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Abstract

Probit-normal models have attractive properties compared to logit-normal models. In
particular, they allow for easy specification of marginal links of interest while permitting a
conditional random effects structure. Moreover, programming fitting algorithms for probit-
normal models can be trivial with the use of well developed algorithms for approximating
multivariate normal quantiles. In typical settings, the data cannot distinguish between pro-
bit and logit conditional link functions. Therefore, if marginal interpretations are desired,
the default conditional link should be the most convenient one. We refer to models with a
probit conditional link an arbitrary marginal link and a normal random effect distribution as
link-probit-normal models. In this manuscript we outline these models and discuss appro-
priate situations for using multivariate normal approximations. Unlike other manuscripts in
this area that focus on very general situations and implement Markov chain or MCEM algo-
rithms, we focus on simpler, random intercept settings and give a collection of user-friendly
examples and reproducible code. Marginally, the link-probit-normal model is obtained by a
non-linear model on a discretized multivariate normal distribution, and thus can be thought
of as a special case of discretizing a multivariate T distribution (as the degrees of freedom
go to infinity). We also consider the larger class of multivariate T marginal models and
illustrate how these models can be used to closely approximate a logit link.

1 Introduction

In this manuscript we consider mixed effects regression models for binary and ordinal multinomial
response variables. In the common setting where the random effects are assumed to be normally
distributed, greater consideration should be given to the use of the cumulative probit conditional
link functions in lieu of the more popular cumulative logit conditional link. These models are
obtained by discretizing a latent normal distribution, a process that has been used extensively
in the biometrics and econometrics literature (see Ashford and Sowden, 1970; McFadden, 1989;
Hausman and Wise, 1978, for example) and is especially useful for joint modeling of continuous
and discrete outcomes (Gueorguieva and Agresti, 2001). The principal benefits of the conditional
probit link with normally distributed random effects are twofold. First, these models allow for easy
approximations to the log-likelihood that can be more convenient than the usual quadrature or
Monte Carlo approximations. Second, these models also allow for easy specification of a marginal
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model of interest. That is, these models are both computationally convenient and can be used
to obtain coefficients that possess desirable interpretations.

We refer to models with an arbitrary cumulative marginal link, a cumulative probit conditional
link, and normally distributed random effects as cumulative link-probit-normal models, or simply
link-probit-normal models in the binary case. In this manuscript we outline these models and their
computation, focusing on reproducible code for easily understood examples. Notably, we highlight
the commonly occurring setting of random intercept models where there are few observations per
cluster. We also consider a generalization of these models using the multivariate T distribution.
The added flexibility of choosing the degrees of freedom for this distribution allows one to very
closely approximate marginal logit links.

2 Notation and likelihood computation

We develop our notation for a general version of the problem, though we focus on random
intercept models in the examples. Let Yij be a response taking ordinal levels k = 1, . . . , K for
cluster/subject i = 1, . . . , I on measurement/occasion j = 1, . . . , Ji. We assume the hierarchical,
conditional model

Pr(Yij ≤ k | Ui = ui) = Φ(∆ijk + zt
ijui) and Ui ∼ Normal(0,Σ),

where Φ is the standard normal cdf, ∆ijk is a possibly non-linear, covariate dependent and
observation specific fixed predictor, and Ui = (Ui1, . . . , UiP )t are latent effects representing
cluster and level specific sources of variation. To obtain an appropriate ordering of the cumulative
probabilities it is required that the ∆ijk are increasing in k and that ∆ij0 = −∞ and ∆ijK = ∞.
WhenK = 2 (binary data), and ∆ijk is linearized with respect to a covariate vector (∆ijk = xt

ijβ),
this is a standard probit-normal generalized linear mixed model.

Let Wij be iid standard normal variates, mutually independent of the Ui, and define the
convolution Mij = Wij − zt

ijUi, which implies that the Mij are multivariate normal. With this
derivation, the contribution of subject i to the likelihood is (see Appendix C)

Pr
(

∩Ji

j=1[∆ij(yij−1) < Mij ≤ ∆ijyij
]
)

(1)

(where the yij are fixed). Therefore, the desired contribution to the likelihood is a multivariate
normal probability.

The likelihood, which is the product of (1) across subjects, must be approximated numerically.
Bayesian approaches using Markov chain Monte Carlo to simulate from a posterior distribution
for both the latent variable process and the fixed parameters are popular (Chib et al., 1998;
Imai and van Dyk, 2005; Chib and Greenberg, 1998). Also, the Monte Carlo EM algorithm
has been used for maximum likelihood estimation (Chib and Greenberg, 1998; Natarajan et al.,
2000). Adaptive quadrature methods have also been widely applied, such as in the SAS procedure
PROC NLMIXED. Our present discussion differs slightly from these in that we focus on marginal
likelihood-based interpretations of parameters (see Section 3) and the common setting where there
are few observations per cluster. In these instances well established algorithms for approximating
the multivariate normal cdf can be used (see Genz, 1992; Shervish, 1984, for example). In our
examples, we use the mvtnorm package (Hothorn et al., 2001) in R (Ihaka and Gentleman, 1996).
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Because of such packages, we find that coding an approximation to the log-likelihood is often
very easy (see Appendix E).

Notice that the dimension over which the multivariate normal probability is calculated increases
with the number of observations, Ji, not the dimension of the random effects. Therefore, the
direct use of the multivariate normal cdf to calculate the likelihood is well suited for data with
large numbers of clusters comprised of few observations, such as in cohort studies where the
cluster is a subject measured over few occasions. In contrast it is not well suited for studies
with large numbers of observations per cluster. In these settings, we have found that adaptive
quadrature approximations work well if the random effects are low dimensional. Monte Carlo
based algorithms or Laplace/type approximations appear to be the only applicable options for
very high dimensional random effects.

Notice that the marginal variance/covariance matrix of the Mi = (Mi1, . . . ,MiJi
)t is I+ziΣz

t
i

where zi is the matrix of the zt
ij stacked by rows. If the random effects are not of intrinsic or

conceptual interest, one can construct a model by simply specifying this correlation matrix and
use (1) to calculate the likelihood; which is the process of discretizing a multivariate normal
distribution. In general settings, care must be taken so that the marginal variance of the Mi is
identified.

The use of the multivariate normal distribution is primarily due to historical reasons and
convenience; the higher order cumulants of the latent variable distribution are not usually iden-
tified in most practical settings. Other multivariate distributions, such as the multivariate T
and multivariate logistic (Chib et al., 1998; O’Brien and Dunson, 2004), have been suggested.
The multivariate T is particularly interesting since it is more flexible than the normal distribu-
tion, includes the normal as a limiting case, has widely available accurate approximations to the
distribution function (Genz and Bretz, 1999) and it provides a readily available computational
approximation to the marginal likelihood (as discussed below).

3 Modeling the ∆ijk

As currently stated, the model is over-specified if the ∆ij are left unstructured. For example, the
maxized likelihood always corresponds to a probability of 1 for the observed data. A common,
more parsimonious model, linearizes the ∆ijk with respect to some covariates. As discussed in
Heagerty (1999) and Heagerty and Zeger (2000), linearizing the ∆ijk on different scales yields
coefficients with either marginal or conditional interpretations.

Conditional models

A conditional linear predictor model assumes that

∆ijk = αc
k + xt

ijβ
c
k, (2)

where xij is a vector of covariate values. The required ordering on the ∆ijk is imposed by forcing
the αc

k to be strictly increasing. Under this definition,

Φ−1{Pr(Yij ≤ k | Ui = ui)} = αc
k + xt

ijβ
c + zt

ijui
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so that the βc have a conditional, or subject specific interpretation on the probit scale; hence the
superscript c. Assuming that neither the fixed slope parameters nor the random effects depend on
the ordinal level k is analogous to a proportional odds assumption for cumulative logit models, an
assumption we make throughout. This model is a probit-normal instance of multinomial GLMMs
(see Hartzel et al., 2001; Liu and Agresti, 2005).

Marginal models

Often marginal, not conditional, interpretations of the coefficients are desired. Let G−1 be the
marginal cumulative link function of interest with G being the associated distribution function.
In this manuscript we are primarily interested in the case where G is the logistic distribution. A
linear predictor with marginal parameter interpretations is obtained by assuming that

Pr(Yij ≤ k) = G(αm
k + xt

ijβ
m) (3)

(see Heagerty and Zeger, 1996, 2000). We demonstrate how this defines the ∆ijk of the con-
ditional model. Because of the conditional probit link and normal random effects, the marginal
cumulative probabilities satisfy

Pr(Yij ≤ k) = Pr(Mij ≤ ∆ijk) = Φ{∆ijk/(1 + zt
ijΣzij)

1/2}. (4)

Therefore setting
∆ijk = Φ−1 {G(αm

k + xijkβ
m
k )} (1 + zt

ijΣzij)
1/2 (5)

produces a model that satisfies both (3) and (4) (see Griswold, 2005). Notice that if G = Φ
and zij = 1, then the conditional and marginal slopes are rescalings of each other (as in Zeger
et al., 1988). This is also nearly true when G is the logistic distribution function, because Φ−1G
is approximately linear.

We reiterate that using (2) produces a linear predictor with subject-specific parameter inter-
pretations while using (5) produces a linear predictor with marginal parameter interpretations. In
both cases, the conditional link is the probit link and the random effect distribution is normal.
Therefore, we refer to the marginal models as the “cumulative link-probit-normal models”. For
example, when G is the logistic distribution function, we refer to the model as the cumulative
logit-probit-normal model.

4 A multivariate T extension of the link-probit-normal model

As discussed previously, users may want marginalized logit interpretations obtained by discretizing
a multivariate distribution other than the normal. In what follows, we discuss the marginal model
obtained by discretizing a multivariate T distribution, and illustrate the implied conditional model.
Furthermore, we also illustrate how the degrees of freedom of the multivariate T can be chosen
so that the marginal distributions are effectively logistic, and hence one can avoid the non-linear
definition for the ∆ijk.

Before we introduce the model, we mention some alternative approaches. One class of alter-
natives, assumes a generalization of the logistic distribution on Mi, so that the Mij all possess
(exact) marginal univariate logistic distributions (see O’Brien and Dunson, 2004, for a recent
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generalization of the logistic distribution). Another adapts the random effect distribution so that
the marginal and conditional links are both logistic (Wang and Louis, 2004, 2003). Keeping
with our goal of simple computational methods, we present an approximate method based on
the multivariate T distribution that can work quite well. Moreover, the resulting, more general,
family of models contains the link-probit-normal models as a limiting case.

Consider the modification of the link-probit-normal model where

Pr(Yij ≤ k | Ui = ui, Si = si) = Φ

(

∆ijk

√

si

v
+ zt

ijui

)

for Ui ∼ Normal(0,Σ) and Si ∼ χ2
v. This model implies that the contribution of subject i to the

log likelihood is

Pr



∩Ji

j=1



∆ij(yij−1) <
Mij
√

Si

v

≤ ∆ijyij







 (6)

(see Appendix D). The Mi/
√

si

v
are distributed as a multivariate T with v degrees of freedom

and variance matrix I + ziΣz
t
i (see Genz and Bretz, 1999) and therefore (6) requires evaluating

the multivariate T distribution function. Of course, the marginal distributions of the Mij/
√

si

v

are scaled univariate T distributions. That is,

Pr(Yij ≤ k) = Pr

(

Mij
√

si

v

≤ ∆ijk

)

= Tv{∆ijk/(1 + zt
ijΣzij)},

where Tv is the standard T distribution function with v degrees of freedom. Hence setting

∆ijk = T−1
v {G(αm

k + xijβ
m)} (1 + zt

ijΣzij)
1/2 (7)

yields a marginal model with link function G−1.
As noted in Chib and Albert (1993), the T distribution function is nearly linearly related to

the logistic distribution function. Therefore, when G is the logistic distribution, (7) can be easily
approximated with

∆ijk = cv(α
m
k + xijβ

m)(1 + zt
ijΣzij)

1/2.

where cv is a constant value, dependent on the degrees of freedom of the T-distribution used,
thereby avoiding the non-linear definition of the ∆ijk.

The constant factor cv and appropriate degrees of freedom can be chosen to minimize a
variety of criteria. For example, minimizing the residual sum of squares of a linear regression
approximation of T−1

v G for probabilities between .999 and .001 yields df = 8.7817 and c(8.7817) =
0.6215 (see the code in Appendix F). Better approximations can be obtained if the range of
probabilities is smaller. However, in the examples that follow, these constants performed well.
In practice, we would suggest choosing the constant and the degrees of freedom to allow for
a reasonable range of probabilities in the given context. Figure 1 plots T−1

v G over the range
of logit scale probabilities and gives a useful depiction of how accurate the approximation is.
Notice that, for logit-scale probabilities between -6.91 and 6.91 (probabilities of .001 and .999
respectively), the linear approximation is nearly exact. It is only very small or large probabilities
that the approximation is breaks down.
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5 Examples

Binary matched pairs

Table 1 is a 2×2 contingency table of approval ratings of the British Prime Minister collected
at two occasions. Let Yij = 1 correspond to a response of “approval” at sampling occasion j
while Yij = 2 corresponds to “disapproval”. Under our existing notation, K = 2, Ji = 2 and
I = 1600. Consider the model

Φ−1{Pr(Yij = 1 | Ui = ui)} = ∆j + ui and Ui ∼ Normal(0, σ2) (8)

where

∆1 = Φ−1 {G(αm)} (1 + σ2)1/2 and ∆2 = Φ−1 {G(αm + βm)} (1 + σ2)1/2. (9)

Notice that extraneous subscripts have been omitted.
Because MLEs are invariant to monotonic transformations, fitting Model (8) ignoring (9)

yields an equivalent fit to when the marginal constraints (9) are employed. In either case, there
are three unknowns, either (∆1,∆2, σ) or (αm, βm, σ). The log-likelihood is

794 log [Pr {M1 ≤ ∆1,M2 ≤ ∆2}] +

150 log [Pr {M1 ≤ ∆1,M2 > ∆2}] +

86 log [Pr {M1 > ∆1,M2 ≤ ∆2}] +

570 log [Pr {M1 > ∆1,M2 > ∆2}] .

The fitted values overlaid on a contour plot of the bivariate normal distribution along with the
cell counts for the four quadrants are shown in Figure 2.

The saturated model also has three free parameters, and so the fitted counts are identical to
the observed. Code for fitting the model is given in Appendix G. The fitted values are α̂m = .36
(.05), β̂m = −.16 (.04), σ̂ = 2.94 (.20). Therefore, the fitted model specifies that the marginal
log-odds of approval at occasion one is .36 while it is .36 − .16 = .20 at occasion two. Under
this model, exp{βm} = .85 is the marginal odds ratio of approval comparing the two sampling
occasions, suggesting an estimated 15% decrease in approval.

The estimate of βm is identical to the marginal ML estimate, log(944×720/880×656) = −.16
(see Agresti, 2002). The fit using the multivariate T approximation yielded β̂m = −.17 (.04),
differing from the logit-probit-normal results by .006. (The code for the multivariate T approxi-
mation is not given, as it is nearly identical to the logit-probit-normal code.) The large estimate
for the variance component is due to the large cell counts in the diagonal cells, i.e. a high de-
gree of correlation between the two repeated observations. The likelihood ratio statistic for βm

is 17.58 on 1 degree of freedom, strongly suggesting the lack of marginal homogeneity in the
probability approval at the two occasions.

Ordinal matched pairs

We extend the previous example to an ordinal matched pairs data set. The movie rating data
given in Table 2 cross-classifies the ratings (1-Con, 2-Mixed, 3-Pro) of Roger Ebert (j = 1) to

6

http://biostats.bepress.com/jhubiostat/paper85



that of the late Gene Siskel (j = 2). Consider a model so that Yij is the rating of reviewer j on
movie i:

Φ−1{Pr(Yij ≤ k | Ui = ui)} = ∆jk + ui and Ui ∼ Normal(0, σ2),

where
Φ−1{G(∆1k)} = αm

k and Φ−1{G(∆2k)} = αm
k + βm.

Recall that αm
0 = −∞ < αm

1 < αm
2 < αm

3 = ∞. It is worth noting that it is easier to fit the
sequential differences, (αm

1 , α
m
2 − αm

1 ) than the αm
k directly.

Figure 3 displays the fitted bivariate normal distribution with the observed and fitted counts.
The resulting Pearson statistic is 7.08 (with 5 df). Appendix H gives R code to perform the
fitting. The results of the fit are α̂m

1 = −1.05 (.17), α̂m
2 − α̂m

1 = .84 (.10), β̂m = .11 (.16)
and σ̂ = 1.25 (.20). For comparison, the discretized multivariate T approximation yielded α̂m

1 =
−1.08 (.17), α̂m

2 − α̂m
1 = .87 (.10), and β̂m = .11 (.16). The fitted link-probit normal model

specifies that

logit{Pr(Ebert’s rating ≤ 1)} = −1.05

logit{Pr(Ebert’s rating ≤ 2)} = −1.05 + .84

logit{Pr(Siskel’s rating ≤ 1)} = −1.05 + .11

logit{Pr(Siskel’s rating ≤ 2)} = −1.05 + .84 + .11.

Notice that βm = .11 is the marginal increase in the cumulative odds comparing Siskel to Ebert.
An effective way to display the evidence regarding βm is to plot the profile likelihood. Figure 4
displays the profile likelihood for βm, which largely overlaps 0.

Crossover data

The data given in Table 3 are from a well studied cross-over experiment. Here the binary response
was an indicator of an “abnormal” versus a “normal” reaction to medication when comparing an
active drug versus a placebo given in two periods. Models of interest relate the response to the
treatment and period while accounting for the correlation incurred by the repeated measures.

Assume that Yij = 1 corresponds to a response of “normal” while Yij = 2 corresponds to a
response of “abnormal”. Conditional on a random intercept, we assume that the Yij are binary
with success probability

Φ−1{Pr(Yij = 1 | Ui = ui)} = ∆ijk + ui and Ui ∼ Normal(0, σ2),

where
∆ijk = Φ−1 {G(αm

1 + xij1β
m
1 + xij2β

m
2 )} (1 + σ2)1/2.

Here xij1 is a binary treatment (1 for the active drug) indicator while xij2 is a binary period
indicator (1 for the second period). Appendix I gives code for fitting the model. With G equal
to the logistic distribution, the resulting fit is α̂m

1 = .68 (.28), β̂m
1 = .59 (.23), β̂m

2 = −.33 (.23)
and σ̂ = 2.80 (1.06). For comparison, the discretized multivariate T approximation yielded
αm

1 = .71 (.29), βm
1 = .60 (.24) and β̂m

2 = −.33 (.24). The corresponding GEE (Zeger and Liang,
1986) model fit with a logit link and an exchangeable correlation matrix yielded αm

1 = .67 (.29),
βm

1 = .57 (.23) and β̂m
2 = −.30 (.23).
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Thus the fitted logit-probit-normal model specifies that

logit{Pr(Yij = 1)} = .68 + .59xij1 − .33xij2.

Therefore, exp(.587) − 1 = 80% estimates the proportional increase in the marginal odds of a
normal response for the treatment. Figure 5, displays the profile likelihood for βm

1 with 1/8 and
1/16 reference lines.

Sleep data

Table 4 cross-classifies the categorized time to sleep onset for baseline and followup visits for
subjects who received either a hypnotic medication or a placebo. The response, time to sleep
onset, was categorized into four ordinal levels. Consider the model

Φ−1{Pr(Yij ≤ k | Ui = ui)} = ∆ijk + ui and Ui ∼ Normal(0, σ2),

where
∆ijk = Φ−1 {G(αm

k + xij1β
m
1 + xij2β

m
2 + xij1xij2β

m
3 )} (1 + σ2)1/2.

Here k = 0, . . . , 4 where αm
0 = −∞, αm

4 = ∞, G is the logistic distribution, xij1 is a treatment
indicator (1 for the active drug) and xij2 is a time indicator (1 for followup).

The resulting fitted values are given in Table 5 with sample R code given in Appendix J. To
illustrate the interpretation of the coefficients, consider the fitted marginal models:

logit{Pr(Yij ≤ 1)} = −2.290 + 1.052xi1 + .058xi2 + .687xi1xi2,

logit{Pr(Yij ≤ 2)} = −.983 + 1.052xi1 + .058xi2 + .687xi1xi2,

logit{Pr(Yij ≤ 3)} = .332 + 1.052xi1 + .058xi2 + .687xi1xi2,

Therefore, for example, .058 estimates the marginal increase in the cumulative odds comparing
the treatment to the placebo at baseline.

To demonstrate the benefits of a likelihood based approach, consider testing the necessity of
the interaction term. The likelihood ratio statistic for testing H0 : βm

3 = 0 is estimated to be
7.71 with 1 df. In addition, Figure 6 displays the profile likelihood for βm

3 . (Both methods clearly
suggests the need for this term.)

In addition to the cumulative logit-probit-normal results, the discretized multivariate T, the
multinomial GEE (see Lipsitz et al., 1994) and marginal-ML (the latter two as reported in Lang
and Agresti, 1994) results for the slope coefficients are also given for comparison (as reported
in Agresti, 2002). To avoid confusion, we note that both the marginal-ML approach and the
cumulative logit-probit-normal model use the method of maximum likelihood with a cumulative
logit model on the marginal probabilities. However, the marginal-ML model requires no further
model, leaving the multinomial probabilities otherwise unrestricted. In contrast, the cumulative
logit-probit-normal model assumes a subject specific model, random effects and a random effect
distribution. The results for all three models are similar.

We believe that this example illustrates how the cumulative link-probit-normal model is at-
tractive when compared to these alternatives. When compared to marginal-ML, it can fit a more
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parsimonious model. In contrast with GEE results, it completely specifies a likelihood, allowing
for likelihood ratio tests and the computation profile likelihoods. Furthermore, we note that cur-
rently most software have difficulty fitting marginal models for multinomial data. However, this
example illustrates that allowing for a conditional probit link makes model fitting straightforward.
There is nothing particular to R, other than well developed packages for non-linear optimization
and approximating multivariate normal and multivariate T probabilities.

6 Summary

With regard to model fit, all of the data sets considered exhibited equivalent fit, regardless of the
nature of the marginal/conditional link function. For example, Table 6 gives the goodness of fit
likelihood ratio statistic comparing models for each of the data sets under consideration to the
saturated model. This emphasizes conventional wisdom that the choice of link function should
represent preferences in interpretation, as model fit will rarely distinguish between them.

In summary, the likelihood for many binary and ordinal mixed-effect models is a probability
from the multivariate distribution function obtained by convolving iid variables from the condi-
tional link distribution and the random effects. For normally distributed random effects and a
probit conditional link, this convolution is multivariate normal. This fact makes probit-normal
models, in many ways, more convenient than logit-normal models. They can be easy to fit and
make the relationship between the marginal and conditional models transparent. Similarly, the
introduction of a latent chi-squared variable results in a model with a conditional probit link and
marginal T-quantile link function. Moreover, judiciously choosing the degrees of freedom very
accurately approximates the logit function.
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A Tables

First Second Survey
Survey Approve Disapprove
Approve 794 150
Disapprove 86 570

Table 1: Prime minister approval rating. Source Agresti (2002).

Ebert
Siskel Con Mixed Pro
Con 24 8 13
Mixed 8 13 11
Pro 10 9 64

Table 2: Movie rating data. Source (Agresti and Winner, 1997).

Response Treatment sequence
Period 1 Period 2 Drug-Placebo Placebo-Drug
Normal Normal 22 18
Abnormal Normal 0 4
Normal Abnormal 6 2
Abnormal Abnormal 6 9

Table 3: Crossover data, frequency of responses by treatment regimen. Source Jones and Ken-
ward (1987).

Follow-up
Baseline < 20 20 − 30 30 − 60 > 60

Active < 20 7 4 1 0
20 − 30 11 5 2 2
30 − 60 13 23 3 1
> 60 9 17 13 8

Placebo < 20 7 4 2 1
20 − 30 14 5 1 0
30 − 60 6 9 18 2
> 60 4 11 14 22

Table 4: Insomnia data from Francom et al. (1989).
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Parameter logit-probit-normal discretized T Marginal-ML GEE
α̂m

1 -2.290 (.209) -2.347 (.215)
α̂m

2 − α̂m
1 1.307 (.113) 1.346 (.116)

α̂m
3 − α̂m

2 1.315 (.107) 1.362 (.111)

β̂m
1 1.052 (.180) 1.074 (.162) 1.079 (.180) 1.038 (.168)

β̂m
2 0.058 (.237) 0.046 (.236) 0.043 (.244) 0.034 (.238)

β̂m
3 0.687 (.248) 0.662 (.244) 0.729 (.251) 0.708 (.244)
σ̂ 1.071 (.124) 1.111 (0.133)

Table 5: Fitted values for the sleep data estimate (se).

Data set
approval movie crossover sleep†

logit-probit-normal 0 (0) 6.38 (4) 2.14 (2) 38.89 (23)
probit-normal 6.39 2.10 41.62
discretized T 5.50 2.22 36.54
logit-normal 5.79 2.10 38.31

Table 6: Goodness-of-fit likelihood ratio statistics (df) testing the various models for each data
set versus the saturated model. † - the model for the sleep data set included the interaction term.
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B Figures
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Figure 1: Plots of T−1
v G for various values of v. The dark line is for the suggested 8.7817 degrees

of freedom while the grey background line is the linear approximation. The bottom and left axes
display the logit scale while the top and right display the corresponding probability scale.
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Figure 2: Contour plot of the fitted bivariate normal distribution of the latent variable process,
normalized to have unit variances, along with the fitted values of ψj = ∆j/(1 + σ2)1/2 and the
cell counts for the approval rating data.
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Figure 3: Contour plot of the fitted bivariate distribution, normalized to have unit variances,
along with the fitted values of ψjk = ∆jk/(1 + σ2)1/2, the cell counts and the fitted cell counts
for the Siskel and Ebert movie data.
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Figure 4: Profile likelihood for the treatment effect, βm, for movie data with 1/8 and 1/16
reference lines.
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Figure 5: Profile likelihood for the treatment effect, βm
1 , for the crossover data with 1/8 and

1/16 reference lines.
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Figure 6: Profile likelihood for the interaction term (βm
3 )for the sleep data with 1/8 and 1/16

reference lines.
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C Derivation of the likelihood

Let Li be the contribution of subject i to the likelihood. Then, treating the yij as fixed,

Li =

∫ Ji
∏

j=1

K
∏

k=1

Pr(Yij = k | Ui = ui)
I(yij=k)dFu(ui,Σ)

= E

[

Ji
∏

j=1

K
∏

k=1

Pr(∆ij(k−1) < Wij − zt
ijui ≤ ∆ijk | Ui = ui)

I(yij=k)

]

= E

[

Ji
∏

j=1

Pr(∆ij(yij−1) < Wij − zt
ijui ≤ ∆ijyij

| Ui = ui)

]

= E
[

Pr
(

∩Ji

j=1[∆ij(yij−1) < Mij ≤ ∆ijyij
] | Ui = ui

)]

= Pr
(

∩Ji

j=1[∆ij(yij−1) < Mij ≤ ∆ijyij
]
)

.

D Derivation of the multivariate T likelihood

Again let Li be the contribution of subject i to the likelihood. Then, again treating the yij as
fixed,

Li =

∫ Ji
∏

j=1

K
∏

k=1

Pr(Yij = k | Ui = ui, Si = si)
I(yij=k)dFus(ui, si,Σ)

= E





Ji
∏

j=1

K
∏

k=1

Pr

(

∆ij(k−1)

√

Si

v
< Wij − zt

ijui ≤ ∆ijk

√

Si

v
| Ui = ui, Si = si

)I(yij=k)




= Pr



∩Ji

j=1



∆ij(yij−1) <
Mij
√

Si

v

≤ ∆ijyij







 .

E R code for obtaining the log-likelihood

Assume that the data is stored in a list with one element per subject. Each list element is itself
a list with components:

y the vector of this subject’s responses taking values 1, . . . , K
x a design matrix for this subject, with no intercept
z the random effect design matrix for this subject
freq a count

In the crossover data, y is a vector of ones and twos, x, included a treatment indicator and a
period indicator; z was a vector of ones (a random intercept model.) To describe the variable
freq, consider the first cell of Table 3. There were 22 subjects who had normal responses on
for both the active drug and placebo who received the treatment sequence “Drug-Placebo”. It
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is wasteful to approximate the associated contributions to the log-likelihood 22 times, instead
the contribution log likelihood is appropriately multiplied by 22. For the same reason, the 0 cell
should be eliminated.

A function that approximates the log-likelihood is then

library(mvtnorm)

linkProbitNormal <- function(alpha, beta, Sigma, dat, G = plogis, ...){

Li <- sapply(dat,

function(sub){

covMat <- diag(1, length(sub$y)) + sub$z %*% Sigma %*% t(sub$z)

Delta <- as.vector(alpha[sub$y + 1] + sub$x %*% beta)

DeltaLag1 <- as.vector(alpha[sub$y] + sub$x %*% beta)

if (!is.null(G)){

Delta <- qnorm(G(Delta)) * sqrt(diag(covMat))

DeltaLag1 <- qnorm(G(DeltaLag1)) * sqrt(diag(covMat))

}

pHat <- pmvnorm(DeltaLag1, Delta, sigma = covMat, ...)[[1]]

return(sub$freq * log(pHat))

}

)

return(sum(Li))

}

Here Alpha is a vector containing the αk parameters including the infinite terms. By specifying
the G = plogis, a cumulative logit marginal link is assumed. We can obtain the likelihood for
the (subject specific) probit-normal model by specifying G = NULL. In contrast G = pnorm yields
a marginal probit link.

F R code for the logit-T transformation

The following code linearly approximates T−1
df G through the origin

pLower <- .001

pUpper <- .999

noPoints <- 10 ^ 4

etaVals <- seq(qlogis(pLower), qlogis(pUpper), length = noPoints)

startingValue <- 9

fit <- optim(startingValue,

function(df)

mean(resid(lm(I(qt(plogis(etaVals), df = df)) ~ etaVals - 1)) ^ 2),

method = "BFGS"

)

df <- fit$par

slope <- coef(lm(I(qt(plogis(etaVals), df = df)) ~ etaVals - 1))

plot(etaVals, qt(plogis(etaVals), df = df), type = "l", col = grey(.7), lwd = 5)

abline(a = 0, b = slope)

21

Hosted by The Berkeley Electronic Press



G R code for the approval rating data

The following code enters the data and gets it into the appropriate format

dat <- data.frame(y1 = c(1, 2, 1, 2),

y2 = c(1, 1, 2, 2),

freq = c(794, 86, 150, 570))

approval <- apply(dat, 1,

function(sub){

list(y = sub[1 : 2],

x = matrix(c(0, 1)),

z = matrix(1, 2),

freq = sub[3])

})

The following fits the model

startingValues <- c(.2, 0, .5)

fitAlt <- optim(startingValues,

function(param){

alpha <- c(-Inf, param[1], Inf)

beta <- param[2]

Sigma <- param[3] ^ 2

-linkProbitNormal(alpha, beta, Sigma, approval)

},

method = "L-BFGS-B",

lower = c(-Inf, -Inf, 0),

hessian = TRUE

)

output <- cbind(fitAlt$par, sqrt(diag(solve(fitAlt$hessian))))

H R code for the movie rating data

The following code loads the data set

dat <- expand.grid(1 : 3, 1 : 3)

names(dat) <- c("Ebert", "Siskel")

dat$freq <- c(24, 8, 13, 8,13, 11, 10, 9, 64)

movie <- apply(dat, 1,

function(sub){

list(y = sub[1 : 2],

x = matrix(0 : 1),

z = matrix(1, 2, 1),

freq = sub[3])

}

)
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The following code fits the model.

startingValues <- c(-0.5827, 0.8673 , 0, .5)

fit <- optim(startingValues,

function(par){

alpha <- c(-Inf, cumsum(par[1 : 2]), Inf)

beta <- par[3]

Sigma <- par[4] ^ 2

-linkProbitNormal(alpha, beta, Sigma, movie)

},

lower = c(-Inf, 0, -Inf, 0),

method = "L-BFGS-B",

hessian = TRUE

)

output <- cbind(fit$par, sqrt(diag(solve(fit$hessian))))

round(output, 3)

I R code for the crossover data

The following enters the data

##r1, r2 response at period 1, 2 resp.

##t1, treatment indicator for period 1

shortDat <- expand.grid(1 : 2, 1 : 2, 1 : 0)

names(shortDat) <- c("r1", "r2", "t1")

shortDat$freq <- c(22, 0, 6, 6, 18, 4, 2, 9)

shortDat <- shortDat[shortDat$freq != 0,]

The following converts the data to the required format

crossover <- apply(shortDat, 1,

function(sub)

list(y = sub[1 : 2],

x = cbind(c(sub[3], 1 - sub[3]), 0 : 1),

z = matrix(1, 2, 1),

freq = sub[4])

)

The logit-probit-normal model can be fit with

startingValues <- c(.666, .569, -.295, 2)

fit <- optim(startingValues,

function(param){

alpha <- c(-Inf, param[1], Inf)

beta <- param[2 : 3]

Sigma <- param[4] ^ 2
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-linkProbitNormal(alpha, beta, Sigma, crossover)

},

method = "L-BFGS-B",

lower = c(-Inf, -Inf, -Inf, 0),

hessian = TRUE

)

output <- cbind(fit$par, sqrt(diag(solve(fit$hessian))))

round(output, 3)

J R code for the sleep data

The following code enters the data and gets it into the list format

dat <- expand.grid(1 : 4, 1 : 4, 1 : 0)

names(dat) <- c("fup", "bl", "trt")

dat$freq <- c(7,4,1,0, 11,5,2,2, 13,23,3,1, 9,17,13,8,

7,4,2,1, 14,5,1,0, 6,9,18,2, 4,11,14,22)

sleep <- lapply(1 : nrow(dat),

function(i)

list(y = c(dat$bl[i], dat$fup[i]),

x = cbind(0 : 1,

dat$trt[i],

(0 : 1) * dat$trt[i]),

z = matrix(1, 2, 1),

freq = dat$freq[i]))

The following code fits the cumulative logit-probit-normal model

fit <- optim(c(1, .1, .1, 1, 1, 1, 1/2),

function(par){

alpha <- c(-Inf, cumsum(par[1 : 3]), Inf)

beta <- par[4 : 6]

Sigma <- par[7] ^ 2

-linkProbitNormal(alpha, beta, Sigma, sleep)

},

lower = c(-Inf, 0, 0, -Inf, -Inf, -Inf, 0),

method = "L-BFGS-B",

hessian = TRUE

)

output <- cbind(fit$par, sqrt(diag(solve(fit$hessian))))

round(output, 3)
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