we immedia te ly  obta in  EUIS.-Tolq <=c8AS/2p~ +1Is. (Notice that  (s 
+ ~ -  4)/(s - 2) > (s + 1 )/s, since ~-> 3 .) 

Final ly 

EKIS -T,12] < EUIS - T ,  IS]2/~<cZ~ A .p]-2(4-~)/~ 
�9 l + r /  = C8 Anp~n , 

( 2 . 1 )  

(s - 2 ) ( 4  -s-) 
where t / :=  s ( g - 2 )  

We now proceed  to the p roo f  of  T h e o r e m  1. Since 6-*K~,(6)<f-~'Ks,,(6), 
s > s', it suffices to p rove  T h e o r e m  1 for s > 3. 

To  simplify our  notat ions,  we set for 1 < m < n: 

am." = ~ (E [1~,,:1 s 1 (l~kl <a} ]  + a  ~-2 E [1~,,,I 2 1 {[~,l > a}]). 
k = l  

Fur the rmore ,  we define: 

~-k== ~k 1 {l~kl <6}, ~k:=~k--E[~k], l<k<_n. 

We denote  by c~5 . . . .  ,c33 posit ive constants  depending on 7, s and d only. 
(i) The  purpose  of this par t  of the p roof  is to show that  there exist posit ive 

constants  3-= y(7, s) ~ [3, 4), e=e(y,s)e(O, 1] and  c,5 such that  

(2.7) 6 -~ K~, (6) < c 15(6 -s  K~,,(6)) ~. 

tl 

Since ~ E [ ] ( k ]  2] <d ,  we infer f rom L e m m a  l(a): 
1 

(2.8) K~n(6)<'-C15 Ksn(6) (~-2)/(s-2) if ~-<s. 

We choose e and  f in a way such that  

(2.9) ~ - - s e > 0  

and 

(2.10) (~-- s 0 ~ = (Y-  2)/(s - 2) - e. 

Since 7 = � 8 9  9)/(s- 2), where  ~ > 0, (2.10) can be rewri t ten:  

(2.11) s = ~ i - +  e. 

It  is now easy to see that  a possible choice is: 
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4 + 3 4  34 
K= 1 + 4 '  e=(s_4)+s~ (s~4)  

and (trivially) g=  s, e = 1, if s < 4. 
Since 6>(K~,(6)) ~, we easily obtain (2.7) from (2.8), (2.9) and (2.10). 
Let now (e, s-) be fixed. We set for 1 < m < n: 

/~ :  = ~ (E[l#kl ~ 1 {l#kl <6}]  +6~-2 Efl~kl z 1 {l#kl > 6}]). 
k ~ l  

Using (2.7), we obtain 

(~--s fin ~ C15( (~-s K~,(6)) ~ + 6- 2 L,(6) < (c 1 s + 1) 21-~(6 -~ ~,)", 

if we w.l.o.g, assume 

(2.12) o~n~e -2 0 s. 

(In particular: 6-  2 L,(a) < e -  z.) 
Thus we have 

(2.13) (~-~ fln~ C16((~-S O~n) e. 

(ii) Let S(,): f 2 ~  Cd[O , 1] be defined by 

m ~ __ tm 
(2.14) S(,)(t) : = ~ ~k-~ ~+1, t~<t<t~+l,  O<m<n. 

1 tin+ 1 --tin 

An application of L e m m a  2 yields 

(2.15) 2 (P o S(,), P o S(,), 2 6) < J - s  a,. 

(iii) Let c17 > 0  be a sufficiently large chosen constant, which is determined 
by (2.25). 

We now define a finite sequence of non-negative integers 0 = m  o < . . .  <m,  
= n  by the following recursion: mo.'=0. Let m j_ 1 be defined for a j >  1. Then 
we set 

~tk--tmj_~ An ,  (2.16) m j : = m i n  k > m j _ l : C l 7  32 1 o g 0 ~ k _ a m j _  ' = 

where rain r = n + 1. 
Put r . ' = m i n { j ~ N :  mj=n}. 
Since 

d ~  =E[l~k[ 2 1 {l~k[ < 6}] +E[l~kl 2 1 {[~k[ > 6}3 

< (o~ - ,~ , ,_  1) 2Is + ,5 2 -S (~  k - ~k-  O, 

we obtain from (2.12): 

( 6 s ) - 1 ,  l<-k<-n. (2.17) da2<2(~k--C~k_l)Z/s<sfi 2 log k_C~k_1 
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From the definition of the mj's and (2.17) it follows immediately 

( (2.18) t~j-tm~_<=c1762 log - +o,.j 
~m j - -  (~mj - 1 

--<(c17 +s)62 l~ Cq, j__C~mj_ ~ 

Furthermore, we infer from the definition of the mfs 

62 log <=tins-tins ,, (2.19) c17 
~mj  - -  ~mj  - 1 

Since 

l <=j<=r. 

l < j < r - 1 .  

(iv) Let 2j(Aj) be the smallest (largest) eigenvalue of 

rj . .=cov(r ... +r ~,o_ ..=,z-~a_, 

mj 

p. :=xZ ~/~ ~, gEIg~lq, l <=j~r. 
? n j -  1 +  1 

mj 

Z EEIr 
m j - l + l  

mj 

2 j > t = - t = , _ - 2  y' EVI~kl21(ICkI>6}L 
m j - l + l  

we obtain 

( 6~ t -~ (2.20) t,,j-t,.j_l-2j_-__262-s(c~mj-c~,,~_l)<262 log , l=<j__<r-1. 
(~mj - -  (Xmj-  1 

Thus we have by (2.19) 
( 6s ]-1 

(2.21) 2j>(c17 -2)  62 log 1 < j < r -  1. 
O~mj - -  ~mj  - 1 ] 

Since Aj<_t~-t~j_,, we infer from (2.18): 

( 2 . 2 2 )  Aj<(clv+s)a 2 (log 6s t -1, l< j~r .  
~ m j  - -  0~mj - ,  / 

Using the HSlder-inequality, we easily obtain: 

g[l~klq<=2~g[l~klq, l <_k<_n. 

Together with (2.21) this implies: 

2s (log 6s s12, ~-~j 5~ r 0~mi - -  ~ m i  - 1 c~,,j -~,,j_ ~I 1 - 1. (2.23) P s J < = ( C , 7  - - 2 ) s / 2  a s 

From (2.23) it easily follows if we choose c17 in a way such that clv>cls:=4s 
+2 

6s 
(2.24) Log 1/psj >1log , 1 <_j<=r - 1. 

C)~tnj - -  (~rtlj - 1 
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We put c19:=c7(s , s ,d) ,  where ~-=~-(7,s) is defined by (2.7). Recalling relations 

(2.21) and (2.24), it is straightforward to check that 26<c191/2~Logl/p,~, 
1 < j  < r - 1, when setting 

(2.25) c,7.. = max(c, s , 10ci-Z). 

Hence: 

(2.26) I{kl<C19t/,ljLogl/p~j, mj_a<k<mj ,  t < j < r - 1 .  

(v) We apply Theorem 7 and obtain a p-space (f2a, agl, P~) with independent 
random vectors (~ ,  ~), 1 < j < r - 1  such that 

mj 
(2.27) P~ o Oj = P o  Z 

mj-l+l  

(2.28) 

and 

~k, t]1o ~. = N ( O, Fjj), 

- vjt ] < = C ~ o ( % - % _ , )  

, t + .  l < j < _ r - 1 .  (2.29) E [-I (-~j -- gjl2] ,~ Czi. A j .  p~j , _ 

(Notice that 2j >�89 j, 1 =j__< r -  1, since c,7 > c~s. Use (2.21) and (2.22).) 
A similar argument as in (2.23) shows 

p~j<(c17_2)~/a. 6~ . log l < j < r - 1 .  O~mj I {~mj - I " 

Since Log 1/psj>c22 Log 1/p,~ by Lemma 1, we infer from (2.22) and (2.24): 

A l+q  ~ m ] - - f l m j - 1  j" P~j <c23'  c5~-2 p~j(Log 1/p~j) ~/2 

'(~-2 , l < j < r - 1 .  

(Note that p~j remains bounded, 1 < j < r - 1 .  Use (2.12) and (2.13).) 
Therefore 

(2.30) E[l~j-~.12]~c25.~2-~(~mj-~mj_), l <__j<=r-1. 

We set Vj: =(tmj-t , , j_)l/2 Fj -1/2 ~ ,  1 < j<r  -1 .  
Then P1 ~ Vj = N(0, (tm~ - tin j_ 1) I) and 

(2.31) Plo(Vj -- l~j) = N(0,(( tmj --tmj_l) 1/21 -- Fjl/:)2), 1 <=j<=r - 1. 

Denoting . . . .  the largest eigenvalue of ((tmj-tmj_ 1)~/:I--F-'I/:) 2 1  by #j, we obtain 
trom the obvious inequality u.<(t  -- t  --J..)2/(t --t I 1 < j < r - 1 ,  (2.19) 
and (2.20): 

~ l j < 4 ( O ~ m " ~ 2  ~ log ~C26 6~-2 , l < j < r - 1 .  = _ _  
: c 1 7  ~ - ~mj IO~mj-  1 
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Since E [] V i - ~12] < d#i, 52 -s(%~ _ c~,,j_ ~) < 52 -~(fl,,j -ft,,j_ ~), 1 < j  < r - 1, we in- 
fer from the above inequality and (2.30) 

(2.32) E [ [ [ J j - V j [ 2 ] ~ c 2 7 5 2 - ~ ( f l m j - f l m j _ ~ )  , l <=j<__r-1 .  

Since E [1V~ - ~1 '] ____ Ca8-/~/z by (2.31), 

1~2 -s((Zm j - -  O~mj- 1) , (  e- 2 ( s -  2)/s(O~m J __ O~rn,i_ t )2/s  

by (2.12), we finally infer from (2.29) and the above estimate of #j 

(2.33) E [1 ~j - Vj]~] < c29(~,,j - c~,,j_), l<=j<=r-1. 

Using Lemma A.I., [-1] we obtain a p-space (~22,~2,P2) and two sequences 
of independent random vectors Xk, 1 --< k -- n and Yk, 1 <_ k <_ n such that 

P2OJ?k = Po ~ ,  P2o Yk--N(0, tr2 I), l<_k<_n (2.34) 

and 

(2.35) P2 ~ Xk' Z Yk--PI~ l<j<__r-1. 
mj q-1 m j - l + l  

W e s e t S m : =  Xk, Tm:=~Yk, l<_m<_n. 
1 1 

(vi) From Lemma 3, (2.35), (2.32) and (2.33) we obtain 

P2{ m a x  IN,.-Z~l__>~}=~ max Y, (~?k- =~ 
l<--_j<-r--1 l=j=r--i k = l  

= C27 f in  - t - C 2 9 0 - S ~ n  " 

Therefore by (2.13): 

(2.36) 

(vii) If the constant ca~ 
and (2.22) for 1 < j  < r 

P2{ max [S,~-rmjl~6}~Cao6-~c% 
l < j _ < r - - i  

is chosen large enough, we infer from Lemma 3, 

P2{ m a x  [Sk--Smj_,l~c31"~}_~C32O-s(Ctm~--O~mj_,). 
m j_ ~ <k  < m j  

(Notice that E [l~kl s] N2SE[l(kl~], 1 NkNn.)  
Hence 

(2.37) P2 { max max ISk--S,,j_~[>ca16}<c32O-s~,. 
1 <-_j<-_r mj -  1 <-k<-mj 

Using (2.18) instead of (2.22), we obtain similarly: 

(2.38) P2{max max ITk-Tmj_ll~c310} ~Caz o~ n. 
1 <=j<--_r m j -  1 <=k<=raj 
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(viii) (2.36), (2.37) and (2.38) imply immediately: 

(2.39) P2 { max ]Sk -- Tk[ > (2 C31 + 1) 6} < (C3o + 2 C a 2) 6-s U,. 
I <_k <_n 

Therefore 

(2.39') 
~ 

2(PoS(,), P2 o T(,), (2 c 31 + 1) 6) < (C3o + 2Ca2 ) 6 -s an, 

where T(,): f22 -* Ca[0 , 1] is defined by 

T(.)(t):=Tm-~ t--tin Ym+l fOr tm<t<tm+l, 
t in+ 1 - - t i n  

O<=m<n. 

To finish the proof is suffices to show 

(2.40) 2(P2o T ., W, 6) <c33 6-~G. 

Let w: f2--. Ca[O , 1] be a Brownian motion, i.e. Pow= W. 
Let ~: f2 ~ C d [0, 1] be defined by 

(2.41) #(t):=w(tm)4 t - t in  (W(tm+l)--W(tm)) for tm<t<t,,+a, 
t in+ 1 - -  tm 

O<m<n. 

Since W=(Wl,...,Wd), where wi: (~-~C[0,1] is a 1-dimensional Brownian 
motion ( i=l , . . . ,d) ,  we obtain from the definition of ~, ([6], Theorem 1.5.1) 
and (2.17) 

P{ sup Iv~(t)-w(t)[~6} 
o < t < i  

< P {  max sup ]w(t)-w(tk_l)[~6/2} 
l <-k~n t k - l  <t<=tk 

<2d P{Iw,(a~)l> 6/(21fd)} <4d exp - <c336-so~,. 
k = l  k= l  

This proves (2.40), since Po~=P2o T(, ). 
Corollaries 1 and 2 are immediate consequences of Theorem 1 applied for ?; 

=l/s  and 7 = l / ( s + l ) ,  respectively. (Notice that Corollary 1 is trivial for 
6<(Ks,(g)+6~-2L,(6))l/L) Corollary 3 follows from Corollary 1, using the 
obvious inequalities 

Ks, (6) < d6 (~ - 2)~ + 6~- 2 L, (6 ~) 

and 

L.(6)<=L.(6~), 6<1. 

It suffices to prove Corollary 4 for F = I .  Since the Prohorov distance 
metrizes the weak convergence, Corollary 4 is proved if we show that 
p(PoS(,), W ) ~ O  as n--* oo. 
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Since 3 - ~ L , ( 6 ) ~ O  for all 6>0 ,  there exists a sequence 6 ~ 0  such that 
~n-3Ln(63)---~0. (Use Lemma 6, [!2], Chap. X.) Hence, 3 3 L , ( 6 , ) < 6 ,  for suf- 
ficiently large n. From Corollary 3, applied with s=7/2 ,  we obtain: 
p(PoS~.~, w)<6.$o. 

3. Proof of Theorems 2, 3, ~ and 6 

Using the well known Strassen-Dudley theorem (cf. [7], Theorem 2), we obtain 
from the proof of Theorem 1 the following proposition which improves ([11], 
Theorem 2). 

Proposition 1. Let  ~1, . . . , 4,: f2 ~ IR a be independent random vectors, defined on a 
p-space ( f 2 ,d ,P ) ,  with zero means and COV(~k)= 2 ok1, l<_k<_n. Let  s>2,  

n 

. _ _  2 0 < ~ < 1 / ( 2 s - 4 ) .  Let  6/v~B,>=[B2~/2(K~,(f)+fS-ZL,(6))] ~, where B , . - - ~ a k ,  
1 

h e N .  One can construct a p-space (f2o,do,Po) and two f ini te sequences of  
independent random vectors X 1 , . . . , X  . and Y1 . . . . .  Y, with PooX~=Po~k,  PooYk 

m m 

-- N(0, cov(r 1 <_ k <- n such that the partial sums Sin: = ~ Xk,  T~: = ~ Yk, 
1 <_-m<n, fulfill: 1 1 

Po{ max IS k --Tkl >c3~6 } -<r 
l < k < n  

where c34 , c35 > 0  are constants depending on 7, s and d only. 

Proof  Using relations (2.15) and (2.39') of Theorem 1 (applied with 

~ / V ~ , , - . . ,  ~./1/~, and 6/1/~,), we obtain 

1 ~ ] _< c35(6-~ K~,(8) + b -  Z L,(6)), (3.1) 2 ~PoS(,),P2oT(n),c3. V B  ! 

where S(,): f2~Cal-0,1]  is the partial sum process of the random vectors 

~k/V~, ,  l < k < n  and T~,): s '22~Ca[0,1 ] is the partial sum process of a finite 
sequence of independent random vectors q l, ...,r/,: O z ~IRd such that P2or/k= 

N 0, I , l_<k_<n. The assertion follows by a straightforward application of 
- -  n - 

[7], Theorem 2. 

Remarks (a) By obvious modifications of the proof of Theorem 1 one can easily 
show that the above proposition remains valid, if the covariance matrices 
Sk: = COV(~k), 1 --< k_-< n, fulfill the condition 

2 2 for [ t [=l  ( l < k < n )  (3.2) Ok #1 < (t ,  Z k t )  < ~k #2 = -- 

where #~,#2 are positive constants. We only have to replace the constants c34, 
ca5 by constants depending on #~, Pz, y,s and d. 
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(b) Let 2 < s < 4 .  Then it is easy to see that for any given 6 > 0  a con- 
struction is possible such that 

(3.3) Po{ max ISk-Tk[>ca63}~c37(c~-SKs.((~)+c~-2L.((~)), 
l<_k<_n 

where %6, c37 are positive constants depending on s and d only. 
(c) Since Ks. (6) + 6s- 2 L. (6) < d~ s- 2 B., the condition 

"6>]/~.EB2~/2(Ks.(3)+6~-2L.(6))~ for some 7 < 1 / ( 2 s - 4 ) "  

is always fulfilled, if 6 > d 1Its- 2)~n" 
Now we start to prove Theorem 2. W.l.o.g. we assume that F = I .  
Let 0 < i~ k T (30 such that 

~ l k / a  k --+ 0 a s  k ~ (3.4) 

and 

(3.5) 
k = l  

(The existence of such a sequence follows easily from (1.7) and (1.8), since 
E[l~kl s 1 {[~k[ < ~}] + 6=- 2 E [I Ck] 2 1 {l~kl > 6}], ~ > 0, is non-decreasing.) 

We define {m,: neN} by the following recursion: 

m o : = l ,  

By definition we have 

(3.6) 

m :=min{k:glk>2g~ . . . .  }, n>=l. 

a m . _ l ~ 2 a  . . . .  , n ~ l .  

Applying the above remark (b) t o  {~k: m, , - l<k<m, , }  (neN) we obtain a p- 
space (f2o, do ,  Po) and two sequences of independent random vectors {X,}, { II,} 
such that the following holds true: 

(3.7) Po{ max ](Sk--S . . . .  _ l ) - ( T k - T , , . _ l _ 0 ) l > C a 6 8  . . . .  } 
m n -  l <=k < m n  

ran--  1 

< %7 ~i,~s_ ~ ~ (E[[~kl s 1 {l~k[ < ~ . . . .  }3+ ~,~_21Efl~kl 2 1{1r > a . . . .  Yl) 
ran- 1 

rnn-- 1 

=<2Sc37 ~ a;S(E[lCklSl(l~kl<ak}-l+aS-2 g ~ 2 k I-I kf l{ l~kl>ak}]) ,  
ran-  1 

where So." = To." = 0. 
Thus we obtain from the Borel-Cantelli lemma, (3.5) and the definition of 

the m,'s that almost surely 

IS k - Tkl =< K(co) + ~ c36 ~,,j_l =< K(og) + 2c36 8 . . . . .  
j=l 

<=K(co)+2C36gtk if m,,_x < k < m  .. 

This proves the assertion (recall (3.4)). 
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Theorem 3 is an immediate consequence of the remark after Theorem 2 
and Lemma 15, ([12], Chap. IX). 

Theorems 5 and 6 are special cases of Theorem 2, if 2 < s < 4. Thus we have 
to prove these results only for s>4 .  We will show that the above proof of 
Theorem 2 works in these cases, too. But we have to be a little more careful, 
since we can apply our proposition only for sufficiently large 6, if s > 4. 

The main problem is (3.7). Let a,=l , /B ,  Log2B . (resp. a , = l / ~ .  ). It suffices 
to show that there exists a sequence a. T oo such that (3.4) and (3.5) as well as 

(3.8) a. _>_ 1/~.(B; ,2 (Ks. (a.) + a~.-' L. (a.))), 

for some 7 < 1 / (2s -4)  hold true. 
It is easy to see that such a sequence can be found if 

(3.9) [ B :  ,/2 (Ks. (a,) + a*.- 2 L.  (a.))] ~ = 0 (a,/1/-~,) 

for some 7<  1/(2s-4).  
Using the same argument as in the remark (c) after the proposition, we 

immediately obtain (3.9) for a , = l / B ,  Log 2 B,, hence Theorem 5. 
n 

Since B2 ~/2 (K, ,  (a,) + aS,- 2 L,(a,)) < B 2 s/2 ~" E [lr we have by (1.19): 
1 

B~- s/2 (Ks. (a.) + a~- 2 L. (a.)) = 0 (n~ 

therefore (3.9) for a , = l / ~ ,  hence Theorem 6. 

4. Proof  of Theorem 4 

To simplify our notations, we set: G(x ) :=H- l ( x ) ,  x > 0 .  Let 1 + 2 / f  1 <bkT 
such that 

1 _ 

k= 1 k bk f  k 
(4.1) 

and 

(4.2) 
o<=b~/2 G(kfk) 2 - 1 <1  kMN. 

k b k f  k = 2 '  

Let {~k} be a sequence of independent random variables with symmetric 
distributions such that 

1 
n {[ ~k[ = bl/4 G(kfk)} = k bk-~k' 

G(k fk)2 and 
(4.3) P { [ ~ k ] = l } = l  kb~k/2fk 

b~/2 G(k fk) 2 - 1 k ~ N .  
P{{k=O} -- 

kbkfk 
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F rom (4.3) it follows immediately that  E[~k] = 0 ,  E [ ~ ]  = 1, keN.  Furthermore,  
we have 

E[H(I~kl)] <= H(b~/4" a(kfk)) ~-H(1)< 1 +H(1),  k e N ,  
kbkfk 

since t -  4 H(t) is non-increasing and H(0) = 0. 
Using the obvious inequality: IX,] < 1S.-7",1 + IS._ l - T , _  a] +]Y,], we obtain: 

(4.4) Po G(nf,) "-" oo = r 0 [,~llm. ~utnj,) < oo . 

(Notice that  P 0 f l i ~ ~ < o o t = l  , since {Y,} is a sequence of independent 

N(0, 1)-distributed r.v.'s.) 
F rom the Borel-Cantelli lemma, (4.1) and (4.3) we infer 

po (,=- Ix.I } ~um ~--~--~, < oe = O, hence the assertion by (4.4). 
( , otnY,) 

5. Proof of Corollaries 5 and 6 

Proposition 2. Let 
that 

We use the following proposit ion which is related to Strassen's functional law 
of the iterated logari thm for the Brownian mot ion  (cf. [14] Theorem 1). 

{((t): t_>_0} be the Brownian motion in IR d. Let B, Too such 

(5.1) lira (- B"+I ] <  oo. 
\B n exp (l/L-og 2 B,) / 

Set ~,(t)." = (2B, Log 2 B,)-  1/2 ~(B. t), 0_< t _< 1. 
With probability one, {~,: heN} is relatively compact in Cd[O, 1] and the set 

of its limit points coincides with 

Proof (cf. [14], Theorem 1). Since the first part  of the assertion follows easily 
from [14], Corollary 1, we have only to show the second part. 

We use similar arguments as in [143, Theorem 1 (cf. p. 214/215). It suffices 
to show that  for given x e ~  and 5 > 0  the following holds true: 

(5.2) P(lim { II ~, - x  [I < 5}) = 1. 
n 

Let m be a positive integer, let 6 > 0. 
We denote by A n the event 

{ ( : ( i )__~n  (i-ml) (x ~ ( i ) _ x ~ \  m / / I  for 2<_i<_m, 1<_ 

where (~(t)(x~(t)) denotes the ~c-th coordinate of (nit) (x(t)), 1 <_x<d ( tel0,  1]). 
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Using the same arguments as in [14J, we obtain for sufficiently large n 

c(5) 
(5.3) P(A,)> 

Log B, ] /m LogLog B,' 

where c(6)>0 depends only on 6. 
We define the subsequence {n~:j > 1} _~lN by the following recursion: 

nj:=min{k>nj_l:Bk>m.B,j_l}, j>2. n l : = l  , 

By definition we have' 

(5.4) B,j>rn.B,j_~, j>2. 

Furthermore, we obtain from (5.1) and the definition of the nSs: 

(5.5) B,j<K.m.B,j_~ exp(]//Log2 B,._ 1), j > 2 ,  

where K is a positive constant such that B<K.B,_I exp(t/Log2B,_~) , n > 2  
and a 2 = B  1 <K.  

This implies immediately: 

(5.6) B,j <= (K. m) J exp (j L]/'~2 B,j). 

From (5.6) we easily obtain: B , j < e x p ( / s  j_>_l, where / ( > 0  is an 
appropriate constant. 

Therefore by (5.3) 

(5.7) ~ P(A,j)= oo. 
j = l  

Since the events A,~, j >  1 are independent by (5.4), we infer from the Borel- 
Cantelli lemma 

1 = P(lim A,j) = P(lim A,). 
j n 

We can now prove (5.2) by the same arguments as in [14], p. 215. 
To prove Corollary 5, we use standard arguments. First, we assume w.l.o.g. 

that the sequence T,, n > 1 in Theorem 5 fulfills 

(5.8) T ,=r  

where {~(t): t>0}  is a d-dimensional Brownian motion on ((20, do ,  Po). This 
assumption can be justified by [6], Proposition 1.4.1 or [1], Lemma A.1. 

Using the same arguments as in the proof of (2.40), we obtain from 
Theorem 5 and (5.8) 

(5.9) sup I q , ) ( t ) - F  ~/2 ~ , ( t ) l -0  a.s., 
0 _ < t _ < l  

where {(,(t): 0_<t_<l} is defined as in Proposition 2 and {~,) :n~N} is defined 
as {U(,): nsN} with ~k replaced by Xk, k~N. 
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Since P0o(~.)) ,~=Po(U(,)) ,~ ,  we easily obtain from (5.9) and Proposition 2 
the assertion. 

To prove Corollary 6, we remark that 

and 

n 
-1/2 {(2B, Log2 B,) ~',4k:nCN}=Trl({U(.):n~N}) 

1 

{F1/]x:lx[~l}=rCl(O~r), where re1: Ca[O, 1 ] ~  a 

is (trivially) continuous. 

6. Lemmas 

L e m m a l .  Let 41 .... ,4.: ~ 2 ~ R  d be random vectors such that E[14kP]<o�9 for 
n 

some s >  3 (1 <k<=n). Set B.: =~E[14k[2]. Then we have for any given g~[3,s] 
1 

n n 
(a) B~- ~/2 ~ E [[ 4k ] ~3 ----< (B~- s/2 ~ E [14k P])(~- 2)/(s-- 2) 

1 1 

I f  we additionally assume that E [4k] = 0  (1 <= k <= n), we have furthermore 

( b )  ,~ns/2 ~'~ E[[~kJS]< (An ~/2d(S-~)/(s-2) O~ns/2 ~ E[[~klS] ) (~-2)/(s-2) 
1 = \ 2 , /  1 

where 2,(A,) is the smallest (largest) eigenvalue of F,-'=cov(4, + ... +4,). 

Proof (a) follows from Lemma 2, [12] Chap. VI (applied to Xk=l{kl , 1 <k<n). 
Note that this lemma is formulated in [121 for r.v.'s with zero means. But it 
can be easily seen from the proof in [12] that this lemma is also applicable in 
our situation. 

(b) follows from (a), since d] ,<B,<dA, .  

Lemma 2. Let 4~,..., 4,: (2--+F, e be integrable random vectors with zero means. 
Set for a fixed 6 > 0: 

~.'=~k1{1~1<6}, ~.'--~-~-E[(~], l<_k<n. 

Then we have." 

P max ~ ~m- ~,, ~ 2 6  < 3  .2 E[14k121{14kl>6}]. 
[.l<k<nlm=l 1 k = l  

n 

Proof W.l.o.g. we assume 3 -2 ~E[[4kl2 1 {l~kl >6}3 ~ 1. In this case we obtain: 
1 

IE[C, dI~ ~ EFI~-~I]<~ -~ ~ EKl~kl" 1(1~,,1>a}2~6, 
k = l  k = l  k = l  
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hence 

k k , > _ 2 b l N P I m a x  ~, k 

<= ~ P(r -2 ~ EH~kl 2 1{14,1>6}]. 
k = l  k = i  

L e m m a 3 .  Let ~k: O ~ N d ,  1 <_k<_n, be independent random vectors with zero 
means. Let s >2 .  Let A n be the largest eigenvalue of F~:--cov(~ 1 + . . .  + 4,). Then 
we have for t > 0: 

P I  max ~ ~,n ~ t }~c -1  (exp (-~-2t2~ 
.... 1 I 

with positive constants 61, c2 depending only on s and d. 

Proof. W.l.o.g. we assume t > 3 ] / ~ I / ~ , .  

t < 3 t / d l / ~ , ,  the estimate is trivial, since in this case exp( -C2t~  - )  (If 
> exp( - 9 d~-2). ) \ ~ ln  / 

Let ~k=(~k, 1, "",~k,d), l <-k<_n. Since we have 

P ~ m > t  __< P ~ m ~ > t  , 
kl=k=n m=l ) i= [.t=k=nlm= l ' I-- .) 

we obtain  f rom Theorem 12 ([12], Chap. III)  

The assertion follows f rom the last inequality by an application of Corol lary  4 
([9], p. 653). 
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