

A User-Programmable Vertex Engine
 Erik Lindholm

erikl@nvidia.com

 Mark J Kilgard

mjk@nvidia.com

NVIDIA Corporation

Henry Moreton

moreton@nvidia.com

ABSTRACT

In this paper we describe the design, programming interface, and
implementation of a very efficient user-programmable vertex
engine. The vertex engine of NVIDIA’s GeForce3 GPU evolved
from a highly tuned fixed-function pipeline requiring considerable
knowledge to program. Programs operate only on a stream of
independent vertices traversing the pipe. Embedded in the broader
fixed function pipeline, our approach preserves parallelism
sacrificed by previous approaches. The programmer is presented
with a straightforward programming model, which is supported by
transparent multi-threading and bypassing to preserve parallelism
and performance.

In the remainder of the paper we discuss the motivation behind
our design and contrast it with previous work. We present the
programming model, the instruction set selection process, and
details of the hardware implementation. Finally, we discuss
important API design issues encountered when creating an
interface to such a device. We close with thoughts about the
future of programmable graphics devices.

Keywords

Graphics Hardware, Graphics Systems.

1 INTRODUCTION

 v

e
rt

e
x

fr
a

g
m

e
n

t

Primitive Assembly/Setup

Raster/Texture

Framebuffer Interface

Geometry

Host Interface

Figure 1: Graphics Processing Unit (GPU)

Recent dramatic increases in the computational power of graphics
processing units (GPUs, Figure 1) have been fueled both by
design innovation and the continuing improvement in
semiconductor process technologies. The need for increased

performance has driven, and been driven by increasingly rich
graphics APIs. The motivation behind the creation of the user-
programmable geometry engine described in this paper is two
fold: first, the increasing configurability required by continually
evolving graphics APIs requires a programmable device to
support the combinatorial explosion of mode combinations.
Second, high-performance programmability is an end unto itself.
Given the right programming model, with a sufficient degree of
target processor independence, the need for rapidly evolving
graphics APIs is reduced, and an opportunity is created for
inventiveness unconstrained by fixed-function, modally
configured APIs and hardware. Further, compatibility across
hardware generations and platforms will increase the lifespan and
utility of programs written for geometry processors.

The programming model and design of the geometry engine in the
GeForce3 was guided by several factors: commodity pricing,
design time, area, legacy performance, programmable
performance, programmability, and platform independence.
Ultimately, all of these influence the commercial viability of the
design. Design time obviously determines time to market. Area is
directly linked to product cost. Previously existing applications
must exhibit higher performance on new products. There can only
be a slight performance penalty paid for taking advantage of
programmability. To gain acceptance, the engine must be easy to
program. Finally, to promote adoption across vendors, a standard
interface is required and thus the functionality cannot be too
tightly coupled to a specific hardware implementation; for
example, CPU implementations must be viable.

We provide a taxonomic description of previous programmable
graphics processors, comparing them to our device. We show how
the programming model can be effectively supported by a custom
processor design. We describe how a programmable processing
element can be incorporated into an existing graphics API.
Finally, we illustrate how the programming model and interface
may be used to efficiently implement complex custom effects.

2 PREVIOUS WORK
Geometric calculations have been accelerated for over 30 years,
starting with early flight simulators. Among the best known is the
Geometry Engine [5]. A system was built from 12 instances of the
GE, coupled with a raster subsystem built out of AMD2903s. The
GE was fabricated using a 3µm feature size and housed in a 40-
pin package. The GeForce3 GPU is manufactured using a 0.18µm
process with a ~550-pin package. So while available logic has
increased by a factor of 300, the relative amount of available
bandwidth has only increased by a factor of 14. Note that
increases in clock frequency cancel in this relative measure. We
provide these numbers simply to illustrate that the problem is
continually evolving, and that the natural amount of computation
performed by the GPU today is far more than was performed in
years past, and probably a fraction of what will be appropriate
tomorrow.

The various products and technologies applied to performing the
standard geometry processing tasks can be categorized by a small
number of attributes: technology, arrangement, and
programmability. The technology is one of ASIC, DSP, RISC

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

ACM SIGGRAPH 2001, 12-17 August 2001, Los Angeles, CA, USA
© 2001 ACM 1-58113-374-X/01/08...$5.00

149

CPU, and CPU extensions. Arrangement refers to the approaches
to exploiting parallelism, such as SIMD or MIMD. Each system’s
programmability may be characterized by whether they were
intended for end-user programming, and the relative ease with
which they were programmed.

The only non-parallel implementation, the Stellar GS1000 [4]
used a supercomputer-like vector processor, and was driven by
hand-coded assembly for critical paths.

Pixar’s CHAP [17] and the Ikonas [7] are early examples of fine-
grain SIMD processors, based on the AMD2903, user micro-
codable by skilled programmers. These machines operated in
parallel on pixel and vertex components. The only coarse-grained
SIMD implementation of which we are aware is the geometry
subsystem of the Indigo Extreme [11]. It was implemented using a
hand micro-coded ASIC. The Indigo processed eight triangles in
parallel, stalling if any of the group were clipped, or otherwise
required branching.

Following the original Geometry Engine, the IRIS GT [3] and
The Pixel Machine [24] were the only machines to arrange
floating point DSPs in pipeline fashion. As has been observed by
many, the slowest processor in the pipeline gated these machines’
performance. Since it was only practical to distribute the geometry
tasks statically, the pipelines were inefficient for certain
workloads.

MIMD machines dominate the history of geometry processors. In
each case the individual processors operated on single triangles.
The Raster Tech GX4000 [26],[27] was the earliest example,
followed by Pixel-Planes 5 [10], the DN10000VS [15], Pixel
Flow [19], and the RealityEngine [2]. The GX4000 used a Weitek
floating point DSP, while all but one of the remaining machines
used the I860XP [13], a 64-bit microprocessor. The last of the
MIMD geometry subsystems was the InfiniteReality [23], using a
custom micro-coded ASIC built to exceed the performance
available in third party processors. The InfiniteReality’s processor
was micro-coded in SIMD fashion within each of the processors
in a MIMD array of configurable size.

Alternatives to the above large high-performance machines are the
processor extensions, all of which exploit fine-grained SIMD
parallelism similar to the CHAP and Ikonas. Each of these
exploits the existing resources and clock rate of a general purpose
CPU to deliver high performance. MIPS-3D ASE [18] and
3DNow! [1] perform paired single SIMD floating point
operations. Intel’s SSE instructions [14] express 4-wide SIMD
processing. Motorola’s AltiVec [9] delivers the full 4-wide SIMD
performance. Sony’s Emotion Engine [16] has two 4-wide SIMD
processors. The first is interfaced to the main CPU as a
coprocessor, executing instructions directly from the application’s
instruction stream. The second processor is more loosely coupled,
running loaded subroutines, typically performing standard
geometry processing tasks.

In all cases, experts were required to very carefully craft assembly
code to achieve processor performance approaching theoretical
peaks. Close attention to pipeline latency, hazards, and stall
conditions was necessary to produce good results. While
compilers were generally available, generated code was typically
of inadequate performance.

In contrast to virtually all of these systems, our geometry engine
only exposes the programmability of a small part of the larger
geometry pipeline. Tasks such as vertex load&store, format
conversion, primitive assembly, clipping, and triangle setup occur
completely in parallel, in pipeline fashion. We use 4-wide fine-
grained SIMD floating point to provide the necessary
performance, and run multiple execution threads to maintain
efficiency and provide a very simple programming model.

3 PROGRAMMING MODEL
In this section we describe our programming model for geometry
processing and discuss the design in the areas of input, output,
data path, and instruction set selection. We include the rationale
for choices made in the design process.

3.1 Vertex Processing
There were two main possibilities for processing the vertex
stream: as independent vertices or as part of a geometric
primitive, for example a triangle. The advantage of primitive-level
information is enabling operations such as culling, reducing
processing time. However, we determined that the increased
complexity and loss of parallelism in the primitive processing
model did not justify the perceived benefits. We chose an
independent vertex program model to exploit the parallel nature
of the task, and greatly simplify the resulting programming task.
We preserved the latter stages of the fixed function programming
model, there being no benefit to their programmability. In fact,
incorrect clipping could freeze a hardware rasterizer. As such we
leave frustum clipping, perspective divide, and viewport scale and
bias to subsequent implementation-specific processing. The
programming model is capable of expressing everything in the
fixed function pipeline except user clip planes. We instead
recommend encoding plane distances into texture coordinates and
using fragment level operations to implement this functionality.

3.2 Precision and Data Type
IEEE single precision floating point has been used for many years
as the standard precision for 3D transformations and to keep the
model simple it was adopted as the only data type. The common
data in 3D graphics are 3 and 4 component vectors, for example
position, normal, texture coordinates and colors. The basic data
type is therefore the quad-float vector written as (x,y,z,w).

3.3 Scalar and Vector Handling
It was critical to deal efficiently with scalar packing/extraction
and vector data in this design since the 3D transform pipeline
mixes these operations. Two simple concepts can resolve this:

1. On input, vectors can have their components arbitrarily
rearranged/replicated (swizzled).

2. Any operation generating a scalar must generate that scalar
replicated across all components, and output writes have a
component write mask.

A scalar value in a vector register can be replicated into a vector
through (1), and then stored again as a scalar through (2).
Swizzling is very useful for doing cross products efficiently,
where the source vectors need to be rotated. Another use is
converting constants such as [-1,0,1,2] into others such as
[0,0,1,0] or [-1,-1,-1,1].

3.4 Program Model
The program model is illustrated in Figure 2. The current vertex
attributes are available in the input (source) registers, and the
processed vertex is written into the output (destination) registers.
The constant bank holds transform and light parameters, and the
register file (R) holds temporary results. A function unit (F)
implements the instruction set.

Making the vertex source read-only by the vertex program, and
the destination write-only recognizes the streaming nature of the
design and simplifies implementation.

150

o

a

oc

Constants

(read-only)

ob

Vertex Source

(read-only)

Vertex

Destination

(write-only) oa

swzl
neg

b c

Address

Register

swzl
neg

swzl
neg

F

R
wmaskwmask

Figure 2: Program Model

3.5 Input Attributes
There are 16 quad-float vertex source attribute registers. Fixed
function mode typically requires a position, normal, two colors,
up to eight texture coordinate sets, skin weights, fog, and point
size. These are sent from the host in many formats including
bytes, shorts, integers, and floats, with conversion to floating
point done before the data is accessed. Unspecified attribute
components default to 0.0 for the second and third components,
and 1.0 for the fourth. The attributes are all persistent, that is they
retain their data until they are changed by subsequent API calls,
and are addressed from 0 to 15. An API write to attribute 0 (the
vertex position when in fixed function mode) will invoke the
vertex program. Only one vertex attribute may be read per
program instruction.

To hold constants such as matrices, light positions, and plane
coefficients that are used in typical vertex programs, there is a
memory bank of 96 quad-floats. It may only be loaded before
vertices are processed (for example outside of Begin/End). The
size was chosen based on fixed function memory usage, and to
allow a reasonably large set of matrices for indexed skinning. As
with source attributes, only one constant may be read by one
program instruction. The program may not write to constants
because it would create a dependency between vertices, forcing
serialization causing a serious performance impact.

There is also one integer address register that may be loaded using
an instruction (ARL). This address register allows for indexed
constant reads with out-of-range reads returning the (0,0,0,0)
vector.

The read/write register file is 12 quad-floats in size and allows
three reads and one write per instruction. The size was chosen to
allow reasonably simple modular code design, where some of the
registers would be used for storage of variables across multiple
modules. All registers are initialized to (0,0,0,0) per vertex.

Any vector read may be sourced as multiple operands, and
individually swizzled/negated each time; see Figure 2. Since any
source can be negated, there is no need for a subtract instruction.

3.6 Output Attributes
Since vertex program outputs merge back into the fixed function
pipeline at the homogeneous clip space point, there is a standard
mapping of output attributes. Position is used for clipping. Vertex
color output components are automatically clamped to the range
0.0 to 1.0. There is also a fog distance, and point size output

(clamped, only valid for points). Having a fog output permits
more general fog effects than using the position’s z or w values,
and is interpolated before use as a distance in the standard fog
equations. We allow for up to eight texture coordinate sets that
can be used for traditional texturing as well as more novel effects
in combination with GeForce3’s texture shader and register
combiners per-fragment functionality [20]. Texture coordinates
are assumed to be full precision and range, as well as perspective
correct when used in pixel programs.

All instruction writes have an optional 4-component write mask.

Mnemonic Full Name Description

HPOS
Homogeneous Clip Space
Position

xyzw

COL0 Diffuse color rgba

COL1 Specular color rgba

FOGP Fog distance f***

PSIZ Point size p***

TEX0-7 Texture coordinate strq

Table 1: Output Attributes

All vertex output registers are initialized to (0.0,0.0,0.0,1.0) at the
start of a vertex program. Subsequent writes then apply the output
write mask to update the selected components. This avoids any
problems with undefined outputs, and having to verify raster
subsystem input options.

3.7 Instruction Set
The instruction set consists of 17 operations. These can be
divided into vector, scalar, and miscellaneous operation. We
discuss the instructions selected after explaining the constraints
we chose to impose.

OpCode Full Name Description
MOV Move vector -> vector

MUL Multiply vector -> vector

ADD Add vector -> vector

MAD Multiply and add vector -> vector

DST Distance vector -> vector

MIN Minimum vector -> vector

MAX Maximum vector -> vector

SLT Set on less than vector -> vector

SGE Set on greater or equal vector -> vector

RCP Reciprocal scalar-> replicated scalar

RSQ Reciprocal square root scalar-> replicated scalar

DP3 3 term dot product vector-> replicated scalar

DP4 4 term dot product vector-> replicated scalar

LOG Log base 2 miscellaneous

EXP Exp base 2 miscellaneous

LIT Phong lighting miscellaneous

ARL Address register load miscellaneous

Table 2: Instruction Set

3.7.1 No Branching

The fixed function transform paths in OpenGL[25] and
Direct3D[6] are both controlled by global state that does not
depend on the actual data supplied with each vertex. This allows
for driver optimizations at the time the first vertex is supplied by
the application since all subsequent vertices (until a new state
change) can then share this carefully optimized path. The result is
a code segment that removes state checking and branching. It is
therefore possible to support the full fixed function transform path
(at least to homogenous clip space) without branching. The
decision was therefore made to not support branching, keeping
the hardware as simple as possible. Also, late binding changes in
control flow disrupt pipeline efficiency. Simple if/then/else
evaluation is still supported through sum-of-products using 1.0
and 0.0, which can be generated with SLT and SGE.

3.7.2 Constant Latency

One instruction set constraint we imposed was that our hardware
implementation must issue any instruction per clock and execute

151

all instructions with the same latency, limiting the complexity of
any instruction. This improves programmability and simplifies the
hardware. All operands are immediately available, limiting the
size of register and memory banks.

3.7.3 Instruction Set Rationale

Since we wanted to use the same instruction set for vertex
programs and fixed function (non-programmable) mode, we
started by analyzing the fixed function implementation of a
previous architecture. We found that the equivalents of the MOV,
MUL, ADD, and MAD instructions were used about 50% of the time,
and that the DP3, and DP4 equivalents were used about 40% of the
time. We support dot products for their coding convenience, and
also because as the number of cycles spent on a vertex decreases
over architectural generations, it becomes more important to have
powerful concise instructions. Cross products are also important,
and they can be done via an efficient MUL, MAD sequence with
source vector rotations. For example, R1 = R0×R2 is done as:
 MUL R1, R0.zxyw, R2.yzxw ;

 MAD R1, R0.yzxw, R2.zxyw, -R1;

We support reciprocal (RCP) instead of division due to the constant
latency restriction. The RCP instruction is also scalar since the
main use of it is in the perspective division of w in homogeneous
clip space (done after the vertex program) which involves the
multiply of the (x,y,z) vector with the scalar 1/w.

The reciprocal square root (RSQ) is mainly used in normalizing
vectors to be used in lighting equations. The typical sequence is a
DP3 to find the vector length squared, a RSQ to get the reciprocal
length, and a MUL to normalize the vector. It is very convenient to
use the vector w component for storing the length squared and
reciprocal length values. RSQ is also a scalar operator.

To avoid problems with vector lengths of 0.0 causing RSQ to return
infinity, we mandated that 0.0 times anything be 0.0. This is also
useful in conditional evaluation when multiplying by 0.0. Another
mandate is that 1.0 times anything be the same value.

A major exception to our goal of similar performance in fixed
function and program mode involved lighting. The previous
architecture design has a separate hard-wired lighting engine.
Since it was too hard to expose this engine in program mode, the
decision was made to turn it off when running vertex programs.
Fixed function performance with heavy lighting can therefore be
twice as fast as a comparable vertex program. To alleviate this
problem, two instructions were included: DST and LIT . The DST
instruction assists in constructing attenuation factors of the form:

 (K0,K1,K2) •(1,d,d*d) = K0 + K1*d + K2*d *d

where d is some distance. Since d*d and 1/d are natural
byproducts of the vector normalization process, these values are
input as (NA,d*d,d*d,NA) and (NA,1/d,NA,1/d)) to DST, which
then returns the (1,d,d*d,1/d) vector. The last 1/d term can be
used with a DP4 operation if desired.

The LIT instruction does the fairly complex ambient, diffuse, and
specular calculations with clamping based on N•L, N•H, and the
power p. The calculations are:

Output.x = 1.0; // ambient
Output.y = max(N••L,0.0); // diffuse
Output.z = 0.0; // specular
if (N••L > 0.0 && p == 0.0)
 Output.z = 1.0;
else if (N••L > 0.0 && N••H > 0.0)
 Output.z = (N••H)p;
Output.w = 1.0;

Since LIT implements the specular power function via use of a
log, multiply, and exp sequence, we also decided to expose the
LOG and EXP instructions. Since the power is a variable in the LIT
source, a table needing a pre-known specular power was not an

option. We also wanted an accurate power function conforming to
the cosn model; hence known approximations would not suffice. It
is possible to implement the LIT instruction with about 10 other
instructions, but the performance loss is extreme.

The LOG base 2 instruction returns an output accurate to about 11
mantissa bits as well as two partial results: the exponent and
mantissa of the source scalar. A more accurate user programmed
approximation based on the limited range mantissa can be done
with the result added to the exponent. The EXP base 2 instruction
also returns an output accurate to about 11 mantissa bits as well as
two partial results: two raised to power of floor(source) and
fraction(source). A more accurate user programmed
approximation based on the limited range fraction can be done
with the result multiplied by the power output. The precision of
these instructions was based on the desired 8-bit color precision
of the specular LIT operation. It takes about 10 instructions to
achieve full accuracy LOG and EXP evaluation.

The MIN and MAX operations allow for clamping and absolute value
computations (MAX of source and -source). Related to these are the
SLT and SGE instructions that return 1.0 if the component compare
is true and 0.0 if false.

The ARL instruction was added to allow support of vertex specific
constant access such as a matrix or plane equation. It converts a
floating-point scalar into a signed integer, which can be used as
an offset into the constant memory. Out-of-range reads from the
constant memory return (0,0,0,0).

Sources are negated by prefixing a “-” sign, and can be swizzled
via four optional subscripts that describe the component
rearrangement desired. For example:

MOV R0, - R1.wyzy ;

moves the negated w component of register R1 into the x
component of register R0, moves the negated y and z components
across, and uses the negated y component again to place into the
R0 w component.

The destination of an instruction has an optional write mask of the
desired xyzw components to be written. For example:

ADD R0.xw, R1, R2 ;

updates the x and w components of R0 with sum of R1 and R2.

4 HARDWARE IMPLEMENTATION
4.1 Overview
The hardware implementation of vertex programs is divided into
two main blocks: the vertex attribute buffer (VAB) and the
floating point core.

VAB

Vector FP Core

Vertex In

Vertex Out

Figure 3: Hardware Units

The VAB is responsible for vertex attribute persistence, and the
floating-point core processes the instruction set.

4.2 Attribute Input
Vertex attributes are converted to floating point representation
before arriving at the VAB, which has room for the 16 input
attributes. The contents of each address default to (0.0,0.0,0.0,1.0)

152

when an attribute write arrives, and then overwritten by the valid
data components. This is required since the API allows for
sending less than four components; defaulting the remainder saves
bandwidth into the GPU.

128

128

0 1 n-2 n-1........

VAB

IB

dirty bits

Figure 4: VAB

The VAB drains into a number of input buffers (IB) that are used
to feed the floating-point core in a round-robin fashion. Dirty bits
are maintained in the VAB so that only changed attributes are
updated when the same buffer is again the drain target. The
transfer of a vertex is triggered by a write to address 0,
corresponding to the vertex position in fixed function mode. To
prevent bubbles during simultaneous loading and draining of the
VAB, incoming writes may push out the contents of the target
address, superceding a default drain sequence.

4.3 The Floating-Point Core
The floating-point core is a multi-threaded vector processor
operating on quad-float data. Vertex data is read from the input
buffers and transformed into the output buffers (OB). The latency
of the vector and special function units are equal and multiple
vertex threads are used to hide this latency.

The SIMD Vector Unit is responsible for the MOV, MUL, ADD, MAD,
DP3, DP4, DST, MIN, MAX, SLT, and SGE operations. The Special
Function Unit is responsible for the RCP, RSQ, LOG, EXP, and LIT
operations.

0 1 n-2 n-1........IB

0 1 n-2 n-1........OB

SIMD

Vector

 Unit

Special

Function

Unit

Constant

Memory

Instruction
Memory

Registers

writemask

sw/neg

writemask

sw/negsw/neg

Figure 5: Floating Point Core

The Vector Unit floating-point precision is approximately IEEE.
There is no support for de-normalized numbers or exceptions, and
rounding is always towards negative infinity. The hardware
outputs 0.0 for a multiply with any source of 0.0, including

0.0*infinity and 0.0*NaN. The Special Function Unit calculates
the RCP and RSQ functions to within about 1.5 bits of IEEE
precision using two-pass Newton-Raphson iteration from a seed
table. While lighting may suffice with a lower precision RSQ,
texture and position evaluation can require much higher precision.
It was not felt necessary to provide a low-precision RSQ option.

The hardware accepts one instruction per clock and fully
implements all instruction set input/output options with no
performance penalty. All input vectors are available with no
latency.

5 PROGRAMMING INTERFACES
Given the predominance of OpenGL and Direct3D, the
integration of programmable geometry into these 3D
programming interfaces is vital to its widespread availability and
quick adoption. The discussion below concentrates on how we
integrated programmable geometry into OpenGL through an
extension named NV_vertex_program. Where Direct3D makes
alternative design choices, such choices are noted.

5.1 Design Goals
1. Backward compatibility. Existing OpenGL applications

unaware of programmable geometry should operate
unchanged.

2. Ease of adoption. It should be relatively straightforward to
integrate programmable geometry into an existing
application without overhauling the way in which vertex data
is presented to OpenGL. Moreover, applications should be
able to mix existing fixed function vertex processing with
programmable geometry.

3. Forward focus. In our view, programmable geometry frees
programmers from existing API conventions of what a
“vertex normal” or a “light direction” is; the vertex program
supplies these semantic connections, transcending per-vertex
attributes and vertex-related naming. By not constraining
programmable geometry to existing conventions, we hope
this will encourage novel applications for programmable
geometry, including automatic generation of vertex programs
by higher-level software [22].

4. Preparation to expose future programmability. We believe
that other functionality beyond vertex processing in
OpenGL’s dataflow will eventually be programmable as
well. The programming interface should be amenable to
exposing other types of programmability.

5. Well-defined execution environment. Preliminary feedback
from developers and our own thinking convinced us that an
unconstrained execution environment for programmable
geometry would lead to frustration for developers. Unlike
textures that can usually be down-sampled if too large,
vertex programs that require more instructions, registers, or
other resources that are not available on a given
implementation cannot be easily simplified to cope with
implementation limitations. For this reason, we chose to
require a strict, well-defined execution environment.

5.2 Programming Model
NV_vertex_program augments OpenGL vertex processing with a
new mode known as vertex program mode. Initially, vertex
program mode is disabled. When disabled, vertices are
transformed by OpenGL’s conventional vertex-processing
functionality, consisting of coordinate transformation, vertex
lighting, texture coordinate generation, and user-defined clip
planes.

153

Vertex program state affects the OpenGL dataflow only when
vertex program mode is enabled, so vertex program mode being
initially disabled ensures backward compatibility.

Vertex program mode is enabled as follows

glEnable(GL_VERTEX_PROGRAM_NV);

When enabled, a glVertex command (or equivalent) initiates
vertex program execution. The current vertex program processes
the current 16 vertex attributes and 96 program parameters as
described in Section 3.5. At vertex program completion, the
vertex result registers contain a transformed vertex that is further
processed to screen space and forwarded to primitive assembly.

5.2.1 Vertex Program Objects

Multiple vertex programs are managed via program objects, but
there is a single current vertex program that is initiated when a
vertex is provoked. Program objects are similar to texture objects
and displays lists. Like texture objects, program objects have a
distinct target that indicates its type. NV_vertex_program
supports two targets for program objects:

1. GL_VERTEX_PROGRAM_NV for programs that are initiated
each time a vertex is provoked.

2. GL_VERTEX_STATE_PROGRAM_NV for programs that may
read and update the state of program parameters (see Section
5.2.4).

Program object names are generated and deleted with
glGenProgramsNV and glDeleteProgramsNV .

Program objects are immutable, but may be reloaded or deleted.
Programs are loaded with glLoadProgramNV . For example:

static const char programString[] =
 "!!VP1.0"
 "MOV o[HPOS], v[OPOS];"
 "END";

glLoadProg ramNV(GL_VERTEX_PROGRAM_NV, 7,
 strlen(programString), programString);

This loads program object 7 with the simplest vertex program.
The program merely copies the object-space position to the clip-
space position.

An assembly-style string specifies the program. The program
string must conform to the program target's grammar and a few
semantic restrictions. The restrictions for vertex programs are:

1. The program must write at least one component of the HPOS
vertex result register.

2. The program must contain no more than 128 instructions.

3. Every instruction may source no more than one program
parameter register.

4. Every instruction may source no more than one vertex
attribute register.

The mandatory “!!VP1.0 ” program prefix provides a mechanism
to extend the execution model in the future. A new program
prefix may entail a new and perhaps entirely different execution
model.

The strictness of the vertex program grammar and semantic
restrictions ensures that programs will operate as expected and
that the complete hardware implementation of vertex programs is
tractable.

The decision to represent programs as strings is recognition of the
readability, convenience, and extensibility provided by strings. In
contrast, Direct3D encodes its vertex shaders as byte-codes.
Given the simplicity and short length of vertex programs, the
load-time performance benefits of a byte-code representation are
marginal. Vertex and texture loading overhead in applications

typically dwarfs the overhead involved in string parsing for vertex
program loading.

We expect that most vertex programs will be written in a human
readable form. Building the parser for program strings into
OpenGL eliminates the potential for bugs due to errors in
translation to byte-code. Other approaches such as a
glNewProgram /glEndProgram approach similar to display list
construction were rejected on similar grounds.

Programs with a target of GL_VERTEX_PROGRAM_NV can be
bound as the current vertex program with glBindProgramNV .
For example:

glBindProgramNV(GL_VERTEX_PROGRAM_NV,7);

Hardware implementations of vertex programs are expected to
store vertex program instructions on-chip to meet the required
performance demands, so glRequestProgramsResidentNV
provides a means to request that a small set of programs be
resident at once. Binding among resident programs is faster than
binding to non-resident programs.

We consider the notion of program objects with different targets
to be forward-looking because future OpenGL extensions can use
the same interface for managing programmability. However, we
expect the execution model for programmability may vary
considerably for different aspects of the OpenGL dataflow.

5.2.2 Vertex Attribute Aliasing

The 16 vertex attributes may change both inside and outside of a
glBegin/glEnd pair. These vertex attributes may be specified
by number, using the glVertexAttribNV family of
commands, or vertex arrays. Additionally, these numbered vertex
attributes are aliased with conventional per-vertex parameters as
shown in Table 3.

Vertex attribute aliasing facilitates ease of adoption because
existing OpenGL programs that supply per-vertex data via
OpenGL’s conventional vertex parameters may still take
advantage of vertex programs with fairly minor changes. For
example, a pre-existing OpenGL program that constructs a display
list for a model with glNormal and glVertex commands can
be enhanced to render the display listed model with a cartoon
lighting model implemented as a vertex program. Such a vertex
program would assume vertex attribute 0 contains the vertex
position and vertex attribute 2 contains the vertex normal (see
Table 3). Importantly, rendering with vertex programs requires
no changes to the display list or how the list is constructed.

Vertex attribute aliasing also facilitates forward focus because the
16 vertex attributes can be used without regard to any
conventional usage for these attributes. Though vertex attribute 3
is aliased to the primary color, there is no reason that a vertex

Vertex

Attribute

Register

 Conventional Per-vertex

 Parameter
 Conventional Per-vertex Parameter Command

Conventional

Component

Mapping

0 Vertex position glVertex x,y,z,w

1 Vertex weights glVertexWeightEXT w,0,0,1

2 Normal glNormal

3 Primary color glColor r,g,b,a

4 Secondary color glSecondaryColorEXT r,g,b,1

5 Fog coordinate glFogCoordEXT f,0,0,1

6 - - -

7 - - -

8 Texture coord 0 glMultiTexCoordARB(GL_TEXTURE0…) s,t,r,q

9 Texture coord 1 glMultiTexCoordARB(GL_TEXTURE1…) s,t,r,q

10 Texture coord 2 glMultiTexCoordARB(GL_TEXTURE2…) s,t,r,q

11 Texture coord 3 glMultiTexCoordARB(GL_TEXTURE3…) s,t,r,q

12 Texture coord 4 glMultiTexCoordARB(GL_TEXTUER4…) s,t,r,q

13 Texture coord 5 glMultiTexCoordARB(GL_TEXTUER5…) s,t,r,q

14 Texture coord 6 glMultiTexCoordARB(GL_TEXTUER6…) s,t,r,q

15 Texture coord 7 glMultiTexCoordARB(GL_TEXTUER7…) s,t,r,q

Table 3: Vertex Attribute Aliasing.

154

program has to treat vertex attribute 3 as a color. A vertex
program may treat vertex attribute 3 as a scalar density.
Conventionally, the primary color must be specified as 3 or 4
components, but glVertexAttribute1sNV(3,…) could equally
well supply a single component (of type short).

5.2.3 Program Parameters

The 96 program parameters are specified with the
glProgramParameterNV family of commands that may be
specified only outside of a glBegin/glEnd pair.

The vertex program parameter state is completely independent of
the conventional vertex-processing state such as light positions,
clip planes, and texgen planes. There is no automatic aliasing
between these two sets of state.

However, we anticipated the need for vertex programs to share the
same 4x4 matrices used by conventional vertex processing.
OpenGL provides several matrices (modelview, projection,
texture, etc.) and the ability to transform matrices (glRotate ,
glTranslate , glScale , etc.) as well as pushing/popping
matrix stack entries. Unlike state such as a light’s diffuse color
that can usually be specified, “as is,” matrices can be manipulated
and the inverse and/or transpose versions of a given matrix may
be required. For example, transforming normals to eye space
requires transforming the object-space normals by the inverse
transpose of the modelview matrix.

To improve ease of use, NV_vertex_program can track matrix
state into 4 contiguous designated program constants. For
example, the inverse transpose of the modelview matrix can be
tracked into program parameters 4 through 7 with the command:

glTrackMatrixNV(GL_VERTEX_PROGRAM_NV,
 4, GL_MODELVIEW,
 GL_INVERSE_TRANSPOSE_NV);

Given a matrix tracked this way, eye-space normals for lighting
can be computed as follows:

DP3 R0.x, c[4], v[NRML] ;
DP3 R0.y, c[5], v[NRML] ;
DP3 R0.z, c[6], v[NRML] ;

Additionally, the composite of the modelview and projection
matrices is often used to transform positions directly from object-
space to clip-space. Consider:

glTrackMatriNV(GL_VERTEX_PROGRAM_NV,
 0, GL_MODELVIEW_PROJECTION_NV,
 GL_IDENTITY_NV);

This permits vertex positions to be transformed directly to clip
space as follows:

DP4 o[HPOS].x, c[0], v[OPOS]; DP4 o[HPOS].y, c[1], v[OPOS];
DP4 o[HPOS].z, c[2], v[OPOS]; DP4 o[HPOS].w, c[3], v[OPOS];

OpenGL implementations internally maintain these composed and
inverted matrices, so tracking these matrices into program
constants is straightforward and obviates the application from
manipulating and loading matrices. Our experience is that
OpenGL developers appreciate the convenience of the matrix
tracking facility. Matrix tracking contributes to ease of use
because developers can rely on OpenGL’s existing conventions
for establishing 3D views and hierarchical modeling.

Moreover, NV_vertex_program specifies additional tracking
matrices that serve no other purpose but matrix tracking. Vertex
program may manipulate and track these matrices for their own
purposes. For example, these additional matrices may provide a
set of bone transforms. These extra matrices provide forward
focus by encouraging applications to manage their own 4x4
transforms.

5.2.4 Vertex State Programs

Vertex state programs belong to a second program target
supported by NV_vertex_program. Rather than being initiated
implicitly when a vertex is provoked, vertex state programs are
explicitly executed. Unlike a provoked vertex program, no vertex
is forwarded to primitive assembly. Instead a vertex state
program provides a way to update program parameter registers.

6 EXAMPLES
6.1 Lit Morphing Example
This example shows how to implement a simple morph between a
cube and sphere with one directional light as shown in Figure 6.
Each vertex contains the following data. Cube position and
normal are sent in attributes 0,1 and sphere position and normal
are sent in attributes 2,3. The blend factor is sent in attribute 15
and is only sent once per object. The blend is done in object space
and the lighting in eye space. The cube and sphere consist of
about 2500 vertices each.

The 21-instruction program below implements this example. The
inverse transpose modelview matrix is tracked in program
parameters 12-14, the composite matrix is in 4-7, the normalized
light direction vector is in 20, the normalized half-angle vector is
in 22, the specular power is in 21, and 21 also contains the
ambient, diffuse, and specular color weighting.

blend normal and position
MOV R3, v[3] ;
MOV R5, v[2] ;
ADD R8, v[1], - R3 ;
ADD R6, v[0], - R5 ;
MAD R8, v[15].x, R8, R3 ;
MAD R6, v[15].x, R6, R5 ;

transform normal to eye space
DP3 R9.x, R8, c[12] ;
DP3 R9.y, R8, c[13] ;
DP3 R9.z, R8, c[14] ;

transform position and output
DP4 o[HPOS].x, R6, c[4] ; DP4 o[HPOS].y, R6, c[5] ;
DP4 o[HPOS].z, R6, c[6] ; DP4 o[HPOS].w, R6, c[7] ;

normalize normal
DP3 R9.w, R9, R9 ;
RSQ R9.w, R9.w ;
MUL R9, R9.w, R9 ;

apply lighting and output color
DP3 R0.x, R9, c[20] ;
DP3 R0.y, R9, c[22] ;
MOV R0.zw, c[21] ;
LIT R1, R0 ;
DP3 o[COL0], c[21], R1 ;

Our GeForce3 GPU running at 200MHz is able to process these
vertices at a rate of about 8 million/sec. This includes view
frustum clip check, perspective divide and viewport/depthrange

1.0

0.0

0.6

0.2

Figure 6: Lit morphing example.

155

transform. Assuming the vertex attributes are sent as floats, a
bandwidth of about 400 MB/sec is required into the chip.

6.2 Anisotropic Lighting Example
This example shows how vertex programs can be used to
implement an unconventional per-vertex lighting model. Heidrich
and Seidel [12] describe a lighting model for anisotropic surfaces
that is significantly different than the standard OpenGL lighting
model. Their anisotropic model computes the intensity on an
anisotropic surface for a single light source as

()

••−•−•−
+•−+=

shine
s

selfa

K

K
SKI

d

))(()(1)(1

)(1
22

2

TVTLTVTL

TL

where

0,0

0,1

<•
≥•

=
NL

NL
selfS

and where Ka, Kd, and Ks are the ambient, diffuse, and specular
reflection coefficients; shine is the surface shininess; and L, N, V,
and T are the light, normal, view, and tangent vectors on the
surface (our example assumes eye-space vectors).

The 33-instruction program below evaluates this lighting equation
assuming a directional light source and a local viewer. The
program assumes that tangent vector is sent as texture coordinate
set 0; the modelview-projection composite matrix is tracked in
program parameters 0-3; the modelview matrix is tracked to 4-7;
the inverse transpose modelview matrix is tracked to 8-11;
parameter 30 holds the eye-space light direction; parameter 24
holds [shine, 0, 0, 1], parameter 40 holds Kd, parameter 41 holds
Ka, and Ks is assumed to be (1,1,1).

DP4 o[HPOS].x, c[0], v[OPOS]; DP4 o[HPOS].y, c[1], v[OPOS];
DP4 o[HPOS].z, c[2], v[OPOS]; DP4 o[HPOS].w, c[3], v[OPOS];

P = 4x3(modelview) * OPOS
DP4 R0.x, v[OPOS], c[4] ;
DP4 R0.y, v[OPOS], c[5] ;
DP4 R0.z, v[OPOS], c[6] ;

V = normalize(P)
DP3 R0.w, R0, R0 ;
RSQ R0.w, R0.w ;
MUL R0, R0, R0.w ;

N = inverseTranspose3x3(modelview) * NRML
DP3 R1.x, v[NRML], c[8] ;
DP3 R1.y, v[NRML], c[9] ;
DP3 R1.z, v[NRML], c[10] ;

T = 3x3(modelview) * TEX0 (ie, tangent)
DP3 R2.x, v[TEX0], c[4] ;
DP3 R2.y, v[TEX0], c[5] ;
DP3 R2.z, v[TEX0], c[6] ;

L dot T
DP3 R3.x, c[30], R2;
sqrt(1-(L dot T)^2)
MAD R3.y, R3.x, R3.x, - c[24].w ;
RSQ R3.z, - R3.y ;
MUL R3.y, - R3.y, R3.z ;

L dot N
DP3 R3.w, c[30], R1 ;
(L dot N > 0) ? sqrt(1-(L dot T)^2) : 0
SGE R3.z, R3.w, c[24].y ;
MUL R4.x, R3.z, R3.y ;

V dot T
DP3 R5.x, R0, R2 ;
sqrt(1-(V dot T)^2)
MAD R5.y, R5.x, R5.x, - c[24].w ;
RSQ R5.z, - R5.y ;
MUL R5.y, - R5.y, R5.z ;
(L dot T) * (V dot T)
MUL R5.w, R3.x, R5.x ;
MAD R4.y, R3.y, R5.y, R5.w ;
shininess = c[24].x
MOV R4.w, c[24].x ;
LIT R6, R4 ;

color = Kd * diffuse + specular + Ka
MAD R7, R6.y, c[40], R6.z ;
ADD o[COL0], R7, c[41] ;

Figure 7 shows multiple bouncing balls lit with the described
anisotropic lighting model. Additionally, the rubber floor in the
scene is rendered as a static flat mesh with another vertex program
displacing the mesh when one or more balls contacts or nearly
contacts the floor. The application supplies the ball positions and
radii as program parameters (x,y,z,r). The normals on the
displaced floor are computed and used for lighting the floor.

6.3 Bumpy Shiny Patch Example
In addition to user-programmable vertex processing, GeForce3
also renders higher-order surfaces and provides powerful
texturing and per-fragment operations [20]. This example
describes how vertex programs can be used in combination with
these additional hardware units to implement bump environment
mapping similar to the approach described in [8].

The surface engine evaluates polynomial patches and feeds the
resulting vertices to the geometry engine. Any of the 16 vertex
attributes available as vertex program inputs can be evaluated.
The surface engine can tessellate a Bézier patch and also generate
per-vertex texture coordinates and surface gradients derived from
the surface's bivariate parameterization. These gradients can be
used to form a tangent space basis at patch vertices (the required
normalization and cross product operations are particularly
efficient given our instruction set).

The texture subsystem can fetch a normal from a 2D texture
encoding tangent-space normals (a normal map) [21], expand the
normal to floating-point, and rotate the normal using a 3x3
floating-point matrix supplied via interpolated texture
coordinates. This so-called texel matrix provides a means to rotate
tangent-space normals into a particular cube map orientation. The
texel matrix necessarily varies over the patch because the mapping
between tangent space and the cube map's orientation changes
over the surface. Assuming reasonable tessellation in areas of
high surface curvature, interpolating per-vertex computations to
determine the tangent space basis work well. The rotated normal
feeds a texture look-up into a pre-computed diffuse lighting
solution stored as a cube map. Additionally, the rotated normal
vector and a view vector supplied as an interpolated texture
coordinate vector feed the computation of a reflection vector
(without requiring either normalized view or normal vectors [28]).
This reflection vector feeds another texture look-up into a second
pre-computed cube map texture storing a specular environment
map. Additional per-fragment math combines the diffuse and
specular contributions with a constant ambient contribution and
material parameters to generate a final color for the fragment.

The 27-instruction vertex program below constructs the tangent-
space basis at each vertex of a tessellated patch and then

Figure 7: Anisotropic lighting model and displacing floor.

156

constructs a 3x3 transform from tangent space to cube map space
for use as the texel matrix. The program also computes the view
vector in cube map space. The 3x3 matrix and vector are
combined into a 4x3 matrix that is output as texture coordinates
for use by the properly configured texturing engine. The program
also passes through the (s, t) texture coordinates to address the
normal map texture.

The program assumes that the modelview-projection composite
matrix is tracked in program parameters 0-3; the 3x3 transform
from object space to cube map space is loaded in program
parameters 20-22; the 4x3 transform from negated object space to
cube map space is loaded in program parameters 40-42; the
gradients in terms of the patch's u and v parameters are evaluated
into vertex attributes 1 and 2; and a 2D texture coordinate is
evaluated into first texture coordinate set 0.

DP4 o[HPOS].x, c[0], v[OPOS]; DP4 o[HPOS].y, c[1], v[OPOS];
DP4 o[HPOS].z, c[2], v[OPOS]; DP4 o[HPOS].w, c[3], v[OPOS];

Normalize tangent: R0 = normalize3(v[1])
DP3 R0.w, v[1], v[1] ;
RSQ R0.w, R0.w ;
MUL R0.xyz, v[1], - R0.w ;

Calc normal: R2 = cross(R0,v[2])
MUL R2, R0.zxyw, v[2].yzxw;
MAD R2, R0.yzxw, v[2].zxyw, -R2;

Normalize normal: R2 = normalize(R2)
DP3 R2.w, R2, R2 ;
RSQ R2.w, R2.w ;
MUL R2.xyz, R2, R2.w ;

Calc binormal: R1 = cross(R0,R2)
MUL R1, R0.zxyw, R2.yzxw ;
MAD R1, R0.yzxw, R2.zxyw, -R1;

Concatenate the 3x3 tangent space basis with the
3x3 transform from object space to cube map space
to texture coordinates (s1,t1,r1;s2,t2,r2;s3;t3;r3).
DP3 o[TEX1].x, c[20], R0 ;
DP3 o[TEX1].y, c[20], R1 ;
DP3 o[TEX1].z, c[20], R2 ;
DP3 o[TEX2].x, c[21], R0 ;
DP3 o[TEX2].y, c[21], R1 ;
DP3 o[TEX2].z, c[21], R2 ;
DP3 o[TEX3].x, c[22], R0 ;
DP3 o[TEX3].y, c[22], R1 ;
DP3 o[TEX3].z, c[22], R2 ;

Convert object-space position into cube map-space view
vector and put into (q1,q2,q3)
DP4 o[TEX1].w, v[OPOS], c[40] ;
DP4 o[TEX2].w, v[OPOS], c[41] ;
DP4 o[TEX3].w, v[OPOS], c[42] ;

Output normal map texture coordinate to TEX0
MOV o[TEX0], v[TEX0] ;

Examining the above program, observe how support for
programmable geometry serves as the computational bridge
between the outputs of the surface engine and the fragment-level
data requirements for bump environment mapping.
Programmability allows many variants of the basic technique
described above including interactive control of the bump scale,
convincing refraction effects, and diffuse lighting contributions.

7 CONCLUSIONS
We have presented the design and implementation of the
GeForce3’s user-programmable vertex engine. While the design
evolved from a modally controlled architecture, it supports a
simple yet powerful programming model and preserves the
original design’s efficiency and high performance. Our design
shows that efficiency, performance, and ease of programming
need not be mutually exclusive. In particular, all instructions have
single cycle repeat rate with no penalty for either input swizzling
and sign control or masking of the output. By integrating data
formatting, floating point unit utilization and overall performance
is maximized in a single-issue implementation.

We view vertex processing as an evolutionary step toward greater
GPU programmability. Our future work will focus on increased
programmability of geometry processing, and programmable

fragment processing. We also expect to see the development of
shading languages that automatically exploit GPU
programmability [22].

8 ACKNOWLEDGEMENTS
We are grateful to the following individuals for their contributions
to the design and implementation of the GeForce3’s vertex
engine: Simon Moy, David Kirk, John Montrym, Steve Glanville,
and Chas Boyd. Thanks to Andrew Webster and Cass Everitt for
the examples in Sections 6.2 and 6.3. We thank Bill Mark, Doug
Voorhies, and our anonymous reviewers for their help improving
this paper.

9 REFERENCES
[1] Advanced Micro Devices. 3DNow Technology Manual.

www.amd.com/K6/k6docs/pdf/21928.pdf

[2] Kurt Akeley. RealityEngine Graphics. In James T. Kajiya, editor,
SIGGRAPH 93 Conference Proceedings, Annual Conference Series,
pages 109–116. ACM SIGGRAPH, Addison Wesley, August 1993.

[3] Kurt Akeley and Tom Jermoluk. High Performance Polygon
Rendering. In John Dill, editor, Computer Graphics (SIGGRAPH 88
Conference Proceedings), volume 22, pages 239-246. Addison
Wesley, August 1988.

[4] Brian Apgar, Bret Bersack, and Abraham Mammen. A Display
System for the Stellar Graphics Supercomputer Model GS1000.
In John Dill, editor, Computer Graphics (SIGGRAPH 88
Conference Proceedings), volume 22, pages 255-262. Addison
Wesley, August 1988.

[5] James H. Clark. The Geometry Engine: A VLSI Geometry System
for Graphics. In R. Daniel Bergeron, editor, Computer Graphics
(SIGGRAPH 82 Conference Proceedings), volume 16, pages 127 -
133. Addison Wesley, July 1982.

[6] DirectX Home. http://www.microsoft.com/directx

[7] Nick England. A Graphics System Architecture for Interactive
Application-Specific Display Functions. IEEE Computer Graphics
and Applications, 6(1): 60-70, January 1986.

[8] I. Ernst, D. Jackèl, H. Rüsseler, O. Wittig, Hardware Supported
Bump Mapping: A Step towards Higher Quality Real-Time
Rendering, 10th Eurographics Workshop on Graphics Hardware,
August 28-29, 1995, pp. 63-70.

[9] Sam Fuller. Motorola’s AltiVec Technology. Motorola Inc.

Figure 8: Bump environment mapping.

157

[10] Henry Fuchs, John Poulton, John Eyles, Trey Greer, Jack
Goldfeather, David Ellsworth, Steve Molnar, Greg Turk, Brice
Tebbs, and Laura Israel. Pixel-Planes 5: A Heterogeneous
Multiprocessor Graphics System Using Processor-Enhanced
Memories. In Jeffrey Lane, editor, Computer Graphics (SIGGRAPH
89 Conference Proceedings), volume 23, pages 79-88. Addison
Wesley, July 1989.

[11] Chandlee Harrell and Farhad Fouladi. Graphics Rendering
Architecture for a High Performance Desktop Workstation. In James
T. Kajiya, editor, SIGGRAPH 93 Conference Proceedings, Annual
Conference Series, pages 93–100. ACM SIGGRAPH, Addison
Wesley, August 1993

[12] Wolfgang Heidrich and Hans-Peter Seidel, Efficient Rendering of
Anisotropic Surfaces Using Computer Graphics Hardware, Image
and Multi-dimensional Digital Signal Processing Workshop, 1998

[13] Intel. I860 Microprocessor Family. Programmer’s Reference
Manual. 1992. ISBN 1-55512-165-9.

[14] IA-32 Intel Architecture Software Developer’s Manual Volume2:
Instruction Set Reference. Copyright 1997-2000 Intel Corporation.

[15] David Kirk and Douglas Voorhies. The Rendering Architecture of
the DN10000VS. In Forest Baskett, editor, Computer Graphics
(SIGGRAPH 90 Conference Proceedings), volume 24, pages 299–
307. Addison Wesley, August 1990.

[16] A. Kunimatsu, N. Ide, T. Sato, Y. Endo, H. Murakami, T. Kamei,
M. Hirano, M. Oka, A. Ohba, T. Yutaka, T. Okada, and M. Suzuoki.
5.5 GFLOPS Vector Units for Emotion Synthesis. Conference
Record, Hot Chips 11, August 15-17, 1999, Stanford University,
Palo Alto, California.

[17] Adam Levinthal and Thomas Porter. Chap – A SIMD Graphics
Processor. In Hank Christiansen editor, Computer Graphics
(SIGGRAPH 84 Conference Proceedings), volume 18, pages 77–82.
Addison Wesley, July 1984.

[18] MIPS Technologies Inc. MIPS-3D ASE: 3D Graphics Application
Specific Extension. www.mips.com/products/3d.pdf

[19] Steven Molnar, John Eyles and John Poulton. PixelFlow: High-
Speed Rendering Using Image Composition. In Edwin E. Catmull,
editor, Computer Graphics (SIGGRAPH 92 Conference
Proceedings), volume 26, pages 231–240. Addison Wesley, July
1992.

[20] NVIDIA Corporation, NVIDIA OpenGL Extension Specifications,
Mark Kilgard, editor, May 2001. http://www.nvidia.com/developer

[21] Mark Peercy, John Airey, Brian Cabral, Efficient Bump Mapping
Hardware, Computer Graphics (SIGGRAPH 97 Conference
Proceedings), pages 303-306. Addison Wesley, August 1997.

[22] Kekoa Proudfoot, William Mark, Svetoslav Tzvetkov, and Pat
Hanrahan. A Real-Time Procedural Shading System for
Programmable Graphics Hardware, Computer Graphics
(SIGGRAPH 2001 Conference Proceedings), Addison Wesley,
August 2001.

[23] John Montrym, Daniel Baum, David Dignam and Chris Migdal.
InfiniteReality: A Real-Time Graphics System. In Turner Whitted,
editor, SIGGRAPH 97 Conference Proceedings, Annual Conference
Series, pages 293–302. ACM SIGGRAPH, Addison Wesley, August
1997.

[24] Michael Potmesil and Eric Hoffert. The Pixel Machine: A Parallel
Image Computer. In Jeffrey Lane, editor, Computer Graphics
(SIGGRAPH 89 Conference Proceedings), volume 23, pages 69–78.
Addison Wesley, July 1989.

[25] Mark Segal and Kurt Akeley. The OpenGL Graphics System: A
Specification (Version 1.2.1). www.opengl.org

[26] John Torborg. A parallel processor architecture for graphics
arithmetic operations. In Maureen C. Stone, editor, Computer
Graphics (SIGGRAPH 87 Conference Proceedings), volume 21,
pages 197–204. Addison Wesley, July 1987.

[27] Channing Verbeck. Personal communication. December 2000.

[28] Douglas Voorhies, Jim Foran, Reflection Vector Shading Hardware,
Computer Graphics (SIGGRAPH 94 Conference Proceedings),
pages 163-166. Addison Wesley, July 1994.

Indexed matrix skinning of a running jester. Executing a single static
display list renders each jester instance. Each vertex contains a position, a
normal, 2D texture coordinate, and 4 matrix index/weight pairs. The vertex
program uses relative addressing to transform and weight each vertex position
and normal by its appropriate matrix set. The animation is accomplished by
varying matrices stored as program constants. Credit: Sebastien Domine.

Dynamic cloth simulation with mesh deformation, bump mapping, and
simple ray tracing. The vertex program displaces the flag’s mesh away from
the ball when contact would otherwise occur. The same program does bump
mapping setup for the flag’s surface. The program also computes a local
reflection (circled in the image) of the green ball via ray casting. Written in
DirectX 8. Credit: Doug Rogers.

Chromatic aberration through a bunny in the Uffizi Gallery, Florence. A
vertex program computes three pseudo-refraction vectors for red, green, and
blue, each with a different index of refraction. Each refraction vector samples
a single RGB environment cube map. The red, green, and blue contributions
from each environment map access are combined. A fourth cube map texture
access contributes conventional RGB environment mapping using a reflection
vector also computed by the vertex program. Credit: Simon Green.

158

