
A User Interface Toolkit Based on Graphical Objects and

Constraints

Pedro A. Szekely and Brad A. Myers

Computer-Science Department
Carnegie-Mellon University

Pittsburgh, PA 15213

Abstract

One of the most difficult aspects of creating graphical,
direct manipulation user interfaces is managing the re-
lationships between the graphical objects on the screen
and the application data structures that they repre-
sent. Coral (Constraint-based Object-oriented Rela-

tions And Language) is a new user interface toolkit un-
der development that uses efficiently-implemented con-
straints to support these relationships. Using Coral,
user interface designers can construct interaction tech-
niques such as menus and scroll bars. More im-
portantIy, Coral makes it easy to construct direct-
manipulation user interfaces specialized to particular
applications. Unlike previous constraint-based toolk-
its, Coral supports defining constraints in the abstract,
and then applying them to different object instances.
In addition, it provides iteration constructs where lists
of items (such as those used in menus) can be con-
strained as a group. Coral has two interfaces: a declar-
ative interface that provides a convenient way to spec-
ify the desired constraints, and a procedural interface
that will allow a graphical user interface management
system (UIMS) to automatically create Coral calls.

1 Introduction

Many interactive direct manipulation user interfaces
can be viewed as graphical editors. The graphical ob-
jects represent application objects: resistors and wires
in a circuit simulation program, chess pieces in a chess

program, chairs and tables in a furniture layout pro-
gram, etc.

Graphics editing operations, such as pointing, mov-
ing, stretching, deleting, and drawing, not only change

PermIssion to copy without fee all or part of this material is granted provided

that the copies are not made or distributed for direct commercial advantage,

the ACM copyright notice and the title of the publication and its date appear.

and notice is given that copying is by permission of the Association for

Computing Machinery. To copy otherwise. or to republish. requires a fee and/

or specific permission.

o 1988 ACM O-8979 1-284-5/88/0009/0036 $1.50

the screen images, but also have an application-specific
meaning, and must trigger changes in the data struc-
tures of the application. For example, when a resis-
tor is moved, all the wires attached to it should be
stretched to maintain the connectivity of the circuit;
only some of the pieces on a chess board can be moved,

and then only to certain locations; and the desks and
tables in a room cannot overlap. In addition, display-
ing the appropriate feedback for the editing operations
often requires application specific knowledge (this is
called %emantic feedback”). An example of this is
“gravity,” where the endpoint of a wire being dragged
jumps to nearby legal connection points. Therefore,
for these programs, the editing operations are not un-
constrained as in a simple drawing program like Apple
MacDraw.

This paper describes a user interface toolkit, called
Coral, currently under development as part of the Gar-
net Uniform Interface project [lo] at Carnegie Mellon
University. Coral allows the kinds of graphical inter-
faces discussed above to be easily implemented, In
addition, Coral is able to create interaction techniques
(menus, scroll bars, dialogue boxes, etc.) like those in
conventional toolkits like the Macintosh Toolbox [l].

Coral facilitates the construction of graphical user
interfaces through a synthesis of four techniques:
object-based graphics, graphical constraints, active
values, and interactors (see figure 1).

Object-based Graphics

The images displayed on the screen are composed of
graphical objects such as lines, rectangles, polygons,
arcs, ellipses, and strings, as well as groups of graphi-
cal objects called aggregates. All graphical objects are
organized into an inheritance hierarchy. Subclassing
can be used to construct new graphical objects spe-
cialized to particular applications.

Graphical Constraints

The values of attributes of graphical objects may be
defined in terms of the values of attributes of other
graphical objects using constraints. For instance, a re-

sistor can be attached to other elements in a circuit

36
OOPSIA ‘88 Proceedings September 2530,1988

Interactors

Graphiil cbj~ds +
constra~mts

Figure 1: The architecture of Coral programs.

simulation program by defining constraints that force
them to remain connected even when one of them is
moved. Whenever the attributes of a graphical ob-
ject change, the relevant constraints are automatically
enforced, and the affected graphical objects are auto-
matically redrawn.

An unconventional aspect of Coral’s constraints is
that they may be associated with a list of items. For
example, all of the items in a menu may be constrained
to be centered inside a rectaugle, and each of the items
may be constrained to be below the previous (except
the first, of course).

The constraints in Coral are unidirectional, but cy-
cles are allowed. A .Coral constraint is like a formula in
a spreadsheet, which computes the value of a cell based
on the values of other cells. The formulas automati-
cally recompute the values whenever any of the other
cells change. Coral uses unidirectional constraints be-
cause they can be implemented more simply and ef-
ficiently than bi-directional constraints, and as Barth
[3] reports, the loss of generality is surprisingly small.
Cycles are useful because they allow any part of a set of
connected objects to be edited, and have all the other
parts updated automatically.

Active Vah.s

An active value is a data due plus a list of objects and
procedures that depend on that value. When the data
value is set, the objects are informed so they can be
redisplayed, and the procedures are called to notify the
application program [15,13]. Active values are similar
to graphical constraints, except that the constraint is
from data values to graphical objects, rather than be-
tween graphical objects. Therefore, active values are
sometimes called “data constraints.”

Coral uses active values to communicate between the
user interface and the application portion of a program
(see figure 1). The application can register a procedure
with an active value that is called when the active
value is set, thereby informing the application about
the change.

Active values provide a clean separation between
user interface and application. The interaction tech-
niques that set the active values can be changed with-
out affecting the application portion of the program. In
addition, the application does not have to update the
display since that is automatically handled by the data
constraints between the graphical objects and the ac-
tive values. This separation facilitates the iterative re-
finement cycle required to produce good interfaces I?].

Interactors

In Coral, input from the mouse and keyboard is not
handled by the graphical objects themselves, but by
special input handling objects called in2eraclors. In-
teractors communicate with graphical objects via ac-
tive values. Since data constraints can be used to tie
graphical objects to active values, interactors need only
set the active values to affect the display. Active val-
ues separate the input and output portions of the user
interface, thus allowing different interactors or the ap-
plication program itself to drive the output part, and
also further facilitating iterative development.

This paper focuses on the object-oriented aspects
of Coral, and on how constraints are used to tie the
objects together. A future paper will deal with the
active values and interactors.

The rest of this paper is organized as follows. Sec-
tion 2 describes a user interface implemented with
Coral. Section 3 contrasts Coral with other systems
that use graphical objects and constraints. Section 4
describes Coral’s hierarchy of graphical objects. Sec-
tion 5 describes the declarative language to define
graphical objects and constraints, and gives examples
of its use. Section 6 describes the procedural language
with which the declarative language is implemented,
and discusses the implementation of constraints. Fi-
nally, section 8 offers some conclusions and directions
for future work.

September 25.30,1988 OOPSLA ‘88 Proceedings 37

Figure 2: An interface to a circuit simulator constructed with Coral.

2 An Example

Figure 2 (part a) shows a user interface for a circuit
simulator constructed with Coral, Each of the cir-
cuit elements, resistors, capacitors, ground elements
are graphical objects, and the connectivity of the cir-
cuit is specified by constraints.

When the user drags a node (part b), the editor
displays feedback showing the new position of the cir-
cuit elements. When the user releases the mouse but-
ton (part c), the feedback is erased, and the circuit
elements are displayed at the new position. The con-
straints preserve the connectivity of the circuit auto
matically.

The feedback, represented by the dotted lines, is pro-
duced as follows: the dotted lines are graphical objects
with a data constraint to an active value that repre-
sents the position of the point being dragged. Each
time the mouse moves, the active value is set, and the
constraints force the lines to be displayed at the new
location.

3 Related work

The oldest tools to facilitate the implementation of
graphical user interfaces are the graphics packages such
GKS [4], consisting of a library of routines to draw
lines, polygons, curves, strings, etc. These packages
are very general, allowing virtually any kind of image
to be created, but are too low level, and constructing
user interfaces with them involves a large programming
effort. The modern graphics libraries such as the Mac-
intosh Quickdraw package [l] or the X window man-
ager graphics interface [14] are also general but too
low level. The Coral graphical objects provide facilities
similar to those of the graphics packages, but embed-
ded in an object oriented framework similar to the one
used in GROW [3] and Intermedia [9], making it easy
to create new classes of graphical objects as subclasses
of existing objet ts.

User interface toolkits such as the Macintosh tool-
box [l] and the X toolkit provide an additional layer
of services that facilitate the construction of graphical
user interfaces using buttons, menus, scroll bars, text
buffers and other such generic interaction techniques.

These tools facilitate the construction of the interface
elements placed around the application window, (e.g.
menus and scroll bars), but provide very little sup
port to construct the application-specific interface that
takes place inside the application window. The pro
grammer has to fall back to the graphics package to
implement the application-specific portion of the user
interface. Coral was explicitly designed for this part
of the interface, which is often the hardest to imple-
ment. Of course, Coral also supports the construction
of generic interaction techniques.

Coral derives much of its power from the intergra-
tion of the graphical object hierarchy and constraints.
Constraints have been used in graphical application
for long time. They were first used in the Sketch-
pad drawing program [16], which allowed lines to be
constrained to have certain relationships to other lines
(parallel, perpendicular, attached to, etc.). ThingLab
[S] extended Sketchpad to provide a general simula-
tion environment. The constraints in Sketchpad and
ThingLab are bi-directional, which means that if two
objects are attached by a constraint, then either can
be modified and the other will be updated appropri-
ately. In Coral, as explained below, the constraints
are only uni-directional. Animus [8] extends ThingLab
to also handle constraints about time, and therefore
can support realistic animations of dynamic processes.
Borning and Duisberg [S] summarize many constraint-
based approaches for construe ting user interfaces.

Another difference between Coral and these
constraint-based systems is that Coral provides a clean
separation between user interface and application. In
Sketchpad and ThingLab the user interface and the ap-
plication are closely tied together, where as in Coral the
two parts communicate via active values. This makes
Coral better suited to construct user interfaces because
the separation facilitates the iteration cycle required to
fine tune interfaces [17].

The GROW system [3] is more directly relevant since
it uses constraints as part of a object-oriented user in-
terface toolkit. Coral extends Grow, and the other
constraint-based systems, by providing iterations and
a convenient syntax for specifying the constraints.

Most UIMSs [2] are concerned with gluing together

38 OOPSLA ‘88 Proceedings September 2530,l W?

the interaction techniques that compose a user inter-
face, and hence are concerned mostly with dialogue
management. Coral provides two mechanisms to sup-
port dialogue management, but does not provide a di-
alogue management tool per se. The two mechanisms
are the constraints, which can be used to tie together
graphical objects, and the tree of aggregate objects,
which can be queried for the objects that contain a
given point.

The biggest influence on Coral is the second author’s
Peridot UIMS [11,12,13]. Peridot is a graphical tool
that allows graphical interaction techniques to be con-
structed by example. The user interface designer sim-

ply draws a picture of what the user interface should
look like, and the system generalizes the example to
create a general-purpose parameterized procedure. To
do this, Peridot infers graphical and data constraints
among the objects the designer creates. Unfortunately,
Peridot was not built on a good underlying graphical
object system, and many of the features were difficult
to implement. Coral was designed to provide an ap-
propriate foundation on which future graphical tools

could be built-both to make it easier for the tools to
generate code for user interfaces, and to make it easier
to implement the tools themselves.

4 Graphical Objects

Coral is implemented using the CommonLisp Object
System (CLOS) and runs on the X window manager
[14]. A CLOS 1 c ass defines each kind of graphical ob-
ject. Instances of these classes represent the images
displayed on the screen.

4.1 The Graphical Object Hierarchy

The classes that define the graphical objects are orga-
nized in an inheritance hierarchy as shown in figure 3.

Graphical-Obj&t
Line-GO
Spline-GO
Rectangle-GO
Polygon-GO
Polyline-GO
Circle-GO
Ellipse-GO
String-GO

Aggregate-GO
Aggregate-With-No-Overlapping-GO

Figure 3: The inheritance hierarchy of graphical ob-
jects.

The Superclass Graphical-Object

At the top of the hierarchy is the abstract class’
Graphical-Object (abbreviated GO), which defines

the properties and methods common to all graphical
objects.

Graphical-Object defines the following slots (called
instance variables in Smalltalk terminology):

top, left, width & height: these define the bound-

ing box of the object.

visibility: specifies whether the object should be

displayed.

draw-function: the drawing function (xor, and, or,
drav, etc) with which an object is drawn on the
screen.

filling: the color for the inside of the object.

outline: the pattern for the outline of the object.

vindov: the window in which the object is displayed.

dirty: specifies whether the object has been changed,
and thus should be redisplayed.

Class Graphical-Object also defines the internal slots
and methods needed to keep track of changes to objects
so that the screen can be efficiently erased and redrawn
when a display update is requested. These slots and
methods are based on the bounding box of the object,
and hence can be inherited by all the subclasses of
Graphical-Object.

Graphical-Object provides accessors to read and
set slots values, and default implementations of
the is-point-in-go method, which tests whether a
graphical object contains a given point, and the erase
method, which erases objects. Graphical-Object
does not provide an implementation of the drav
method, since the implementation of this method de-
pends on the class of object. *-

The subclasses of Graphical-Object define the
drav methods. These classes inherit the slots and
methods defined in class Graphical-Object, and pro-
vide additional ones if appropriate. For instance,
Circle-GO provides a drav method as well as meth-
ods to set the radius and center of the circle. How-

ever, Circle-GO inherits all the bookkeeping slots and
methods from Graphical-Object, so its implementa-
tion does not have to keep track of changes.

The is-point-in-go, which tests whether a graph-
ical object contains a point is often redefined in the
subclasses of Graphical-Object because the default
method just uses the bounding boxof the object, which
is not appropriate for objects such as lines and poly-
gons.

‘Abstract classes axe used as superclasses. They are ne~a
instantiated directly.

September 2X30,1988 OOPSLA ‘88 Proceedings 39

Aggregates

Class Aggregate-GO defines aggregate objects, which

are groups of graphical objects that can be treated as
a unit. For example, moving an aggregate moves ev-
ery member of the aggregate, and drawing it draws
every member. Since the members of an aggregate can
themselves be aggregates, aggregates organize graphi-
cal objects into a tree.

Aggregates provide much more than just a conve-
nient way to move, delete, and draw groups of graphi-
cal objects. Aggregates are the managers of groups of
objects, and perform the following functions:

Aggregates manage the redisplay of their children.
When a property of a graphical object changes, its
parent aggregate is informed. The aggregate de-
termines how to update the screen: it determines
how much of its bounding box to erase and which
children to redisplay. _,

Aggregates manage the is-point-in-go method
for their children. To find which graphical ob-
ject contains a point, the point is given to the top
most aggregate in the tree of aggregates, which
distributes it to the appropriate children, and then
propagates it down the tree.

The constraints that relate groups of graphical ob-
jects are defined in terms of the aggregates that
contain the objects (see sections 5 and 6).

Coral provides two default classes of aggregates. The
class Aggregate-GO handles arbitrary overlapping chil-
dren. It uses simple algorithms to decide which chil-
dren need to be redisplayed, and simple algorithms to
implement the is-point-in-go method.

The other class of aggregate is Aggregate-Uith-llo-
-Overlapping-GO. This class assumes that children do
not overlap, and hence can handle redisplays in a much
more efficient way. New subclasses can be created for
other special cases.

4.2 Extensibility

Adding new classes of objects is relatively easy, since
the complex mechanism to keep track of changes

for updating the screen is inherited from class
Graphical-Object, class Aggregate-GO and its sub-
classes. However, a new class of graphical object can
override this behavior if it has a more efficient way of
keeping track of changes.

The inheritance hierarchy provides a simple way to

tailor the behavior of graphical objects to particular
applications. For example:

l In the circuit simulator program it is convenient
for lines to have gravity at the end points since
this facilitates connecting objects together. Grav-
ity can be implemented by defining a subclass

l The class Aggregate-with-No-Overlapping-GO
is a subclass of Aggregate-GO that was imple-
mented to optimize the common case where ob-
jects do not overlap. This class overrides the
erase and update methods with more efficient
ones that do not have to figure out how objects
overlap, and after erasing an object, do not have
to redisplay the objects that overlap the erased
object.

4.3 Redisplay

of Line-GO, called, say, Gravity-Line-GO, and
overriding the is-point-in-go method so that a
point is considered inside the line even if is some
distance away from the end points.

An important aspect of Coral is that it decouples redis-
play from changing the attributes of objects. A pro
gram can change many attributes of many graphical
objects, and then call redisplay. This is important,
because when a constrained graphical object changes,
the attributes of dependent graphical objects will be
recomputed, thus causing a cascade of changes. The
decoupling allows the screen to be updated after all the
changes to objects have been computed, thus avoiding

unnecessary screen updates.

One built-in optimization of redisplay is the
Aggregate-With-lo-Overlapping-GO class discussed
above. Another one is that Coral treats graphical ob-
jects drawn in xor specially. When an object is drawn

in xor mode, and it is not covered by other objects,
then it is erased by drawing it again using xor in-
stead of by clearing the area of the screen it occupies.
This optimization saves many redisplays because the
objects underneath the xor object do not have to be
redisplayed.

This simple optimization is very important because

it is used for the display of feedback during mouse op-
erations, which typically overlaps many objects shown
on the screen, and it has to be produced in real time
(see figure 2).

5 The Declarative Interface to Coral

The declarative interface to Coral allows programmers
and user interface designers to define new graphical
object classes and the constraints among them using
a declarative formalism. The language is designed to
provide a convenient textual interface into the underly-
ing procedural language that Coral interprets (see sec-

tion 6). A special compiler expands the expressions in
the declarative formalism into expressions in the pro
cedural formalism before they are processed.

The declarative interface to Coral is illustrated in
figure 4. The figure shows two check-boxes such as

those used in the Macintosh user interface, and a Coral

40 OOPSLA ‘88 Proceedings September 2530,1988

expression that defines a graphical object class to pre
duce them.

m Draft m Draft

(Herr-CO Check-Box
(: super-classes

Aggregate-Yith-go-Overlapping-GO)
(:uses left top selected label-string)
(:part (Bev-GO Box

(:super-classes Rectangle-GO)
:outline (:tbickness 1 zpatteru :solid)
:filliug (:color :vhite)
:vidth 15
:heigbtlS
:left (sv Check-Box left)
:top (sv Check-Box top>))

(:part (lev-GO Hark
(:superclasses Aggregate)
:visible (sv Check-Box selected)
(:part (Bev-GO Line-1

(:auper-classes Line-CO)
:x1 (- (SV Box center-x) 2)
: yl (- (sv Box bottom) 3)
:x2 (- (ev Box right) 2)
:y2 (+ (SV Box bettor) 2)))

(:part (lllev-GO Line-2
(:super-classes Line-CO)
:x1 (+ (sv Box left) 2)
:yl (+ (sv Box center-y) .l)
:x2 (sv Line-l xl)
:y2 (sv Line-l yi)))))

(:part (gev-GO Label
(:super-classes String-GO)
:left (+ (sv Box right) 8)
:center-y (+ (sv Box center-y) 2)
:string label-string)))

Figure 4: Instances and definition of the Check-Box
graphical object.

The Check-Box class is defined as a subclass of
Aggregate-With-lo-Overlapping-GO since the label,
the box, and the marker do not overlap.

The : uses clause declares that the check-box object
is parameter&d with respect to its top and left coor-
dinates, the string used as a label, and a flag indicating
whether the check-box is selected. The actual parame-
ters can be either active values or arbitrary Lisp values,
and must be supplied when an instance of a check-

box is created. If active values are supplied, then they
can be changed at run time, the constraints will be
re-evaluated, and the display will be updated accord-
ingly. For exainple, the parameter selected must be
an active value so that the check-mark in the box can
be turned on and off at, run time.

The :part clauses declare the aggregate parts.

Check-Box has three parts, the box, which is the bor-

der of the check-box, the marker that shows whether
the check-box is selected, and the label.

The definition of each part declares the type of
graphical object, supplies values for any values that
do not change at run time (e.g. the width and height
of the Box part), and defines constraints that compute
the values for the other slots. The constraints are Lisp

expressions. The meaning of expressions such as (SV

Check-Box left) is “the value of slot left in part

Check-Box.”
The constraints for Line-l define the long arm of

the check-mark, and the constraints for Line-2 de-
fine the short arm of the check-mark. Note that the
check-mark is indented a few pixels inside the box. The
visible slot of Marker is constrained to the value of
the selected parameter, so when selected is set, to
nil the marker disappears, and when selected is set
to t the marker reappears.

The lev-GO clause not only generates the classes and
constraints that define the graphical object, but also a
procedure to make instances of the graphical object
class. The’ procedure makes instances of the objects

corresponding to the parts, and links them together.
The parameters to this procedure are derived from the
: uses clause.

For instance, the following program fragment creates
the first instance of the check-box shown in figure 4:

(setf draft-selected (rake-active-value nil))
(make-check-box 30 50 Wraft" draft-selected)

The first, statement creates an active value whose
initial value is nil, and stores it in a variable called
draft-selected. The second statement creates the
check-box: 30 and 50 are the values for top and left,
“draft” is the value of label-string, and the ac-
tive value stored in draft-selected is the value of
selected. Since the value of draft-selected is nil,

the check-box is initially shown de-selected. When
the value of draft-selected is set to true, by exe-
cuting (set-value draft-selected t), the mark is
displayed.

Figure 5 illustrates the ease with which graphical
object classes .can be changed. The figure shows a

new kind of check-box that uses a black square rather
than a cross to show whether the check-box is selected.
The new class, called Check-Box-With-Black-Mark is
a subclass of Check-Box. It overrides the definition of
Hark in class Check-Box, and inherits the definition of
the other parts.

Figure 6 shows an expression that defines a graphical
object consisting of a column of graphical objects. An
instance of Column that uses a list, of check-boxes is
shown at the top of the figure.

The :list clause declares the constraints that ap-
ply to the elements of the list list-of-GOs. The
: for-each, :for-each-but-first and :for-first
clauses declare constraints that apply to the various

September 2539,1988 OOPSLA ‘88 Proceedings

cl H Draft

(New-CO Chec~Box-Uith-Black-Warlc
(:superclasses Check-Box)
(:part (Neu-GO Mark

(: super-classes Rectangle-GO)
:filling (:color :black)
:visible selected
:oidth (- (sv Box width) 6)
:height (- (sv Box height) 6)
:center (sv Box center))))

Figure 5: A subclass of Check-Box that shows the mark
as a black rectangle.

elements of the list. The definition of Column forces
each element to be left aligned, the first element to be
placed 2 pixels below the top of the column, and each
of the other elements to be placed 5 pixels below the
previous.

R Draft

0 Landscape

R Two columns

R Scale to fit

(New-CO Column
(:superclasse8

Aggregate-With-lo-Overlapping-GO)
(:uses left top list-of-GOs)
(:list list-of-GO8

(:for-each
:left (sv Column left))

(:for-each-but-first
:top (+ (sv :previous bottom) 5))

(:for-first
:top (+ (av column top) 2))))

Figure 6: An example of constraints ranging over a list
of objet ts.

6 The Procedural Interface

The expressions in the declarative interface are ex-
panded into calls to the Coral procedural interface.
The procedural interface is also intended to be used by
an interactive tool like Peridot [13], which allows user
interface designers to interactively construct graphical
objects and their constraints by drawing pictures.

The procedural interface is organized around two
concepts: graphical objects, and formulas, which are

the expressions that define constraints.

A Coral formula is an arbitrary Lisp expression that
returns a single value. The following is an example of
a formula.

(+ (sv Box left) (av mouse-pos x) 3)

The sv construct is used to access the values stored
in object slots. Its syntax is (sv name &optional
slof-name). name is a variable, which acquires a value
at run time, and hence serves as a parameter. The
value of this variable must be an instance of a graphical
object. sv returns the value of the given slot in the
graphical object bound to name. If sloGname is not
provided, then the graphical object itself is returned.
So, in the above example, SW returns the value of the
slot left of the graphical object bound to Box.

The av construct is used to reference values in active
values. Its syntax (av name part-name). Like sv, the
name acquires an active value instance at run time. av
returns the value of the given part of the active value
bound to name. So, in the above example, aw returns
the x part of the active value bound to mouse-pas.

The Coral formula parser recognizes the calls to sv
and av and builds a data structure to record the depen-
dencies of the formula on slots and active values. So,
whenever the value of a slot or active value changes,
Coral can find the formulas that must be evaluated.

Formulas are used by attaching them to objects, and
by assigning values to the variables used in the formula.

The attach-formula construct is used to attach a
formula to the slot of a graphical object. Its syntax is
(attach-formula o6jeci slot-name formula). Once
a formula is attached to a slot, Coral will u8e the for-
mula to compute the value of the slot whenever any of
the slots and active values in the formula change.

The set-wariable construct is used to set the
values of variables used in formulas. Its syntax is
(set-variable clbjecf name due). set-variable
sets the value of the given variable in the given object.
Note that the values of variables are specified on a per
object basis, and not on a per formula basis. Hence,
formulas are state-less, and thus a single formula to be
attached to multiple graphical objects.

Specifying a new formula for a slot, or setting a new
value for a variable will cause Coral to automatically
evaluate the appropriate formulas, so their effects will
be immediately visible on the screen.

In Coral, formulas can be defined for both classes
and instances. When a formula is defined for a class,
then the formula will be used in all instances of the
class, unless it is overridden in specific instances. Al-
ternatively, a formula can be applied to only a partic-
ular instance, or set of instances.

Associating the formulas with the classes is desir-
able because it allows formulas that apply to a whole
class of objects to be conveniently defined, and allows

42 OOPSLA ‘88 Proceedings Sfqtember 25-30,1!388

the formula data structures to be shared. The Column
graphical object described in section 5 illustrates the
need for the flexibility provided by Coral. The items
in the column are forced to be laid out in a column by
associating with each of them, except the first one, a
formula that computes the top location of the item in
terms of the bottom location of the previous item. The
first item in the list, even though.af the same class as
the other items, needs a different formula: one to com-
pute its top location in terms of a slot in the parent
aggregate.

This design is more,general than ThingLab [5] and
CROW [3], which only allow formulas to be associ-
ated with classes, and is also more general than spread-
sheets, which only allow formulas to be associated with
instances.

The ability to include arbitrary Lisp code in formulas
is also an important feature of Coral, since it makes
it possible to specify formulas with complex behavior.
The full power of Lisp is available for defining formulas.
In addition, Coral can compile formulas using the Lisp
compiler, thus making them efficient.

The use of variable names in formulas to refer to
other objects gives Coral a degree of flexibility not
found in other systems:

l By referring to other objects through names, for-
mulas do not have explicit references to other ob-
jects, and hence can be reused by applying them
to many instances.

l The values of these variables can be changed at
run time, thus changing the dependencies between
objects at run time. The changes to these vari-
ables go into effect immediately, causing the rele-
vant formulas to be recomputed.

6.1 Example

Consider a drawing program such as MacDraw. When

the user drags an object, the program shows an outline
of the object following the mouse. The behavior of the
feedback object can be implemented in Coral with a
single instance of class Rectangle-GO, by applying the
following formulas to it:

visible: (sv Ob-To-Drag)
vi&h: (sv Ob-To-Drag vidth)
height: (av O&To-Drag height)
left:

(cond ; ; keep the feedback object inside
; ; the drag region.

((< (av mouse-pos ‘r> (sv Drag-Region left))
(sv Drag-Region left))

(0 (sv mouse-p08 ‘x1
(- (sv Drag-Region right) (sv self width))

(- (sv Drag-Region right) (sv self vidth)))
(t

(av mouse-pos 'x1))

top: *..

The formulas use the names Ob-To-Drag, whose

value is the graphical object to be dragged, and
Drag-Region, whose value is a graphical object which
defines the region within which the first object must
remain. mouse-pos is an active value that stores the
position of the mouse, and which changes whenever the

mouse is moved.
The mouse interactor that uses this feedback object

operates as follows: when the user clicks over an ob-
ject, it stores that object in the Ob-To-Drag variable in
the feedback object, and the mouse coordinates in the

mouse-pos active value. This causes Coral to eval-
uate the formulas that depend on Ob-To-Drag and
mouse-pos. The formula for the visible slot will
cause the feedback object to become visible, the for-
mulas for vidth and height will cause the feedback to
acquire the size of the object being dragged, and the
formulas for left and top will cause the feedback to
acquire the position of the mouse.

While the mouse moves, the interactor stores the
mouse location in the mouse-pos active value. This

causes Coral to evaluate the formulas for left and top
causing the feedback to follow the mouse, but remain
within the drag region.

When the mouse button goes up, the interactor
stores nil in O&To-Drag, causing Coral to evaluate
the formula for visible, making the feedback disap

pear.
Moving the dragged object to the new position is

performed by defining formulas for it in a similar fash-
ion.

The ability to use a single feedback object and a sin-
gle set of formulas to display the feedback while drag-
ging any graphical object, irrespective of its size, de-
pends on the use of variables in formulas. Specifying
the object to be dragged is just a matter of setting
in the feedback object the value of Ob-To-Drag, and

changing the drag region is just a matter of setting the
value of Drag-Region.

The formulas can also be changed at run time. For
instance, replacing the formula for width by (+ (sv
Ob-To-Drag width) 2) will cause the feedback to be
2 pixels wider than the object. The formula will take
effect immediately. No compilation or loading steps
are required to see the effects of changes.

6.2 Constraint Satisfaction

The constraint satisfier is implemented by a class called
Constraint. The Coral compiler uses multiple inheri-
tance to include this class as a superclass of graphical
objects that have constraints.

The constraint satisfier uses a twepass algorithm,
triggered when an active value is set:

1. Mark as undefined all slots that contain formu-
las that depend on the active value, and then re-

cursively mark as undefined all slots that contain

September 2530,1988 OOPSLA ‘88 Proceedings 43

formulas that depend on slots that are marked as
undefined. This step involves no search because
Coral maintains a dependency graph linking each
slot to the slots that must be marked undefined
each time another slot is marked undefined.

2. Evaluate the formulas for all the slots that were
marked as undefined. Since formulas are unidirec-
tional, and only one formula can be stored in each
slot, no planning step is needed to decide which
formulas to evaluate, and in what order to eval-
uate them. Thus, Coral does not need expensive
planning or relaxation techniques, such as those
used in Sketchpad and ThingLab, to solve the con-
straints.

The evaluator first updates the values of slots that
depend directly on active values, and then evalu-
ates the formulas for all undefined slots. If a for-
mula references an undefined slot, the evaluator
calls itself recursively to evaluate that slot.

Once all undefined slots are evaluated, Coral calls r+
display on the topmost aggregate associated with the
window, causing the screen to be updated to reflect all
the changes to the graphical objects.

Coral allows the formula dependencies to contain cy-
cles, as long as these cycles are broken by an assign-
ment from an active value. For instance, in Coral it is
legal to specify that the width of an object a is equal
to the width of an object b, and vice versa, thus speci-
fying a cycle between the width slots of (I and 1. If the
user changes an active value that affects the width of
a, Coral sets the width of a from the active value, and
then evaluates the formula for the width of b. Since
the width of a was already assigned a value, the cycle
is broken, and Coral will not try to compute the width
of a again. Alternatively, should the user modify the
width of 8, then the width of (I will be recomputed.

7 Implementation Status

Coral is currently under active development. The
graphical objects, the active values, the procedural lan-
guage, and the compiler for the declarative language
have been completed. A tool box that provides menus,
scroll bars, buttons and other interaction techniques
such as those in the Macintosh tool box is being im-
plemented, and the tool to interactively specify objects
and constraints is currently being designed.

8 Conclusions and Future Work

Even though the implementation of Coral is not yet
complete, Coral can already be used to easily con-
struct generic interaction techniques such as check-
boxes, sliders, and menus, as shown in the figures in
this paper. With the same ease, Coral can be used

to construct application-specific interaction techniques
such as the ones required in a circuit simulator (con-
nectivity maintenance and gravity).

Coral derives its power from the integrated use of
graphical objects, constraints and active values:

The graphical object hierarchy allows new graph-
ical objects to inherit the complex mechanisms
needed to efficiently update the display when ob-
jects change. This facilitates the definition of new
classes of objects.

Inheritance is used to improve efficiency by creat-
ing subclasses that take advantage of special cases,
and is also used to define graphical object classes
specialized to particular applications.

The Coral constraints were designed specifically
for user interface construction. This involved al-
lowing graphical constraints to be applied to lists
of objects (a feature common in spreadsheets, but
new in the graphical domain), and packaging con-
straints so that they can be reused, and so that
different sets of constraints can be applied to dif-
ferent instances of the same class.

Active values provide a clean way of separating of
input and output portions of the user interface,
and also of separating the user interface from the
rest of the application.

Coral already demonstrates the tremendous poten-
tial of integrating an object-oriented graphics hierar-
chy, a constraint system, and active values to produce
a powerful toolkit to construct graphical, direct ma-
nipulation interfaces. We are also working on the in-
teractors, which will provide a declarative interface to
specify the mapping of input events into active val-
ues. In the longer term we plan to construct a tool like
Peridot that will allow user interface designers to in-
teractively specify both the output and input behavior
of graphical user interfaces. Coral should provide an
excellent substrate for implementing such a tool, and
in the meantime is a good tool kit for programmers to
construct highly interactive user interfaces.

Acknowledgements

We wish to thank David Anderson, Ellen .Borison,
Richard Cohn, Dario Giuse, Bruce Horn and Richard
Lerner for their comments on earlier drafts of this pa-
per.

This research was sponsored by the Defense Ad-
vanced Research Projects Agency (DOD), ARPA Or-
der No. 4976, Amendment 20, under contract num-
ber F33615-87-C-1499, monitored by the Avionics
Laboratory, Air Force Wright Aeronautical Laborato
ries, Aeronautical Systems Division (AFSC), Wright-
Patterson AFB, Ohio 45433-6543.

44 OOPSL4 ‘88 Proceedings September 2530,1988

The views and conclusions contained in this docu-
ment are those of the authors and should not be inter-
preted as representing the official policies, either ex-
pressed or implied, of the Defense Advanced Research
Projects Agency or the US Government.

References

ill

PI

t31

PI

PI

PI

VI

PI

PI

WI

Pll

P21

Apple Computer. Inside Macintosh. Addison-
Wesley, Reading, Mass., 1985.

[15] M. Stefik and D. G. Bobrow. Object-oriented pro
gramming: themes and variations. The Artificial
Intelligence Magazine, 6(4):40*2, 1986.

R. Baecker and W. Buxton. Readings in human-
computer interaction : a multidisciplinary ap-
proach. Morgan Kaufmann, 1987.

P. Barth. An object-oriented approach to graph-
ical interfaces. ACM Transactions on Graphics,
142-172, April 1986.

[16] I. E. Sutherland. Sketchpad: a man-machine
graphical communication system. In AFIPS
Spring Joint Computer Conference, pages 329-

346, 1963..

P. Bono, J. Encarnacao, F. Hopgood, and
P. ten Hagen. GKS: the first graphics standard.
IEEE, 9-23, July 1982.

[17] P. Szekely. Separating the User Interface from the
Functionality of Application Programs. Ph.D. the-
sis CMU-CS-88-10 1, Carnegie-Mellon University,
January 1988.

A. Borning. The programming language aspects
of ThingLab, a constraint-oriented simulation lab-
oratory. Transactions On Programming Lan-
guages and Systems, 3(4):353-387, October 1981.

A. Borning and R. Duisberg. Constraint-based
tools for building user interfaces. ACM Transac-
tions on Graphics, 5(4):345-374, October 1986.

W. Buxton and R. Sniderman. Iteration in the
design of the human-computer interface. In Pm-
ceedings of the 19th Annual Meeting of the Hu-
man Factors Association of Canada, pages 72-80,
1980.

R. A. Duisberg. Animated graphical interfaces
using temporal constraints. In CID’86 Conference
Proceedings, pages 131-136, ACM, April 1986.

N. Meyrowitz. Intermedia: the architecture and
construction of an object-oriented hypermedia
system and applications framework. In OOP-
SLA’86 Conference Proceedings, pages 186-201,

ACM, September 1986.

B. A. Myers. The Garnet User Interface De-
velopment Environment; A Proposal. Technical

Report CMU-CS-88-153, Carnegie-Mellon Univer-
sity, 1988.

B. A. Myers. Creating highly-interactive
and graphical user interfaces by demonstra-

tion. In ACM Computer Graphics (Siggraph’86),
pages 249-258, ACM, August 1986.

B. A. Myers. Creating interaction techniques by
demonstration. Computer Graphics & Applica-
tions, 7(9):51-60, September 1987.

September 2!5-30,1988 OOPSIA ‘88 Proceedings

1131 3. A. Myers. Creating User Interfaces by Demon-
stration. PhD thesis, University of Toronto, May
1987. (Published by Academic Press, 1988).

[14] R. W. Scheifler and J. Gettys. The X window
system. ACM Tinnsactions on Graphics, 5:79-
109, April 1986.

