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ABSTRACT HvTEcrl is a tool for the automated analysis of embed- 

ded systems. This document, designed for the first-time user of HYTECH, 

guides the reader through the underlying system model, and through the 

input language for describing and analyzing systems. The guide gives sev- 
eral examples of usage, and some hints for gaining maximal computational 

efficiency from the tool. 

The version of HYTECH described in this guide was released in August 1995, 

and is available through anonymous ftp from ftp.cs.cornell.edu in the direc- 

tory "pub/tah/HyTech, and through the World-Wide Web via HYTECrI'S 

home page http://www.cs.cornell.edu/Info/People/tah/hytech.html. 

1 Introduction 

The control of physical systems with embedded hardware and software is 

a growing application area for computerized systems. Since many  embed- 

ded controllers occur in safety-critical situations, it is impor tan t  to have 

reliable design methodologies tha t  ensure tha t  the controllers operate  cor- 

rectly. HVTECH aids in the design of embedded systems by not only check- 

ing systems requirements, but also performing parametric  analysis. Given 

a parametr ic  system description, HYTECH returns the exact conditions on 

the parameters  for which the system satisfies its safety and t iming require- 

ments. 

For completeness, we begin with a brief presentation of the underly- 

ing theoretical framework of linear hybrid automata [ACHH93, ACH+95], 

which we use to describe system specifications and requirement specifi- 

cations. These au tomata  model the continuous activities of analog vari- 

ables (such as temperature,  time, and distance), as well as discrete events 

(such as interrupts and output  signals). Communication is modeled through 

event synchronization and shared variables. HYTECH's input consists of two 
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parts: a system description and analysis commands. The system-description 

language allows us to represent linear hybrid automata textually. The tool 

forms the parallel composition of a collection of automata, each describ- 

ing a modular component of an embedded system. The analysis-command 

language allows us to write simple iterative programs for performing tasks 

such as reachability analysis and error-trace generation. 

We illustrate the use of the tool on several examples taken from the 

literature, and provide hints for a verification engineer to gain the maximal 

possible efficiency from HYTF, cH. 

Outline Section 2 reviews linear hybrid automata, their semantics, par- 

allel composition, and associated analysis techniques. A brief history of 

HYTF~CH appears in Section 3. Sections 4 and 5 describe the HYTF~CH input 

language, first the system-description part, and then the analysis-command 

part. Section 6 illustrates the use of the tool on several examples. Section 7 

is a short guide to designing specification requirements using HvT~CH'S 

command language. Section 8 provides information on installing and run- 

ning HvT~cH. Section 9 contains hints for the efficient use of HYTF, cm 

A full version of this user guide, including the complete grammar for the 

input language and additional examples, appears as [HHWT95b]. 

2 Linear Hybrid Automata 

We model systems as the parallel composition of a collection of linear hy- 

brid automata [ACHH93, ACH+95]. Informally, a linear hybrid automaton 

consists of a finite set X of real-valued variables and a labeled multigraph. 

The vertices represent control modes, each with its own constraints on the 

slopes of variables in X. The edges represent discrete events and are labeled 

with guarded assignments to X. The state of the automaton changes either 

through the instantaneous action associated with an event or, while time 

elapses, through the continuous activity associated with a control mode. 

We also explicitly model urgent events, which must take place as soon as 

they are enabled (unless another instantaneous action disables them). 

We use the linear hybrid automata that model a simple railroad cross- 

ing [LS85, AHH93] as a running example. The system consists of three 

components: a train, a gate, and a controller. The train is initially some 

distance--at  least 2000 feet--away from the track intersection with the 

gate fully raised. As the train approaches, it triggers a sensor--1000 feet 

ahead of the intersection-- signaling its upcoming entry to the controller. 

The controller then sends a lower command to the gate, after a delay of up 

to ~ seconds. When the gate receives a lower command, it lowers at a rate 

of 9 degrees per second. After the train has exited the intersection and is 

100 feet away, it sends an exit signal to the controller. The controller then 
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FIGURE 1. Train automaton 
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FIGURE 2. Gate automaton 

commands the gate to be raised. The role of the controller is to ensure tha t  

the gate is always closed whenever the train is in the intersection, and tha t  

the gate is not closed unnecessarily long. The linear hybrid au toma ta  for 

the train, the gate, and the controller appear  in Figures 1, 2 and 3. 

2.1 Def in i t ion  

We give an informal description of linear hybrid automata ,  and refer the 

reader to [AHH93, HHWT95a] for detailed definitions. A linear hybrid au- 

tomaton consists of the following components.  

V a r i a b l e s  The au tomaton  uses a finite ordered set X = {Xl, x 2 , . . . ,  xn} 

of real-valued variables to model continuous activities. For example, the 

position of the train is determined by the value of the variable x, which 

represents the distance of the train from the intersection. The variable g 

models the angle of the gate. When g -- 90, the gate is completely open; 
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FIGURE 3. Controller automaton 

when g = 0, it is completely dosed. 

A valuation is a point (al ,  a2, . . . ,  an) in the n-dimensional real space ]R n , 

or equivalently, a function tha t  maps each variable xi to its value ai. A lin- 

ear expression over a set X of variables is a linear combination of variables 

in X with rational coefficients. A linear inequality is a non-strict  I inequal- 

ity between linear expressions. A convex predicate is a finite conjunction 

of linear inequalities, e.g. xa _> 3 A 3x2 _< x3 + 5/2. A predicate is a finite 

disjunction of convex predicates, defining a set of valuations. 

Locat ions  Control modes are modeled using a finite set of vertices called 

locations. For example, the gate automaton has the locations open, raising, 

lowering, and closed. A state (v, s) of the automaton A consists of a location 

v and a valuation s. We use the term region to refer to a set of states. 

I n i t i a l  c o n d i t i o n  There is a designated initial location and an initial 

predicate r defining the set of initial values of the variables. For example, 

the gate is initially in location open with the value of g equal to 90. In 

the graphical representation, a small incoming arrow identifies the initial 

location, and is labeled with the predicate r 

I n v a r i a n t  c o n d i t i o n s  Each location v is labeled with a convex predi- 

cate inv(v)  over X,  the invariant of v. The automaton control may  reside 

in location v only while its invariant is true, so the invariants can be used 

to enforce progress in the automaton.  For example, in the gate automaton,  

inv(open)  = (g = 90), inv(lowering) = (g >_ 0), inv(raising) = (g <_ 90), 

and inv(elosed) = (g = 0). The invariant at  location lowering implies tha t  

the gate can only be lowered until it is fully closed, at  which point control 

moves out to location closed. In the graphical representation, the invariant 

true is omitted. 

1The requirement that all inequalities be non-strict is not essential. Our current 
implementation inherits this restriction from the polyhedral manipulation library we 
u s e ,  
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We are primarily interested in states (v, s) where the valuation s satisfies 

the location's invariant inv(v). Such states are called admissible. 

T r a n s i t i o n s  Discrete actions are modeled using edges between locations, 

which are called transitions. For example, the train automaton has three 

transitions; one from location far to location near for entering the region 

immediately surrounding the intersection, one from near to past for going 

through the intersection, and one from past to far for exiting the region 

around the intersection. 

Each transition is labeled with a guarded command of the form r --~ a,  

where the guard r is either the special predicate ASAP (which is always 

satisfied) or a convex predicate, and a is a set of assignments. Each as- 

signment maps a variable into either a single linear expression over X,  or 

a closed interval, whose endpoints are either finite (given as linear expres- 

sions over X),  or infinite (given as - o c  or c~). In the train automaton,  

the transition between locations past and far is labeled with the guarded 

command x -- 100 -+ x := [2000, c~). In the graphical representation, we 

omit the guard true and empty assignment sets. 

In order for a transition to take place from the state (v, s) its guard 

must be satisfied in s. We describe how the set of assignments causes a 

change in the valuation from s to some s'. The lower and upper bound 

expressions of each assignment interval are evaluated at the valuation s, 

and each reassigned variable is nondeterministically given a value that  lies 

in each interval to which it is assigned. If a variable cannot be assigned 

any value within the prescribed intervals, the transition cannot take place. 

Any variables for which there is no assignment in c~ remain unchanged. We 

define the binary transition-step relation, -%, over admissible states such 

that  (v, s) -% (v ~, s') iff the state (v', s') can be reached from the state (v, s) 

by taking a transition. 

Each transition is optionally given a synchronization label. The syn- 

chronization labels are used to define the parallel composition of hybrid 

automata.  For example, in the gate automaton, the transition from open 

to lowering has the synchronization label lower, and this synchronizes (i.e. 
must be taken simultaneously) with the transition labeled lower in the 

controller automaton. 

A transition is urgent if its guard is AshP. The full version [HHWT95b] 

of this guide illustrates the use of urgent transitions in the modeling of a 

distributed control system. There, a sensor waits to send a reading to the 

controller as soon as the controller is ready to receive the data. 

R a t e  c o n d i t i o n s  We denote the rate of change of the variable x E X 

by &, and we let X be the set {x1,~2, . . .  ,&n}. Each control location v is 

labeled with a convex predicate act(v) over )( ,  called the rate condition of 

v. For a given location, the rate condition restricts the rates of change of 

the variables. In the gate automaton, the rate condition for locations open 

and closed is g = 0, for location raising, it is ~ = 9, and for lowering, it is 
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= - 9 .  There is a technical restriction on the rate conditions allowed. All 

predicates tha t  define bounded sets over ~: are permitted, and all examples 

in this guide meet this condition 2. 

A location v is urgent if there is an urgent transition originating from 

v. No time is allowed to pass in such a location. We define the time-step 
0 7 "  

relation, -~, such that  (v,s) -~ (v~,s ~) iffv = v ~, and there exists areal  ~ > 0 

such that  ~ > 0 implies v is not urgent, and there is a function f : [0, 6] -~ 

R" such that  (1) f (0)  = s, (2) f(6) = s', (3) for all t e [0, 6], f ( t )  satisfies 

inv(v), and (4) for all time t e (0,~) (dfl(t)/dt, df2(t)/dt, . . . ,dfn(t)/dt) 
satisfies act(v), where f~ (t) denotes the value of variable xi in the valuation 

f(t). 

2.2 Parallel  composit ion 

A hybrid system typically consists of several components which operate 

concurrently and communicate with each other. Each component is de- 

scribed as a separate linear hybrid automaton. The component automata 

coordinate through shared variables, and synchronization labels on the 

transitions are used to model message-type coordination. The linear hy- 

brid automaton for the entire system is then obtained from the component 

automata  using a product construction. 

The control locations of the parallel composition of two automata  A1 

and A2 are pairs of locations, the first from A1 and the second from A2. 

The location (Vl,V2) has the conjunction of vl and v2's invariants as its 

invariant, and the conjunction of their rate conditions as its rate condition. 

A location is initial iff its components are initial in their respective au- 

tomata.  The initial convex predicate is the conjunction of the components'  

initial convex predicates. Transitions from the components are interleaved, 

unless they share the same synchronization label, in which case they are 

synchronized and executed simultaneously, if at all. In the train-gate con- 

troller example, the system is composed of the train, gate, and controller 

automata  of Figures 1, 2 and 3. The controller communicates with the 

train by synchronizing on approach and exit events. It  issues commands to 

the gate on the synchronized events raise and lower. The train's transition 

from location near to far is unlabeled, so it does not synchronize with any 

of the other components. In particular, this means the controller does not 

know the precise time at which the train enters the intersection. 

We require a technical condition that  the composition be well-formed: 

whenever two components synchronize on a label, if one transition has the 

guard ASAP then the other 's guard must be either an ASAP guard or the 

2The precise condition for the rate condition ~b to be allowed is that the set of vectors 
{y [ there exists a real k > 0 and ~ satisfying r such that y = k~} is bounded. In the- 
ory, the condition we require is not essential: it results from our current implementation's 
restriction to non-strict inequalities. 
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predicate true (in which case the synchronized transition has guard ASAP), 

or the predicate false (in which case the synchronized transition has guard 

f e). 

2.3 Reachabili ty and safety verification 

At any time instant, the state of a hybrid automaton specifies a location 

and the values of all variables. If the automaton has the location set V and 

n variables, the state space is defined as V • ~n. We define the binary 

successor relation -+A over states as 4 t_J Z,. For a region W, we define 

post(W) to be the set of all successor states of W, i.e. all states reachable 

from a state in W via a single transition or time step. The region forward 
reachable from W is defined as the set of all states reachable from W after 

a finite number of steps, i.e. the infinite union post* (W) = Ui>o P ~ (W). 
Similarly, we define pre(W) to be the set of all predecessor states of W, 

and we let the region backward reachable from W be the infinite union 

pre* (W) = U >0 Pre (W) �9 

In practice, many problems to be analyzed can be posed in a natu- 

ral way as reachability problems. Often, the system is composed with a 

special monitor process that  "watches" the system and enters a violation 

state whenever the execution violates a given safety requirement. Indeed 

all timed safety requirements [Hen92], including bounded-time response 

requirements, can be verified in this way. See Section 7. A state (v, s) is 

initial if v is the initial location, and s satisfies the initial predicate. A 

system with initial states I is correct with respect to violation states Y iff 

post*(I) n Y = 0, or equivalently iff pre*(Y) n I is empty. 

HYT~cH computes the forward reachable region by finding the limit 

of the infinite sequence I, post(I), post2(I), . . .  of regions. Analogously, 

the backward reachable region is found by iterating pre. These iteration 

schemes are semidecision procedures: there is no guarantee of termination. 

Nevertheless, we find that  in practice, HYTEcWs reachability procedures 

terminate on most examples we have attempted. In addition, it has been 

shown that  for a large class of systems [HKPV95], a linear hybrid automa- 

ton can be automatically preprocessed into an equivalent automaton over 

which the iterations converge. 

2. 4 Parametr ic  analysis 

A major strength of HYTECH is its ability to perform parametric analysis. 

Often a system is described using parameters, and the system designer 

is interested in knowing which values of the parameters are required for 

correctness. Since the system is incorrect for parameter  values for which 

there exists a state in the region post*(I) f7 Y, we may obtain necessary 

and sufficient conditions for system correctness by performing reachability 

analysis followed by existential quantification [CH78]. 
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Our study of the train-gate controller demonstrates this technique. The 

controller decides when to issue lower commands to the gate based on the 

amount of time since the train last passed the sensor located 1000 feet ahead 

of the intersection. We consider the problem of determining exactly how 

long the controller can wait before issuing commands, while maintaining 

the requirement that the gate be closed whenever the train is within 10 

feet of the intersection. The parameter a corresponds to the latest possible 

moment the controller can wait. We then use HYT~cn to determine that 

the composed system includes violations whenever a is greater than or 

equal to 49/5. Thus we conclude that the system is correct for values of 

the parameter strictly less than 49/5. 

3 A Brief History of HYTECH 

3.1 Implementation 

There have been three generations of HYTF, cn. The very earliest proto- 

type [AHH93] was written entirely in the symbolic computation tool Math- 

ematica. Regions were represented as symbolic formulas. The evaluation of 

time-step successors used existential quantifications that are easily encoded 

in this language. While Mathematica offers powerful symbolic manipula- 

tion, and allows rapid development and experimentation with algorithms 

and heuristics, its operations over predicates turned out to be computation- 

ally inefficient. In particular, quantifier-elimination operations for comput- 

ing time-step successors were expensive. HYTEcH [HH95b] was rewritten 

to avoid this bottleneck in Mathematica. The second version of the veri- 

fier used a Mathematica main program that called efficient C++ routines 

kom Halbwachs' polyhedral manipulation library [Hal93, HRP94] for com- 

puting time-step successors. While this verifier achieved a total speed-up 

of roughly one order of magnitude, it required inefficient conversions be- 

tween Mathematica expressions and C++ data structures. It still relied on 

Mathematica for computing transition-step successors by substitution. 

The third generation HYTncH described here avoids Mathematica al- 

together and is built entirely in C++. It is roughly two to three orders of 

magnitude faster again than the second generation verifier. In addition, 

the input automata now allow nondeterministic assignments to variables, 

simultaneous assignments, more general rate conditions, and urgent events. 

3.2 A guide to HvTEcH-related papers 

The following papers explain the theory behind linear hybrid automata 

in more detail, provide examples of their use, and discuss HvTF, cn and 

related tools. 
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Theory of  hybrid automata Hybrid automata are based on timed 

automata [AD94] and were introduced in [ACHH93]. A related model ap- 

peared in the same volume [NOSY93]. Analysis methods included reacha- 

bility and state-space minimization. The specification language Integrator 

Computation Tree Logic (ICTL) and a model-checking algorithm were in- 

troduced in [AHH93]. Approximations and abstract interpretation strate- 

gies for the algorithmic analysis of hybrid automata are discussed in the pa- 

pers [HRP94, OSY94, HH95cJ. The paper [ACH+95] provides an overview 

of the analysis techniques, including approximations. The analysis of non- 

linear automata by translations to linear automata is described in [HH95a, 

HWT95a]. Decidability results appear in [Cer92, ACH93, KPSY93, AD94, 

MV94, PV94, BER94a, BER94b, BR95, MPS95, Hen95, HHK95, HKPV95]. 

In particular, [HKPV95] shows that the reachability problem is decidable, 

and HvTEcWs analysis terminates, on the class of rectangular automata, 
where all convex predicates are of the form a < x < b (a < & < b). 

HYTECH The earliest version of HvT~CH is mentioned in [AHH93], and 

performs full model-checking of ICTL formulas. The second generation of 

HYTECH is discussed in [HH95b]. The thesis [Ho95] describes the first two 

generations of HYTECH in more detail, as well as summarizing much of the 

theory of hybrid automata. The current version of HYTF~cH is described 

in [HHWT95a]. The full version of this guide appears in [HHWT95b]. 

Case s tudies  Numerous examples have been analyzed using linear hybrid 

automata. We mention only the first appearances of examples in the hybrid 

automata literature. A gas burner is studied in [ACHH93], together with a 

simple water monitor. The trajectories of a billiard ball, and the temper- 

ature of a reactor core are modeled in [NOSY93]. Fischer's timing-based 

mutual exclusion protocol is considered in [AHH93]. The paper [HH95b] 

includes a parametric analysis. A simple train-gate controller and a sched- 

uler appear in [AHH93]. A manufacturing robot system and Corbett's dis- 

tributed control system are also discussed in [HH95b]. The paper [HWT95b] 

describes the verification (see also [HH95b]) and error analysis of an au- 

dio control protocol. The benchmark generic railroad crossing example and 

an active structure controller are considered in [HHWT95a]. A nonlinear 

temperature controller appears in [HH95a], and a predator-prey system 

in [HWT95a]. 

Related Tools The analysis of linear hybrid automata supported by 

HYTF~cH is based on symbolic region manipulation techniques first pre- 

sented for real-time systems [HNSY94]. For the restricted case of real-time 

systems, these techniques have also been implemented in the tools KRO- 

NOS [NSY92, DOY94, ACH+95, DY95] and UPPAAL [LPY95]. Polka [Hal93, 

HRP94] is a tool for analyzing hybrid systems that concentrates on abstract 

interpretation strategies. 
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de f l ne ( r a i s e_ ra t e , 9 )  

def ine( lower_ra te , -9)  

automaton g a t e  

s y n c l a b s :  r a i s e ,  lower; 

i n i t i a l l y  open k g=90; 
l o c  up: while g<ffi90 wait ~ g ' - r a i s s _ r a t e}  - -  gate i s  bein E ra i sed  

- -  gate  i s  f u l l y  ra i sed  
vhen gffi90 goto  open; 

- -  se l f loopa  fo r  input enablsdness 

when True sync r a i s e  goto up; 

when True sync  l ower  go to  down ; 

loc open: while True wait {g'=O} -- wait for command 

when True sync raise goto open; 

when True sync lower goto down; 

locdown: while g>=O wait {g'flower_rate} -- gate is being lowered 

-- gate is fully down 

when g=O goto closed; 

when True sync lower goto dovn; 

when True sync raise goto up; 

loc closed: while True wait {g'ffiO} -- wait for command 

.hen True sync raise goto up; 

.hen True sync lower goto closed; 

end - -  gate 

FIGUR.E 4. HYTECH input for the gate automaton 

4 Input Language: System Description 

ttYTF~cH's input  consists of a text  file containing a system description and 

a list of i terative analysis commands. The language is case-sensitive. 

The system description language is a straightforward textual  represen- 

ta t ion of linear hybrid automata .  The user describes a system as the com- 

position of a collection of components. Each component  is given as a linear 

hybrid automaton.  The system analyzed is taken as the product  of all com- 

ponents given. 

t IvTECH first passes its input through the macro preprocessor m4, allow- 

ing clear definition of constants in the system 3. For example, we may  declare 

and use the constant raise_rate in the gate au tomaton  of Figure 2, as shown 

in the sample HYT~cH input appearing in Figure 4. Whitespace (blank 

spaces, tabs,  new lines) between tokens is ignored. The syntax is described 

in more detail below. The complete g rammar  appears  in [HHWT95b]. 

C o m m e n t s  The rest of an input line after two adjacent dashes ( - - )  is 

taken as a comment.  

aFor details of the Unix command m4, type man m4. 
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V a r i a b l e s  All variables in the system are declared at  the top of the 

description, in a single declaration. Variables may  be of the following types: 

discrete, clock, stopwatch, parameter ,  analog. The type declarations allow 

more readable descriptions and enable simple static checking by the parser. 

A clock variable always has rate 1, and a discrete variable always has rate  

0. The rate  of a stopwatch must  be either 0 or 1. Parameters  have rate  0 

in all locations, and may never be assigned values. Analog variables have 

no syntactic restrictions. Variables of type discrete, clock and paramete r  

are said to be fixed rate variables, since their rate intervals are fixed by 

their type,  namely 0, 1 and 0 respectively. Constraints on their rates are 

automatical ly added to the rate conditions for each location; indeed, it is 

illegal for the user to constrain explicitly the rate  of a fixed rate  variable. 

For example, the variables for the train-gate controller example are declared 

a s  

var Xj 

g: a n a l o g ;  

t :  s t o p w a t c h ;  

alpha: p a r a m e t e r ;  

-- distance from i n t e r s e c t i o n  

- -  angle of gate 

- -  c o n t r o l l e r ' s  t imer 

- -  cutoff  point fo r  con t ro l l e r  
-- to issue co---ands 

Linear  t e r m s ,  e x p r e s s i o n s  a n d  c o n s t r a i n t s  A linear te rm is either 

(a) a variable multiplied by a rational coefficient, or (b) a rational number.  

A linear expression is an additive combination of linear terms. A linear 

constraint is a non-strict inequality (<=, >=) or equality (=) between linear 

expressions. Note that  rational coefficients must  either (a) be an integer, 

(b) have an integer as numerator  and a nonzero integer as denominator,  or 

(c) be omitted, in which case it is understood to be 1. For example,  1 /2x 

- 24 /5y  <= z + 5 t  -6  + y is a syntactically legal linear constraint. 

A u t o m a t o n  c o m p o n e n t s  Each automaton is given a name which may  

be used later in the specification. Its synchronization labels are declared. 
I ts  initial location and the initial condition on its variables must  also be 

provided. For example, the header for the train automaton is as follows: 

automaton  t r a i n  

s y n c l a b s  : app ,  - -  a p p r o a c h  s i g n a l  

exit; -- signal that train is leaving 

initially far & x>=2000; 

Each au tomaton  component  includes a list of locations, described below, 

terminated by the keyword end. 

L o c a t i o n s  Each location is named and labeled with its invariant. R.ate 

conditions may also be provided. The syntax g '  in  [10,20] is shorthand 

for g '  >= 10 & g '  <= 20. For example, l o c  f a r :  wh i l e  x>=100 w a i t  

{x '  in  [ - 5 0 , - 4 0 ]  } is the header for the location fa r  with invariant x > 

100, and rate condition - 5 0  < & < -40 .  
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Invariants may be conjunctions of linear constraints, such as x>=l /2  & 

y<f2/3+x,  but  must not be disjunctions 4. Conjunctive rate conditions are 

separated by commas, as in wal t  { x ' = z ' ,  y '  i n  [2 ,4 ]} .  

Each location is associated with a list of transitions originating from it. 

T r a n s i t i o n s  Each transition lists a guard on enablement and the suc- 
cessor location. Both the synchronization label and the assignments are 
optional, infinite bounds are expressed as either - i n f  or i n f .  For example, 
the following are legal transitions. 

when True goto far;  

when x=l  & y<=2 do {} goto far;  

when x=0 do { x : = [ i , 2 ] , g  := ( - i n f , x + 3 ] }  sync e x i t  goto far;  

when asap synr e x i t  do { y : = [ 5 , i n f ) }  goto far;  

Again, notice tha t  guards may be conjunctions of linear constraints, but  

not disjunctions (use multiple transitions). Also, the order of the synchro- 

nization information and the assignments is interchangeable, if they appear 

at all, but  the guard must appear first and the successor location last, The 

ASAP guard on the last transition listed indicates it is an urgent transition 

which must take place as soon as possible. Recall tha t  there is a syntactic 

restriction that  non-trivial guards are not permitted on urgent transitions 

or any transitions in other components with the same synchronization label 

as an urgent transition. 

C o m p o s i t i o n  It  is assumed that  the system being described is the parallel 

composition of all listed components. 

5 Input Language: Analysis Commands 

The analysis section of the input consists of two parts: declaration of vari- 
ables for regions, and a sequence of iterative command statements. Analysis 
commands provide a means of manipulating and outputt ing regions. Com- 

mands are built using objects of two basic types: region expressions for 
describing regions of interest, and boolean expressions used in the control 
of command statements. Regions may be stored in variables, provided the 
region variables are declared via a statement such as 

V a T  

in i t_ reg ,  f inal_reg:  region;  

which declares two region variables called iniLreg and final_reg. HYTF, cH 

provides a number of operations for manipulating regions, including com- 

puting the reachable set, successor operations, existential quantification, 

convex hull, and basic boolean operations. 

4]n order to model a disjunctive invariant, split the location into severs] locations, 
one for each disjunct [AHH93]. 
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V~LT 

fine/_reg, init_reg : region; 

init_reg := loc[train] = far k x>ffi2000 k loc[controller] ffi i d l e  

k l o c [ g a t e ]  = open k g=90; 

final_reg :ffi loc~ate] = up k x<=10 [ loc[gate]=open k x<=10 

[ loc[gate] = down k x<=10; 

print omit all locations 

hide non_parameters in 

reach forward from init_reg endreach k final_reg 

end_hide; 

FIGURE 5. Analysis commands for train-gate controller 

For example, the specification commands in Figure 5 are for analyzing 

the train-gate controller. Their overall effect is to determine the critical 
bound on the parameter a. First, the two regions finaLreg and init_reg are 
declared. The first two statements assign values to these regions using di- 

rect constraints on the states. Notice that disjunctions may be used. The 
third statement outputs the constraint on the parameter c~ under which the 

system is not correct. This printing command is given by the prefix p r i n t  
omit a l l  l o c a t i ons ,  which tells HYTF, c• to output the region enclosed 
between the words hide and endhide, but only after hiding all informa- 

tion about locations. We choose to omit all location information since for 

any particular value of a the specific final location reached is irrelevant. 
HYTEcH evaluates the region expression between the hide keywords by 
first performing reachability analysis from the initial region specified by 

init_reg, intersecting the reachable states with the final region (]inal_reg), 
and then existentially quantifying out all variables that are not declared as 

parameters. After 1.72 seconds computation on a Sparcstation 20, HYTEcH 

produces the following output, showing that the system is correct whenever 
a < 49/5. 

5alpha >= 49 

5.1 Region expressions 

Region expressions are built from linear inequalities, constraints on loca- 

tions, and region names, by existential quantification, pre, post, and convex 

hull operations, reachability, conjunction, and disjunction. Each region ex- 

pression defines a region. The symbol (reg_exp} denotes an arbitrary region 

expression. 

L i n e a r  i n e q u a l i t i e s  The most basic region expression is a linear inequal- 

ity. For example, x <= 100 is a region expression, defining the set of all 

states where the variable x has value no greater than 100. 

L o c a t i o n  c o n s t r a i n t s  l o c [ ( a u L n a m e } ]  = (loc_name}. 

The location name (loc_name} must be the name of a location in the 
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automaton (aut_name). For example, the region expression loc[ga te]  = 

open defines the set of all states where the location component correspond- 

ing to the gate is open. 

Boolean  combinat ions  (reg_exp) & (reg_exp) , (reg_exp) I {reg_exp) 
The disjunction of region expressions, written using the operator I, is a re- 

gion expression (representing the union of its operands), as is the conjunc- 

tion of region expressions (representing the intersection of its operands), 

written with the operator &. The & operator has precedence, so that an 

expression without parentheses is considered to be a disjunction of con- 

junctions. In addition, the boolean constants True and False  have the 

expected meaning. 

Paren theses  Expressions not in conjunctive normal form may be given 

using parentheses. For example, x<ffi4 & (y<=5 ] y>ffi5) is equivalent to 

x<=4. 

Region name A region expression may be any declared region variable. 

There is no automatic check that the region variable has been assigned a 

value. The value of the expression is the region most recently assigned to 

the variable. 

Existential quant i f icat ion hide (var_list) in (reg_exp) end]aide 

The hide expression evaluates to the region obtained by existentially quan- 

tifying a list of variables. For example, the command p r i n t  hide x in 

x<=l & xfy endhide outputs the region where y <_ 1. In general, quanti- 

fied variables may be listed, separated by commas, as in p r i n t  hide x, z 

in x<ffil & y<=x+3 & z ffi y-x endhide. Alternatively, the list (var_list) 
may be replaced by the keywords a l l  (for all variables) or non_parameters 

(for all variables not declared as parameters). 

P r e / P o s t  pre(  (reg_exp) ) , post  ( (reg_exp) ) 
The pre and post  expressions evaluate to the regions obtained by applying 

pre and post respectively to their arguments. 

Convex hull hull((reg_exp)) 
The expression hull(/reg_exp )) returns the region where each location v 
is associated with the convex hull of all valuations s for which (v, s) is in 
the region defined by (reg_exp). For example, 

locl := loc[Pl]ffiloc_a & loc[P2]ffiloc_b_l; 

loc2 := 1or ~ loc[P2]=loc_b_2; 

approx :ffi hu11(locl ~ x=0 J locl ~ x=l l loc2 & x=l); 

assigns approx the region represented by locl&0<=x&x<=l I loc2&x=l. 

Reachability reach forward from (reg_exp) endreach 
reach backward from (reg_ezp) endreach 

There are two specialized expressions for returning the set of states reach- 

able from any arbitrary region: one for forward reachability and one for 
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backward reachability. For example, the expression reach forward from 

in i t_ reg  endreach appearing in the analysis commands in Figure 5 eval- 

uates to the region reachable from init_reg by iterating post. The backward 

reachability expression iterates pre until convergence. 

5.2 Boolean  express ions  

Boolean expressions are built from region comparisons and region empti- 

ness checks using boolean operators. Boolean expressions are used in con- 

ditional statements and while loops. The symbol (booLexp) denotes an ar- 

bitrary boolean expression. 

Comparison between regions (reg_exp) (relop) (reg_exp) 
The relational operator (relop) is one of the symbols <, <% =, >=, and 
>, representing the binary set comparison operators C, C_, --, _D, and D 
respectively. For example, the following are legal boolean expressions. 

init_reg ffi final_reg 

init_reg >= ioci ~ x <= 5 

Emptiness  empty ((reg_exp)) 
The unary predicate empty applied to a region expression evaluates to true 
iff its argument contains no states. For example, the following code could 
be used to determine whether the system satisfies its safety requirement. 

roached := reach forward from init_reg end/each; 

if empty(reached & final_reg) 

then prints "System verified"; 

else prints "System contains violations"; 

e n d i f  ; 

Boolean combinations ( bool_exp ) and ( bool_exp ) , ( bool_exp ) or ( bool_exp ) 
not (booLexp) 

Boolean expressions may be combined to yield boolean expressions. The 

negation of a boolean expression is a boolean expression. For example, not 

empty(reached) is a boolean expression. The conjunction and disjunction 

of boolean expressions is a boolean expression, with the natural meaning, 

written using the keywords and and or. Note that region expressions use 

the symbols & and I. Negation has highest priority and conjunctions bind 

more tightly than disjunctions. 

5.3 C o m m a n d  s t a t e m e n t s  

There are commands to perform common tasks such as error-trace gener- 

ation and parametric analysis. Command statements are built from prim- 

itives for printing and assigning regions. Command statements may also 

occur within conditional statements and while statements. Each command 

is terminated by a semicolon. 
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P r i n t i n g  There are four basic Commands for outputting information. All 

output appears on ardour. 

p r i n t  (reg_exp) The basic print command outputs the states in the region 

defined by its region expression argument. For example, the command 
p r i n t  i n i t _ r eg  (see Figure 5) would produce the output 

L o c a t i o n :  f a r .  i d l e  .open  

g ffi 90 & z >= 2000 

The valuations associated with a location v within a region W are 

the valuations s such that (v, s) E W. The print command prints out 

a list of locations and predicates defining the states associated with 

them. Non-convex predicates are output as disjunctions of convex 

predicates. Locations for which there are no associated valuations in 

the region do not appear in the output. The string f a r .  i d l e .  o p e n  

indicates that the valuations satisfying the convex predicate g = 90 A 

x > 2000 are associated with the control location where the train 

component is far from the intersection, the controller component is 

in its idle location, and the gate component in its open location. 

Note that location information is printed with periods separating the 

locations for each component, and that components are listed in the 

order in which they are declared. 

p r i n t  omit (loc_list) l o c a t i o n s  (reg_exp) This command generalizes the 
basic print command by first eliminating information about the loca- 
tions of all components listed after the omit keyword. For example, 

if strange_reg is first assigned to 

init_reg I loc [gate] =closed k 1000<=x k loc[trainJffifar 

then p r i n t  o m i t  g a t e ,  c o n t r o l l e r  l o c a t i o n s  s t r a n g e . x e g  pro- 

duces the output 

L o c a t i o n :  f a r . .  

x >= 1000 

indicating that the region given includes only locations in the product 

automaton for which the train component is in its far location, and 

that all valuations for which the value of z is greater than or equal to 

1000 appear in some such location. The absence of a location name for 

the second and third component automata indicates that information 

for these components' locations has been existentially quantified. 

As shorthand, the keyword a l l  may appear in place of a list of au- 

tomata names, in which case all location information is quantified 

out, as in Figure 5. 
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p r i n t s  (string) This command prints strings, enclosed in double quotes, 

directly to s tdout .  For example, the statement p r i n t s  "Hi t he re"  

outputs the string "Hi there"  followed by a carriage return. 

p r i n t s i z e  (reg_name) This command prints information about the "size" 

of the region stored in the region variable given as an argument. In- 

formation output includes the number of product locations for which 

the associated predicate is nonempty and the total number of convex 

predicates used in representing the region. 

Assignment  (reg_name) := (reg_exp) 
Any region expression may be assigned to any region name. For example, 
we may initialize the final region with the statement 

flnal_reg := x<=tO k ( loc[gate] = up 

[ lee[gate] = open 

J loc[gate] = down); 

which is equivalent to the assignment appearing in Figure 5. 

Condi t iona l  The i f - t h e n  and i f - t h e n - e l s e  statements have the ex- 
pected meaning. For example, the following are legal conditional state- 
ments. 

if init_reg<=final_reg then prints "Hi"; print strange_reg; endif; 

if init_reg=final_reg then prints "Equal"; 

else prints "Not equal" ; endif ; 

The boolean expression comparing regions is first evaluated, and then the 

appropriate list of statements (if any) is executed. 

I t e ra t ion  The while statement has the expected meaning. For example, 

r e a c h e d  :=  i n i t _ r e g ;  

old := init_reg; 

reached := post(old) ; 

while not ( reached <= old ) do 

old := reached; 

reached := post(reached) ; 

endwhile ; 

computes the set of reachable states from the initial states by iterating the 

post operation until a fixpoint is obtained. 

Error trace generation p r i n t  t r a c e  to  (reg_exp) using (reg_name) 
HYTECH provides a simple facility for generating error traces for faulty 
systems. One must first use the built-in reachability utility (see Subsec- 
tion 5.1), which causes HYTEc~ to store internal information that can be 
used to generate traces. Second, the command to generate traces is issued, 
specifying both the target region of the traces, and the name of the region 
variable previously used to store the result of the reachability analysis. This 
is best illustrated by an example. Suppose we are using forward reachability 
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t ~ z - - y - - 0  i - - 0  

~=1 

~_ 30 --~ x :-- 

FIGURE 6. Automaton for the leaking gas burner 

analysis to see whether any state in the violation region finaLreg is reach- 
able from the initial region init_reg. The following sequence of commands 
causes HYTEcH to generate an error trace, if one exists. 

reached  :ffi r e a c h  forward from i n i t _ r e g ;  

i f  empty(reached & final_reg) 
t h e n  prints "System verified"; 
e l s e  p r i n t s  "System c o n t a i n s  v i o l a t i o n s " ;  

p r i n t  t r a c e  to  f i n a l _ r e g  u s i n g  reached;  

e n d i f  ; 

The trace output consists of regions, i.e. sets of states, not individual states. 

Each region will be accessible from the previous via a time step allowing 

the continuous variables to evolve, followed by a transition step. The trace 

generated is minimal in length, and includes the synchronization labels, if 

any, for transitions between regions along the trace. Regardless of whether 

forward or backward teachability is used, the trace is always printed in an 

absolute forward direction. 

Note: this command is rather fragile, and should be used with some 

care. The error trace generation command always assumes--without any 

automatic checks--that the region variable appearing after the keyword 

u s i n g  ( r e a c h e d  in the above example) has been assigned a reachable region 

using the built-in reach expression, and that no reach expression has since 

been evaluated. 

6 Examples 

Additional examples may be found in the directory examples of the soft- 

ware distribution. We discuss two of them here in more detail. 

6.1 Gas burner 

The "leaking gas burner" example has appeared in the early literature on 

formal methods applied to hybrid systems [CHRgl, ACHH93]. We show 

how this simple system can be analyzed in HvTF, c~. The gas burner is 
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-- leaking gas burner 

vat x, -- time spent in current location 

y: clock; -- total elapsed time 

t :  stopwatch; -- leakage t i m e  

automaton gas_burner 

synclabs:; 

initially leaking ~ t = 0 & x = 0 ~ y=O; 

loc leaking: while x>=O & y>=O ~ t>=O & x <=I wait {t'=l} 

.hen True do {x:=O} goto not_leaking; 

loc not_leaking: while x>=O & y>=O & t>=O .air {t~=O} 

.hen x>=30 do {x:=O} goto leaking; 

end 

vex init_reg, final_reg, b_reachable: region; 

init_reg := loc[gas_burner] = leaking & x=O & t=O & y=O; 

final reg := y>=60 ~ t >= I/0-0 y; 

b_reachable := reach backward from final_reg endreach; 

if empty( b_reachable & init reg) 

then prints "Non-leaking duration requirement satisfied"; 

else prints "Non-leaking duration requirement not satisfied"; 

endif ; 

FIGURE 7. Input file for the analysis of the gas burner 

in one of two modes; it is either leaking or not leaking. Leakages are de- 

tected and stopped within 1 second. Furthermore, once a leakage has been 

stopped, the burner is guaranteed not to leak again until at least 30 seconds 

later. The system is initially leaking. 

The linear hybrid automaton of Figure 6 models the gas burner. The 

clock x records the time elapsed since last entering the current location, 

and is sufficient for modeling the behavior of the system. However, in order 

to analyze the system, we need to add the auxiliary variables t and y. The 

stopwatch t measures the cumulative leakage time. It  increases at rate 1 

in the location leaking, and at rate 0 in location non_leaking. The clock y 

measures the total  elapsed time. Using these auxiliary variables, we prove 

that  if at least 60 seconds have passed, then the burner has been leaking 

for less than one twentieth of the total elapsed time. The requirement holds 

unless there is a state, forward reachable from the initial states, in which 

y >__ 60 and t > y/20. We compute the region backward reachable from all 

states satisfying y ~ 60 A t >_ y/20. Since this region does not include any 

initial states, the requirement is satisfied. In fact, forward reachability for 

this system does not terminate. In general, it is not easy to determine ahead 

of time whether forward or backward teachability analysis is preferable. 

The complete input file for this example appears in Figure 7. HYTEcH 

outputs  the string "Non-leaking duration requirement satisfied". The com- 
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PI": z > b A k ~ l  

k---O ~ ' ~ , ~  -- 0 --* x :-- k :--- 1;x : - -0  ~>_b^k-----1/~ 

I I 

P2 : y ~ _ b A k ~ 2  

FIGURE 8. Automata for processes /~ and P~ in Fischer's mutual exclusion 
protocol 

putation takes 0.62 seconds on a SparcStation 20, using a maximum of 0.73 

MB of memory. 

6.2 Fischer's mutual exclusion protocol 

We demonstrate parametric analysis through a drifting clock version of 

the simple timing-based mutual-exclusion protocol due to Fischer [Lam87, 

AHH93]. The system consists of two processes, PI and P2, each performing 

atomic read and write operations on a shared memory variable k. Each 

process Pi, for i = 1, 2, models the following algorithm: 

r e p e a t  

r e p e a t  

a w a i t  k -- 0; k :--- i; delay b 
u n t i l  k = i 

Critical section 
k : - -0  

f o r e v e r  

The instruction de l ay  b delays a process for at least b time units as 

measured by its local clock. Each process uses its own local clock to measure 

the delay times. Process Pi is allowed to enter its critical section iif k -- i. 

Furthermore, each process takes no more than a local t ime units to write 

a value into the variable k, i.e. the assignment k :-- i occurs within a time 

units after the a w a i t  statement completes. To complicate matters,  the two 

processes use drifting clocks. Process P1 's clock is slow, and its rate may 

vary between 0.8 and 1, while that  of P2 is fast with rate between 1 and 1.1. 

The automata  for the two processes appear in Figure 8. Each process is 

modeled using the private clocks x and y, respectively. Each process has 
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a critical section, represented by the location 4 in each automaton.  The 

invariants at location ~ ensure the upper time bound on the write access 

to k, while the guards on the transitions from location 3 to location 4 

model the lower time bound of the delay. 

We perform parametric analysis to determine the values for a and b, if 
any, for which mutual exclusion holds. The "unsafe" region is character- 
ized by the region expression l oc  [P1] =1oc_4 k loc  [P2] =1oc_4. As for the 
train-gate controller example, we are interested in the values of the parame- 

ters for which there exists a reachable unsafe state. These values are output  
using the p r i n t  omit  a l l  l o c a t i o n s  analysis command, in conjunction 

with existential quantification of the non-parameter variables: 

i n i t  reg := loc[P1] = loc 1 k loc[P2] ~ loc_l  k k--O; 

final_reg :~  loc[Pl] = ioc_4 k loc[P2] = ioc_4 ; 

print omit all locations hide non_parameters in 

reach forvard from init_reg endreach k final_reg endhide; 

HYTECH'S computation takes 3.79 seconds using 1.1 MB of memory, pro- 

ducing the following output,  which indicates that  the system is correct 
whenever a < 8b/11. 

1 1 a  >= 8 b  k a >= 0 

7 Designing Requirement Specifications 

It is not always obvious how to specify requirements of systems. This section 

provides some hints to the verification engineer by outlining how to check 

for many common classes of requirements. All forms of specifications below 

rely on the use of reachability analysis. 

7.1 Simple safety 

A safety requirement intuitively asserts that  "nothing bad ever happens". 

Many specifications are expressed naturally as safety requirements. A sys- 

tem is said to be correct iff its reachable states all satisfy an invariant r 

defining a set of safe states: the "barl thing" to happen is to reach a state 

that  does not satisfy the invariant 5. For example, Fischer's mutual exclu- 

sion protocol should guarantee that  processes P1 and P2 are never in their 

critical sections at the same time. Also, the train-gate controller is required 

to ensure that  the gate is always down whenever the train is within 10 feet. 
As discussed above (Subsection 2.3), safety requirements can be verified 

in HYTF, CH using the region -~r One method is to perform forward reach- 

ability analysis from the system's initial states, and then check whether 

5The reader familiar with temporal logics should observe that such requirements are 
expressed in the form V[~r meaning intuitively that r is always true for all reachable 
s t a t e s  of the system. 
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the intersection with the violating states -~b is empty. Assuming the region 
init_reg has been assigned the set of initial states, and viol has been set to 
the region -,r the following HYTF~cH input checks the safety requirement, 
and generates an error trace if any exist. 

f_reachable := reach forward from init_reg endreach; 

reached_viol := f_reachable k viol; 

if empty(reached_viol) 

then prints "System verified"; 

else prints "System not verified"; 

prints "The violating states reached are"; 

print reached_viol ; 

print trace to viol using f_reachable; 

end i f ;  

Alternatively, the analogous backward teachability analysis can be used. 

b_reachab le  :ffi r each  backward from v i o l  endreach;  

inlt_reach_viol := b_reachable k init_reg; 

if empty (init _reach_viol) 

then prints "System verified"; 

else prints "System not verified"; 

print trace to viol using b_reachable; 

endif ; 

Strict  equali t ies  When the invariant r involves non-strict inequalities, 
it may be impossible to express the violating states.--~b using only non- 
strict inequalities. This problem can be overcome in two different ways. 
First, if the invariant r itself can be expressed using non-strict inequalities 
only, HYT~C~ can check directly whether all reachable states satisfy the 
invariant using the containment operator. 

if f_reachable <= phi 

then prints "System verified"; 

else prints "System contains violations"; 

endif ; 

Alternatively, one may instead use the set closure (--~b) c of -,r as the set of 
violating states, and then check that the only reachable states in (~r lie 
in r or equivalently, lie in the intersection of (_~r and r For example, 
consider the task of verifying the gate is always down whenever the train 
is strictly less than 10 feet away. The invariant r is given as loc[gate] = 
down V x >_ 10. Its negation --r is loc[gate] ~ down A x < 10, which is 
inexpressible using non-strict inequalities only. The following analysis can 
be used to verify this requirement. 

cl_neg_phi  :ffi ( loc[gate]ffiopen I l o c [ g a t e ] f c l o s e d  I l o c [ g a t e ] f u p )  

k x<ffil0 ; 

if f_reachable & cl_neg_phi <= x=lO 

then prints "System verified,'; 

else prints "System not verified"; 

endif ; 
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Despite being more complicated, this alternative is often faster than the 

first, since the <= operator can be expensive when applied to complex ex- 

pressions. 

7.2 Simple possibility 

A simple possibility requirement asserts tha t  "something good can always 
happen." If the notion of "something good" can be expressed as a region 
expression r then such requirements maintain that  all states forward reach- 
able from the initial states are backward reachable from a state in r For 

example, we may wish to prove that  for Fischer's mutual exclusion proto- 

col, there is always a possibility that  process P1 will enter its critical section 
sometime in the future. The following HYTEc~ code checks this assertion. 

b_reachable := reach backward from loc[Pl] = as endreach; 

f_reachable := reach forward from init_re g endreach; 

if f_reachable <= b_reachable 

then prints "Requirement satisfied"; 

else prints "Requirement not satisfied"; 

endif ; 

7.3 Simple real-time and duration requirements 

Many simple real-time requirements can be specified by introducing clocks 

and stopwatches to measure delays between events, or the length of time 

a particular condition holds. In the gas burner example, we assert tha t  as 

long as a minute or more has passed, the burner has been leaking no more 

than 5% of the time. In this case, we introduce a new variable for each 

time duration of interest. We need to know the total elapsed time and the 

time spent in location leaking. These quantities are measured by the clock 

y and stopwatch t respectively. The duration requirement we are interested 

in then becomes the safety requirement where the violating states are given 

by the predicate y > 60 A t >_ y/20. 

7.4 Additional requirements 

By no means do all requirement specifications fall into the categories dis- 

cussed above. However, a simple technique can be used to reduce many 

requirements to safety requirements. The idea is to build a separate mon- 

itor automaton for the requirement being checked [VW86]. The monitor 

typically contains special states which are only reachable by violating ex- 

ecutions. The monitor must act strictly as an observer of the original sys- 

tem, without changing its behavior. Reachability analysis may then be per- 

formed on the parallel composition of the system and the monitor,  with the 

SThese requirements are expressed in temporal logics in the form V[::]30r 
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a,b a a,b 

t:---- 0 
e t_>a 

FIGURE 9. Generic bounded-response monitor automaton 

system correct iff no violating state in the monitor is reached. To illustrate 

the technique, we use the category of bounded response requirements. 

B o u n d e d  r e s p o n s e  A bounded-response requirement asserts tha t  if some- 

thing (a trigger event, a say) happens, then a response, b say, occurs strictly 

within a certain t ime limit a.7 For example, one may assert tha t  every ap- 

proach of the train is followed by a raise command within 10 seconds. To 

verify these requirements, it is often easiest to introduce a new stopwatch 

variable, t say, and build a monitor process with three locations: idle, wait 

and viol. Figure 9 depicts a generic au tomaton  for bounded response re- 

quirements. Control is initially in the idle location. When a trigger event 

occurs in a non-violating location, control may pass to the wait location 

and the clock t is reset. Response events cause control to return to the 

idle location. The unlabeled transition from the wait location to viol is 

only enabled when t > ~, i.e. t ime for the response event has passed by. 

This au tomaton  will reach its violation location iff it is possible for a t ime 

units to pass after an a event without a b event occurring. Therefore, the 

violation location is not reachable iff every a event is followed by a b event 

occurring less than  a t ime units later. 

To assert tha t  the response event may occur any t ime up to and in- 

cluding a t ime units after the trigger event, we may use the same monitor  

au tomaton  as above, but  checking tha t  the violation location is only ever 

reached with the value of t being a.  

Since bounded response requirements occur frequently, we demonstrate  

how strict bounded response requirements can be verified slightly more 

efficiently, i.e. the response event must  occur before the response t i m e - -  

occurring when exactly a t ime units have passed is not acceptable. The 

monitor  in Figure 10 is slightly more deterministic than  tha t  of Figure 9 

and will generally lead to a less complex reachable region. Note that  the 

selfloops on the violation location have been omitted. Although this affects 

the behavior of  the system, it does so in a way that  has no effect on its 

correctness, assuming we use forward reaz~hability; once a violation has been 

"rThis assertion is denoted V[](a =~ VO<~b). 
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a ~ b  a 

t:~--0 

FIGURE 10. Bounded-response monitor automaton - -  strict bound 

(~ 
a a 

t < a  

FIGURE 11. Monitor automaton for minimal event-separation time 

detected, which additional states are reachable is irrelevant. 

M i n i m a l  event separation Monitor processes can be built to verify that  

events occur with some minimal separation time. For example, Figure 11 

shows the automaton for verifying that  no two instances of the event a 

occur within ~ time units of each other. 

8 Installing and Running HYTECH 

8.1 Installation 

Currently the executable file is available for the Sun4 architecture only. We 

plan to have versions available for a variety of platforms, including DEC 

workstations and PC's. Most jobs we have run require less than 20MB, 

many less than 10MB. However, obviously, the more memory the better.  

The version of HYTEcH described here was released in August 1995, and 

is available through anonymous ftp via ftp.cs.cornell.edu in the directory 

-pub / t ah /HyTech ,  and through the World-Wide Web via HvT•cH's home 

page http://www.cs.cornell.edu/Info/People/tah/hytech.html. Download 

the file h y t e c h ,  t a r .  Z. It  must be uncompressed to h y t e c h ,  t a r ,  and then 

expanded using the Unix t a r  command. The following sequence of com- 

mands will produce the directory ttyTech. 
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uncompress hytech, tar. Z 

tar -xf hytech.tar 

The HyTech directory contains the subdirectories src, bin, user.guide, 

examples, and papers, containing the source code, executables, a more 

comprehensive version of this user guide, examples, and many papers on 

hybrid automata, respectively. The raain directory also contains the m^_ 

README and license. Please sign a copy of the license and follow the in- 

structions given on the form. Licensed users will be assured of being in- 

formed about new releases of the software. We would also appreciate hear- 

ing about your experiences with HvTEctl and the applications you analyze 

with it. 

8.2 Executing HYTECH 

You must have the files hytech and hytech.exe  in your current direc- 

tory. Assuming your input file is called a. by, the basic command to run 

H~frEcH is hytech a. hy. The . hy suffix on the filename may be omitted. 

Output appears on s tdout ,  so it is usually directed to a file via a com- 

mand such as hytech a. hy > a. log. HYTF~c~ creates a temporary file by 

adding -temp. hy to the source filename, e.g. for the commands above, the 

file a. by-temp, hy is temporarily created and then destroyed. Clearly, you 

should avoid using file names ending in -temp. by. 

Options Available options are displayed by executing HYTECH with no 

input file. Options are given in the form -(flag_type)(n), and must occur 

before the filename on the command line. The only options so far are for 

controlling the amount of output generated (-p0, -pI, and -p2, where the 

higher numbers indicate more verbose output), and the format of the out- 

put (-~0 for conjunctions output along a single line, and -~i for conjuncts 

listed one per line). 

Examples  Numerous sample input files and their output logs can be found 

in the subdirectory examples. Examine these to familiarize yourself with 

the input description language. Some of them are discussed in the user 

guide and [HHWT95a]. 

Bugs,  comments, suggestions Please report any bugs or installation 

and maintenance problems to hytech~cs.cornell.edu. We do not have the 

resources to provide commercial-level support, but we can probably help 

you. We also welcome comments and suggestions, since the experience of 

HYT~CH's users will help to improve future versions of the software. 
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This section describes hints on how to make the most of HYTEcH's com- 

putational power. If HYTEcH does not terminate on your input file, and 

you cannot figure out why, trying these heuristics may well help. Some- 

times a slightly modified description will make a tremendous difference. As 

a general principle, keep your model of the system as simple as possible at 

first. Once HYT~c~ has successfully analyzed the system, slowly add more 

detail to your model. 

Keep  the sys tem description small. Generally, the smaller the better, 

i.e. try to minimize the number of components, locations, and variables. 

For example, try to model only a small number of the system's compo- 

nents first. Share locations wherever possible, e.g. error locations can often 

be combined into one. Some locations may be eliminated if they are "in- 

termediate" locations not involved in direct synchronization with other 

components, and time spent in these locations can be transferred to the 

immediately adjacent locations. 

Encode  discrete variables into locations.  For a bounded discrete 

variable, it is generally more efficient to split each location into several 

locations, one for each value of the variable, than to declare the variable as 

a reai-valued variable. However, the increased efficiency often carries the 

disadvantage of a less compact description. 

Manua l ly  compose t ight ly  coupled components .  When taking the 

product of two automata, many product locations are irrelevant since they 

are unreachable. If two components are tightly coupled with synchronized 

events, the reachable product automaton can be substantially smaller than 

the complete product. It may be beneficial to input the reachable product of 

such automata, instead of their components, since this version of HYT~cH 

constructs complete products only. 

Keep cons tants  simple. Generally, the lower the lcm:gcd ratio of the 

constants in the system, the faster the reachability analysis. Indeed, low- 

ering the ratio may be necessary for reachability to terminate. To achieve 

low lcm:gcd ratios, it is often possible to verify an abstracted system where 

lower bounds are rounded down to smaller constants, and upper bounds 

are rounded up. 

Mode l  urgent events explicitly. If an event is urgent, model this fact 

directly where possible by using the ASAP guard. This is more efficient 

than introducing an auxiliary dock. 

Exploi t  "don ' t  care" informat ion,  In many locations of an automa- 

ton, not all variable values are relevant. However, reachability analysis will 

record the exact values of such "don't care" variables. Thus to simplify the 

reachable region, it is helpful to make these variables completely unknown 
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wherever they are irrelevant. This can be achieved by explicitly assigning 

them into the interval (-c~,  eo) on all transitions into the appropriate lo- 

cations. A tempting option is to set them to a particular fixed value while 

control remains in a given location. However, this strategy is not as benefi- 

cial as assigning them into ( -co ,  co), since there is a nontrivial relationship 

between them and any other variables as time passes. 

Use strong invariants. Sometimes it is helpful to restrict reachabil- 

ity analysis as much as possible through the use of strong invariants. For 

instance, enforcing implicit invariants can be advantageous, particularly 

when performing backward teachability analysis. In the gas burner exam- 

ple, backward reachability is required, since forward reachability does not 

terminate. It would be easy (and natural) to model the system without 

using the invariants x _~ 0, y > 0, and t > 0 for the clock and stop- 

watch variables. These invariants would play no role in forward analysis. 

However, backward analysis is nonterminating without these invariants, 

whereas adding them causes termination in seven iterations. 

Use  the  teachabi l i ty  facility provided.  It is optimized for its task and 

faster than writing your own while loops. It also enables error traces to be 

generated. 

Try forward  and backward  analysis.  It is often not easy to predict 
which direction will terminate faster. 
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