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Abstract—Distributed power-control algorithms for systems
with hard signal-to-interference ratio (SIR) constraints may di-
verge when infeasibility arises. In this paper, we present a power-
control framework called utility-based power control (UBPC)
by reformulating the problem using a softened SIR requirement
(utility) and adding a penalty on power consumption (cost). Under
this framework, the goal is to maximize the net utility, defined
as utility minus cost. Although UBPC is still noncooperative and
distributed in nature, some degree of cooperation emerges: a user
will automatically decrease its target SIR (and may even turn off
transmission) when it senses that traffic congestion is building up.
This framework enables us to improve system convergence and to
satisfy heterogeneous service requirements (such as delay and bit
error rate) for integrated networks with both voice users and data
users. Fairness, adaptiveness, and a high degree of flexibility can
be achieved by properly tuning parameters in UBPC.

Index Terms—Admission control, cellular system, distributed al-
gorithm, fairness, Nash equilibrium, Pareto optimal, power con-
trol, robustness, signal-to-interference ratio (SIR), stability, utility
function, wireless.

I. INTRODUCTION

W IRELESS networks are characterized by scarce radio
spectrum, an unreliable propagation channel (with

shadowing, multipath fading, etc.), and user mobility. Hence,
in wireless networks, efficiently managing radio resources is
a very important problem. In this paper, we focus on power
control, which is an important component of the resource
management problem in wireless networks.

Power control has been extensively studied in recent years,
especially for CDMA systems. It has mainly been used to reduce
cochannel interference and to guarantee the signal-to-interfer-
ence ratio (SIR) of ongoing connections, resulting in a higher
utilization and/or better quality of service (QoS). From the
viewpoint of practical applications, distributed power-control
schemes are of special interest and importance. One of the most
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well-known distributed algorithms was originally proposed in
[1], and has been further studied in several papers, including
[2] and [3]. This algorithm is distributed and autonomous
because it relies only on local information. It is also “standard”
(in the sense defined in [4]), and asynchronously convergent
(with geometric rate) to the Pareto optimal power assignment
(a power assignment is said to bePareto optimalif it is
feasible and any other feasible power assignmentsatisfies

componentwise), when the system is feasible [3],
[4]. However, if there is no feasible power assignment, this
algorithm can diverge, which will be illustrated in Fig. 9. For
infeasible systems, the distributed power-control algorithm
diverges because of the hard SIR requirements that cannot be
achieved in such systems no matter how high the transmitted
power is.

In practice, although achieving satisfactory QoS is important
for users, they may not be willing to achieve it at arbitrarily high
power levels, because power is itself a valuable commodity. Cut-
ting power consumption not only prolongs the life of the battery
and alleviates health concerns about electromagnetic emission,
but also decreases the interference to other users. In addition,
different users may have different views of power consumption.
For example, a handset user is more concerned about the power
than a user with a vehicle-mounted device. We can capture a
user’s view of power consumption by also considering the cost
of power.

Thus, user satisfaction will depend on both QoS and power
consumption. This observation motivates a reformulation of the
whole problem using concepts from microeconomics and game
theory, as described in [5]. Earlier work applying game theo-
retic ideas to flow control in telecommunication networks in-
cludes [6]–[10]. Our problem naturally fits in this context: the
QoS objective can be viewed as a utility function, which rep-
resents the degree of user satisfaction with service quality and
cost in terms of power consumption. The distributed power-con-
trol problem essentially becomes a noncooperative multiplayer
game, in which each user (player) tries to maximize its net utility
(i.e., utility minus cost). Within this framework, we develop
a utility-based distributed power-control algorithm. Our algo-
rithm keeps the major merits of the existing algorithm in [1],
but is exempt from the divergence problem because there is no
strict SIR threshold requirement. Moreover, the framework pro-
vides a unified way to deal with both voice users and data users.
In addition to power control, it can also be used for admission
control, near–far fairness, and data rate control.

In related work [11], Ji and Huang propose a framework
for uplink power control in cellular systems, to obtain better
QoS using less power. Their objective function is a concave
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decreasing function of power and a concave increasing function
of SIR. The authors provide sufficient conditions for conver-
gence. In this paper, we use a sigmoid-like utility function
that does not satisfy the above-mentioned conditions in [11].
The sigmoid-like shape of a utility function is very natural to
use because, empirically, a number of important performance
measures (e.g., the capture probability) have a sigmoid-like
shape (first convex and then concave) as a function of SIR. In
[5], Goodman and Mandayam propose a power-control algo-
rithm for wireless data to provide power-efficient transmission
for data users in a single-cell system. Their utility function is
related to the number of effective bits transmitted per unit of
energy. The “natural” form of this utility function turns out
to have undesirable properties—the modification proposed
in [5] to alleviate this problem leads to a less natural utility
function. Moreover, the associated power updating algorithm is
complicated and has low Pareto efficiency.

In this paper, the objective is to maximize the net utility (dif-
ference between a utility function and a cost function). We will
show that the resultant algorithm is flexible and simple to im-
plement in cellular systems. The algorithm does not suffer from
divergence, which is achieved by softening the SIR requirement
using the notion of utility functions. Our algorithm will auto-
matically decrease the target SIR (and may even turn off trans-
mission) of some users when traffic congestion builds up. This
property, which the algorithms in [5] and [11] do not satisfy, fa-
cilitates system convergence and admission control. Moreover,
our algorithm has several tunable parameters in utility and cost
functions to achieve fairness, adaptiveness, and heterogeneous
service requirements (such as delay and bit error rate) for inte-
grated networks with both voice users and data users.

The rest of this paper is organized as follows. In Section II, we
first present the system model and explain why a hard SIR re-
quirement may result in divergence. In Section III, we reformu-
late the power-control problem as a noncooperative game maxi-
mizing the net utility, which leads to a utility-based power-con-
trol algorithm. We also discuss convergence and effects of some
parameters in this section. Important extensions and discussions
of the utility-based power-control algorithm are made in Sec-
tion IV. Numerical results are given in Section V. Finally, Sec-
tion VI concludes the paper.

II. SYSTEM MODEL AND RELATED WORK

We consider a power-controlled cellular system where the
transmitted powers are continuously tunable. Within a cell,
every user is associated with a base station (called its home
base station). To maintain a reliable connection between
the user and its home base station, the SIR at the receiver
should be no less than some threshold that corresponds to a
QoS requirement such as the bit error rate. We consider only
downlink transmissions in this paper because the uplink case
can be treated similarly [12], [13].

Assume that there areusers in the system and let be the
transmitted power level for the downlink of user. Let de-
note the gain from the home base station of userto user .
Then, the interference power received at userfrom the down-
link of user is . Let be the background noise received

at user and let be its desired SIR threshold. Then the SIR
for user is given by

SIR (1)

Note that this model is general enough to represent
DS-CDMA systems with matched-filter receivers [14],
[15] or TDMA/FDMA systems [2], by giving specific interpre-
tations to the parameters.

For the system considered in [3], [12], and [16], the con-
straint SIR is enforced for each user. The objective of a
power-control scheme is to find the minimum power satisfying
this constraint. To this end, there is a well-known power-control
algorithm given by

SIR
for (2)

where and SIR correspond to the power level and
the SIR for user at the th iteration, respectively. This algo-
rithm and its stability have been studied extensively by Foschini
and Miljanic [1], Mitra [3], and Bambos, Chen, and Pottie [2],
[12]. The algorithm is distributed and autonomous because it re-
lies only on locally available information. It allows each user to
have different target SIR values. It has also been shown in [3]
to be asynchronously convergent (with geometric rate) to the
Pareto optimal power assignment, when the system is feasible
(i.e., when there exists a power assignment such that SIR
for all ). However, if the system becomes infeasible, this algo-
rithm diverges.

Divergence occurs when the system is infeasible because the
SIR requirement is hard (strict), and has to be satisfied at any
cost. Intuitively, what user does through algorithm (2) is to
adjust its transmitted power such that its SIR just achieves
the threshold in the next step. In an infeasible system, every
user blindly adjusts its power without realizing that it is impos-
sible to satisfy these SIR requirements simultaneously, and con-
sequently transmitted powers build up higher and higher during
this procedure. It may appear reasonable to attribute this “blind-
ness” to the fact that the algorithm is distributed and only has
local information available. This is not really the case, because
a user can recognize that infeasibility would be likely from the
extremely high interference received. However, each user still
continues to increase its power because its goal is to achieve a
SIR value no lower than the threshold.

To avoid introducing infeasible users into the above system,
two distributed admission-control schemes were proposed in
[16]. The basic idea is that before the new user enters the system
and begins to tune its power in full gear according to (2), it ten-
tatively transmits at a fixed level, then decides (in a distributed
way) if the system will become infeasible after its joining. Only
if the user will not cause infeasibility is it admitted. Although
no infeasible user can slip in, there are still some problems that
persist. In a wireless cellular system, users can be in constant
movement, and an initially feasible user may later become in-
feasible. Also, due to mobility, the Pareto optimal power assign-
ment achieved by (2) may no longer be optimal and may even
be infeasible a moment later, which may result in a high outage
probability [17]. We solve these problems by softening the hard
SIR requirements.
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Fig. 1. Sigmoid utility versus SIR for useri.

III. U TILITY -BASED DISTRIBUTED POWERCONTROL

Although achieving satisfactory QoS is important for users,
they may not be willing to achieve it at arbitrarily high power
levels, because power is itself a valuable commodity. This ob-
servation motivates a reformulation of the whole problem using
concepts from microeconomics and game theory [5], [11]. In
this section, we will use such a reformulation to develop a mech-
anism for power control where the desire for increased SIR is
weighed against the associated cost. We will point out the dif-
ferences between our work and that in [5] and [11] and discuss
some important implications of these differences.

A. Problem Formulation and Basic Algorithm

Instead of enforcing the constraint SIR as in the hard
constraint case, we use a utility function to represent the de-
gree of satisfaction of userto the service quality, and introduce
a cost function to measure the cost incurred. The goal is to
maximize the net utility defined as by ad-
justing the transmitted power . Since each user in the system
will try to maximize its own net utility, regardless of what hap-
pens to the other users, this problem is a typical noncooperative

-person game [18].
Generally, the QoS depends on SIR, so we let the utilitybe

a function of SIR satisfying: ; , and that
SIR increases in SIR. This means that a user is more and

more satisfied with the service as the quality improves. We will
use the utility function given in Fig. 1 (called the Sigmoid func-
tion) in this paper, because it captures the value of the service
to the user quite naturally. This function is also similar in shape
to the capture probability [19]. However, it should be noted that
our scheme can be applicable to many other utility functions.

We choose , the cost for user, as a function of power. As
mentioned before, power is itself a valuable commodity. The
specific cost function should reflect the expenses of power con-
sumption to the user. There are at least two requirements for the
cost function: , and that increases in power

. In this paper, we will use a linear cost function, i.e.,

(3)

where is the “price” coefficient. Although is a constant
independent of , it can be a function of environmental factors
such as user location and received interference. In fact, the use
of an adaptive price setting can be helpful in achieving fairness
and robustness. As is the case of the utility function, other forms
of cost functions would also work for our scheme (although, not
as simply).

The net utility of user is SIR SIR
. The power-control problem for useris formulated as

(4)

Taking the derivative of in (4), we have

SIR SIR

SIR
SIR

SIR
SIR

(5)

where and are the derivatives of and , respectively.
In the last step, we use the fact that SIRis linear with , as
defined by (1). If apositivepower is a local optimum for
problem (4), we require SIR , i.e.,

SIR SIR (6)

Considering (1) and (3), the above condition becomes

SIR (7)

where is the received interference of
user . Because the right-hand side of (7) is known or locally
measurable, we find the solution to be

SIR (8)

where SIR SIR in the concave part of where a
local maximum is possible. Then one candidate for the optimal
power assignment is

SIR (9)

Clearly, given the coefficient , is a function of .
Now the problem is whether defined above exists, and
whether it is globally optimal (when it exists). Note that
is on the constraint boundary of (4) and need not satisfy the
above condition even when it is a maximum point. In fact,
in some case achieves the global optimum, though it
corresponds to zero . Thus, the optimal power is either

or 0, whichever results in a larger net utility. This leads to
a distributed power-control algorithm optimizing net utility.
We call the algorithm utility-based power control (UBPC), and
next illustrate it graphically.
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Fig. 2. Sigmoid utility (and cost) versus SIR for useri.

B. Graphical Illustration

We plot both the utility and the cost versus SIR in Fig. 2.
Because SIR , the slope of the cost
line in Fig. 2 is . By changing the slope, we have a
different position of relative to . When the slope is small,
the cost line has two nonzero intersections with the utility, as
shown by line 1. When the slope increases, the two intersections
will come closer, and eventually meet on line 2. If we continue
to increase the slope until it is equal to the maximum derivative
of the utility function, the cost line reaches line 3. Note that

by definition, so the cost line has a positive lower bound
as illustrated by line 4 in Fig. 2. Let be the slope of this
line, i.e., . This nonzero lower bound prevents
infinite SIR in power control.

In Fig. 2, if the cost line (e.g., line 1) lies between line 2 and
line 4, then there will be some positive net utility corresponding
to , i.e., . If the cost line reaches line 2, the maximum
net utility is 0, which is achieved at power levelsand 0. If the
cost line (e.g., line 3) is beyond line 2, the best choice is to keep

, because all other powers will result in negative net
utility. We will call the SIR associated with cost line 2 theturnoff
SIRof user , and denote it by SIR, which is the lowest SIR
value user will achieve when transmitting. Correspondingly,
we denote the slope of line 2 by . Note that and SIR
depend only on the utility function.

In Fig. 3, we show the derivative SIR of the Sigmoid
utility function. The horizontal lines correspond to the cost lines
in Fig. 2, respectively. Note that lines 1, 2, and 4 each have
two intersections with SIR , but only the intersection on
the right side qualifies for because is concave in this part.
In fact, the left-side intersections are the minimum points.

From Figs. 3 and 4, we see that as increases,SIR
will decrease. This has important implications. If we introduce
the iteration index , then (9) becomes

SIR
SIR
SIR

(10)

At each step, we are trying to maximize the net utility under the
given interference. Contrasting (10) with (2), we see that with

Fig. 3. Derivative function of Sigmoid utility versus SIR for useri.

Fig. 4. Target SIR versus transmission environment of useri.

UBPC the target SIR value will decrease automatically for a
worse transmission environment (i.e., for larger ),
while with the power-control algorithm given by (2), it remains
the same regardless of the environment. When the transmission
environment becomes very hostile, there will be no gain (posi-
tive net utility) in transmitting and the transmission will be to-
tally shut off by UBPC. To transmit under UBPC, usermust
have its cost line lie between line 2 and line 4, i.e.,

. To be consistent with the hard SIR requirements, i.e.,
SIR for user , from now on we assume SIR , be-
cause under this setting useralways achieves SIR higher than

when transmitting.
In summary, the iterative procedure of the UBPC for useris

as follows.

Algorithm UBPC
1. Measure the received interference

, update path gain and price
coefficient , then calculate SIR
using (8). If SIR , turn off trans-
mission (i.e., ), and go to
step 3. Otherwise, go to step 2.
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2. Calculate using (10), and set
the power level to .

3. Let , and go to step 1.

The information required by UBPC from the utility of user
is the curve of the target SIR,SIR versus , which is
shown in Fig. 4. Hence, in implementation, a user only has to
provide this curve instead of the utility function. This simplifies
implementation, and also enhances flexibility to meet heteroge-
neous QoS requirements, because the target SIR curve can have
other forms, e.g., a staircase form.

In the objective function , our utility is a function of only
SIR, while the cost term depends only on power. This arrange-
ment not only achieves separation (between utility and cost)
and simplifies the derivation, but also benefits the system per-
formance and facilitates network resource management. Before
elaborating on these points, we will first study a specific ex-
ample of the Sigmoid utility.

C. Sigmoid Utility

One well-known Sigmoid function is

which has been widely used in the study of neural networks.
Clearly, , so we call the center of . It is easy
to show that the derivative of satisfies

(11)

This function is perfect as a utility function for our purposes,
except that . This is not a serious
problem, because as is large. Moreover, we can
always solve this problem (when desired) by using the linear
transformation

(12)

For simplicity, we will directly use the Sigmoid function
(with and ) as the utility function for user, i.e.,

SIR (13)

There are two tunable parameters in the Sigmoid utility (13):
parameters and , which can be used to tune the steepness
and the center of the utility, respectively.

In Figs. 5 and 6, we illustrate the utility functions and the cor-
responding derivative functions for two different values of.
When parameter increases, the utility becomes steep, and its
derivative function becomes narrow and high. Applying UBPC
to two users with utility functions shown in Fig. 5, we can show
that the target SIR (SIR ) of the user with a larger value of de-
creases more slowly in . Thus, a user having a utility
with a large value of is rigid, and is difficult to be turned off
(especially when is small). In the limit as approaches in-
finity, the utility function becomes a step function with a step
at SIR , and its derivative becomes an impulse function.
In this case, the targetSIR is fixed at no matter what value

Fig. 5. Sigmoid utility versus SIR with differenta .

Fig. 6. Derivative funstion of Sigmoid utility versus SIR with differenta .

takes, SIR , and (the slope of cost
line 2) achieves the upper bound . We should emphasize
that a user with a step utility can still be turned off if the slope
of its cost line is greater than . If additionally, then
our UBPC for user just reduces to the power-control algorithm
(2), as shown by (10). This type of rigid user can never be turned
off by UBPC.

In Fig. 7, we fix and vary . The two utility functions and
their derivative functions have the same shape, but with different
centers (at ). Clearly, a user with a higher in utility will
get higher SIR when in service, but is more likely to be turned
off by UBPC. When is large enough, becomes small and
insensitive to the shape of the utility, but a softer utility (with
smaller ) will show more flexibility and robustness.

Based on the effect of the two parameters on our power
control, we make the following important observation: UBPC
is suitable for integrated wireless systems with both voice
users and data users, important in the third-generation wireless
networks. To illustrate this point clearly, we start with the
well-known difference between voice and data in their service
requirements. For a voice user, the essential objective is low
delay, and transmission errors are tolerable up to a relatively
high point. Thus, the voice user does not want to be easily
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Fig. 7. Sigmoid utility versus SIR with different� .

turned off, but its target SIR can be relatively low. This means
that for a voice user, the cost should be low, and the utility
function should be steep and with low turnoff SIR, i.e., is
small, is large, and is small. Note that must be large
enough, but need not be infinite (in contrast to what is used
in [5]). On the other hand, a data user can accept some delay
but has very low tolerance to errors, which can be satisfied by
a utility function with a smaller and larger . A user with
such a utility can achieve a high SIR when transmitting, but
it must allow being turned off and delaying its transmission
until later. Thus, we can characterize the service requirements
of both the voice users and data users by choosing different
utility parameters. In this way, these two different types of
users have a unified and comparable measure for sharing radio
resources. It should also be pointed out that under the frame-
work of UBPC, due to their rigid behavior, voice users can get
preemptive priority over data users, which is desirable in this
case. Moreover, some factors such as the voice activity factor
and data burstiness can be automatically exploited through the
received interference. We believe UBPC also works for hybrid
systems with both circuit-switched and packet-switched users.

To gain further insight, we derive and SIR for the Sigmoid
utility (13). Combining (7) and (11) yields

(14)

which is in closed form, but looks quite complex. We observe
that it is truly a function of . One necessary condition
that exists is , which means that the cost
line should lie below line 3 in Fig. 2. If this condition is satisfied,
we always have , i.e.,SIR .

To derive SIR, we use (11) and the condition that the cost
line is the tangent line of through the origin, i.e.,

SIR SIR SIR (15)

After some algebra, we find that SIRsatisfies

SIR

SIR
(16)

We have assumed SIR , where the SIR threshold is
predefined. Thus, the center can be calculated using (16) as

(17)

Inserting the above equation into (14) yields

SIR

(18)

User is active in transmission if and only ifSIR , i.e.,

(19)

Thus, we have for the Sigmoid utility
in (13). This also verifies the previous result that asgoes

to infinity (i.e., the utility becomes a step at), achieves its
upper bound .

D. Feasibility and Convergence

1) Feasible Systems Under UBPC:From the above dis-
cussions, transmission is automatically turned off when the
transmission environment becomes very hostile. This simply
implies that UBPC will never result in powers “blowing
up.” However, because the system cannot accommodate an
infinite number of users, we can also define feasibility in the
power-controlled system under UBPC. A system is said to
be feasible under UBPCif there exists a power assignment

, such that

SIR SIR (20)

and for all user . We will call such a power assign-
ment feasible under UBPC. Note that in the definition, the
condition is necessary.

To see a counterexample showing that an infeasible system
can satisfy the first condition, consider a system feasible under
(2) but with an infinite price coefficient. The utility in this case
becomes a step function, and the condition (20) reduces to
SIR . The feasibility under (2) means that there exists a
positive power assignment such that the inequality holds for
all [12], [3]. However, any positive power will result in infinite
cost and negative net utility, so it is infeasible under UBPC.
Next, we study how UBPC performs in a feasible system.

2) Standard Power Control:Remember that a power-con-
trol algorithm is said to bestandard[4]
if satisfies the following properties for all :

• Positivity: ;
• Monotonicity: If , then ;
• Scalability: For all , .
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This framework has been proposed for systems with a hard con-
straint , where is called theinterference func-
tion. A typical example of a standard power-control algorithm is
(2). We next show that UBPC is standard under mild conditions.

Theorem 1: UBPC is standard if is an in-
creasing function on for all .

Proof: From (9), the interference function of UBPC is

where and
with . The

positivity property is implied by the nonzero background
receiver noise .

If , then , where .
Because the function is an increasing function on

, we get for . (As a reminder,
the quantities and are the slopes of line 2 and line 4 in
Fig. 2, respectively.)

For all , we have

where the first inequality holds because is a decreasing
function on . Thus, UBPC is standard if
is an increasing function on .

For a fixed price coefficient, the function is
increasing if and only if the shaded area (under line 1 and to
the left of its right-side intersection) in Fig. 3 increases in the
height of line 1, ( ). This is a very mild condition,
because a user in practice usually has a largeor a large (see
Section III-C). Hence, UBPC is standard for almost all practical
situations of interest.

Like other standard power-control algorithms, UBPC applied
to afeasiblesystem also has the following properties that can be
proved in exactly the same way as in [4].

Properties of UBPC:

1) If there is a unique fixed point , then that point is
unique.

2) If the initial power assignment is feasible, then UBPC
generates a monotone decreasing sequence of feasible
power assignments that converges to. This implies that
the fixed point is componentwise minimum in the set
of all feasible power assignments.

3) If the initial power assignment is the all-zero vector,
then UBPC generates a monotone increasing sequence
of power assignments that converges to.

4) UBPC converges from any initial power assignment to
the unique fixed point in both synchronous and asyn-
chronous cases.

The standard power-control framework was originally pro-
posed for systems with a hard constraint (e.g., SIR ), which
directly leads to the feasibility condition and the interference
function. However, systems under UBPC do not have a hard re-
quirement, and the feasibility condition in (20) for such systems
is implied by the power control instead. In this sense, our work
essentially generalizes the standard power-control framework in
[4]. Although the feasibility condition in (20) for systems under
UBPC is somewhat subtle, we can infer a physical meaning for
this feasibility definition from the following theorem.

Theorem 2: A system is feasible under UBPC if and only
if no user is turned off when starting from the all-zero power
assignment.

Proof: If the system is not feasible under UBPC, then for
any power assignment we will have either or
SIR SIR for all . The former condition means that
user has to be turned off. If this happens, we are done with the
proof of this part. So we only have to consider the case where

in all the steps, i.e., SIR SIR . By (10), this
condition means that UBPC generates an increasing sequence
of power assignments. If the increasing sequence is bounded
from above, then the sequence will converge [20] to a power
assignment , at which SIR SIR for all . However, this
contradicts the assumption that the system is infeasible. Thus,
the increase of the power (and of the cost) could be unlimited.
Then there always exists a userthat has at some
iteration, because . This just means that useris turned
off by UBPC at this step.

The other direction of the theorem follows from Property 3
of UBPC.

In fact, we need not start from the all-zero power assignment
at all. If the initial power assignment is arbitrary, UBPC applied
to a feasible system may turn off some user temporarily, but
eventually all users will be turned on. Theorem 2 implies that
an infeasible system always has some user turned off, but this
does not exclude the possibility that a user that is switched off
retries transmission, which may result in power oscillation. For-
tunately, we can avoid such a situation by forbidding immediate
retries or by setting a high price coefficient (see Section IV-A).
Then, unlike the standard power-control schemes with hard con-
straints such as (2), UBPC can achieve convergence even when
infeasibility arises. Moreover, a system converging under UBPC
always reaches theNash equilibrium[18], which is straightfor-
ward to check from the definition of Nash equilibrium.

IV. DISCUSSIONS ANDEXTENSIONS

In this section, we will illustrate that several desirable proper-
ties and a high degree of flexibility can be achieved by properly
tuning the parameters in UBPC. We also briefly discuss some
radio resource management techniques that can be jointly con-
sidered with UBPC.
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A. Adaptiveness and Fairness Considerations

1) Adaptive Price Setting:It has been shown thatSIR de-
creases as the quantity increases, and when this
quantity exceeds some critical point (the slope of line 2 in
Fig. 2), there will be no positive net utility, and usershould
stop transmission. Clearly, the price coefficienthas the same
effect as does on the power control. In other words,
transmission is discouraged by a large value ofas well as
by the hostile transmission environment (in terms of ).
This is intuitive—users are generally unwilling to pay more for
the same service. However, as will be explained, a higher price
coefficient also means a more robust system, which can facili-
tate network management in congested situations.

From the network’s point of view, it can use the price coeffi-
cient as an effective way to manage resources and to maximize
revenue. When the transmission environment is desirable, the
network should set a low price, allowing users to enjoy good
QoS (high SIR or high transmission rate). On the other hand,
when congestion builds up, it should set a high price, to im-
prove system robustness. In fact, if the price coefficient is not
high enough, under heavy traffic situations, a user may repeat
the procedure of being turned off and retrying, resulting in os-
cillation. Thus, it is desirable to have a price coefficient that is
adaptive to the transmission environment. A good measure for
the transmission environment experienced by useris ,
so the price coefficient should be set as an increasing function
of this quantity. For example, a simple adaptive setting can be

(21)

where is a constant (may be provided by the base station).
Then, we have a different power-control algorithm

SIR (22)

Our simulations (in Section V) show that UBPC with the linear
adaptive setting works well under a large range of traffic loads.

2) Near–Far Fairness:The basic UBPC scheme exhibits a
kind of unfairness, the so-callednear–far unfairness. A user far
from the base station (the “far user”) normally has a small path
gain, so it is more likely to get a lower SIR or to be turned off.
This is beneficial to the network, because the total throughput
can be improved in this way. In fact, it has been shown by Ohet
al. [21] that the optimal scheme to maximize throughput is that
near users transmit at the highest power while far users totally
turn off. Of course, these arrangements are extremely unfair to
users close to cell boundaries, who may never get a chance to
transmit. Moreover, the reason to use power control in the first
place is to overcome the “near–far effect” in CDMA systems.
Thus, we must achieve near–far fairness even at some cost of
throughput. To this end, we should set a lower price to the farther
user. A simple and natural scheme is

(23)

where is a constant. Then we have

(24)

i.e., we perform power control based only on the received in-
terference (see Fig. 4), and have no prejudice against far users.
At the same time, we also achieve handoff prioritization. If this
weighting is still not enough, we can further decrease the price
for handoff users.

Other fairness problems (e.g., deadline fairness) can be
solved similarly. Since fairness is often achieved at the cost of
throughput, the price to be used should depend on the tradeoff
between fairness and throughput.

3) Combined Price Setting:To achieve both adaptiveness
and fairness, we only have to combine schemes (21) and (23)
to get the following price setting:

(25)

where is a constant independent of and and can be pro-
vided by the base station. In (25), the price coefficient adopted
by a user is proportional to its received interference. Now the
new power-control algorithm becomes

SIR (26)

It still depends on , but more on .

B. Integrated Resource Management

It has been shown that power control can greatly improve
system capacity [13]. On the other hand, resource management
of power-controlled systems often becomes more challenging
because of the dynamically variable capacity and limited
(locally) available information [22], [16]. In the following,
we will illustrate that UBPC can be readily integrated with
other resource management techniques and facilitate their
implementation.

The task of admission control is to decide whether or not to
grant access to a newly arriving user. A good admission-con-
trol scheme should admit as many users as possible while main-
taining the quality of ongoing users. It is interesting to note that
UBPC automatically has some admission-control function. Re-
jection happens when a new user finds that its cost line is beyond
(higher than) line 2 in Fig. 2. If there are enough resources to ac-
commodate a new user, it is accepted to receive service better
than its minimum requirement. As a new user gets admitted,
the ongoing users may yield a little to make space for it. It is
also possible for an infeasible new user to get service by turning
an existing user off. Such a situation allows a user of high pri-
ority (e.g., voice user) to preempt a user of best-effort service.
The user being turned off first is usually the “bottleneck” user,
which has the worst transmission environment. As mentioned
before, the transmission environment can be changed by tuning
the price coefficient. Hence, to provide more protection to on-
going users or handoff users, we only have to lower their prices
or set higher initial prices to new users. In short, power-con-
trolled systems under UBPC are highly autonomous, and the
behavior of a user depends on its utility, price coefficient, and
interactions with other users in the system.

Like the distributed power-control scheme (2), UBPC can
also be solved jointly with dynamic base station and channel as-
signment [14], [23]. The main difference is that we first choose
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the base station and channel resulting in the best transmission
environment (in terms of ). These dynamic assignments,
along with the adaptiveness of UBPC, promise good perfor-
mance in the face of mobility.

Considering the hostile environment encountered in wireless
systems, it is desirable for users to have adjustable transmission
rates [15]. With rate control, systems under UBPC can take ad-
vantage of high SIR in desirable transmission environments, and
translate it into high transmission rates to increase throughput.

V. SIMULATION RESULTS

In this section, we simulate the evolution of power and SIR for
different algorithms. The purpose of the simulations is to show
that UBPC overcomes the divergence problem and achieves fair-
ness and adaptiveness using different parameters and different
price coefficient settings. Capacity improvement of power-con-
trolled systems has been demonstrated in [13], so we will not
repeat it here.

By modeling the system as a set of interfering links with indi-
vidual SIR requirements, we can treat a two-dimensional (2-D)
system in the same way as a unidimensional model. Also, from
the viewpoint of implementing the algorithm, it makes no dif-
ference whether there are just a few users in a carrier or there
are many more, because each user adjusts its power in a dis-
tributed manner. While the proposed algorithm is applicable to
general systems with or without mobility, a simple system is
more illustrative in demonstrating our main results. As a result,
we consider a one-channel linear cellular system consisting of
20 cells, and simulation results of 2-D systems with or without
mobility can be found in [24]. In the system, base stations use
omnidirectional antennas and are located at the centers of the
cells. The distribution of users is illustrated in Fig. 8. In this
figure, each vertical line represents a user, and the height of
a line illustrates the SIR threshold of the corresponding user.
Each user is numbered according to their order of arrival. Base
stations are marked by X’s on theaxis, and each user is as-
signed to the closest base station. The path gainis modeled
as , where is the distance between userand
the home base station of user, and the attenuation factor
models the power variation due to shadowing. We assume that
all are independent and identically log-normally distributed
random variables with 0-dB expectation and 8-dB log-variance
as in [2] and [14]. The path gain matrix of our simulated
system is shown in the equation at the bottom of the page, where

10 means a quantity on the order of 10. From this ma-
trix, we see that users 2, 5, and 6 are far users, and the latter two
are closely coupled. It is easy to check that the Perron–Frobe-
nious eigenvalue of the system is , i.e., the system

Fig. 8. Distribution of users in the system.

Fig. 9. Evolution of power and SIR, using power control algorithm (2).

is infeasible [2], [16]. Note that the system is feasible after the
removal of either user 5 or 6.

We first apply the power-control algorithm (2) without ad-
mission control; the results are shown in Fig. 9. Each line in this
figure shows the evolution of power or SIR of a user. The left-
most line in the SIR graph corresponds to user 1, the rightmost
line corresponds to user 6, and so on (similarly for the other sim-
ulation plots in this section). We observe from the figure that al-
gorithm (2) works very well until an infeasible user is admitted,
after which the power-control algorithm becomes unstable. This
is shown by the power blowup and SIR oscillations of users 5
and 6 in the figure.
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Fig. 10. Evolution of power and SIR, using UBPC with price� = 100.

Fig. 11. Evolution of power and SIR, using UBPC with price� = 1000.

To implement UBPC, each user should specify a utility
function and a price coefficient. We assume that the six users
in the system use Sigmoid utility functions, with turnoff SIRs
equal to the corresponding SIR thresholds, and steepness
parameters 0.99, 1.35, 0.93, 1.02, 0.66, and 1.04, respectively.
Clearly, user 6 is more “rigid” than user 5.

Fig. 10 plots the evolution of power and SIR for UBPC, with
price coefficient 100 for all users. It performs similarly to (2)
when the system is feasible. However, as the system reaches
the point of infeasibility, the admission of user 6 forces ongoing
user 5, which is less rigid, to turn off. The turnoff of user 5 allows
user 6 to get satisfactory service at lower power.

Now, we increase the the price coefficient to 1000 for all
users. The results are shown in Fig. 11, where users 2 and 5 are
turned off (at iterations 4 and 10). As pointed out before, users
2 and 5 are far users, which are admissible only when the price
is low. Hence, a high price tends to result in conservative admis-
sion, leading to high system robustness. However, a high price
will also discourage users to transmit at high SIR even when the
traffic load is low.

To solve this problem, we use an adaptive price coefficient
given by (21), where for all users. As shown in

Fig. 12. Evolution of power and SIR, using UBPC with adaptive price� .

Fig. 13. Evolution of power and SIR, using UBPC with combined price� .

Fig. 12, user 5 is turned off, and all other users achieve higher
SIR. Thus, this pricing scheme achieves transmission environ-
ment adaptiveness and robustness at the same time.

All the above schemes exhibit near–far unfairness. To give far
users a fairer share of resource, we use UBPC with combined
price coefficient given by (25), where . Fig. 13 shows
the results. Under this price setting, neither user 2 nor user 5 is
turned off. Instead, user 6 is rejected to maintain the feasibility
of the system of existing users, even though user 6 is more rigid.
All these results indicate that the combined price setting is supe-
rior to all the others above with respect to robustness, fairness,
and active link protection.

Thus far, we have not included mobility of users in our sim-
ulations. To demonstrate how the algorithm works when users
move, we next assume that user 6 comes into the system and
moves toward its home base station at a speed that transverses
a cell in 100 iteration steps. Fig. 14 shows the mobility case
with the same price setting as in Fig. 10 (i.e., price coefficient
is 100 for all users). In the figure, the power and SIR corre-
sponding to user 5 are shown in highlighted dashed lines, while
those of user 6 are shown in highlighted solid lines. As before,
user 6 makes the system infeasible and forces user 5 to turn off.



220 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 2, APRIL 2003

Fig. 14. Evolution of power and SIR of system with mobility(� = 100).

Fig. 15. Target SIR with hysteresis versus transmission environment of useri.

However, as user 6 moves closer to its home base station, the
system becomes less infeasible. When user 5 senses that the in-
terference drops below its threshold, it resumes transmission. It
is turned off again as shown by the second spike in the line de-
noting the power, because the system of all six users still remains
infeasible. As user 6 moves even closer to its home base station,
the situation improves further and user 5 is finally allowed to
transmit. Moreover, with the system becoming more feasible,
the transmission power levels of users 5 and 6 decrease consis-
tently. This also implies that the algorithm can react appropri-
ately with the movement of user 6. Note that in this simulation,
user 5 tries to resume transmission prematurely and incurs some
unnecessary disturbance. To avoid this situation, we can intro-
duce hysteresis in the target SIR curve, as shown in Fig. 15, i.e.,
a user is easier to be turned off than to resume transmission.

Finally, in Fig. 16 we compare the SIRs achieved by the dif-
ferent schemes. There are six groups of bars in the figure, where
the th group corresponds to user. In each group, the first bar
represents the SIR threshold, the minimum SIR required; the re-
maining bars correspond to the achieved SIR under power-con-
trol algorithm (2), UBPC with fixed price 100, with fixed price
1000, with adaptive pricing, and with combined pricing, respec-

Fig. 16. Comparison of achieved SIR under different power-control schemes.

tively. The empty slots in some groups are due to turned-off
users. This figure illustrates that for infeasible systems, algo-
rithm (2) leads to SIRs lower than their corresponding thresh-
olds, while UBPC guarantees QoS to most users by turning off
some bottleneck users. We also verify that a low price encour-
ages transmission, and adaptive price settings generally perform
better.

VI. CONCLUSION

In this paper, we first demonstrate that when infeasibility
arises, the well-known distributed power-control algorithm (2)
diverges because of the hard constraint of SIR requirements.
Using this algorithm, every user tries to achieve its required
SIR value, no matter how high the power consumption, ignoring
the basic fact that power is itself a valuable commodity. By
softening the SIR requirement using utility functions and by
introducing a cost function for power, we propose a utility-
based power-control framework, called UBPC. Although UBPC
is still noncooperative and distributed, some degree of cooper-
ation emerges: a user will automatically decrease its target SIR
(and may even turn off transmission) when it senses that traffic
congestion is building up. It is this cooperation that prevents the
system from blowing up when infeasibility arises. At the same
time, under very mild conditions UBPC is standard (in the sense
defined in [4]), which implies asynchronous convergence of the
algorithm when applied to a feasible system. While UBPC is
of a best-effort flavor, several tunable parameters in UBPC en-
able this scheme to be extremely flexible to satisfy different ser-
vice requirements (such as fairness, delay, and bit error rate) in
integrated networks with both voice and data users. It also al-
lows integration with some network resource management tech-
niques. Significant improvements over the existing algorithm
are demonstrated by analysis and simulation.

UBPC provides a promising framework for distributed power
control of cellular wireless systems, but several issues remain
to be studied. How to translate different QoS requirements into
utility and cost functions that lead to a solvable power-control
problem, how to achieve system optimality, and how to relate
a cost term to practical pricing schemes are all topics requiring
further research.
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