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A USER'S VIEW OF SOLVING STIFF ORDINARY 

DIFFERENTIAL EQUATIONS 

L. F. SHAMPINEt AND C. W. GEARt 

Abstract. This paper aims to assist the person who needs to solve stiff ordinary differential equations. 

First we identify the problem area and the basic difficulty by responding to some fundamental 

questions: Why is it worthwhile to distinguish a special class of problems termed "stiff"? What are stiff 

problems? Where do they arise? How can we recognize them? 

Second we describe the characteristics shared by methods for the numerical solution of stiff problems. 

These characteristics have important implications as to the convenience and efficiency of solution of even 

routine problems. Understanding them is indispensable to the assembling of codes for the very efficient 

solution of special problems or for solving exceptionally large problems at all. 

Third we shall briefly discuss what is meant by "solving" a differential equation numerically and what 

might be reasonably expected in the case of stiff problems. 

1. Introduction. The numerical solution of ordinary differential equations is an 
old topic and, perhaps surprisingly, methods discovered around the turn of the century 

are still the basis of the most effective, widely used codes for this purpose [23]. Great 
improvements in efficiency have been made, but it is probably fair to say that the most 
significant achievements have been in reliability, convenience, and diagnostic capabil­

ities. The typical scientific problem can be solved by casual users of these codes both 
easily and cheaply. Nevertheless, there are several kinds of problems which classical 
methods do not handle very efficiently. The problems called "stiff" are too important 
to ignore, and are too expensive to overpower. They are too important to ignore 
because they occur in many physically important situations. They are too expensive to 
overpower because of their size and the inherent difficulty they present to classical 
methods, no matter how great an improvement in computer capacity becomes 

available. Even if one can bear the expense, classical methods of solution require so 
many steps that roundoff errors may invalidate the solution. It is all the more 
frustrating that the solutions of stiff problems look like they should be particularly 
easy to compute. After a few general remarks about solving differential equations, we 
shall use some simple examples to show where the trouble originates and what might 
be done about it. We shall mention a number of contexts in which stiffness was 

recognized and dealt with by scientists through the use of special features of the 
problem. Our attention here will be directed towards the phenomenon of stiffness and 
towards general purpose procedures for the solution of stiff differential equations. 
There are effective codes available based on these procedures, but it is necessary that 
the user have some idea how they work in order to take full advantage of them. Lastly 
we discuss what are realistic goals when solving a stiff differential equation. 

2. What are stiff problems? When solving the (vector) system of equations 

(2.1) y' = f(x, y ), y (O) g.iven, 

we must consider the behavior of solutions near to the one we seek. This is because as 

we step along from Yn='=y(xn) to Yn+t approximating y(xn +h) we make inevitable 
errors causing us to move from the desired integral curve to a nearby one. If we make 

no further errors, we follow this new curve so that the resulting error depends on the 
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relative behavior of the two solution curves. Let us consider the example of the single 
equation 

(2.2) y' =A(y -p(x))+p'(x), y(O) = v, 

where A is a constant. The analytical solution is 

(2.3) y(x) = (v -p(O)) exp (Ax)+p(x). 

If A is large and positive, the solution curves for the various v fan out and we say the 
problem is unstable. Such a problem obviously is difficult for any general numerical 
method which proceeds in a step-by-step fashion. When A is small in magnitude, the 
curves are more or less parallel and such neutrally stable problems are easily handled 
by conventional means. When A is large and negative, the solution curves converge 
very quickly. In fact, whatever the value y(O), the solution curve is virtually identical 
to the particular solution p(x) after a short distance called an initial transient. This 
super-stable situation is ideal for the propagation of error in the differential equation 
but not, as it turns out, for the propagation of error in a numerical scheme. The last 
class of problems is called stiff. 

Equation (2.2) is of more general significance than its special form suggests. The 
behavior of solutions of (2.1) near a particular solution g(x) can be studied by a Taylor 
series expansion into 

(2.4) 
y' ='=J(x, g(x))(y- g(x )) + f(x, g(x)) 

=J(x, g(x))(y- g(x)) + g'(x) 

where the Jacobian matrix J has as its (i, j) entry the partial derivative of the i th 
component off with respect to the jth component of y. This approximation can be 
justified in a limiting argument, but we are only going to use it qualitatively and will 
not attempt rigor. We further suppose that J(x, g(x)) is slowly varying in x so that we 
can approximate it locally by a constant matrix. After a principal axis transformation, 
these equations are uncoupled into a set of equations each of the form (2.2). In this 
general situation, A is an eigenvalue of the Jacobian; hence, it may be a complex 
number. Thus, within the limits of the approximations made, a set of simultaneous 
equations of the form (2.2) with complex numbers A are representative of the general 
situation (2.1). 

By a stiff problem we mean one for which no solution component is unstable (no 
eigenvalue has a real part which is at all large and positive) and at least some 
component is very stable (at least one eigenvalue has a real part which is large and 
negative). Further, we will not call a problem stiff unless its solution is slowly varying 
with respect to the most negative real part of the eigenvalues. (Roughly, we mean that 
the derivatives of the solution are small compared to the corresponding derivatives of 
eAx. The meaning will be qualified later in this section.) Consequently, a problem may 
be stiff for some intervals of the independent variable and not for others. 

If A is very negative and p(x) is slowly varying, equation (2.3) represents a stiff 
problem after the transient eAx has died out (that is, eAx is below the error tolerance 
of interest) but it is not stiff in the transient region. If (2.1) is linear with a constant 
Jacobian J, it will not be stiff in the initial transient, but will be stiff after the fastest 
transient has died out. 

Although the examples just discussed only exhibit one period of rapid change, the 
general problem can exhibit several. One reason is that the approximations in equa­
tion (2.4) only apply locally. This may, or may not, be obvious from the equations 
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themselves. A case which is not obvious is the relaxation oscillation of the Vander Pol 

equation famous in applied mechanics. One should suspect stiffness because the limit 
curve is rapidly approached by all integral curves, and examination of the Jacobian 

matrix does show that the integration has large negative eigenvalues in some regions, 

although not in others. The limit solution has periodic changes which are so sharp as to 

approach a discontinuity. (The equation is not stiff at such places by our definition.) 
The methods of classical applied mathematics, namely, singular perturbation theory, 

deal with this particular equation quite well. 

A second reason is that the "driving" term-p(x) in equation (2.2)-may sud­

denly change. An example of this with transients expected on physical grounds is that 

of chemical kinetic rate equations involving photo-dissociation such as those de­

scribing the behavior of atmospheric pollutants. When the sun rises or se·ts 

there are reactions which are extremely fast with respect to a basic period of 

a day. A. Hindmarsh has communicated to us a mockup of the behavior of the oxygen 

singlet- 0(010) which is a valuable test problem exhibiting the proper physical 

behavior. It is 

where 

and 

y'(t) =d -by +aE(t) 

( cw 2 cos wt) 
E(t) = 1 +-b -.-2- e(t), 

sm wt 

e(t)= {exp(-cw/sinwt) ifsinw~>O, 

0 otherwrse 

(J) = 1T/43200. 

Note that the Jacobian matrix is just the number -b which in this case says that the 

equation is very stable. The timet is in seconds and every 12 hours the solution (which 

can be obtained analytically) exhibits a change which is almost discontinuous on a time 

scale of days. 

We should also note that the approximations developed for (2.1) lead to only one 

limit solution, but that in practice there may be others. This originates in the fact that 

the approximation is local about the solution being studied. The area of nonlinear 

mechanics is a fertile source of examples with several possible limit curves. Later we 

shall refer to one in the area of chemical engineering. 
To expose the difficulty in solving stiff systems, let us integrate (2.2) by Euler's 

method when A is a large negative number and p(x) is slowly varying. This scheme 

advances from Yn to an approximation at Xn + hn = Xn+t by Yn+t = Yn +hnf(xn, Yn) = 
Yn + hnY ~- Since these are the linear terms of a Taylor series expansion at Xn, the local 
truncation error of the method is h 2y"(xn)/2 + O(h:). A code which selects its step 

size so that the local truncation error is approximately e (as most code~ do) will choose 

h so that e = ih.7y"(xn)/2l. If the numerical solution is close to the true solution, we can 

deduce the behavior of h from 

y"(x) = (v -p(O))A 2 exp (Ax)+p"(x). 
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When x is small, it is clear that 

h,. = (ly'~;,.)l) 1/2 = (l(v- p2(~))A 21) 1/2. 

When x is large the exponential term disappears so that 

h,. = (,p;(:),) 1/2. 

By assumption lA I is large and IP"(x )I is small, so that we have quantified the statement 
that the step size needed for accuracy must initially be small to resolve the rapid 

change of the transient but eventually becomes large and independent of A. 
This is not the whole story. There are two main factors affecting the size of the 

step-accuracy and stability. Accuracy refers to smallness of the local error, that is, 
the error introduced in a single step. Stability refers to errors not growing in sub­
sequent steps. We have seen for this example that accuracy is easily handled. Let us 
now examine stability. Because this is a linear differential equation and a linear 
method, it is easy to solve for the global error which is the difference between the 
numerical solution at any point and the true solution. If we define the global error as 

8,. = y,. -y(x,.), 

we find that 

8,.+1 = (1 +h,.A)8,. +[y(x,.)+h,.y'(x,.)-y(X,.+t)]. 

This says that the global error after the nth step consists of the error propagated from 
the previous point x,. plus the local truncation error in the nth step. This error is 
amplified unless -2~h,.A~O. Clearly this restriction dominates in the selection of 

the step size once outside of the transient region. Note that a problem is not stiff in the 
transient region because lh,.AI must be small to control the local truncation error. 

The essence of the matter is that for most problems the accuracy requirement 
dictates the choice of step size, but for some, the stiff problems, the stability require­

ment does. In general we must discuss the stability of the difference scheme when A is 
a complex number. Analyzing stability as we did with Euler's method, we now find a 
region in the left half complex plane, called the region of absolute stability, in which 
h,.A must lie for the difference scheme to be stable. For Euler's method this region is 
the disc of radius 1 centered at (-1, 0). Though the approximations are crude, this 
analysis does furnish a good qualitative understanding of the local behavior of the 
difference schemes. The stability restriction takes the form that lh,.AI not be too large. 
As a practical matter this is no restriction unless IAI is "large" and the accuracy 
requirement is easy to meet. 

One worry should be dispelled at once. When implemented properly, the 
instability on encountering stiffness of classical methods such as Euler's is automati­
cally detected and handled by reducing the step size [24], [25]. Computer programs 

suitable for nonstiff problems do not "blow up" in the presence of stiffness, they just 
become inefficient. The reason for this is easy to see for methods like Euler's. 
Automatic codes estimate the local error by estimating a derivative of the solution. 
The only way in which this can be done economically involves applying some form of 
difference operator to the computed solution. With the Euler method, for example, 
we could form the second difference of the solution to estimate the second derivative. 
The second difference will consist of two parts, the second difference of the true 
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solution and the second difference of the global error. A simple calculation for our 
example (2.2) with constant step size h shows that the latter is (h A)2 8n-t­

h\Ay"(Xn-1)+y"'(Xn-t)) plus higher order terms. If h A is large, this term dominates, 
so the step control mechanism will reduce the step size accordingly. 

The problem of instability for large step sizes when solving stiff equations is 
common to all methods that are efficient for nonstiff equations. All methods give rise 
to a global error equation of the form 

where En is the local truncation error and Sn is the error amplification matrix whose 
size depends on the Jacobian of the differential equations and, in the case of multistep 
methods, 8n is a vector containing the global errors in the numerical values of all past 

values used in the computing of the next step. Methods for nonstiff problems are 
chosen so as to make the local truncation error term En small for best efficiency. When 
stiff problems are to be solved, it is necessary to sacrifice some of the accuracy in order 
to improve the stability. Methods suitable for stiff equations are such that Sn is small 
for Jacobians with large negative eigenvalues. The example of the backward Euler 

method 

is informative because it is easy to analyze and yet typical of many methods for stiff 
equations. When it is applied to equation (2.2), we get a global error equation of the 

form 

or 

8n+l = (1-hnA)- 1 8n +(1-hnA)-1h 2y"(Xn)/2+0(h 3). 

The propagated error is damped whenever jl/(1-hnA)j ~ 1-which includes the 
whole left half plane. This is a marvelous improvement since an apparently minor 
change in the scheme has completely done away with a stability limitation. However, 
the backward Euler scheme is implicit, meaning that a nonlinear equation must be 

solved at each time step to determine Yn+l· This is characteristic of methods with very 
good stability properties and we shall examine the cost later. For· now we just 
comment that because the stability requirement is so much more stringent for the 
forward Euler method than the accuracy requirement, the backward Euler method 
permits orders of magnitude improvement in efficiency for typical stiff problems even 
though each step is much more expensive. 

The essence of stiffness is that one has a slowly varying solution which is such that 
some perturbations to it are rapidly damped. Most physical systems of interest are 
going to be stable; those which permit very rapid change are the ones which are 
potentially stiff. Thus one should be alert to physical components with greatly 
different time constants. For example, control systems are intended to provide stabili­

ty. When they very quickly correct a deviation from a desired slowly changing path, 
the differential equations describing them will be stiff. 

It is important to appreciate that stiffness depends on the behavior of all nearby 
solutions, that is, on the differential equation rather than the behavior of the solution 
itself. For example, the equation 

y' = (v- p(O))A exp (Ax)+ p'(x ), y(O) given, 
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has exactly the same solution as (2.2) when both have the initial value v, but is not stiff 
at all. For this quadrature problem the integral curves are parallel and the problem is 
of neutral stability. Thus the presence of some components which change at a rate 
much faster than others is not necessarily an indication of stiffness. Still, physical 
systems are usually stable so this is a pretty reliable indication of stiffness in the proper 
context. As examples, chemical reactions with large rate constants and nuclear reac­
tions with species decaying at rates varying widely typically lead to stiff equations. 
Electrical circuitry involving fast elements such as high speed transistor models 
ordinarily leads to stiff problems. A survey of such applications with examples can be 

found in [3]. Rather than take up many examples, we shall look in some detail at the 
use of semi-discretization to solve a simple partial differential equation. The resulting 

stiff system of equations will illustrate a number of points we shall need later. 
Suppose we want to solve the heat equation 

ay(x, t) iy(x, t) 

ot ax 2 ' 

y(O, t)=O, y(l, t)=O, y(x, 0) given. 

Let Ax= 1/N and Xi= i Ax fori= 0, 1, · · ·, N. Suppose that yi(t) is to approJEimate 
y(xj, t) where Yi(t) arises from replacing the space derivative in the heat equation by a 
centered difference: 

dyj(t) 1 
--;;j( = (Ax)2 (yi+1(t)- 2yi(t) + Yi+1(t)), i = 1, ·· · ,N-1, 

Yo(t) =0, YN(t) = 0, Yi(O) = y(xj, 0) for each i. 

One easily finds the constant Jacobian and that its eigenvalues are 

_ [sin (mr Ax/2)]2 
AN-n-- Ax/2 , 

from which we see that 

-4 
A 1 ='= (Ax )2' 

If Euler's method is used to solve the set of ordinary differential equations with step 
size !:t.t, we conclude that for stability lh A 1! ;:§; 2 or 

!:t.t 1 
--<-
(!:t.x)2=z· 

Here how stiff the problem is depends on how fine a spatial mesh we choose initially. 
If N is small, one is well advised to use nonstiff methods, but for large N this is not 
economic. Note that if we proceed in this way, we are using the classical (fully discrete) 
forward difference scheme for solving the heat equation. The backward Euler method 
corresponds to the classical backward difference scheme and, as is well known, there is 
then no limitation on !:t.t for reasons of stability. Considerable experience on the part 
of people interested solely in partial differential equations shows that it is much 
cheaper to use the more stable method with the more expensive steps. Experience 
applying general purpose codes for ordinary differential equations agrees with this and 
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adds the observation that enhanced efficiency and reliability can be obtained by 

variation of step size and formula. 

It should be noted that the eigenvalues obtained in this example are not due 

solely to the spatial discretization used. The original partial differential equation has 

eigenvalues of -(k7T)2 , k = 1, 2, · · · , so the first eigenvalue of the discretized system is 

approximately the first eigenvalue of the differential operator, and the others are 

approximations to some of the larger ones. This points out that the stiffness is inherent 

in the problem, not part of the method of solution. Either the problem (that is, the 

model of the physical situation) must be changed, or stiffness must be faced in the 

solution process. 

In a number of areas, particularly chemical kinetics, problem solvers have 

removed stiffness by changing the model. The idea is that physical considerations 

allow some components to be recognized as changing on time scales much shorter 

than those of other components. Think, for example, of a chemical reaction taking 

place in a moving medium or the rolling of a rocket as compared to its motion along its 

trajectory. Quasi-static or pseudo steady-state approximations hold one set of com­

ponents fixed in value over suitable time periods either because they change so slowly 

that changes can be neglected or because they change so rapidly that steady-state 

values are achieved almost instantly. Such approximations lead to sets of algebraic 

equations coupled to (hopefully nonstiff) sets of ordinary differ~ntial equations. In 

some cases approaches of this kind have worked very well, but it is hard to relate the 

solution of the modified model to that of the original model. We shall reconsider this 

technique in the next section where it will be seen that the methods for stiff problems 

do much the same thing automatically. Current codes for stiff differential equations 

are sufficiently efficient that there is no need to consider such model changes for most 

problems for reasons of cost, and there are excellent reasons of convenience and 

theoretical support for not changing the model. To be sure, there are exceptions 

because we are discussing general purpose codes. For specific problems one may be 

able to break off groups of equations which can be solved easily, perhaps analytically, 

and so reduce the difficulty or size of the tasks otherwise addressed by the code. On 

the other hand, it is possible to get into trouble by such manipulations without 

realizing it. In [20] an example from chemical engineering is discussed for which 

assumptions of the kind described here were made and the scientists were led to the 

wrong steady state solution. 

The example of the partial differential equation shows how large systems can 

arise. (Consider the situation with several space variables.) The heat equation, Van 

der Pol's equation, and the remarks we have made so far about steady-state approxi­

mations show that stiffness is not something unfamiliar; it has arisen, been studied, 

and dealt with, in other contexts. The example also exhibits the limited coupling that is 

usually present in large systems-here each equation involves only three unknowns or 

fewer, regardless of the number of equations in the system. Exploitation of this 

property will be mentioned in the fourth section. It is an important aspect of efficiency. 

We have touched on several ways of realizing stiffness is present. Before discuss­

ing solution methods let us summarize them. Often one has a considerable under­

standing of the qualitative behavior of solutions of (2.1) on physical grounds. If the 

system is known to be very stable, it is likely to be stiff. If some variables are known to 

change on time scales very different from others and the physical problem is well 

posed, the governing equations are likely to be stiff. Analysis or experience with 

similar or model problems is often very useful. A common sign of stiffness is that a 

code aimed at nonstiff problems proves conspicuously inefficient for no obvious 
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reason (such as a severe lack of smoothness in the equation or the presence of 

singularities). There are codes for nonstiff problems [25], [27] which rather reliably 

diagnose stiffness automatically. 

The integration during the transient has the step size limited by accuracy rather 
than considerations of stability so this part of a differential equation problem is not 

stiff. The distinction might be made more vivid by a little anecdote. The authors 
recently participated in a conference on the solution of stiff differential equations 

arising in models of lasers. One speaker discussed a refined physical model involving 

some 250 energy levels which was consuming hours of computer time. Though simpler 

models with these states aggregated into a smaller number of states were clearly stiff 

(they could be solved with current stiff codes far more efficiently than with nonstiff 

codes), his problem was being solved very inefficiently by codes aimed at stiff prob­

lems. Indeed, he found codes aimed at nonstiff problems to be conspicuously more 

efficient. Each solution component had the same qualitative behavior. After a while 

the level would become populated and the population would rapidly grow to a number 
about which it varied slowly. The difficulty originates in the fact that the various levels 

are populated successively and there are a great many of them. As far as the codes are 

concerned, they are always on the transient for some energy level. Eventually, of 

course, the whole system would get into a steady state and stiff methods would ~how 

their worth, but the cost of reaching this was prohibitive and the scientist was not 

particularly interested in the long-time behavior. The nonstiff methods perform better 

in the transient because this is what they are designed to do. Besides illustrating the 

role of transients, this example also points out that we do not have codes, or even 

methods, capable of adequately solving all the problems of scientific interest in the 

area of differential equations. 

3. Characteristics of solution methods. All of the methods used in general pur­

pose codes for the solution of stiff differential equations are implicit of necessity. This 

means that an equation must be solved at each step to obtain the numerical approxi­

mation. For example, in the backward Euler method, 

Yra+l = Yn +h,.f(Xn+t. Yn+J) 

must be solved for Yn+t· If the problem is linear (that is, iff is linear), then a linear 

equation must be solved, but if the problem is nonlinear, a nonlinear equation must be 

solved. Simple functional iteration is used in codes for nonstiff problems to solve such 

equations: 

(m+I) h /( (m)) 
Yn+J = Yn + n Xn+t. Yn+J • 

For the model problem (2.2) we easily find that the iteration error satisfies 

(m+l) _ h A( (m) ) 
Yn+l - Yn+l- n Yn+l- Yn+l • 

Once again we encounter the effects of stiffness-this simple iteration will not con­

verge if we have a stiff problem (for which Jh,.Al > 1). The usual procedure for stiff 

problems is some variant of Newton's method. This uses an approximate Jacobian J 

and one solves repeatedly the linearized system 

(m+l) h f( (m)) h,.J( (m+l) (m)) 
Yn+J = Yn + n Xn+h Yn+l + Yn+l - Yn+l · 

For the model problem (2.2) the iteration error satisfies 

(3.1) 
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Any reasonable approximation J to A will cause this iteration to converge. If the 

problem is not stiff so that h,. A is small, all that matters is that hJ be small. If the 

problem is stiff so that hnA is large and negative, all that matters is that hJ be within 

about 50% of hnA· For this example, and for any linear problem, the iteration 
converges in one step if J is exactly A. 

This analysis extends to systems, in which case the iteration (3.1) involves solving 

a linear equation at each iterate. If the problem is linear, only one iteration is 

necessary if we take J = A. In fact, most codes do not. take J =A so that iteration is 
used even in the linear case. When iteration is used, as it must for nonlinear problems, 

the starting approximation is very important because it must be good enough that the 

process will converge and moreover good enough that only a few iterations are 

necessary. Fortunately, the situation is such that a good starting approximation is 

almost always available by use of an explicit integration formula, usually called a 

predictor. Although a predictor is an integration formula; it does not have any of the 

main costs associated with a formula suitable for stiff problems because it is really a 

polynomial extrapolation process using information already known about the solu­

tion. For example, if the backward Euler formula is being used to solve stiff equations, 

the forward Euler formula can be used as a predictor. The forward Euler formula uses 

the function value Yn and the derivative y ~ computed in the last step to estimate the 

value of Yn+t to be used as the first iterate y~OJ.J. The accuracy of the predictor is as 
good, and usually better than that of the actual integrator (called the corrector) for 

stiff problems. The purpose of the corrector is to provide stability. When this tech­

nique is used along with a number of other techniques to detect convergence quickly, 

an average of less than 1.5 iterations of equation (3.1) are needed at each step in 

typical problems. (Using a predictor has several other advantages. In particular, the 

difference between the predictor and corrector provides a reasonable error estimator 

for local truncation error-an important part of any code. See Gear [12].) 

It is worth noting that convergence of a quasi-Newton method for the corrector 

iteration is guaranteed for small enough step sizes because as the step size is reduced, 

an iteration such as (3.1) becomes a contraction. In addition, the accuracy of the 
predictor improves as h is reduced so that the initial approximation is more likely to 

be in the region of convergence. 

The linearity of a problem does little to reduce the solution time in current codes 

for stiff problems. This could indicate a need for the development of better methods 
for linear problems, but it seems more likely that the reason is that the effects of 

nonlinearity are being handled very efficiently. 

Returning now to the idea of pseudo steady-state approximations, we suppose 

that the equations can be written in the form 

(3.2) y'= f(x, y, z), ez'=g(x,y,z), 

where the solution components are split into two groups y and z. Except in the 

transient, or boundary layer as it is commonly termed in this context, the small 

parameter e suggests one neglect the term ez' and solve instead the algebraic.:. 

differential system 

(3.3) y'=f(x,y,z), O=g(x,y,z). 

In a number of significant physical applications this kind of approximation results in 

an easy (that is, nonstiff) set of ordinary differential equations and a set of algebraic 

equations. Even in this favorable situation it is not clear how to assess the errors which 

arise. Most often one has to solve the algebraic system by numerical means. If a code 
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for stiff equations is applied to equations (3.2) directly, it effectively solves equations 
(3.3) in the stiff region. This can be seen by considering the application of the 
backward Euler method to the second of equations (3.2) when ez' is small. We get 

The fact that a code for stiff equations is automatically doing much the same thing as 
an analyst might, indicates the power of the kind of schemes we are discussing and 
shows how well-conceived and well-executed software can provide the casual problem 

solver with great assistance. 

4. Codes for stift problems. The backward Euler method, and similar methods 
such as the trapezoidal rule, were the first discovered which could handle stiff prob­
lems reasonably well so they became widely used. Because the large codes written to 
facilitate specific application areas such as simulation, chemical kinetics, circuit analy­
sis, and the like are very slow to change, these methods are still seen in practice. More 
efficient methods are now available as a result of researches into higher order 
methods. The initial transients alone represent difficult nonstiff problems and the 
great success of high order methods for nonstiff problems has encouraged . such 
investigations. There has been no hick of ideas for high order procedures with 
excellent stability but improvements have not been won easily because each seems to 
raise some new difficulty. Relatively few ideas have been implemented as software of 
sufficiently high quality to merit general consideration. We shall mention a few such 
ideas in order to allude to some of the difficulties later. Also, we shall mention specific 

codes because there are so few general purpose codes for stiff problems which are 
widely available. Because in some cases we do not have experience with the codes we 
are not necessarily endorsing them; we do have reason to believe that all are serious 
attempts at providing mathematical software for this problem so we hope that learning 
of them will prove useful to the reader. 

Using the general idea of extrapolation [19] there is a code of Schryer [22] which 
does repeated extrapolation of the backward Euler formula. In doing this one adapts 
the order to the requirements of the problem. Lindberg [21] has written a code which 
extrapolates the midpoint rule a single time to generate a method of order four. The 
popular Runge-Kutta methods furnish methods suitable for stiff equations if one 
considers implicit methods. Hulme [18] has written a code which provides an arsenal 
of implicit Runge-Kutta methods; there are two families of methods each with a large 
range of orders. Though a fixed formula is used for the integration, the code can select 
an appropriate one automatically. The most popular formulas being used in general 
purpose codes are the backward differentiation formulas (see Gear [9]). Like their 
relatives the Adams formulas, these formulas are usually implemented so as to 
automatically choose the step size and the order. An early code is that of Gear [11]. It 
has been often reprogrammed and various improvements made; a generally available 
and widely used version is that of Hindmarsh [14]. Extensions which are reported to 

improve the efficiency of the methods are given by Skeel and Kong [28]. These 
extensions "blend" the backward differentiation formulas with Adams formulas in a 
ratio determined by the size of the Jacobian, so that they look like Adams formulas for 
nonstiff problems and backward differentiation formulas for stiff problems. A 
different form of extension appears in Hindmarsh and Byrne [16], where a different 
step changing formula believed to lead to better behavior in problems with multiple 
transient regions is used. Bickart, Tendler, and Pice! have developed codes for two 
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subsets of composite multistep methods-methods invoking a set of multistep for­
mulas solved simultaneously for a set of solution points. The cyclic methods imple­
mented in [29] may be thought of as generalizations of the backward differentiation 
formulas and the one-step methods in [2] as generalizations of the Runge-Kutta 
methods. 

The backward differentiation formulas illustrate an important point about codes 
for stiff problems. As the stability plots in [10] show, if the Jacobian has eigenvalues 
near the imaginary axis, the higher order formulas will be unstable. The unstable 

region increases as the order does to the point that formulas of order greater than six 
are not stable at all. Most codes do not use the sixth order formula because of this 
limitation though it is stable in most of the left half plane. The formulas of order five 
and lower do not have much of a limitation of this kind but occasionally one notices it 
with a real problem. Just because one has a good code implementing a good method 
does not mean that he will not encounter difficulties with stiffness. One needs some 
understanding of the characteristics of his code and it is best to have a repertoire of 
methods on which to draw. 

The implicit Runge-Kutta methods avoid the problems associated with the high­
order backward differentiation formulas because they can be stable in the whole left 
half plane. However, there is a price associated with this additional stability. The 
system of equations which must be solved is two or more times larger, implying a large 
increase in storage for large systems. When these methods are effective, it is because 
they can use a much longer step than methods based on backward differentiation. 
Sometimes, however, the solution will change character as we move from a smooth 
stiff region back into a rapidly varying transient within one long step which is then 

wasted. To some degree the composite multistep formulas share this difficulty though 
they have some compensating factors. The difficulty is even more pronounced with 

extrapolation methods which gain their speed from a very long basic step. 
A good code selects its step size, and hence Xn, automatically. If the user is 

prepared to accept output at only the points Xn, there is no impact on the efficiency of 
the integration. If, however, the user must compute the solution at many other points, 
the cost can become prohibitive. If there are a sufficient number of integration points 
that the desired accuracy can be achieved by interpolation, the cost is small and there 
is no effect on the integrator. In fact, most codes based on the backward differen­
tiation formulas have scaled derivatives or divided differences available so that the 
interpolation cost is minimal; the better codes provide interpolation subroutines for 

the user. If, on the other hand, the code must be asked to compute intermediate points 
by integration, the cost can be high, particularly in codes which use long steps such as 
implicit Runge-Kutta and especially in extrapolation. 

We see that the solution of stiff problems is practical provided we are prepared to 
solve at each step a linear system based on the Jacobian. This can have serious 
consequences. The function f has N components but in general its Jacobian has N 2 

components. For a general problem of even moderate size, providing the Jacobian 
analytically can be burdensome for the programmer and it can be very difficult to be 
sure that the partial derivatives have been obtained correctly. For these reasons, 
automatic generation of a Jacobian by numerical differencing is an indispensable part 

of a general purpose code. 

The evaluation of Jacobians is a relatively expensive part of the solution process 
even though good codes try to do this as infrequently as possible. The key to reducing 
this cost is to take advantage of special structure of the problem. Ordinarily, medium 
to large systems have weak coupling so that most partial derivatives are zero; linear 
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terms in the equations giving rise to immediately available partial derivatives are fairly 

common; and often the functions are rather simple in form, especially for very large 

systems. It is easier to take advantage of these possibilities with analytic differentiation 

than numerical differentiation with the consequence that although the former may be 

more trouble to set up, it will prove very much cheaper. Those concerned with 

application packages should be especially alert to this possibility because of the 

restriction to a special class of equations in their area. An example is the package [5] 

in which the user describes his chemical kinetics problem in a manner natural to him 

as a chemist. The package sets up the differential equations and forms the (easy) 

Jacobian analytically on its own. At some computing installations symbol manipula­

tion languages furnish a quite practical tool for the generation of Jacobians. Depend­

ing on the problem and the efficiency of the code generated by the symbolic processor, 

the analytical derivatives may, or may not, be evaluated more cheaply than by 

differencing. 

One of the reasons for preferring analytical Jacobians is that scaling difficulties in 

differencing can lead to poor numerical Jacobians. Good differencing algorithms try to 

cope with this sort of trouble and, of course, the codes will work with poor Jacobians 

anyway, but the net effect is that scaling troubles increase the cost and decrease the 

reliability of differencing as compared to analytical Jacobians. 

An intermediate procedure is for the user to provide structure information which 

the code then uses to construct Jacobians by differencing. A trick discovered by 

Curtis, Powell and Reid [ 4] may achieve substantial reductions in the cost of 

differencing because of known structure. A particularly simple and quite common case 

is that of a banded system. We say the system is banded, with half bandwidth m, if for 

each i, the jth equation does not involve the variables Yi for lj- i I> m. For such a 

system the Jacobian has nonzero elements only within a band about the main diagon­

al, whence the name. As it turns out, a Jacobian of half bandwidth m can be formed by 

differencing in only 2m + 1 extra evaluations off regardless of the size of the system of 

equations. Clearly this leads to large reductions in machine time even when m is not 

particularly small compared to N. 

Storage can be a limiting factor in the solution of large stiff problems because one 

must store the Jacobian or a closely related matrix for which one must solve a linear 

system of equations. A major disadvantage of most implicit Runge-Kutta schemes is 

that the size of the nonlinear system to be solved at each step is a multiple of the 

number of equations, the higher the order, the bigger the multiple. Because the 

Jacobian grows like the square of the number of unknowns, for even moderate sized 

systems the order in the code COLODE [18] has to be restricted severely to hold the 

program in rapid memory. 

When solving nonstiff systems of equations, one is accustomed to ignoring all 

costs except that of evaluating the equation. With stiff systems this cannot be done 

because the cost of repeatedly solving linear systems often represents a substantial 

fraction of the total cost. We shall examine the efficient solution of these systems, but 

first we note that methods behave differently with respect to the size and number of 

systems which must be solved. The origin of the difficulty is in the fact that the 

iteration matrix depends explicitly on the step size and so must be treated afresh if the 

step size is significantly altered. Because of this certain algorithms must spend an 

unusually large portion of their effort on solving linear systems. For example, in 

extrapolation procedures, assuming that the approximate Jacobian will serve for a 

whole step, one repeatedly advances a method such as the backward Euler method 

through this interval with successively smaller fractions of the basic step size, and 

combines these results at the end of the basic step. Each sweep involves a different 
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linear system which must be solved repeatedly at each fractional step of the sweep. 

Other examples for which the cost of the linear algebra is prominent for similar 

reasons include the composite multistep methods, implicit Runge-Kutta methods, 

methods based on averaging various implicit solutions at each step, and the use of step 

halving to estimate local errors. This situation has been the object of intensive 

research and the recent papers of Enright [8] and Bickart [1] show that progress is 

being made. 

For small to moderate sized systems one can use elimination to factor the matrix 

and then use these factors to do the necessary iterations efficiently. To solve medium 

to large problems we must again resort to structural information. Band structure is the 

easiest to accommodate. Because the factors of a band matrix are also of band form it 

is possible to compute and store only those elements known to be potentially nonzero. 

If the band width is relatively small, m « N, one greatly reduces the storage and 

greatly increases the efficiency of the solution of the linear system by taking advantage 

of the band form. More generally a matrix is said to be sparse if most of its elements 
are zero. This is typical of many very large stiff problems. There are schemes for 

storing only the nonzero elements of sparse matrices and for doing elimination in such 

a way as to introduce relatively few nonzero elements. Some storage is required for 
the schemes themselves and some extra effort in the elimination, so they do not begin 

to pay off in either storage or speed until only a few percent of the entries in the 

matrices are nonzeros. Fortunately this is often the case. Problems have been solved 

which are so large that iterative methods had to be used for the linear systems because 

such methods require less storage than a factorization. This is an active field of 

research at the present and we may well see iterative techniques being used for less 

special problems. 

Exploitation of structural information has been incorporated in a number of 

codes, but they are not as widely available or as easy to use as those codes cited at the 
beginning of this section. An exception is the code of Hindmarsh [17] which is a 

version of the code [14] modified to use a band structured Jacobian. It uses the 

differencing scheme and the special solution of banded systems which we have 

described. One of the earliest such codes is the sparse tableau approach. This is 
described in Hachtel, et al. [13], and is apparently part of an IBM proptietary software 

package for electronic circuit design. 

Since it is often true that evaluation of the function and even the Jacobian are not 

particularly expensive for large problems, the extensive linear algebra and data 

transfers are often a large fraction of the total cost. FoRTRAN does not take full 

advantage of the overlapping of data transfers and computation and of hardware 
possibilities of pipeline and vector machines. FoRTRAN callable assembly language 

modules are becoming available which allow more efficient handling of basic tasks 

than are possible in the FoRTRAN codes being widely disseminated. The report [15] 

gives some codes and timing comparisons on a CDC 7600 of routines for the LU 

decomposition of a matrix and the forward and backward substitution process for 

solving a linear system. For only three equations, the FoRTRAN programs are slightly 

faster because of some additional overhead in the linear algebra modules, but the 

more specialized routines quickly pull ahead and show an improvement of a factor of 

about three for 200 equations. (The solving routine benefits a little more than the 

decomposition routine.) For large problems there are clearly important cost savings 

which can be achieved on some machines in this manner. 

Many problems lead to implicit sets of differential equations such as 

(4.1) My'= Ky +p(x), 
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where the matrices M and K may depend on y, x, and even y'. It is not necessary, nor 

even desirable, to invert these to the explicit form 

(4.2) y'=M- 1[Ky +p(x)], 

when a quasi-Newton iteration is used for the corrector. If, for example, the backward 

Euler method is used as an integrator, it can be substituted in 

(4.3) F(y, y', x) =0 

at x =xn+J to eliminate Y~+l and get 

( 
Yn+l-Yn ) 

F Yn+h h ,Xn+l =0 

which is to be solved for Yn+l· Dealing with the implicit equation (4.3) directly can 

save arithmetic and storage in large sparse problems. This is clear from equations (4.1) 

and (4.2) when M and K are constant. Whereas the Jacobian of (4.1) will be K- M/h, 
which will be sparse, the Jacobian of (4.2) is M-1 K- 1/h, which will normally be 

dense. 

A very important part of any code for solving differential equations, whether stiff 

or nonstiff, is automatic control of the step size and order of method used. WhUe the 

basic strategy is straightforward-the two are chosen to try and minimize the amount 

of work done to integrate over the interval-the implementation is not. The problem 

lies in the fact that there is not yet an adequate theory to tell us how to choose these 

parameters, so the choice is based on the extension of existing theory to situations in 

which it probably does not apply, coupled with a lot of testing and tuning of codes to 

make them as reliable as possible. Because of this, it is possible for a person to 

implement a set of formulas into a code and use the same basic step and order control 

strategy as another code, and yet have a code that is orders of magnitude slower on 

some difficult problems. (This is illustrated in [23] which compares a number of codes 

for nonstiff problems, including four based on Adams methods and rather similar step 

and order control strategies.) The lesson to be learned from this is that, whenever 

possible, an existing piece of well tested and well documented software should be 

used, and if possible, it should be used without change. 

Variable order codes adapt the formula used to the observed characteristics of 

the solution and have proved very efficient in general use. One should appreciate that 

such codes are relatively inefficient during the initial stages of the computation while 

they find an appropriate order. Ordinarily this is an unimportant part of the overall 

expense, but there are exceptions. We have seen examples in flame chemistry where 

one has partial differential equations describing the gas flow coupled to ordinary 

differential equations describing reactions taking place in the flow. A pseudo steady­

state approximation is made in which one holds the gas flow parameters constant for a 

time period during which one integrates the ordinary diffetential equations. Using 

these values one re-solves the partial differential equations for the time zone or 

advances into the next time zone-the details do not matter here. The point is that at 

the end of each zone, the ordinary differential equations change. Codes based on 

backward differentiation formulas prove very inefficient because they must be 

restarted at each zone. Things do not change much from zone to zone (else they would 

be shortened) so that the last step size used in one zone would be reasonable in the 

next if one retained the same formula. Fixed order methods appear to offer consider­

able advantage in this situation and the limited experience agrees. To some degree, 

extrapolation methods which permit high orders must also be at a disadvantage 
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because the order and the length of the step will be held back by the length of the 

zone. A low order and small step size can be obtained more cheaply by a code with 

fixed order. 

There is one situation in which automatic step and order control may not be 

desirable; that is, when a problem is to be repeatedly integrated to study, for example, 

effects of parameters. Here it is desirable to use the same sequence of steps and 

formulas in each integration. If that is done, the numerical solution depends more 

smoothly on the parameter values than if not. However, even in this case, it is 

desirable to choose a step and formula sequence automatically for the first integration 

and either perform the other integrations in parallel (and possibly use the same 

Jacobian and its decomposition) or save the sequence for subsequent integrations. 

5. Solving a differential equation. There are a number of meanings of "solving" a 

differential equation numerically. Sometimes one wants an approximate solution at a 

single point. More often a solution is desired on a set of points so as to get a table of 

the solution. Other times one wants either a continuous approximate solution curve or 

a table so dense as to be equivalent. It is important to realize that where and how 

frequently one wants output points can have a serious effect on the cost. The most 

efficient action depends on the method implemented, the principal factor being how 

far, relatively speaking, the code steps before producing an approximate solution. For 

example, high order implicit Runge-Kutta schemes and extrapolation schemes 

advance very much further in a step than does a code based on the backward 

differentiation formulas. The former produce output at a given point by stepping so as 

to actually hit the point. Requesting output more frequently than the natural step size 

chosen by the code will severely degrade the efficiency of such methods for a variety of 

reasons. If one seeks an answer at only a few points, especially if he is willing to accept 

the natural output points, output is not a problem. Some methods, like the backward 

differentiation formulas, provide continuous polynomial solutions which can be 

evaluated at negligible cost. Not all codes implement this equally well. In this matter 

one needs to consider what is required in the way of output and how it impacts· the 

repertoire of codes. 

The user's meaning of accuracy can affect the results considerably. One common 

scheme is to measure the error relative to the maximum (absolute) value of the 

solution component seen so far in the integration. Another common scheme is a 

mixture of absolute error and error relative to the solution magnitude. It is important 

to be able to specify error tolerances for each component of the solution because 

scaling of components often differs radically for stiff problems. Stiff problems almost 

always involve transients during which the solution changes sharply. In the survey [26] 

about half the users required the accurate solution of these transients as well as that of 

the slowly varying portions. To do this one must use a suitable error control and the 

net effect is that in the transient, accuracy dominates the choice of step size rather than 

stability. As a result the transients become a relatively expensive part of the inte­

gration for most codes. Even if the user is interested only in the long term behavior of 

the solution, a resolution of the transient may be necessary to assure that the proper 

equilibrium solution is picked up and to assure reliability of the basic algorithms. If 

one knows that all errors will be heavily damped and is interested only in equilibrium 

behavior, one can economize by computing the transient crudely. 

An extremely common misuse of codes is to seek a solution accurate in a relative 

sense when the solution vanishes initially or tends to zero rapidly later in the inte­

gration. The attempt can prove exceedingly expensive and is rarely meaningful. By far 
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the most common situation is that, when a quantity drops below a certain level, the 

user of the code is no longer interested in this quantity and so should not waste time 

trying to compute it accurately. A proper choice of error criterion will accomplish this. 

Of course, it may happen that nonphysical values get computed in this way, for 

example, a negative concentration. Ordinarily this is unimportant, but it can happen 
that the differential equations become unstable if such a value should be generated. 

Discussion of this difficulty in the context of mass action kinetics and an example can be 

found in [6]. 

Stiff problems are relatively expensive to solve and the expense depends much 

more strongly on the tolerance than is true of the best codes for nonstiff problems. The 

physical origin of stiff problems rarely makes high accuracy meaningful because 
fundamental quantities are known inaccurately. The case of semi-discretization of 

partial differential equations is an easily understood and important case in point. If the 

spatial discretization is crude, it makes no sense to solve the ordinary differential 

equations very accurately at all. In the survey [26] accuracies of one or two digits were 

by far the most common requests. An accuracy of five digits was considered stringent. 

Apparently experience says that accuracies in this general area represent a bearable 

expense with our currently available codes and machines. At this point we should 
remind the reader that the codes control their local truncation errors, not the global 

errors which interest the user of the code. The present state of the art is such that for 

some problems one can get reasonable looking numbers which are not close to the 

desired solution. This difficulty can arise in a number of ways, including a step control 
routine that makes the step so large that an active region of the solution is missed 

entirely, and a formula that is stable for unstable problems and completely ignores an 

increasing component of the solution. A conservative choice of tolerance, alertness to 

scaling considerations in the error criterion and differencing of Jacobians, experimen­

tation, and a thoughtful examination of the numerical results are indispensable for 
solving stiff differential equations. 
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