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INVITED SURVEY PAPER

A User’s Guide to Compressed Sensing for Communications

Systems

Kazunori HAYASHI†a), Masaaki NAGAHARA†b), and Toshiyuki TANAKA†c), Members

SUMMARY This survey provides a brief introduction to compressed

sensing as well as several major algorithms to solve it and its various appli-

cations to communications systems. We firstly review linear simultaneous

equations as ill-posed inverse problems, since the idea of compressed sens-

ing could be best understood in the context of the linear equations. Then,

we consider the problem of compressed sensing as an underdetermined lin-

ear system with a prior information that the true solution is sparse, and

explain the sparse signal recovery based on ℓ1 optimization, which plays

the central role in compressed sensing, with some intuitive explanations on

the optimization problem. Moreover, we introduce some important prop-

erties of the sensing matrix in order to establish the guarantee of the exact

recovery of sparse signals from the underdetermined system. After summa-

rizing several major algorithms to obtain a sparse solution focusing on the

ℓ1 optimization and the greedy approaches, we introduce applications of

compressed sensing to communications systems, such as wireless channel

estimation, wireless sensor network, network tomography, cognitive radio,

array signal processing, multiple access scheme, and networked control.

key words: compressed sensing, sparse signal, compressible signal, ℓ1-

norm, underdetermined system

1. Introduction

Sparse reconstruction using the minimization of ℓ1-norm,

which we call ℓ1 optimization, has been receiving a lot

of attention triggered by studies on compressed sensing

(also known as compressive sensing or compressive sam-

pling) [1]–[3], where the problem is to reconstruct a finite-

dimensional sparse vector based on its linear measurements

of dimension smaller than the size of the unknown sparse

vector. It is true that there have been several works which

utilize sparsity or the ℓ1 optimization before compressed

sensing, such as Logan’s phenomenon [4], the matching

pursuit [5], overcomplete representations in the context of

wavelet transforms [6], [7], and the least absolute shrink-

age and selection operator (Lasso) [8], [9]. Moreover, many

conventional signal processing techniques, such as dimen-

sionality reduction via principal component analysis, as well

as the subspace method, have utilized the fact that signals of

interest can often be represented by using not all but only

a few elements of a basis, which is nothing but sparsity of

signals. However, the reason for the current explosion of re-

searches related to the sparsity of signals and/or systems will
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be that they have successfully shown that sparse signals∗

can be reconstructed from a small number of non-adaptive

linear measurements by using optimization algorithms with

practical computational complexity. Compressed sensing is

related to one of the fundamental problems in information

and signal processing, and is based on the assumption of the

sparsity in some transform domain, which is valid for a lot

of signals around us. We are therefore sure that it is not just

a passing fad and will be on every future textbook in the field

of signal processing or communication theory as Shannon’s

sampling theory [10] is on every current textbook.

This paper provides a brief introduction to compressed

sensing as well as several major algorithms to solve it and

its various applications to communications systems, assum-

ing readers to be potential users of compressed sensing and

to be in the field of communications. Although there are

several approaches to introduce compressed sensing, we be-

lieve that it could be best understood in the context of linear

simultaneous equations, especially those in the field of com-

munications. Thus, we firstly review the linear equations as

ill-posed (i.e., over- or under-determined) inverse problems

both with and without measurement noise. Then, we con-

sider the problem of compressed sensing, namely, the in-

verse problem of the underdetermined linear equations with

a prior knowledge that the true solution is sparse, and ex-

plain the sparse signal recovery based on ℓ1 optimization,

which plays the central role in compressed sensing, with in-

tuitive explanations on the optimization problem. Moreover,

we introduce some important properties of the sensing ma-

trix (i.e., the matrix of coefficients of the linear equations),

such as the restricted isometry property (RIP), the spark, the

null space property (NSP), the neighborliness, and the mu-

tual coherence, as well as the treatment via random matrix

ensembles, which are used to provide necessary and/or suf-

ficient conditions for the recovery of the sparse signals from

the underdetermined linear system.

After the introduction of basic ideas of compressed

sensing above, we explain major concrete algorithms to ob-

tain a sparse solution, which are roughly classified into two

approaches: a convex relaxation based ℓ1 optimization ap-

proach and a greedy approach. Furthermore, we introduce

various examples of applications of compressed sensing to

communications systems. Since it is almost impossible to

∗In the basic framework of compressed sensing, the recon-
struction of a finite dimensional vector is commonly considered.
Thus, in this paper, “signals” denotes discrete signals or vectors,
unless otherwise stated.
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Fig. 1 Quick courses for readers, who are interested only in applications,

algorithms, or some basic theoretical aspects.

cover all examples of the applications proposed so far, we

focus on some topics, in which we believe successful appli-

cations can be found, such as sparse wireless channel esti-

mation, data gathering problem in wireless sensor network,

delay and loss tomographies in network, spectrum sensing

in cognitive radio systems, direction-of-arrival (DOA) esti-

mation in array signal processing, multiple access schemes,

and data compression for networked control.

The rest of the paper is organized as follows. In Sect. 2,

as preliminaries, we define some norms and terms to be used

in the paper. In Sect. 3, we review conventional approaches

to cope with ill-posed linear simultaneous equations with-

out assuming the sparsity of the solution. In Sect. 4, a brief

introduction to compressed sensing is provided more em-

phasizing methodologies but with some analytical aspects,

which users of compressed sensing should know. Sections 5

and 6 respectively introduce several algorithms to solve the

problem of compressed sensing and various applications to

communications systems. After providing some surveys, tu-

torials and books for further studies in Sect. 7, we conclude

this paper in Sect. 8.

In addition, quick courses for readers, who are inter-

ested only in applications, algorithms, or some basic theo-

retical aspects, are summarized in Fig. 1. Some sections of

this survey can be omitted depending on reader’s interest.

2. Preliminaries

2.1 ℓp-norm

In the analysis or algorithms of compressed sensing, we en-

counter various norms, while we usually use the Euclidean

(ℓ2-) norm in the conventional problems of communications.

Thus, let us firstly define some norms.

The ℓp-norm of a vector x = [x1, . . . , xn]T ∈ Rn is de-

fined for p ≥ 1 as

||x||p =
⎛

⎜

⎜

⎜

⎜

⎜

⎝

n
∑

i=1

|xi|p
⎞

⎟

⎟

⎟

⎟

⎟

⎠

1
p

, (1)

where [·]T denotes the transpose.

One can use the same formula (1) to define a norm-like

quantity for 0 < p < 1. The resulting quantity ‖ · ‖p for 0 <

p < 1 is no longer a norm in the mathematical sense since it

does not satisfy the triangle inequality† (so it is sometimes

called a quasi-norm). Nevertheless, it is frequently used in

the context of compressed sensing.

We can furthermore consider ||x||0, which is not even a

quasi-norm, defined as

||x||0 = | supp(x)|, (2)

where supp(x) = {i : xi � 0} and | supp(x)| is the cardinality

of supp(x). By convention, we call it the ℓ0-norm.

2.2 Sparse and Compressible Signals

Sparsity of signal is the central theme of this paper. A signal

x ∈ Rn is said to be sparse (or exactly sparse) if most of the

elements are exactly equal to zero, i.e., ||x||0 ≪ n. A signal

x is said to be k-sparse when it has at most k nonzeros, i.e.,

||x||0 ≤ k. Also, we define the set of all k-sparse signals as

Σk = {x : ||x||0 ≤ k}. (3)

The set Σk is not convex, because, for some x, z ∈ Σk, we

have x + z � Σk (note that we have x + z ∈ Σ2k). Also, it

should be noted that a signal x might be k-sparse in a certain

representation using some pre-determined basis Φ, i.e., x =

Φc where c ∈ Σk, instead of the signal x itself. In some

cases, such x is still said to be k-sparse.

In practical situations, it will be quite rare to meet

exactly sparse signals. Instead, we will encounter signals

most entries of which are approximately zero. The sig-

nals, which can be well-approximated by sparse signals,

are called compressible (also called approximately sparse

or relatively sparse). The compressibility of a signal x can

be evaluated by the error induced by the best approximation

with x̂ ∈ Σk as

σk(x)p = min
x̂∈Σk

||x − x̂||p. (4)

3. Linear Equations Review

We begin with the review of a linear system having m equa-

tions and n unknowns as

y = Ax, (5)

where A ∈ Rm×n, x ∈ Rn and y ∈ Rm, assuming that both A

and y are exactly known. Hereafter, we call y a measurement

vector, and A a sensing matrix. The term of linear measure-

ment means that each element of y is obtained as the inner

†A norm should satisfy: (i) ||x|| = 0 ⇔ x = 0, (ii) ||αx|| =
|α| ||x||, ∀α ∈ R, (iii) ||x + y|| ≤ ||x|| + ||y||.
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product between the unknown vector x and each row vector

of A. Note that we do not assume the sparsity of x in this

section.

We firstly consider the case with n = m and A is non-

singular (if A is singular then it corresponds to the case with

n > m to be discussed later). In this case, since A−1 exists,

we can obtain a unique solution x satisfying (5), by multi-

plying A−1 to both sides of (5) from the left, as

x = A−1y. (6)

The case with n < m, where the number of the equa-

tions (measurements) is greater than the number of un-

knowns, is basically the same as the previous situation, if

the measurements are not contaminated with noise. Assum-

ing A to be of full column rank, the true solution is obtained

by

x = (ATA)−1ATy. (7)

This can be easily verified by substituting into (7) the singu-

lar value decomposition (SVD) of A given by

A = U

[

Ξ

0(m−n)×n

]

VT, (8)

where U and V are orthogonal matrices of size m × m and

n×n, respectively, where Ξ is a diagonal matrix of size n×n

with its diagonal elements equal to the singular values of A,

and where 0(m−n)×n is a zero matrix of size (m − n) × n.

On the other hand, in the case of n > m, where the

number of measurements is less than that of unknowns, the

system (5) of linear equations is underdetermined, with its

solution no longer unique. This is because there exist in-

finitely many vectors z in the null space of A, which is de-

fined as

N(A) = {z : Az = 0}, (9)

such that x+z with an arbitrary z ∈ N(A) satisfies (5), where

x denotes the “true” solution. Thus, we have infinitely many

candidates of the solution in this case. Such a problem is

called an ill-posed inverse problem. A common approach

taken to choose one solution from the candidates is regu-

larization, where the solution is chosen by penalizing (or

minimizing) the norm of the candidates. A typical choice of

the norm is the squared ℓ2-norm ||x||2
2
, and the regularization

problem is formulated as

x̂MN = arg min
x
||x||22 subject to Ax = y, (10)

where MN stands for “minimum norm.” The optimization

problem (10) can be analytically solved by the method of

Lagrange multipliers. Define the Lagrange function L(x)

for (10) by

L(x) = ||x||22 + λT(Ax − y)

= xTx + xTATλ − yTλ. (11)

Since the Lagrange function L(x) is a quadratic function of

x, one can minimize it by considering the condition that its

derivative with respect to x vanishes

∂L(x)

∂x
= 2x + ATλ = 0, (12)

to obtain

x̂MN = −
1

2
ATλ. (13)

By substituting x̂MN into the constraint of Ax = y, one can

specify the values of the Lagrange multipliers as

λ = −2(AAT)−1y. (14)

Finally, we obtain

x̂MN = AT(AAT)−1y, (15)

which is called the minimum-norm solution. It should be

noted here that x̂MN will be different from the true solution

in general (that is why we use the symbol x̂MN to distinguish

it with x). Also, note that ℓ2-norm is not the unique choice

for the cost function to be minimized in the regularization

formalism, even though the minimum-norm solution x̂MN

could be satisfactory for several practical purposes. Actu-

ally, this can be considered as a motivation to use ℓ0- or

ℓ1-norm, which leads to compressed sensing.

So far, we have assumed noise-free cases. Measure-

ments available in practical systems are, however, often con-

taminated with some form of noise and hence the equation

(5) does not hold exactly. In particular, if n < m, the mea-

surement vector y might not be included in the image (or

equivalently, the column space) of A, that is, (5) has no so-

lution in general. A familiar way to cope with this problem

is to rely on the method of least squares (LS), where the

optimization problem is given by

x̂LS = arg min
x
||Ax − y||22. (16)

Since the cost function can be expanded as

||Ax − y||22 = xTATAx − 2xTATy + yTy, (17)

and is quadratic, one can, once again, minimize it by con-

sidering the condition that its derivative with respect to x

vanishes

∂

∂x
||Ax − y||22 = 2ATAx − 2ATy = 0, (18)

yielding the LS solution

x̂LS = (ATA)−1ATy, (19)

where we have assumed ATA to be non-singular, and hence

n ≤ m. Note that, if y is noise-free, x̂LS coincides with the

true solution in (6) or (7) for n = m and n < m, respectively,

as they have exactly the same form.

For the case with n > m, (19) is not available for

uniquely determining the solution, because we still have in-

finitely many candidates of the solution, which makes the
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cost function of (16) to be zero, regardless of the existence

of the noise, while x̂MN is applicable for this case as well.

Another approach might be the utilization of the regularized

LS method, which considers the optimization problem of the

form

x̂rLS = arg min
x

(

||Ax − y||22 + λ||x||22
)

, (20)

where the regularization parameter λ is to control the bal-

ance between the squared error and ℓ2-norm of the solution.

Since we have

∂

∂x

(

||Ax − y||22 + λ||x||22
)

= 2ATAx − 2ATy + 2x, (21)

∂||Ax−y||2
2
+λ||x||2

2

∂x
= 0 yields the regularized LS solution

x̂rLS = (λI + ATA)−1ATy. (22)

Note that x̂rLS is applicable also to the case with n ≤ m.

4. Compressed Sensing

Compressed sensing is a method to obtain a unique solution

from an underdetermined linear system taking advantage of

the prior knowledge that the true solution is sparse. In this

section, we consider the linear simultaneous equations

y = Ax, (23)

assuming n < m and ||x||0 ≪ n. Here, we call A a sensing

matrix again, while it is also referred to as a (overcomplete)

dictionary, with its columns being called atoms. Note that

if x is sparse in some pre-determined basis as x = Φc where

||c||0 ≪ n, then we have

y = Ax = AΦc, (24)

and AΦ is regarded as the sensing matrix in what follows.

4.1 Signal Recovery via ℓ1 Optimization

A natural and straightforward approach to obtain a sparse

solution from the underdetermined system (23) will be for-

mulated as the optimization problem of

x̂ℓ0 = arg min
x
||x||0 subject to Ax = y, (25)

which is called ℓ0 optimization problem. Although the prob-

lem is similar to that in (10) superficially, the problem in

(25) is far more difficult to solve because of the discrete and

the non-convex natures of ℓ0-norm.

The convention used here is to replace ||x||0 with ||x||1,

which is a convex function, as

x̂ℓ1 = arg min
x
||x||1 subject to Ax = y. (26)

It should be noted that the problem in (26) can be ob-

tained by replacing the squared ℓ2-norm in the conventional

approach in (10) with ℓ1-norm. The problem in (26) is

tractable, since it can be posed as a linear programming

(LP) problem. Actually, if we define nonnegative vectors

u = [u1, . . . , un]T and v = [v1, . . . , vn]T as

ui =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

xi if xi > 0

0 otherwise
(27)

vi =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−xi if xi < 0

0 otherwise
(28)

then we have x = u − v. The ℓ1-norm of x can then be

represented as a linear function of z = [uT, vT]T, as

||x||1 = 1T
n (u + v) = 1T

2nz, (29)

where 1n is the all-one vector of size n × 1. The constraint

Ax = y can also be represented as a form that is linear in

terms of z by noting

Ax = A(u − v) = [A,−A]z. (30)

Therefore, the problem in (26) can be rewritten as

ẑ = arg min
z

1T
2nz subject to [A,−A]z = y and z � 0,

(31)

where � stands for the element-wise inequality. The opti-

mization problem in (31) has the standard structure of LP.

An alternative LP formulation is obtained by rewriting

the problem (26) as

x̂ = arg min
x,t

1T
n t subject to − t � x � t and Ax = y.

(32)

It is straightforward to observe that (32) reduces to (31) by

letting x = u − v and t = u + v.

One might ask the validity of the relaxation of the ℓ0-

norm with the ℓ1-norm. Although analytical justification

is given in Sect. 4.2, an intuitive understanding that the ℓ1-

norm can promote a sparse solution can be obtained by the

shape of the ℓp-ball shown in Fig. 2. In the figure, assuming

x ∈ R2, signal recovery methods using ℓ1-norm and ℓ2-norm

are illustrated, where the solid lines stand for the linear con-

straint and the dotted lines are the ℓp-ball with p = 1 and

2 when they touch the lines corresponding to the constraint.

Thus, the points of x̂ in the figure show the solutions that

minimize the cost functions for the two cases (p = 1 and

p = 2). From the observations, it can be understood that if

we employ the ℓ1-norm, the solution tends to be on one of

the two axes depending on the linear constraint, whereas for

the case with ℓ2-norm, the solution will have nonzero values

for both elements in x̂ in general.

When the measurements include noise, we can also

consider other optimization problems with different con-

straints. If the noise is bounded, a natural choice will be

x̂ℓ1 = arg min
x
||x||1 subject to ||Ax − y||2 ≤ ǫ, (33)
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Fig. 2 Intuitive illustrations of signal recovery using ℓp-norm (p = 1, 2).

Dotted line stands for ℓp-ball (i.e., a contour of constant value of ||x||p)

when it touches the linear constraint of y = Ax and x̂ is the corresponding

solution.

where ǫ > 0 is a given constant. Note that this recov-

ery problem can provide a certain guarantee not only for

the case with the bounded noise but also for the case with

Gaussian noise under some conditions on the sensing ma-

trix [11], [12].

The constrained optimization problem in (33) can be

recast into the unconstrained optimization problem

x̂ℓ1-ℓ2 = arg min
x

(

1

2
||Ax − y||22 + λ||x||1

)

, (34)

which is sometimes called an ℓ1-ℓ2 optimization problem.

One can also regard the problem in (34) as the modified ver-

sion of the conventional approach in (20), where the squared

ℓ2-norm in the regularization term is replaced with ℓ1-norm.

With an appropriate choice of the parameter λ, the problem

in (34) will yield the same solution as that in (33). However,

the value of λ in the problem (34) that corresponds to the

value of ǫ in the problem (33) in the sense that these two

problems share the same solution is not known a priori in

general. It should be noted that the Lasso estimator [8], [9]

often appears in the form of the ℓ1-ℓ2 optimization (34) in

the literature. The original definition of the Lasso in [8] is,

however, a constrained optimization problem given by

x̂Lasso = arg min
x
||Ax − y||22 subject to ||x||1 ≤ t, (35)

where t > 0 is a given constant. Once again, it is true that

(34) and (35) are equivalent with an appropriate choice of

t given λ and vice versa. While the selection of λ (or ǫ, t)

has a large impact on the reconstruction performance, sur-

prisingly enough, solutions for all λ can be obtained with

almost the same computational complexity as solving for

only one value of λ by a homotopy-type path-following al-

gorithm called the least angle regression (LARS) algorithm

[13], [14]. In addition, from a view point of Bayesian ap-

proach, (34) can be regarded as the maximum a posteriori

(MAP) estimator when the additive noise is white Gaussian

and the Laplacian prior ∝ exp(−λ||x||1) is imposed on the

unknown vector x.

4.2 Properties of Sensing Matrix

4.2.1 Overview

Whether or not one can recover a sparse vector x from a

measurement vector y depends on several factors, including

the sensing matrix A, the sparse vector x itself, and the al-

gorithm used for recovering x. Although these factors are

not independent of each other, it has been recognized that

arguing properties of the sensing matrix A is useful in sev-

eral respects. One reason is that in many applications we

have control only on the measurement processes. Another

reason is that one would like to know whether the recovery

with an algorithm will be successful for all (or almost all)

sparse vectors x. In this subsection, we address some im-

portant properties of the sensing matrix used in the analysis

of compressed sensing.

4.2.2 Restricted Isometry Property (RIP)

One of the most well-known properties of the sensing ma-

trix is the restricted isometry property (RIP) introduced by

Candes and Tao [2]:

Definition 4.1 (Restricted Isometry Property (RIP)): A

matrix A satisfies the RIP of order k if there exists a constant

δk ∈ (0, 1) such that

(1 − δk)||x||22 ≤ ||Ax||22 ≤ (1 + δk)||x||22 (36)

for any x ∈ Σk.

As discussed in Sect. 3, the solution of a linear equa-

tion Ax = y is non-unique if and only if the null spaceN(A)

of A is non-trivial (i.e., not equal to {0}). We typically have

n > m in the context of compressed sensing, in which case

N(A) is always non-trivial. But since we can assume that

the true vector is sparse, then, for the purpose of guarantee-

ing uniqueness of the sparse solution of the linear equation

Ax = y, it might be reasonable to think about something like

Nk(A) = {z : Az = 0, z ∈ Σk} (37)

in place of the full null space N(A). The RIP given in

Definition 4.1 goes a bit further and quantifies the degree

of isometry of the operation of A on any k-sparse vectors.

Here, δk < 1 implies Nk(A) = {0}, and smaller values of

δk suggest how far we are from the non-uniqueness of the

solution of the linear equation Ax = y.

Investigating properties of the sensing matrix A on the

set Σk is equivalent to studying properties of submatrices

of A in the following sense. If we knew the support Λ =

supp(x) of x ∈ Σk, then we could apply the method of LS

in (19) with the submatrix AΛ of A formed by collecting

the columns of A whose indices are in Λ, provided that the

linear system with the submatrix AΛ is well-posed (such an

estimator is called an oracle estimator). The RIP can then

be considered as the condition that imposes well-posedness
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to any submatrix AΛ with |Λ| = k. Indeed, the RIP constant

δk is given in terms of the maximum and minimum singular

values of all the submatrices {AΛ : |Λ| ≤ k}.
The RIP has been used to establish sufficient conditions

of the recovery for a lot of scenarios including the case with

noisy measurements. As an example, we have a following

theorem for noiseless recovery.

Theorem 4.1: [11] Let A be a sensing matrix that satisfies

the RIP of order 2k with the constant δ2k <
√

2 − 1. Then,

the solution x̂ℓ1 to (26) obeys

||x̂ℓ1 − x||2 ≤ C0

σk(x)1√
k
, (38)

where

C0 = 2
1 − (1 −

√
2)δ2k

1 − (1 +
√

2)δ2k

. (39)

Thus, for any exactly sparse signal x ∈ Σk, the exact recov-

ery is possible by the ℓ1 optimization if the sensing matrix

satisfies the RIP of order 2k with the constant δ2k <
√

2 − 1.

The sufficient condition δ2k <
√

2 − 1 = 0.414 for the

exact recovery of arbitrary k-sparse signals via the ℓ1 opti-

mization has further been refined in subsequent studies: For

example, Foucart and Lai have improved it to δ2k < 0.4531

[15], and Cai et al. have obtained δ2k < 0.472 [16] and

δk < 0.307 [17].

Although it is unquestionable that the RIP has been one

of key issues in the theoretical development of compressed

sensing, there are two major drawbacks with the RIP; 1)

the RIP only gives a sufficient condition for the recovery,

which may not be tight, and 2) it is typically very difficult

to verify whether a given matrix satisfies the RIP or not,

or to calculate the corresponding constant. This motivates

exploration of other properties of the sensing matrix.

4.2.3 Null Space Property (NSP)

In order to guarantee the exact recovery of exactly sparse

signals x ∈ Σk from y = Ax, it is necessary that, for any

pairs of distinct vectors x, x′ ∈ Σk, we have Ax � Ax′. Since

Ax � Ax′ implies A(x − x′) � 0 and we have x − x′ ∈ Σ2k,

it is proved that there exists at most one x ∈ Σk such that

y = Ax if and only ifN(A)∩Σ2k = {0}. Moreover, one of the

equivalent conditions to this is that the smallest number of

columns from A that are linearly-dependent, which is called

the spark of A and is denoted by spark(A), is greater than 2k

[18].

In order to consider the recovery of compressible sig-

nals, we let Λ a subset of {1, . . . , n} and Λc its complement

set. Also, hΛ is the same vector as h except for the entries

with the indexes in Λc, which are set equal to zero. Then,

the following property is useful to discuss the guarantee of

the recovery of compressible signals:

Definition 4.2 (Null Space Property (NSP)): A matrix A

satisfies the NSP of order k if there exists a constant C > 0

such that

||hΛ||2 ≤ C
||hΛc ||1√

k
(40)

holds for all h ∈ N(A) and for all Λ such that |Λ| ≤ k.

Note that if we assume that A satisfies the NSP of order

2k and that h ∈ N(A) is 2k-sparse, then there exists an index

set Λ such that ||hΛc ||1 = 0, which together with the NSP

implies hΛ = 0 to hold. Therefore, if A satisfies the NSP

of order 2k, 0 is the only 2k-sparse vector in N(A), which

coincides with the condition mentioned above.

One might think the definition of the NSP is somewhat

strange because the ℓ2-norm on the left-hand side is bounded

not by ℓ2-norm but by ℓ1-norm. The definition is related to

the inequality for the accuracy of the recovery defined as

||∆(Ax) − x||2 ≤ C
σk(x)1√

k
, (41)

for all x, where ∆(·) denotes an arbitrary recovery algorithm

andσk(x)1 is defined in (4). Using the NSP, a necessary con-

dition of the guarantee in the form of (41) for any recovery

algorithm can be obtained as follows:

Theorem 4.2: [19] Let A be a sensing matrix and ∆ a re-

covery algorithm. If the pair (A,∆) satisfies (41) then A

satisfies the NSP of order 2k.

Although the norm in (41) is arbitrary, it is known that

if we replace the minimum ℓ1-norm on the right-hand side

of (41) with the minimum ℓ2-norm, then the number of the

measurements required to satisfy the guarantee can be close

to n, which is of course not acceptable. Thus, combined

with the fact that we have ||x||1/
√

k ≤ ||x||2 for x ∈ Σk, it is

reasonable to employ the form of the NSP defined above.

It should be noted that if a sensing matrix satisfies the

RIP of order 2k with δ2k <
√

2 − 1, then it also satisfies the

NSP of order 2k [12]. Therefore, we can modify Theorem

4.1 to replace the RIP with the NSP. Thus, the NSP of order

2k is also sufficient to achieve the guarantee of (41) with the

ℓ1 optimization approach (26).

4.2.4 Neighborliness

As depicted in Fig. 2, success of ℓ1 optimization problem in

the case where n = 2, m = 1, and k = 1 is geometrically

characterized as follows: Each vertex of the ℓ1-ball corre-

sponds to each sparsity pattern of two-dimensional 1-sparse

vectors, taking into account the sign of the non-zero ele-

ments, such as [+, 0]T, [0,−]T, etc. Let us consider projec-

tion from R2 to a complementary subspace of N(A). Then,

ℓ1 optimization for 1-sparse vectors with a certain sparsity

pattern succeeds if and only if the image of the vertex cor-

responding to the sparsity pattern by the projection is still

a vertex of the image of the ℓ1-ball (which in this case is

actually a line segment).

This geometric interpretation can naturally be extended
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to the general high-dimensional setting. Namely, ℓ1 op-

timization for k-sparse vectors with a certain sparsity pat-

tern gives the correct answers if and only if the image, via

a projection onto a complementary subspace of N(A), of

the (k − 1)-dimensional face of the n-dimensional ℓ1-ball,

that is corresponding to the sparsity pattern considered, is

still a face of the image of the ℓ1-ball by the projection.

In this interpretation, the image of the ℓ1-ball by the pro-

jection is the polytope defined as the convex hull of the 2n

points {±Ae1,±Ae2, . . . ,±Aen}, where ei, i = 1, . . . , n, de-

note the unit vectors forming the standard basis of Rn. Then

the success of ℓ1 optimization can be related with the geo-

metric property called the neighborliness, which in this case

asks whether the k points chosen from the 2n points accord-

ing to the sparsity pattern span a face of the polytope. The

neighborliness property gives a necessary and sufficient con-

dition for k-sparse vectors with a certain sparsity pattern to

be exactly reconstructed via ℓ1 optimization [20]–[23], as

opposed to RIP, spark, and NSP, which only provide suffi-

cient conditions.

4.2.5 Mutual Coherence

While the RIP, the spark, the NSP, and the neighborliness

can provide guarantees of the recovery of the sparse signals,

they suffer from the problem that it is very hard to verify

whether a given matrix satisfies the properties or not. A sim-

ple way to provide a computable guarantee is to exploit the

mutual coherence of the sensing matrix defined as follows

[18], [24], [25],

Definition 4.3 (Mutual Coherence): The mutual coherence

µ(A) of a matrix A ∈ Rn×m is the largest absolute normalized

inner product between different columns of A

µ(A) = max
1≤i, j≤m, i� j

|aT
i
a j|

||ai||2 · ||a j||2
, (42)

where ai is the i-th column of A.

By applying the Geršgorin disk theorem to the Gram

matrix G = AT
Λ

AΛ, it is straightforward to obtain

spark(A) ≥ 1 +
1

µ(A)
. (43)

Therefore, we have the following condition on A for the

unique recovery.

Theorem 4.3: [18], [24] If

k <
1

2

(

1 +
1

µ(A)

)

, (44)

then there exists at most one signal x ∈ Σk such that y = Ax.

Some guarantees of recovery in terms of mutual coher-

ence are also available for the case with the ℓ1 optimization

or the ℓ1-ℓ2 optimization [26], [27].

4.3 Random Matrix Ensembles

As we mentioned, most properties on sensing matrices are

hard to evaluate on an instance of sensing matrices. It is also

widely believed that it would be difficult to find a good sens-

ing matrix in terms of those properties when n,m, k are arbi-

trarily given. In order to circumvent this difficulty from the

theoretical side, one commonly-taken approach is to con-

sider an ensemble of random matrices and to show that a

property satisfies a condition for successful reconstruction

with high probability, where the probability is based on the

randomness of sensing matrices in the ensemble considered.

Several insightful results have so far been obtained on the

basis of considering random matrix ensembles. In many

studies, ensembles of random matrices with independent

and identically-distributed (i.i.d.) Gaussian-distributed el-

ements are considered, but there are several other instances.

Here, we show an example of the result on the RIP constant

of random matrix ensembles:

Theorem 4.4: [28], [29] Let A ∈ Rm×n be a Gaussian ran-

dom matrix having i.i.d. elements of mean 0 and variance

1/m or a Bernoulli random matrix having i.i.d. elements

equal to ±1/
√

m with probability 1/2. Let ǫ, δ ∈ (0, 1) and

if

m ≥ Cδ−2
(

k ln

(

n

k

)

+ ln ǫ−1
)

, (45)

for a constant C > 0, then the constant of the RIP of A

satisfies δk ≤ δ with probability at least 1 − ǫ.
The significance of Theorem 4.4 is that the number of linear

measurements to estimate any n-dimensional k-sparse vec-

tor via ℓ1 optimization can be much smaller than n. Indeed,

Theorem 4.4 states that it is sufficient to have linear mea-

surements whose number is approximately proportional to

k, with the extra penalty factor ln n, with probability close

to 1.

The notion of the neighborliness combined with ran-

dom matrix ensembles yields a series of highly non-trivial

results [20]–[23]. Among others, it has been found that

ℓ1 optimization for the exactly sparse and noiseless case

exhibits phase transition in the infinite-dimensional limit,

where the parameters n,m, k are sent to infinity while their

ratios are kept finite. More concretely, given ρ = k/m there

is a critical threshold δc(ρ) of δ = m/n such that, with proba-

bility approaching 1 in the infinite-dimensional limit, ℓ1 op-

timization gives the true answer if δ > δc(ρ) and fails if

δ < δc(ρ). The threshold δ = δc(ρ) is called the Donoho-

Tanner threshold. It should be noted that the same result can

be derived in several different ways, including the approach

on the basis of statistical mechanics of disordered systems

[30], [31] and the study on the basis of a modified version of

the null space characterization [32]–[34]. For further exten-

sions, see e.g., [35]–[42].
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5. Algorithms

The original optimization problem (25) for compressed

sensing is known to be NP-hard in general [43], [44]. In this

section, we survey major practical algorithms to solve the

problems of compressed sensing presented in Sect. 4. We

mainly focus on two approaches; ℓ1 optimization and greedy

pursuits, since the approaches are well studied and widely

used in practical applications of compressed sensing, and

also almost all existing algorithms fall into one of the two

approaches. For demonstration purpose, we have imple-

mented all the algorithms (Algorithms 1–6) in Scilab [45]

codes, which are available at [46]. Some other approaches

are briefly introduced at the end of this section.

5.1 ℓ1 Optimization

5.1.1 General-Purpose Tools or Tailored Ones?

We here consider ℓ1 optimization problems which often

arise in compressed sensing. The problems are summarized

in Table 1.

An easy way to solve these problems is to use

a general-purpose convex programming toolbox such as

MATLAB Optimization Toolbox [56] or cvx [57], [58]. For

example, if you want to solve the second problem in Table 1

by cvx, you can simply type the following commands on

cvx:

cvx_begin

variable x(n);

minimize(norm(x,1));

subject to

norm(A*x-y,2)<=eps

cvx_end

However, when the problem is very large (i.e., n is a large

number), such a general-purpose toolbox often requires a

considerable length of computational time. To avoid this,

one should investigate the structure of each problem and

choose a suitable algorithm to exploit it. In what follows,

we see algorithms that effectively work for each optimiza-

tion problem listed in Table 1.

Table 1 ℓ1 optimization problems and solvers.

Problem Solver Subsec.

minx ‖x‖1 subject to Ax = y LP [47] 5.1.2

minx ‖x‖1 subject to ‖Ax − y‖2 ≤ ǫ
NESTA [48] 5.1.3

SPGL1 [49] 5.1.5

minx

(

1
2
‖Ax − y‖2

2
+ λ‖x‖1

)

FISTA [50] 5.1.4

FPC [51] 5.1.5

Bregman [52] 5.1.5

GPSR [53] 5.1.5

TwIST [54] 5.1.5

SpaRSA [55] 5.1.5

minx ‖Ax − y‖2
2

subject to ‖x‖1 ≤ t SPGL1 [49] 5.1.5

5.1.2 Linear Programming (LP)

We first consider the equality-constrained ℓ1 optimization

(26). As we have seen in the previous section, the optimiza-

tion (26) can equivalently be reformulated as the LP prob-

lem

min
z

1T
2nz subject to A0z = y and z � 0, (46)

where A0 = [A,−A]. Several efficient schemes for solv-

ing LP have been available. Among them, one can, for ex-

ample, adopt the primal-dual interior-point algorithm [47],

[59]. We here briefly review it.

First of all, by the Karush-Kuhn-Tucker (KKT) condi-

tions [59] (also known as the Kuhn-Tucker conditions [60])

at the optimal point z∗ of the optimization (46), there exist

two vectors ν∗ ∈ Rm and λ∗ ∈ R2n such that

12n + AT
0ν
∗ − λ∗ = 0, (47)

λ∗i z∗i = 0, i = 1, 2, . . . , 2n, (48)

A0z∗ = y, (49)

z∗ � 0, λ∗ � 0. (50)

The primal-dual interior-point algorithm solves the nonlin-

ear equations (47)–(49) by the Newton iteration method

keeping the approximated vectors, say z[k], ν[k], λ[k], k =

0, 1, 2, . . . , at an interior point of the region defined by the

inequalities (50), that is, z[k] ≻ 0 and ν[k] ≻ 0. Because

of this property, the method is also called an interior-point

method. We may also relax the equation (48), which is

called the complementary slackness condition, as

λi[k]zi[k] =
1

τ[k]
, k = 0, 1, 2, . . . , (51)

where {τ[k] : k = 0, 1, 2, . . . } is an increasing positive se-

quence, that is, 0 < τ[0] < τ[1] < τ[2] < · · · .
To formulate Newton iteration, we define the primal,

dual, and central residuals for the KKT conditions (47)–(49)

as

rprimal := A0z − y,

rdual := 12n + AT
0ν − λ,

rcentral := Λz − τ−112n, (52)

where Λ = diag{λ1, λ2, . . . , λ2n} is a diagonal matrix with

the diagonal elements {λ1, λ2, . . . , λ2n}. Suppose that we are

given an interior point p = (z, ν, λ), on the basis of which the

residual vector r(p) := (rprimal, rdual, rcentral) is determined. If

the residual vector r(p) is sufficiently small, then the interior

point p will be close to the optimal point p∗ = (z∗, ν∗, λ∗)
which satisfies the KKT conditions (47)–(49) with (48) in

place of the slackness condition (51).

Otherwise, we seek the next point p + ∆p such that

r(p + ∆p) ≈ 0. (53)
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If one applies the Newton method to solve it, one first con-

siders the Taylor expansion of the left-hand side of (53)

around the interior point p, yielding

r(p + ∆p) = r(p) + Jr(p)∆p + O
(

‖∆p‖2
)

, (54)

where Jr(p) is the Jacobian of r at p. Linearizing this by

neglecting the second- and higher-order terms, we have the

linear system

Jr(p)∆p = −r(p), (55)

or

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

A0 0 0

0 AT
0
−I

Λ 0 Z

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∆z

∆ν

∆λ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= −

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

A0z − y

12n + AT
0
ν − λ

Λz − τ−112n

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (56)

where Z = diag{z1, z2, . . . , z2n}. By using the solution of the

linear equations (55) or (56), we have the Newton iteration

p[k + 1] = p[k] + ∆p[k]

= p[k]−Jr(p[k])−1r(p[k]), k=0, 1, 2, . . . ,

(57)

with an initial interior point p[0] (i.e., z[0] ≻ 0 and λ[0] ≻
0). At each step, we have to solve the linear equations (55)

or (56) to obtain ∆p[k], and this takes most of the compu-

tational time, especially when the size of the matrix A0 is

large. In such cases, we may adopt the conjugate gradient

method [61] for solving the linear equations.

In the interior-point method, we do not use (57) as it is

since the next point p[k + 1] might not be an interior point.

To guarantee p[k+ 1] being an interior point, we modify the

Newton iteration (57). That is, we use the step size parame-

ter s ∈ (0, 1] as

p[k + 1] = p[k] + s∆p[k]. (58)

The step size s is chosen such that

1. p + s∆p is an interior point, that is, z + s∆z ≻ 0 and

λ + s∆λ ≻ 0.

2. The residual r(p + s∆p) is sufficiently small, that is,

‖r(p + s∆p)‖2 ≤ (1 − αs)‖r(p)‖2, (59)

where α is a sufficiently small number (e.g., α = 0.01).

To achieve the first requirement, we choose s as fol-

lows: define the index sets

Iz := {i : [∆z]i < 0} , Iλ := {i : [∆λ]i < 0} , (60)

where [·]i is the i-th element of a vector. Then, we can

choose s as

s = 0.99 min

{

1,
{−zi/∆zi : i ∈ Iz

}

,
{−λi/∆λi : i ∈ Iλ

}

}

.

(61)

This s clearly satisfies the first requirement. Then, check

Algorithm 1 Primal-dual method for LP

Require: y ∈ Rm (observed vector)

Ensure: x ∈ Rn (estimated sparse vector)

Give p[0] := (z[0], ν[0], λ[0]) and τ[0] such that

z[0] ≻ 0, ν[0] ≻ 0, τ[0] > 0.

k := 0.

repeat

Solve (56) to obtain the step direction ∆p[k].

Determine the step length s > 0 as in Sect. 5.1.2.

p[k + 1] := p[k] + s∆p[k].

Give τ[k + 1] such that τ[k + 1] > τ[k].

η[k + 1] := z[k + 1]Tλ[k + 1].

k := k + 1.

until max{‖rprimal[k]‖2, ‖rdual[k]‖2} ≤ EPS FEAS and η[k] ≤ EPS.
return x :=

[

z1[k], . . . , zn[k]
]T − [

zn+1[k], . . . , z2n[k]
]T

.

if the second requirement is satisfied with this s. If the in-

equality (59) is not satisfied, change s as s := s/a (a > 1)

and check (59) again.

Finally, let us consider the stopping criterion. Assume

that the primal and dual residuals, rprimal and rdual, are suf-

ficiently small. Then the following value may be a measure

for the precision of approximation:

η = zTλ. (62)

This is called the surrogate duality gap. In summary, the

primal-dual interior-point algorithm repeats the Newton it-

erations described above until the surrogate duality gap η

gets smaller than a given tolerance. See Algorithm 1 for the

details.

The MATLAB toolbox “ℓ1-MAGIC” [47], [62] in-

cludes MATLAB routines for solving LP (26) with the

primal-dual interior-point method. One can also use MAT-

LAB Optimization Toolbox [56] or cvx [57], [58] men-

tioned above.

5.1.3 Nesterov’s Algorithm (NESTA)

We next consider the quadratically constrained ℓ1 optimiza-

tion

min
x
||x||1 subject to ||Ax − y||2 ≤ ǫ, (63)

where ǫ > 0 is given (see also (33)). This problem also

belongs to the class of the second-order cone programming

(SOCP), and can be numerically solved by using a primal-

dual method [63], or a log-barrier method [59]. However,

these methods rely mainly on Newton steps as the method

for LP mentioned above, which are problematic when we

tackle a large-scale problem. In this paper we review a

much faster alternative algorithm for the optimization (63)

based on Nesterov’s method, called Nesterov’s algorithm or

NESTA for short [48]. Throughout this subsection, we as-

sume for simplicity that the row vectors of A are of unit

length and mutually orthogonal, that is, we assume

AAT = I. (64)
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Before discussing NESTA for (63), let us consider a

general convex optimization problem of the form

min
x∈C

f (x), (65)

where f is a convex function on a closed convex subset C
of the n-dimensional Euclidean space Rn. Suppose that f

is differentiable and that its gradient ∇f is Lipschitz, that is,

there exists L > 0 such that for any x, v ∈ C,

‖∇f (x) − ∇f (v)‖2 ≤ L‖x − v‖2. (66)

To solve (65) numerically, we first let a quadratic model qL :

C × C → R be defined as

qL(x, v) := f (v) + ∇f (v)T(x − v) +
L

2
‖x − v‖22. (67)

Under the Lipshitz condition, f (x) ≤ qL(x, v) holds for all

x ∈ C, with equality if x = v, which implies that the function

qL(x, v) gives a quadratic approximation to f (x) around the

point v ∈ C. By using this approximation, we can consider

the following iteration for solving (65):

x[k + 1] = arg min
x∈C

qL(x, x[k]), k = 0, 1, 2, . . . . (68)

With the property of qL(x, v) mentioned above, the sequence

{x[k] : k = 0, 1, . . . } via (68) satisfies

f (x[k + 1]) ≤ qL(x[k + 1], x[k])

≤ qL(x[k], x[k])

≤ f (x[k]), (69)

for k = 0, 1, 2, . . . . It follows that the iteration (68) is a

descent scheme for (65). This scheme is also known as the

majorization-minimization (MM) approach and the function

qL(x, v) is called a majorizer of f (x) [64].

Since qL(x, v) can be rewritten as

qL(x, v)=
L

2

∥

∥

∥x−(v−L−1∇f (v)
)

∥

∥

∥

2

2
−L

2
‖∇f (v)‖22+ f (v), (70)

the iteration (68) can alternatively be represented as

x[k + 1] = arg min
x∈C

∥

∥

∥x − (

x[k] − L−1∇f (x[k])
)

∥

∥

∥

2

2

= PC
(

x[k] − L−1∇f (x[k])
)

, (71)

where PC : Rn → C is the orthogonal projection defined by

PC(v) := arg min
x∈C
‖x − v‖22, v ∈ Rn. (72)

Because of this property, the approximated optimization

is called the gradient projection method [65], or gradient

method [66], [67]. It is known that the sequence {x[k] : k =

0, 1, . . .} generated by the gradient method with any initial

value x[0] converges to the solution x∗ of the original prob-

lem (65) with convergence rate f (x[k]) − f (x∗) = O(1/k)

[65]–[67].

In [68], Nesterov proposed an accelerated version of

the gradient method, which is given in the following form:

w[k] = arg min
x∈C

qL(x, x[k]),

z[k]=arg min
x∈C

L

σ
p(x)+

k
∑

i=0

α[i]∇f (x[i])T(x−x[i]),

x[k + 1] = τ[k]z[k] + (1 − τ[k])w[k], (73)

where σ > 0 is a convexity parameter, and where p(x) is a

prox-function for the feasible set C, that is, p(x) vanishes at

the prox-center

xc = arg min
x∈C

p(x), (74)

and satisfies

p(x) ≥ σ
2
‖x − xc‖2, (75)

for all x ∈ C. In the iteration, the vector z[k] keeps in mind

the previous iterations, which leads to acceleration of the

gradient method. In fact, it is proved that if α[k] and τ[k]

are chosen appropriately, for example letting

α[k] =
k + 1

2
, τ[k] =

2

k + 3
, k = 0, 1, 2, . . . , (76)

then the sequence {x[k] : k = 0, 1, . . . } generated by the

iteration (73) converges to x∗ with quadratic convergence

rate O(1/k2) [66].

In [66], Nesterov also extended the above method to a

non-smooth convex function

f (x) = max
u∈C′

uTWx, (77)

where C′ is a closed convex set in Rl (l is a positive integer)

and where W ∈ Rl×n. Note that in our ℓ1 optimization (63),

f (x) = ‖x‖1 = max
u∈C′

uTx, (78)

with C′ = {u ∈ Rn : maxi |ui| ≤ 1}. Then the optimization

problem (65) becomes the following saddle point problem:

min
x∈C

max
u∈C′

uTWx. (79)

To approximate this non-smooth convex function by a

smooth one, Nesterov proposed to minimize

fµ(x) = max
u∈C′

{

uTWx − µp′(u)
}

, (80)

where µ > 0 and where p′(u) is a prox-function for C′, that

is, p′(u) vanishes at the prox-center u′c ∈ C′, and satisfies

p′(u) ≥ σ
′

2
‖u − u′c‖22 (81)

for all u ∈ C′, with a positive constant σ′. The function

fµ is convex and gives a smooth approximation of the non-

smooth convex function f . The parameter µ controls the

degree of smoothing, and limµ→0 fµ = f holds. Indeed, Nes-

terov proved that fµ is continuously differentiable, and that

the gradient satisfies



HAYASHI et al.: A USER’S GUIDE TO COMPRESSED SENSING FOR COMMUNICATIONS SYSTEMS

695

∇fµ(x) = WTuµ(x), (82)

where

uµ(x) = arg max
u∈C′

{

uTWx − µp′(u)
}

. (83)

It is also shown that ∇fµ is Lipschitz with constant Lµ =

(µσ′)−1‖W‖2. Nesterov’s algorithm for the non-smooth f (x)

in (77) employs the iteration (73) with the smooth approxi-

mation fµ. For a fixed µ > 0, this algorithm converges at a

rate of O(1/k2) [66].

Now, let us apply Nesterov’s algorithm to our ℓ1 opti-

mization (63). For the ℓ1-norm objective function (78), the

smooth approximation fµ can be chosen as

fµ(x) = max
u∈C′

{

uTx − µ
2

uTu

}

=

n
∑

i=1

|xi|µ, (84)

where | · |µ : R→ [0,∞) is a function defined by

|x|µ =
⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
2µ

x2, if |x| < µ,
|x| − µ

2
, otherwise.

(85)

This function also appears in the context of robust statistics

[69], [70], and is thus known as Huber’s loss function [71],

[72]. Note that the prox-function p′(u) in (80) is now cho-

sen as p′(u) = 1
2
‖u‖2

2
. For this approximating function, the

gradient ∇fµ is given by a saturation function

[∇fµ(x)
]

i =
[

satµ(x)
]

i

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
µ

xi, if |xi| < µ
sgn(xi), otherwise,

(86)

where

sgn(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, if x ≥ 0,

−1, if x < 0.
(87)

The Lipschitz constant is Lµ = µ
−1 in this case.

Then the problem is approximated as the following

smooth constrained optimization problem:

min
x∈C

fµ(x), C = {x ∈ R : ‖y − Ax‖2 ≤ ǫ} . (88)

This is solved by Nesterov’s iteration (73), which includes

the minimization steps for w[k] and z[k]. The KKT condi-

tions for the minimization in w[k] give the following linear

system:

(

I + µλ1ATA
)

w[k] = µλ1ATy + φ(x[k]), (89)

where

φ(x) = x − µ∇fµ(x) = x − µ · satµ(x),

λ1 = max
{

0, (ǫµ)−1‖y − Aφ(x[k])‖2 − µ−1}. (90)

By the orthonormality assumption (64), the matrix ATA is a

projection matrix and is thus idempotent, so that we have

(

I + µλ1ATA
)−1
= I − µλ1

µλ1 + 1
ATA, (91)

and hence w[k] is directly obtained by

w[k] =

(

I − µλ1

µλ1 + 1
ATA

)

(

µλ1ATy + φ(x[k])
)

. (92)

For z[k] in Nesterov’s iteration (73), set σ = 1 and take

the prox-function

p(x) =
1

2
‖x − x[0]‖22, (93)

where x[0] is an initial guess for x∗ (e.g., x[0] = ATy). Then

the KKT conditions for the minimization in z[k] lead to the

linear system

(

I + µλ2ATA
)

z[k] = µλ2ATy + ψ[k], (94)

where

ψ[k] = x[0] − µ
k

∑

i=0

α[i]satµ(x[i]),

λ2 = max
{

0, (ǫµ)−1‖y − Aψ[k]‖2 − µ−1}. (95)

The inverse property in (91) gives

z[k] =

(

I − µλ2

µλ2 + 1
ATA

)

(

µλ2ATy + ψ[k]
)

. (96)

In NESTA, parameters α[k] and τ[k] are chosen as

in (76), by which the sequence {x[k] : k = 0, 1, . . . } of

NESTA converges to the optimal solution of the approx-

imated problem (88) with convergence rate O(1/k2). We

describe NESTA in Algorithm 2. It is clear that under the

orthonormality assumption on A the most expensive com-

putation in the iteration is matrix-vector multiplication, and

hence the computational time at each step has significantly

been reduced compared with that of the primal-dual interior-

point algorithm described in Sect. 5.1.2, which involves in-

version of a matrix (or solving a linear system) in (55) or

(56). We would like to mention that if one does not have

Algorithm 2 NESTA

Require: y ∈ Rm {observed vector}
Ensure: x ∈ Rn {estimated sparse vector}

x[0] := ATy. {initial guess}
ψ[−1] := x[0].

k := 1.

repeat

λ1 := max
{

0, (ǫµ)−1‖y − Aφ(x[k])‖2 − µ−1
}

.

w[k] :=
(

I − µλ1
µλ1+1

ATA
) (

µλ1ATy + φ(x[k])
)

.

ψ[k] := ψ[k − 1] − µ · k+1
2
· sat(x[k]).

λ2 := max
{

0, (ǫµ)−1‖y − Aψ[k]‖2 − µ−1
}

.

z[k] :=
(

I − µλ2
µλ2+1

ATA
) (

µλ2ATy + ψ[k]
)

.

x[k + 1] := 2
k+3

z[k] + k+1
k+3

w[k].

k := k + 1.

until | fµ(x[k]) − fµ(x[k − 1])| ≤ EPS.
return x := x[k].
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the orthonormality assumption on A, one has to solve the

linear equations (89) and (94), which, however, can still be

feasible for moderate-sized problems.

The parameter µ > 0 should be chosen taking account

of a trade-off between the accuracy of the approximation fµ
(note that limµ→0 fµ(x) = ‖x‖1) and the rate of convergence

(the rate is proportional to µ). MATLAB codes for NESTA

are available at [73].

5.1.4 Fast Iterative Shrinkage-Thresholding Algorithm

(FISTA)

Unlike the constrained ℓ1 optimization discussed in

Sect. 5.1.2 or 5.1.3, there have been considerable researches

on efficient algorithms (e.g., [51]–[55]) for the ℓ1-ℓ2 opti-

mization

min
x

(

1

2
‖Ax − y‖22 + λ‖x‖1

)

, (97)

where λ > 0 is a fixed parameter. In this subsection, we

review an efficient algorithm for (97), called fast iterative

shrinkage-thresholding algorithm (FISTA) [50].

First of all, let us consider the simplest case of (97);

namely, m = n and A is orthogonal. In this case, we have

ATA = AAT = I, and

min
x

(

1

2
‖Ax − y‖22 + λ‖x‖1

)

= min
x

(

1

2

∥

∥

∥A
(

x − ATy
)

∥

∥

∥

2

2
+ λ‖x‖1

)

= min
x

(

1

2
‖x − x0‖22 + λ‖x‖1

)

, (98)

where x0 = ATy. Using the fact that the minimizer of the

scalar function g(t) = (1/2)(t − t0)2 + λ|t| is obtained as

t∗ = sgn(t0) max{0, |t0| − λ}, where sgn is defined in (87),

the optimal solution of (97) in this case is

x∗ = Sλ(x0) = Sλ(ATy), (99)

where Sλ is a shrinkage-thresholding function defined by

[Sλ(x)
]

i = sgn(xi) max{0, |xi| − λ}, i = 1, 2, . . . , n.

(100)

For a general rectangular matrix A, we begin with an

approximation model as in NESTA. For the objective func-

tion in (97), we define the following approximation model

(cf. (67)):

QL(x, v) =
1

2
‖Av − y‖22 + (x − v)TAT(Ax − y)

+
L

2
‖x − v‖22 + λ‖x‖1

=
L

2

∥

∥

∥x − (

v − L−1AT(Av − y)
)

∥

∥

∥

2

2
+ λ‖x‖1

− L

2

∥

∥

∥AT(Av − y)
∥

∥

∥

2

2
+

1

2
‖Av − y‖22,

(101)

Algorithm 3 FISTA

Require: y ∈ Rm {observed vector}
Ensure: x ∈ Rn {estimated sparse vector}

x[0] := ATy. {initial guess}
w[1] := x[0].

β[1] := 1.

k := 1.

repeat

x[k] := Sλ/L
(

w[k] + L−1AT(y − Aw[k])
)

.

β[k + 1] := 1
2
+

√

1
4
+ β[k]2 .

w[k + 1] := x[k] +
β[k]−1
β[k+1]

(x[k] − x[k − 1]).

k := k + 1.

until |F(x[k − 1]) − F(x[k − 2])| ≤ EPS.
return x := x[k − 1].

where L > 0 is a parameter chosen such that

L ≥ ‖ATA‖. (102)

Note that ‖ATA‖ is the Lipschitz constant of the gradient

of f (x) = 1
2
‖Ax − y‖2

2
. It follows that if (102) holds, then

QL(x, v) is a majorizer of the objective function F(x) =
1
2
‖Ax − y‖2

2
+ λ‖x‖1, that is, F(x) ≤ QL(x, v) holds for all

x, v ∈ Rn with equality if x = v. Then we form the follow-

ing iteration:

x[k + 1] = arg min
x

QL(x, x[k])

= arg min
x

(

L

2
‖x − φ(x[k])‖22 + λ‖x‖1

)

,

k = 0, 1, 2, . . . , (103)

where φ(x) = x − L−1AT(Ax − y). Since QL is a majorizer,

we have F(x[k + 1]) ≤ F(x[k]) for k = 0, 1, 2, . . . (see (69)).

The closed-form representation (99) of the solution of

the simple optimization (98) gives the minimizer of (103) as

Sλ/L(φ(x[k])). As a result, the iteration can be rewritten in a

compact form as

x[k + 1] = Sλ/L
(

x[k] + L−1AT(y − Ax[k])
)

. (104)

This iteration is also known as the iterative shrinkage-

thresholding algorithm (ISTA) [74]–[77]. It is proved that

if L > 0 is chosen to satisfy (102), then the sequence

{x[k] : k = 0, 1, . . . } by ISTA (104) converges to the opti-

mal solution of (97) with convergence rate O(1/k) [50].

FISTA (Fast ISTA) is an accelerated version of ISTA.

As in NESTA (see Sect. 5.1.3), FISTA updates the solution

based not only on quantities evaluated in the previous iter-

ation, but also on two or more previously computed ones.

In fact, FISTA is an extension of Nesterov’s work [68] to

achieve the convergence rate O(1/k2) [50]. Algorithm 3 de-

scribes FISTA, where F(x) = 1
2
‖Ax−y‖2

2
+λ‖x‖1. MATLAB

codes related to FISTA may be found at [78].

5.1.5 Other Algorithms for ℓ1 Optimization

A considerable number of studies have been made on fast

and accurate algorithms for ℓ1 optimization besides LP,
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FISTA, and NESTA mentioned above. We here overview

recent algorithms for ℓ1 optimization.

For the ℓ2-constrained ℓ1 optimization (63), an efficient

algorithm based on the spectral projection gradient (SPG)

method was proposed in [49]. The algorithm solves itera-

tively the following optimization:

min
x
‖Ax − y‖22 subject to ‖x‖1 ≤ t. (105)

with updating the parameter t. The algorithm is called

SPGL1 (L1 stands for ℓ1).

On the other hand, Hale, Yin and Zhang proposed an

iteration algorithm for the ℓ1-ℓ2 optimization problem (97)

based on the fixed-point continuation (FPC) method. They

introduced a fixed point equation x = F(x) that holds at

the optimal solution x = x∗, and form x[k + 1] = F(x[k]).

Yin et al. proposed an algorithm for (97), called Breg-

man iteration, which solves at each step a subproblem,

the Bregman-distance regularization, by the FPC algorithm

mentioned above. Figueiredo, Nowak, and Wright also pro-

posed in [53] an algorithm for (97), which reformulates

the problem as a bound-constrained quadratic programming,

which is solved by the gradient projection (GP) method with

Barzilai-Borwein steps. This algorithm is called GPSR,

where SR stands for sparse reconstruction. TwIST (two-step

iterative shrinkage-thresholding) algorithm [54] is also a fast

algorithm for (97), in which each iterate depends on the two

previous iterates in IST like FISTA. Yet another algorithm

for (97) is SpaRSA (sparse reconstruction by separable ap-

proximation) by Wright, Nowak, and Figueiredo, which is

much like FISTA and FPC mentioned above.

5.2 Greedy Algorithms

5.2.1 Preliminaries

Let us return to the original compressed sensing problem

(see (25)):

min
x
||x||0 subject to Ax = y. (106)

Suppose temporarily that the mutual coherence (see Defini-

tion 4.3) of A satisfies µ(A) < 1 and that we know that the

optimal vector x∗ of (106) is 1-sparse, that is, ‖x∗‖0 = 1.

Then, the solution is unique by Theorem 4.3, and the vector

y is a scalar multiple of a column vector in A. That is, there

exists J ∈ {1, 2, . . . , n} and z∗ ∈ R such that y = z∗aJ , where

aJ is the J-th column vector of A. To find the optimal index

J, we define the error function e( j) as

e( j) = min
z
‖za j − y‖22

= min
z

[

(aT
j a j)z

2 − 2(aTy)z + yTy
]

= min
z

(aT
j a j)

⎛

⎜

⎜

⎜

⎜

⎜

⎝

z −
aT

j
y

aT
j
a j

⎞

⎟

⎟

⎟

⎟

⎟

⎠

2

+ yTy −
(aT

j
y)2

aT
j
a j

= ‖y‖22 −
(aT

j
y)2

‖a j‖22
, j = 1, 2, . . . , n. (107)

By the assumptions, there exists J ∈ {1, 2, . . . , n} such that

e(J) = 0, and the optimal solution x∗ = [x∗
1
, . . . , x∗n]T is given

by

x∗j =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

aT
J
y

‖aJ‖22
, if j = J,

0, otherwise.
(108)

Note that finding J requires just n steps.

Then suppose that µ(A) < 1
2M−1

, M > 1, and ‖x∗‖0 =
M. Again, by Theorem 4.3, the solution is unique, and

the vector y is a linear combination of at most M columns

of A. Since there exist
(

n

M

)

∼ O(nM) patterns of the lin-

ear combination, testing all of the candidates as above may

be prohibitive in view of computational time if M is rela-

tively large. To avoid such exhaustive search, we can em-

ploy greedy algorithms [6, Sect. 12.3] [18, Sect. 3.1] [79].

A greedy algorithm iteratively builds up the approximate

solution of (106) by updating the support set one by one.

Although greedy algorithms do not lead to the optimal solu-

tion but a local minimum in general, it may outperform the

ℓ1 optimization in some cases [25], [80]. In this subsection,

we introduce major greedy algorithms to obtain the solution

of the compressed sensing problem (106).

5.2.2 Matching Pursuit (MP)

One of the simplest greedy algorithms is the matching pur-

suit (MP) [5], [81], also known as the pure greedy algorithm

in approximation theory [82].

MP optimizes the approximation by selecting a column

vector at each step. At the first step (k = 1), we search for

the best 1-sparse approximation x[1] of x in the sense of

minimizing the residual y − Ax[1]. As in the argument in

Sect. 5.2.1, it can be found via

J[1] = arg min
j

e( j)

= arg min
j

⎧

⎪

⎪

⎨

⎪

⎪

⎩

‖y‖22 −
(aT

j
y)2

‖a j‖22

⎫

⎪

⎪

⎬

⎪

⎪

⎭

= arg max
j

|aT
j
y|

‖a j‖2
,

z[1] =
aT

J[1]
y

‖aJ[1]‖22
. (109)

The first approximation x[1] is then given by setting the

J[1]-th element of x[0] = 0 by z[1], that is, xJ[1][1] = z[1].

This gives the residual r[1] = y − Ax[1] = y − z[1]aJ[1],

which results in the best 1-sparse approximation of the vec-

tor y:

y = z[1]aJ[1] + r[1]. (110)

At the next step (k = 2), MP further approximates the resid-

ual r[1] by a 1-sparse vector z[2]aJ[2] just as in the first step

described above, that is,

J[2] = arg max
j

|aT
j
r[1]|
‖a j‖2

. (111)
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Algorithm 4 Matching Pursuit (MP)

Require: y ∈ Rm {observed vector}
Ensure: x ∈ Rn {estimated sparse vector}

x[0] := 0.

r[0] := y − Ax[0] = y.

k := 0.

repeat

J := arg max j

|aT
j
r[k]|
‖a j‖2 , z∗ :=

aT
J

r[k]

‖aJ ‖22
.

xJ[k + 1] := xJ[k] + z∗.
r[k + 1] := y − Ax[k + 1] = r[k] − z∗aJ .

k := k + 1.

until ‖r[k]‖2 ≤ EPS.
return x := x[k].

Then we obtain a 2-sparse approximation of y:

y = z[1]aJ[1] + z[2]aJ[2] + r[2]. (112)

In the same manner, we will obtain an M-sparse approxima-

tion of the vector y after M steps:

y =

M
∑

k=1

z[k]aJ[k] + r[M]. (113)

It is proved in [5] that the residual sequence {r[k] : k =

0, 1, . . . } converges linearly to zero if

span{a1, a2, . . . , an} = Rm. (114)

The number of iterations is now remarkably reduced com-

pared with the exhaustive search mentioned above, which

requires solving minimization problems O(nM) times. Al-

gorithm 4 describes the algorithm of MP.

5.2.3 Orthogonal Matching Pursuit (OMP)

Orthogonal Matching Pursuit (OMP) is an improved ver-

sion of MP [81], [83]. OMP is also known as orthogonal

greedy algorithm in approximation theory [82].

At step k ≥ 1, OMP first selects the optimal index

J[k] as in (109) or (111) and updates the support set as

Λ[k] = Λ[k − 1] ∪ {J[k]}, with the initialization Λ[0] = ∅.
OMP then updates the vector x[k] by orthogonally project-

ing the measurement vector y onto the subspace spanned by

the column vectors {a j : j ∈ Λ[k]}. In other words, x[k]

minimizes ‖Ax − y‖2
2

subject to supp(x) = Λ[k]. The full

algorithm of OMP is described in Algorithm 5. In this algo-

rithm, xΛ is the vector of length |Λ| obtained by collecting

the entries of x corresponding to the support set Λ, and AΛ
is the submatrix of A of size m×|Λ| composed of the column

vectors of A corresponding to Λ.

A major difference of OMP compared with MP is that

OMP will never select the same index twice since the resid-

ual r[k] is orthogonal to the already chosen column vectors

{a j : j ∈ Λ[k]}. As a result, if (114) holds, OMP will always

produce an estimate x which satisfies Ax = y after m itera-

tions. Moreover, if at least one of the following statements

is true:

Algorithm 5 Orthogonal Matching Pursuit (OMP)

Require: y ∈ Rm {observed vector}
Ensure: x ∈ Rn {estimated sparse vector}

x[0] := 0.

r[0] := y − Ax[0] = y.

Λ := ∅.
k := 0.

repeat

J := arg max j

|aT
j
r[k]|
‖a j‖2 .

Λ := Λ ∪ {J}.
xΛ[k + 1] := arg minv ‖AΛv − y‖2

2
.

r[k + 1] := y − Ax[k + 1] = y − AΛxΛ[k + 1].

k := k + 1.

until ‖r[k]‖2 ≤ EPS.
return x := x[k].

1. the mutual coherence of A satisfies µ(A) < 1
2M−1

[84],

2. A satisfies the RIP (see Definition 4.1) of order M + 1

with constant δM+1 <
1

3
√

M
[85],

then OMP will recover any M-sparse vector x from the mea-

surement y = Ax in M iterations. A probabilistic guar-

antee with a random matrix A is also obtained in [25]; if

the row vectors of A are drawn independently from the n-

dimensional standard Gaussian distribution, then OMP will

recover M-sparse vectors with high probability using only

m ∼ O(M log n) measurements.

5.2.4 Other Greedy Algorithms

Based on OMP, a couple of variants have been proposed.

Here we briefly present an overview of the current state of

greedy algorithms.

Gradient Pursuit [86]: The computational cost of OMP is

dominated by the orthogonal projection step (see Algo-

rithm 5):

xΛ[k + 1] := arg min
v
‖AΛv − y‖22. (115)

To avoid this, the step (115) is replaced by

xΛ[k + 1] := xΛ[k] − s[k]AT
Λ(AΛx[k] − y), (116)

where s[k] is a step size and the update direction is the

negative gradient of the cost function in (115). This is

called the gradient pursuit. The conjugate gradient can

also be adopted.

StOMP [87]: MP or OMP selects just one column from A

at each iteration. This means that for an M-sparse vec-

tor, we need at least M iterations. To speed up the al-

gorithm, we can select multiple columns at each step.

More precisely, the support set update step in OMP (see

Algorithm 5) can be replaced by

Λ := Λ ∪
⎧

⎪

⎪

⎨

⎪

⎪

⎩

j :
|aT

j
r[k]|
‖a j‖2

≥ T [k]

⎫

⎪

⎪

⎬

⎪

⎪

⎭

, (117)

where T [k] > 0 is a threshold parameter determin-

ing which columns are to be selected for addition to
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the support set. This idea was first proposed in [87]

and called the stagewise orthogonal matching pursuit

(StOMP).

ROMP [88], [89]: Regularized orthogonal matching pur-

suit (ROMP) is another alternative multi-column se-

lection method proposed in [88], [89]. In this algo-

rithm, the index set {1, 2, . . . , n} is divided into different

groupsJ1,J2, . . . , such that in each group, the vectors

{aT
j
/‖a j‖2 : j ∈ Jl} have similar magnitudes, that is, for

any i, j ∈ Jl,

|aT
i
r[k]|
‖ai‖2

≤ 2
|aT

j
r[k]|
‖a j‖2

. (118)

Then the support set Λ is updated as

L := arg max
l

∑

j∈Jl

(aT
i
r[k])2

‖ai‖22
,

Λ := Λ ∪ JL. (119)

CoSaMP [90]: Needell and Tropp developed a greedy

algorithm for compressed sensing and proposed

CoSaMP (Compressive Sampling Matching Pursuit)

in [90]. As in StOMP and ROMP, CoSaMP also se-

lects multiple indices at each step by picking up 2M

largest components of ATr[k] (cf. (117)), and merges

the selected indices with the current support set. Then,

CoSaMP solves the LS on the current support set as

in OMP to obtain an approximation. A new step in

CoSaMP is pruning; CoSaMP keeps the M largest en-

tries of the LS approximation and prunes the others by

setting them zero. As a result, the size of the support

set is reduced to M. Algorithm 6 describes the proce-

dure of CoSaMP. In this algorithm, HM is the thresh-

olding operator that sets all but the largest M elements

of its argument to zero. Note that CoSaMP requires

knowledge of the sparsity M of the solution. A similar

algorithm called subspace pursuit has been proposed in

[91].

IHT [92], [93]: Let us consider the following problem re-

lated to compressed sensing:

Algorithm 6 CoSaMP

Require: y ∈ Rm and M ∈ N {observed vector and sparsity}
Ensure: x ∈ Rn {estimated sparse vector}

x[0] := 0.

r[0] := y − Ax[0] = y.

Λ := ∅.
k := 0.

repeat

Λ := Λ ∪ supp
(

H2M(ATr[k])
)

.

z := arg minv ‖AΛv − y‖2
2
, zΛc := 0.

x[k + 1] := HM(z).

Λ := supp(x[k + 1]).

r[k + 1] := y − Ax[k + 1] = y − AΛxΛ[k + 1].

k := k + 1.

until ‖r[k]‖2 ≤ EPS.
return x := x[k].

min
x
‖Ax − y‖22 subject to ‖x‖0 ≤ M. (120)

Iterative hard thresholding (IHT) [92], [93] is a greedy

algorithm for this problem. IHT is very simple; the

iteration rule is given as

x[k + 1] = HM

(

x[k] + L−1AT(y − Ax[k])
)

, (121)

where HM is the same thresholding operator as that

used in the algorithm of CoSaMP. The operator HM

is also a nonlinear projection onto the M-sparse sub-

set ΣM ⊆ Rn. It is worth noting that IHT looks sim-

ilar to the gradient projection method (71) and ISTA

(104). In fact, the iteration (121) can be rewritten using

a quadratic model Q̄L, called a surrogate function [94],

as

x[k + 1] = min
x

Q̄L(x, x[k]) subject to ‖x‖0 ≤ M,

Q̄L(x, v) = L−1‖Ax − y‖22 − L−1‖Ax − Av‖22 + ‖x − v‖22.
(122)

It is proved in [92] that if the parameter L satisfies

(102), then IHT produces a sequence that converges to

a local minimum of the optimization problem (120).

5.3 Alternative Ways towards Sparse Solution

Along with ℓ1 optimization and greedy algorithms discussed

above, there are a number of computational methods for

solving the original compressed sensing problem (25). We

here introduce some other approaches for compressed sens-

ing.

One approach is to relax the ℓ0-norm in (25) to the ℓp-

norm with p ∈ (0, 1):

min
x
‖x‖pp subject to Ax = y. (123)

Clearly, this optimization is nonconvex. Although such a

nonconvex optimization problem is much more difficult to

solve than ℓ1 optimization, the nonconvex optimization will

recover sparse vectors with fewer measurements [95], [96].

Also, this approach may increase robustness against noise

and lead to stability (i.e., small perturbation in the origi-

nal vector x implies small estimation error) [97]. For nu-

merical optimization of (123), one can adopt an iteratively-

reweighted least squares [98] or an operator-splitting algo-

rithm [99].

Another approach is to adopt the Bayesian framework;

Bayesian techniques in machine learning have been adapted

to compressed sensing problems. In the Bayesian frame-

work, one assumes a prior distribution for the unknown vec-

tor that promotes sparsity [100], [101]. More recently, ap-

plication of belief propagation has been proposed by assum-

ing sparse sensing matrices [102]. The approximate mes-

sage passing (AMP) [103] has also been inspired by be-

lief propagation, but is applicable to dense sensing matrices,
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provided that they are typical as realizations of some ran-

dom matrix ensemble. AMP is also proven to achieve the

Donoho-Tanner threshold for ℓ1 optimization.

6. Applications

Recently, compressed sensing has been applied to various

problems of communications systems. For the effective ap-

plication of it, two key issues will be 1) the sparsity of sig-

nals of interest (Is it natural to assume the sparsity of them?

In which domain?) and 2) the linear measurements of the

signals (How can we obtain linear equations? Is it happy to

reduce the number of them? How is the sensing matrix?). In

this section, we introduce several examples of the problems

of communications systems, where compressed sensing has

been applied in a natural and beautiful manner, such as wire-

less channel estimation, network tomography, wireless sen-

sor network, and cognitive radio. Applications to some other

topics are also mentioned at the end of this section.

6.1 Wireless Channel Estimation

Channel estimation is one of the most important techniques

in wireless communications systems, because a lot of mod-

ern communications technologies assume availability of

channel state information. In current wireless communica-

tions systems, channel estimation is usually performed by

sending some known signals, called pilot signals or training

signals, before and/or during communications. Since these

known signals do not convey user data but consume power

and bandwidth, reduction of the required amount of training

signals while keeping a sufficient estimation accuracy has

been one of the main scopes of the study on channel esti-

mation. Although it is true that several non-training assisted

channel estimation (i.e., blind channel estimation) schemes

have been proposed [104], the blind approach is not com-

monly used in practical communications systems so far be-

cause it usually requires high computational complexity.

In the context of training-based channel estimation,

various properties of wireless channels in time, frequency,

and space domains have been utilized to reduce the amount

of training signals. The sparsity of channel impulse re-

sponse is one of them. It is known that the impulse response

of wireless channel tends to be sparse for larger bandwidth

[105]–[110], although it also depends on whether the con-

sidered environment is scattering rich or not. Intuitively,

this can be understood that the wideband signal reveals

the actual response of the wireless channel, which has dis-

crete nature consisting of multipath components, while it is

smoothed out for narrowband communications systems. It is

also known that underwater acoustic channel exhibits spar-

sity in both temporal (delay spread) and frequency (Doppler

spread) domains [111], [112]. Therefore, several works have

tried to utilize the sparsity for the channel estimation even

before the birth of compressed sensing, such as [113]–[118].

Despite the fact that there are numerous preceding

studies trying to exploit sparsity, it is also true that studies on

sparse channel estimation have been much more accelerated

recently. To cite some examples, compressed sensing ap-

proaches using OMP algorithm and the ℓ1-ℓ2 optimization

are applied to channel estimation of multicarrier underwa-

ter acoustic communications systems and higher robustness

against the Doppler effects is numerically demonstrated over

the conventional schemes, such as the method of LS or sub-

space methods [119], [120]. Ultra-wideband channel esti-

mation based on compressed sensing is proposed in [121]

and it is shown that the proposed detector can outperform

conventional correlator-based detector with only 1/3 of the

sampling rate. Compressed sensing is applied for the es-

timation of doubly selective channels with the block trans-

mission using cyclic prefix [122]–[124], and some sparsity-

enhancing basis are proposed, while basis expansion mod-

els [125], [126] are commonly used for the estimation of

time-varying channels. An optimization method of the pi-

lot placement for sparse channel estimation in OFDM sys-

tems is proposed in [127] by using a modified version of a

discrete stochastic approximation algorithm [128]. A sparse

channel estimation technique using CoSaMP algorithm is

applied for a two-way relay network in [129] and the im-

provement in mean square error (MSE) performance has

been demonstrated at the cost of increased computational

complexity. Excellent surveys on sparse channel estimation

methods can be found in [130] and [131].

Here, we briefly review a simple approach to sparse

channel estimation with a naive assumption that the chan-

nel impulse response itself is sparse in time domain (i.e.,

almost all taps have zero or close to zero values). However,

it should be noted that, depending on wireless environments,

this sparse tap model might be inappropriate and utiliza-

tion of an appropriate overcomplete dictionary could sig-

nificantly improve the estimation performance [121], [131].

Let a = [a1, . . . , aP]T ∈ RP denote a vector of training sig-

nals for the channel estimation, which is inserted between

data signals, and x = [x1, . . . , xL]T ∈ RL be a vector of fi-

nite channel impulse response with ||x||0 ≪ L as depicted in

Fig. 3. Then, assuming P > L, the corresponding received

signal vector y = [y1, . . . , yP−L+1]T, which is not contami-

nated by data signals, is written as

y = Xa + v, (124)

Fig. 3 Training-based wireless sparse channel estimation. The training

signal vector a is sent through the sparse multipath channel having the im-

pulse response of x and the additive white noise v.
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where X is the Toeplitz channel matrix of size (P−L+1)×P

defined as

X =

⎡

⎢

⎢

⎢
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⎢

⎢

⎢

⎢

⎢

⎢
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⎣

xL . . . x1 0 . . . 0
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. . .
...

...
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⎥
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⎥

⎥

⎥
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⎦

, (125)

and where v = [v1, . . . , vP−L+1]T is an additive white noise

vector. By using the channel impulse response vector x,

(124) can alternatively be written as

y = Ax + v, (126)

where A is a Toeplitz matrix of size (P − L + 1) × L defined

as

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢
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⎢

⎣

aL aL−1 . . . a1

aL+1 aL . . . a2

...
...

...

aP aP−1 . . . aP−L+1

⎤

⎥
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⎥

⎥
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⎥

⎥

⎥

⎥

⎥
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⎦

. (127)

Thus, by regarding A to be a sensing matrix and assuming

P − L + 1 < L in order to achieve higher spectral efficiency,

the problem to obtain x from y in (126) can be considered as

a problem of compressed sensing in (23) but with observa-

tion noise. As for the recoverability of the sparse vector for

the case of random Toeplitz sensing matrix, it is shown in

[132] that random Toeplitz matrices satisfy RIP under cer-

tain conditions. For example, if the entries ai, i = 1, . . . , P,

in A are i.i.d. and are equal to ±1/
√

P − L + 1 with probabil-

ity 1/2, then A satisfies RIP of order k with the RIP constant

δk with probability at least 1−exp(− c1(P−L+1)

k2 ), provided that

P− L + 1 ≥ c2k2 log L, where c1, c2 > 0 are functions of δk.

We have so far discussed application of compressed

sensing to training-based channel estimation schemes for

the purpose of reducing the required training signals, but

blind channel estimation schemes can also benefit from

compressed sensing in a different manner. Subspace method

[133] is one of the most popular blind channel identification

schemes, since it enables us to estimate channel impulse re-

sponse up to a complex multiplicative constant, which is in-

herent to the problem, from the second-order statistics of

the received signal. However, it also has a drawback that the

length of the unknown channel impulse response has to be

exactly known a priori: If otherwise, even an overestimate

of the length results in breakdown of the estimation, because

of the following reason. The subspace method utilizes the

linear equations derived from the orthogonality between the

signal subspace and the noise subspace of the sample corre-

lation matrix of the received signal. Thus, to obtain an esti-

mate of channel, and, in order to make the linear equations

well-posed, the exact information of the length of the un-

known channel response is required. If the received signal-

to-noise ratio (SNR) is high, then we can easily estimate

the length from the number of large eigenvalues of the cor-

relation matrix. However, if the received SNR is not high

enough, which is often the case in common wireless envi-

ronments, it is usually difficult to tell the threshold of the

signal and noise subspaces. In order to cope with the prob-

lem, compressed sensing approach has been introduced to

the subspace method assuming that the channel impulse re-

sponse is sparse, and has numerically been shown that the

blind channel estimation is possible without exact informa-

tion of the length (i.e., overestimate works), if around half

of the channel taps are zero [134].

Note that the impulse response of wireless channel is

usually modeled by a complex vector, whereas we have dis-

cussed the estimation of the real sparse vector in this paper.

As for the estimation algorithm of the complex sparse vec-

tor, readers are referred to, say, [74].

6.2 Wireless Sensor Network

A typical problem setting of wireless sensor networks is as

follows: Some physical phenomenon in the area of interest

is measured by a lot of sensor nodes with communication

capability. The data sensed by the nodes are then either sent

to a central node, which performs signal processing to ex-

tract the desired information in the area and is referred to as

a fusion center or a sink node, or shared by the sensor nodes,

which perform distributed processing in the network. In

such a problem, we can oftentimes reasonably assume some

spatial and/or temporal correlation of the sensed data, which

leads to the motivation to apply compressed sensing to the

sensor network. Bajwa et al. [135] have been the first to in-

troduce compressed sensing to the wireless sensor network,

and since then, there have been several works on the topic.

In this section, we introduce basic ideas of compressed sens-

ing based wireless sensor networks for some network sce-

narios. The interested readers are referred to a good tutorial

on the decentralized compression of networked data [136],

which is written by the same authors as [135].

The first scenario considered in this section is depicted

in Fig. 4, where a number of sensor nodes periodically mea-

sure the physical environment and directly send the obtained

Fig. 4 Wireless sensor network with a fusion center [135]. The fusion

center is assumed to be within the communication range from all sensor

nodes, and sensed data at each sensor node are directly sent to the fusion

center. Because of the linearity of the wireless medium, the received signal

at the fusion center is a superposition of the transmitted signals from all

the sensor nodes, which leads to a linear measurement in the framework of

compressed sensing.
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data to the fusion center. Let n and x j, j = 1, . . . , n, denote

the number of sensor nodes and the measured data at the j-

th sensor node, respectively. In the basic approach shown

in [136], each sensor node sends its own sensed data x j to

the fusion center using m time slots (m < n) with m random

coefficients {Ai, j}mi=1
, which are locally generated by using

its own node identity (ID) as the seed of a pseudo-random

number generator. Since n sensor nodes are assumed to send

Ai, j x j, j = 1, . . . , n, in the i-th time slot simultaneously, the

received signal at the fusion center in the i-th time slot is

given by

yi =

n
∑

j=1

Ai, j x j + vi. (128)

Here, ignoring the impact of channel gain, we have assumed

for simplicity the additive white Gaussian noise (AWGN)

channel for the link between each sensor node and the fusion

center, and vi is the AWGN in the i-th time slot. It should

be noted that the fusion center obtains a linear measurement

of s thanks to the additive nature of the radio waves. At the

end of the m-th time slot, the fusion center obtains a received

signal vector y = [y1, . . . , ym]T as

y = Ax + v, (129)

where A is the m × n matrix whose (i, j)-element is Ai, j,

where x = [x1, . . . , xn]T is the vector of sensed data, and

where v = [v1, . . . , vm]T.

In most applications of wireless sensor networks, the

sensed data vector x itself will not be sparse. However, be-

cause of the spatial correlation of the physical phenomenon,

like temperature, pressure, or radio activity, we can usu-

ally assume that x is sparse in some transform domain. We

specifically assume that x is represented by an appropriate

n × n invertible transformation matrix Φ, as

x = Φc, (130)

where c is a sparse vector. Note that the typical choice of the

transformation could be discrete Fourier transform (DFT),

discrete Cosine transform (DCT), or wavelet transform, and

the fusion center has to knowΦ.

Under the above sparsity assumption, the received sig-

nal vector y is represented as

y = AΦc + v. (131)

Therefore, the task to estimate a sparse vector c from y will

be a standard compressed sensing problem as in (24), where

AΦ is regarded as a sensing matrix (A is available at the fu-

sion center if it knows all IDs of the sensor nodes). Since

the reduction of the number m of transmissions is of cru-

cial importance to many wireless sensor networks in order

to decrease the power consumption at sensor nodes, the ap-

proach of compressed sensing will be very suited for the

sensor network problems. Although we have assumed the

AWGN channel for the link between each sensor node and

the fusion center and utilized artificially generated random

Fig. 5 Multi-hop wireless sensor network with a sink node [140]. Com-

munication range of each sensor node is assumed to be limited, thus multi-

hop routing is required to reach the sink node. Each sensor node on the

route to the sink node relays the received data after adding its own mea-

surement data multiplied by a locally generated random number.

coefficients, we can also utilize fading phenomena as the

random coefficient generator for the sensing matrix by as-

suming multiple fusion centers. A similar approach can be

found in [137].

On the other hand, if the sensing area is very large

or the transmit power of the sensor node is strictly lim-

ited, we have to resort to multi-hop communication to send

the sensed data from the sensor node to the fusion center

(sink node) as depicted in Fig. 5. Here, we explain a typi-

cal approach to obtain linear measurements at the sink node

[138]–[141]. The data gathering is performed by temporally

separated m multi-hop communications with randomly de-

termined initial (starting) nodes. For each multi-hop com-

munication, a randomly selected starting node (in Fig. 5,

the node “2” is the starting node) computes the product of

its own measured data and a locally generated random co-

efficient, determines one of the neighboring nodes using a

routing algorithm employed in the sensor network, and then

sends the computed product to the determined node. At each

relaying sensor node involved in the multi-hop communi-

cation, it adds the product of its own measured data and a

locally generated random coefficient to the received signal,

and forwards the result to the next sensor node. Thus, the

received signal at the sink node for the i-th multi-hop com-

munication is given by

yi =
∑

j∈Pi

Ai, j x j, (132)

where Pi and Ai, j are the set of indexes of the nodes in the

i-th multi-hop communication and the random coefficient

generated at the j-th node, respectively, and where x j is the

measured data at the j-th node. Note that Ai, j takes a dif-

ferent value for different i or j in general. Since we also

assume the spatial correlation model in (130), the received

signal vector y = [y1, . . . , ym]T obtained at the sink node is
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given by

y = AΦc, (133)

where A is an m × n matrix with the (i, j)-element equal

to Ai, j if j ∈ Pi, and zero otherwise. Although this looks

a standard compressed sensing problem as in the previous

case, it should be noted that A is determined by the routing

algorithm used in the sensor network and that some com-

mon routing algorithms result in high coherence of the sens-

ing matrix. Actually, it has been reported that the existing

algorithms such as the shortest path routing algorithm or

the greedy routing algorithm cannot achieve so much per-

formance gain compared with the conventional approach in

terms of the reconstruction error versus the total number of

transmissions in the network [138], [139]. Therefore, some

random routing protocols have been proposed to achieve the

requirement of incoherence [140], [141]. Also, the com-

bined use of the linear random network coding with com-

pressed sensing based sensor network has been investigated

in [142] and [143].

In the methods described above in this section, an ideal

media access control (MAC) protocol, in terms of synchro-

nization, channel state information, or collisions, is com-

monly assumed. However, especially in typical sensor net-

work scenarios, such an ideal MAC might be difficult to

achieve because of the requirements of low-cost, limited

bandwidth and limited battery power on sensor nodes. Thus,

there are some works on the joint design of data gathering

and MAC protocol for compressed sensing based sensor net-

work such as [144] and [145].

6.3 Network Tomography

Network tomography is a term coined by Vardi [146] upon

the similarity between the network inference and medical

tomography. Two major forms of network tomography are

link-level parameter estimation from end-to-end measure-

ments and end-to-end traffic intensity estimation based on

link-level measurements [147]. Since the original paper of

compressed sensing [3] was largely motivated by the recon-

struction problem of magnetic resonance imaging (MRI),

which is one of the medical tomographies [148], it is quite

natural to consider application of compressed sensing to net-

work tomography [149]–[152].

Network tomography of the link-level parameter esti-

mation is commonly performed to estimate link delay or

link loss rate in order to detect failures of links or nodes

inside the network. Since only a limited number of links

have large delays or high loss rates in typical networks, if

we consider a vector composed by delays or loss rates of

all links, we can reasonably assume that the vector will be

sparse or compressible. In network tomography, as shown in

Fig. 6, end-to-end measurements are performed by sending

probe packets from source nodes to receiver nodes through

the network†. An end-to-end measurement from a source

node to a receiver node acquires information about a route

from the source node to the receiver node. In graph theory

Fig. 6 Network tomography with 8 nodes and 7 links [152]. Each node

stands for a terminal or a router, and each edge between two nodes is called

a link. A path is a connection between two nodes composed by multiple

links in general. Nodes 1 and 2 are source nodes, 5, 7, and 8 are receiver

nodes, and 3, 4, and 6 are internal nodes.

terminology, such a route is called a path, which consists of

multiple links connected in sequence in general. The num-

ber of measurements in network tomography is thus equal

to the number of paths considered. Although the selection

of paths has a large impact on the inference performance as

in the case of multi-hop sensor network, we assume that the

paths are given in advance for the moment.

Network tomography to estimate link delays is some-

times called delay tomography. A formulation on the basis

of linear measurements can be established straightforwardly

for delay tomography, since the overall delay of a path is

a sum of the delays of all the links belonging to the path.

Consider a network with n links, and assume that the num-

ber of measurements is m. Let x j denote the delay of link

e j, j = 1, . . . , n. Then the overall delay of the i-th path,

i = 1, . . . ,m, is given by

yi =
∑

j∈Pi

Ai, j x j, (134)

where Pi is the set of indexes of links in the i-th path, and

where Ai, j = 1 if j ∈ Pi and Ai, j = 0 otherwise. Thus, by

defining y = [y1, . . . , ym]T, x = [x1, . . . , xn]T, and {A}i, j =
Ai, j, we have

y = Ax, (135)

which is the problem of compressed sensing with binary

sensing matrix, if we assume that x is sparse or compress-

ible, and that link delays in the network are stationary.

Network tomography in which link loss rates are to be

estimated is sometimes called loss tomography. One can

establish a formulation for loss tomography just as in a sim-

ilar manner to delay tomography described above, if we as-

sume that packets are lost independently on each link. Let

p j denote the loss rate at link e j, j = 1, . . . , n. Although

loss rates themselves are not additive, under the indepen-

dence assumption, the link success rates (1 − p j) are multi-

plicative, i.e., the overall packet success rate of the i-th path,

†This type of network tomography is called active measure-
ment, while the inference performed using existing packets in the
network is called passive measurement.
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i = 1, . . . ,m, is given by

1 − qi =
∏

j∈Pi

(1 − p j), (136)

where qi is the overall packet loss rate of the i-th path. By

defining x = [x1, . . . , xn]T and y = [y1, . . . , ym]T with

x j = − log(1 − p j), (137)

yi = − log(1 − qi) = −
∑

j∈Pi

x j, (138)

we have an expression of linear measurements

y = Ax, (139)

where A is the same matrix (routing matrix) as in (135).

Note that if p = [p1, . . . , pn]T is sparse or compressible,

then x is sparse or compressible as well, because p j = 0

or close to 0 means x j = 0 or close to 0. Also note that

it will not be possible to obtain the value of qi (and hence

yi) from the transmission of a single probe packet, unlike

the case of delay estimation. Thus, multiple probe packets

are transmitted for each path, and the ratio of the number of

received packets to the total number of transmitted packets

is used as an estimate of (1 − qi).

In both cases, the problems come down to compressed

sensing with the binary sensing matrix, which is determined

by paths (routes) from source nodes to receiver nodes. Since

the increase in the number of paths, which corresponds to

the number of measurements, results in the increase in the

number of probe packets injected into the network, it is de-

sirable to minimize the number of paths in order not to give

unnecessary load to the network. As for the number of re-

quired measurements for the reconstruction of k-sparse vec-

tors with random binary measurements matrices, it has been

known that O(k log n
k
) measurements are required [153],

[154], while it has been shown that O(k log n) measurements

are needed if the binary matrix is accompanied by a graph

constraint [151], [155]. Moreover, a deterministic guarantee

and a designed method of the routing matrix for the recon-

struction of any 1-sparse signal are provided in [149], [150],

taking advantage of the knowledge on compressed sensing

using expander graphs [154], [156].

6.4 Cognitive Radio

Cognitive radio has been one of the typical applications of

compressed sensing from its early stage. In cognitive ra-

dio networks, unlicensed cognitive radio users (secondary

users) are supposed to utilize licensed frequency bands with-

out causing harmful interference to the users in the licensed

systems (primary users) taking advantage of the temporal

vacancy of the primary users as depicted in Fig. 7.

As such, it is necessary for the secondary users (or cog-

nitive radio networks) to sense the radio-spectrum environ-

ment in order to find vacant frequency bands prior to com-

munications.

Fig. 7 A simple example of cognitive radio system, where the licensed

frequency bands for the primary system are assumed to be f1, f2 and f3.

Since f3 is not occupied by the primary users, the secondary users can

utilize f3 for their communications without causing any interference to the

primary users, although they are not licensed users of the band.

The spectrum sensing can be a challenging task if it has

to be performed over a wide frequency band, because the

sampling rate to meet the Nyquist-Shannon sampling theo-

rem can be prohibitively high. A key observation to alle-

viate this problem is that the occupancy of licensed bands

by primary users is typically rather low [157]. While tak-

ing advantages of the sparsity of the spectrum in use at any

instance of time has been the original motivation of cogni-

tive radio, it also allows us to apply compressed sensing ap-

proach to the wide-band spectrum sensing problem, which is

called compressed spectrum sensing, to reduce the required

sampling rate [158]–[160]. Moreover, the compressed spec-

trum sensing has been extended to the cooperative spec-

trum sensing, where observations or inferences of spectrum

sensing at multiple secondary users are combined in order

to achieve robustness against observation noise and/or fad-

ing effects [161]–[166]. Furthermore, in order to cope with

the time variant nature of the spectrum environment, com-

pressed spectrum sensing schemes with dynamic sampling

rate adjustment have been proposed [167]–[171], because

the required sampling rate depends on the sparsity order of

the spectrum.

In this subsection, we introduce a basic approach of

the compressive spectrum sensing at a single cognitive ter-

minal [158], [159]. A particular feature with the spectrum

sensing is that, unlike other applications explained so far,

analog signals have to be explicitly considered. Let x(t),

t ∈ [0, nTs], denote a received analog wide-band signal at

the terminal considered, where Ts is the sampling period

equal to the inverse of the Nyquist rate. Thus, n samples

of x(t) obtained by uniform sampling with the period Ts

are required to recover x(t) without aliasing. By letting

x = [x(Ts), . . . , x(nTs)]
T denote a vector composed of the

full sample set of x(t) with the Nyquist rate, the linear mea-

surement (sampling) process in the discrete-time domain

can be written as

y = Ax, (140)
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where A denotes an m × n measurement matrix. Note that

m < n corresponds to sub-Nyquist rate sampling, and a sim-

ple choice of A is a selection matrix obtained by randomly

retaining m rows of an n × n identity matrix. The discrete

spectrum of x(t) can be calculated as

c = Dx, (141)

where D denotes the unitary DFT matrix whose (i, j)-

element is given by 1√
n
e−
√
−1 2π

n
i j, i, j = 0, . . . , n − 1. Thus,

if the primary signal occupies the frequency band sparsely

enough, we have a formulation of standard compressed

sensing as

y = ADHc, (142)

where ADH is regarded as the sensing matrix and c is an

unknown sparse vector.

In [158], not only the sparsity of the primary signal

itself in the frequency domain, but also the sparsity of sub-

band edges is utilized, where it is supposed that x(t) is in the

frequency range [ f0, fk] and k consecutive subbands are in

the range with the boundaries of f0 < f1 < · · · < fk as de-

picted in Fig. 8. The edge spectrum zs, which is defined as

the derivative wavelet of c at scale s, is calculated by using

the discrete-time signal vector x as

zs = ΓDΦsx, (143)

where Γ is the differentiation matrix given by

Γ =
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Fig. 8 Upper figure: k frequency subbands with piecewise smooth power

spectrum density (PSD) [158]. Black, grey, and white spectrum spaces

[175] correspond to the PSD levels of high, medium, and low, respectively.

White space, as well as grey space in some cases, can be used for com-

munications of secondary users. Lower figure: The value of each element

(zs)i corresponding to the PSD in the upper figure is depicted as an intuitive

illustration.

and where Φs is a matrix representation of a wavelet

smoothing function with a scale factor s. For an intu-

itive understanding, an example of zs is depicted in Fig. 8.

By assuming the piecewise smooth power spectrum density

(PSD) as shown in Fig. 8, zs has sparsity, and thus the linear

equations

y = A(ΓDΦs)
−1zs (145)

give another formulation of compressed sensing.

It should be noted that, while we have treated x(t) as

a deterministic signal in the discussion above, the received

signal should commonly be treated as a random process.

Therefore, the spectrum should be evaluated by using the

autocorrelation function of x(t), which requires calculations

directly using x obtained by Nyquist rate sampling. This is

of course not acceptable, since it spoils the advantages of the

compressed spectrum sensing with sub-Nyquist rate. The

problem could be settled, for example, with the approach

proposed in [165], where one utilizes analog-to-information

converter (AIC) [172], [173], which acquires samples with

the rate corresponding to the information rate instead of the

Nyquist rate by using a random demodulator. The frame-

work of Xampling [174] assumes a signal space described

not as a linear space but as a union of subspaces, and pro-

poses a generic construction of signal-processing systems

for such signals using a conventional analog-to-digital (AD)

converter, by putting a carefully-designed analog preproces-

sor in front of the AD converter in order to compress the sig-

nal bandwidth, as well as a compressed-sensing-based non-

linear subspace detector after the AD converter. AIC can

be regarded as one of the realization methods of the signal

acquisition part of Xampling with hardware devices and a

low-rate AD converter.

6.5 Some Other Topics

In this subsection, we briefly introduce applications of com-

pressed sensing to some other topics in communications sys-

tems.

(1) Array Signal Processing

Direction-of-arrival (DOA) estimation of incoming waves is

one of the major problems in array signal processing. Com-

pressed sensing has been applied to the problem taking ad-

vantage of the sparsity of incoming signals in the angular

domain. In [176], reduction of sampling rate at each an-

tenna element except one reference element is achieved by

the introduction of compressed sensing. Moreover, in [177],

inspired by the work on the relation between compressed

sensing and array signal processing in [178], [179], the prob-

lem of DOA estimation is formulated as a multiple measure-

ment vector (MMV) problem [180]–[183], which considers

the recovery of a set of sparse vectors sharing a common

nonzero support on the basis of multiple measurement vec-

tors (i.e., snapshots, in array signal processing terminology),

and an algorithm named compressive MUSIC, which is re-

garded as an extension of the conventional multiple signal
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classification (MUSIC) algorithm [184], has been proposed

to reduce the number of required snapshots.

As for other applications to array signal processing,

compressed sensing has been applied to the problem of syn-

thesizing a desired far-field beam-pattern by controlling sen-

sors’ positions and array weights with the minimum num-

ber of sensors, which is called the maximally sparse array

[185]–[188]. Also, it has been applied to the diagnosis of an-

tenna arrays [189] and some radar applications [190]–[192],

assuming sparsities of failure antenna elements and reflec-

tivity functions of targets, respectively.

(2) Multiple Access Scheme

Compressed sensing has also been applied to problems of

medium access control (MAC) layer, such as multiple ac-

cess schemes [193]–[195], downlink scheduling [196], and

resource allocation for feedback channels [197]. A typi-

cal approach to the application to multiple access schemes

is similar to the conventional code-division multiple-access

(CDMA) scheme, but with the signature codes shorter than

the number of users, which can be regarded as an overloaded

CDMA. A key strategy here is that, although the number

n of potential users might be large, the number k of active

users at one time can be typically far smaller than n and even

smaller than the length m of the signature codes. Thus, tak-

ing advantage of the sparsity of active users, one can extract

signals of active users by using algorithms of compressed

sensing, where each column vector of the sensing matrix

corresponds to the signature code of each user.

(3) Networked Control

A relatively novel application of compressed sensing is net-

worked control [198]–[200]. Networked control has re-

cently attracted a lot of attention in both communications

and control systems communities. In networked control, a

controller is placed away from a controlled plant and the

controller should communicate with the plant over rate-

limited networks, such as wireless networks. In this sit-

uation, the data should be compressed to satisfy the rate-

limiting constraint. Also, we cannot use an intelligent

coder/encoder such as a vector quantizer since computa-

tional delay may degrade the control stability and perfor-

mance. To tackle with these problems, sparsification of con-

trol vectors to be transmitted has been proposed for predic-

tive control systems [201], [202] and for remote control sys-

tems [203], [204] based on the notion of compressed sens-

ing. In these studies, FISTA (see Sect. 5.1.4) or OMP (see

Sect. 5.2.3) are used and proved to be effective in feedback

control since the algorithms are extremely fast. Stability

issues of the feedback control system are partly solved in

[201], [202], but a general theorem is still open.

7. Further Studies

Since we have introduced compressed sensing from a view

point of users, we have provided some theorems without

proofs. Readers who are interested in more theoretical as-

pects are referred to the excellent books [6], [7], [9], [12],

[18], as well as the original papers [1]–[3]. For applica-

tions of compressed sensing to other than communications

systems, we would like to mention a special issue on ap-

plications of sparse representation and compressive sensing

in the Proceedings of the IEEE [205]. Also, excellent sur-

veys and tutorials are available in the special issue on com-

pressive sampling in the IEEE Signal Processing Magazine

[206]. Up-to-date information can be obtained through the

Internet [207]–[209].

As for a recent topic on compressed sensing, an ap-

proach called blind compressed sensing has been recently

proposed [210]. In this survey, we have assumed that the

sensing matrix A (more precisely, the product of the sens-

ing matrix A and the sparsity basis Φ) is known a priori

by the reconstruction algorithm, but this requirement might

not be met in some situations. Thus, in blind compressed

sensing, the sparse signal recovery is performed without the

prior knowledge of the sparsity basis but with some addi-

tional constraint, where the elements of both standard com-

pressed sensing and dictionary learning [211]–[214], whose

purpose is to find a sparsity basis for a given set of data, are

combined. Such an approach might be appreciated in some

applications of communications systems.

8. Conclusion

We have explained basic ideas of compressed sensing in this

survey, thinking much of methodological aspects rather than

theoretical ones, and assuming readers to be potential users

of compressed sensing in the field of communications. We

have started our discussions from the review of ill-posed lin-

ear simultaneous equations, and then, the problem of com-

pressed sensing is described as the underdetermined linear

system with a prior knowledge of the unknown vector being

sparse. The ℓ1 optimization approach and its variants are in-

troduced as the convex relaxation of the direct ℓ0 optimiza-

tion, and some important properties and known results on

the sensing matrix regarding the guarantee of the sparse sig-

nal recovery are also briefly explained. Moreover, as a guide

for users of compressed sensing, several existing algorithms

to solve the problem of compressed sensing are explained

in detail focusing on two major approaches, namely, the ℓ1
optimization approach and the greedy approach. Further-

more, we have introduced various examples of applications

of compressed sensing to various problems of communica-

tions systems in physical (PHY), MAC and network layers.

Compressed sensing is a new paradigm to extract in-

formation taking advantage of the sparsity nature, which is

possessed by various signals and systems. Since the band-

limited nature can be regarded as a special case of the spar-

sity in the frequency domain, the framework of compressed

sensing is the generalization of the conventional sampling

theorem. In this regard, compressed sensing will be one of

the common tools in this field in the near future.

While we have introduced several examples of applica-

tions, we believe that compressed sensing is still in its early
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stage as to the application to communications systems and a

lot of potential applications are yet to come. For example,

not only the application of compressed sensing to classical

problems but also to the design of whole communications

systems from PHY to even application layers might open up

new vistas in the field. It is our great pleasure if this survey

could motivate readers to apply compressed sensing to their

own research topics.
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