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Abstract—Distributed power-control algorithms for systems well-known distributed algorithms was originally proposed in
with hard signal-to-interference ratio (SIR) constraints may di- [1], and has been further studied in several papers, including

verge when infeasibility arises. In this paper, we present a power- ; ; ; iatri
control framework called utility-based power control (UBPC) [2] and [3]. This algorithm is distributed and autonomous

by reformulating the problem using a softened SIR requirement pecause it relies qnly on local information. It is also “standard”
(utility) and adding a penalty on power consumption (cost). Under (in the sense defined in [4]), and asynchronously convergent
this framework, the goal is to maximize the net utility, defined (with geometric rate) to the Pareto optimal power assignment
as utility minus cost. Although UBPC is still noncooperative and (a power assignmenP* is said to bePareto optimalif it is

distributed in nature, some degree of cooperation emerges: a user feasible and any other feasible power assignniergatisfies
will automatically decrease its target SIR (and may even turn off

transmission) when it senses that traffic congestion is building up. P> r Componemw_'se)' Wher? the system 'S_ feasible [3J'
This framework enables us to improve system convergence and to [4]. However, if there is no feasible power assignment, this
satisfy heterogeneous service requirements (such as delay and bitalgorithm can diverge, which will be illustrated in Fig. 9. For
error rate) for integrated networks with both voice users and data  nfeasible systems, the distributed power-control algorithm
users. Fairness, adaptiveness, and a high degree of flexibility can diverges because of the hard SIR requirements that cannot be

be achieved by properly tuning parameters in UBPC. achieved in such systems no matter how high the transmitted
Index Terms—Admission control, cellular system, distributed al-  power is.

gorithm, faimess, Nash equilibrium, Pareto optimal, power con- |, hractice, although achieving satisfactory QoS is important
trol, robustness, signal-to-interference ratio (SIR), stability, utility

function, wireless. for users, they may not be WiII_in_g to achieve it at arbitraril_y high
power levels, because power is itself a valuable commodity. Cut-
ting power consumption not only prolongs the life of the battery
. INTRODUCTION and alleviates health concerns about electromagnetic emission,

IRELESS networks are characterized by scarce radisit also decreases the interference to other users. In addition,
Wspectrum, an unreliable propagation channel (Wi@l]ifferent users may have different views of power consumption.
shadowing, multipath fading, etc.), and user mobility. HencEOr €xample, a handset user is more concerned about the power
in wireless networks, efficiently managing radio resources {gan a user with a vehicle-mounted device. We can capture a
a very important problem. In this paper, we focus on powglser’s view of power consumption by also considering the cost
control, which is an important component of the resourc POwer.
management problem in wireless networks. Thus, user satisfaction will depend on both QoS and power

Power control has been extensively studied in recent yeaq.g,nsumption. This observation motivates a reformulation of the
especially for CDMA systems. It has mainly been used to redugiole problem using concepts from microeconomics and game
cochannel interference and to guarantee the signal-to-interfé€ory, as described in [5]. Earlier work applying game theo-
ence ratio (SIR) of ongoing connections, resulting in a highé‘?tic ideas to flow control in telecommunication networks in-
utilization and/or better quality of service (QoS). From theludes [6]-[10]. Our problem naturally fits in this context: the
viewpoint of practical applications, distributed power-contrdR0S objective can be viewed as a utility function, which rep-
schemes are of special interest and importance. One of the ni§8€Nts the degree of user satisfaction with service quality and

costin terms of power consumption. The distributed power-con-
trol problem essentially becomes a noncooperative multiplayer
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decreasing function of power and a concave increasing functianuser; and lety; be its desired SIR threshold. Then the SIR
of SIR. The authors provide sufficient conditions for converfor useri is given by

gence. In this paper, we use a sigmoid-like utility function G P;
that does not satisfy the above-mentioned conditions in [11]. SIR; = 72 GiiPitmi 1)
The sigmoid-like shape of a utility function is very natural to jEi v ’

use because, empirically, a number of important performanggie that this model is general enough to represent

measures (e.g., the capture probability) have a sigmoid-likgs_cpma systems with matched-filter receivers [14],

shape (first convex and then concave) as a function of SIR.[E[B] or TDMA/FDMA systems [2], by giving specific interpre-
[5], Goodman and Mandayam propose a power-control alg@gzions to the parameters.

rithm for wireless data to provide power-efficient transmission For the system considered in [3], [12], and [16], the con-
for data users in a single-cell system. Their utility function istraint SIR > ~; is enforced for each usérThe objective of a
related to the number of effective bits transmitted per unit @ower-control scheme is to find the minimum power satisfying
energy. The “natural” form of this utility function turns outthis constraint. To this end, there is a well-known power-control
to have undesirable properties—the modification proposegyorithm given by

in [5] to alleviate this problem leads to a less natural utility ¥

function. Moreover, the associated power updating algorithm is Pi(k+1) = SIR; (k) Pi(k), fori=1,....n (2

complicated and has low Pareto efficiency.
In this paper, the objective is to maximize the net utility (difyvherePi(k') anq SIR(k) co_rrespond o the power Ieyel and
ference between a utility function and a cost function). We wiﬂ1e SIR fo_r User .6.“ thekth |terat|0n,'respect|vgly. This algo—. .
. . . . ._rithm and its stability have been studied extensively by Foschini
show that the resultant algorithm is flexible and simple to im- o . .
plement in cellular systems. The algorithm does not sufferfroand Miljanic [1.]’ Mrgra [3],_and Bambos, Chen, and Pottie [.2]’

: ) . : . 2]. The algorithm is distributed and autonomous because it re-
d|\{ergence, Wh'Ch IS a9h|eved t.)y softening the'SIR requirem S only on locally available information. It allows each user to
using the notion of utility functions. Our algorithm will auto-pove different target SIR values. It has also been shown in [3]
matically decrease the target SIR (and may even turn off rafg-pe 45ynchronously convergent (with geometric rate) to the
mission) of some users when traffic congestion builds up. This,ret optimal power assignment, when the system is feasible
property, which the algorithms in [S] and [11] do not satisfy, f& e | when there exists a power assignment such that SIR
cilitates system convergence and admission control. Moreovgy; a| ;). However, if the system becomes infeasible, this algo-
our algorithm has several tunable parameters in utility and c@ghm diverges.
functions to achieve fairness, adaptiveness, and heterogeneoysivergence occurs when the system is infeasible because the
service requirements (such as delay and bit error rate) for in®R requirement is hard (strict), and has to be satisfied at any
grated networks with both voice users and data users. cost. Intuitively, what usef does through algorithm (2) is to

The rest of this paper is organized as follows. In Section II, weljust its transmitted powd?; such that its SIR just achieves
first present the system model and explain why a hard SIR the thresholdy; in the next step. In an infeasible system, every
guirement may result in divergence. In Section Ill, we reformwser blindly adjusts its power without realizing that it is impos-
late the power-control problem as a noncooperative game masible to satisfy these SIR requirements simultaneously, and con-
mizing the net utility, which leads to a utility-based power-corsequently transmitted powers build up higher and higher during
trol algorithm. We also discuss convergence and effects of sothis procedure. It may appear reasonable to attribute this “blind-
parameters in this section. Important extensions and discussibfss” to the fact that the algorithm is distributed and only has
of the utility-based power-control algorithm are made in Setocal information available. This is not really the case, because

tion IV. Numerical results are given in Section V. Finally, Sec user can recognize that infeasibility would be likely from the
tion VI concludes the paper. extremely high interference received. However, each user still

continues to increase its power because its goal is to achieve a
SIR value no lower than the threshold.

To avoid introducing infeasible users into the above system,
We consider a power-controlled cellular system where thgo distributed admission-control schemes were proposed in
transmitted powers are continuously tunable. Within a cefh6]. The basic idea is that before the new user enters the system
every user is associated with a base station (called its hogf begins to tune its power in full gear according to (2), it ten-
base station). To maintain a reliable connection betweegively transmits at a fixed level, then decides (in a distributed

the user and its home base station, the SIR at the receiygiy) if the system will become infeasible after its joining. Only
should be no less than some threshold that corresponds ¢ tAe user will not cause infeasibility is it admitted. Although
QoS requirement such as the bit error rate. We consider only infeasible user can slip in, there are still some problems that
downlink transmissions in this paper because the uplink cgsersist. In a wireless cellular system, users can be in constant
can be treated similarly [12], [13]. movement, and an initially feasible user may later become in-

Assume that there areusers in the system and IEf be the feasible. Also, due to mobility, the Pareto optimal power assign-
transmitted power level for the downlink of uselLet G;; de- ment achieved by (2) may no longer be optimal and may even
note the gain from the home base station of us&r useri. be infeasible a moment later, which may result in a high outage
Then, the interference power received at useom the down- probability [17]. We solve these problems by softening the hard
link of userj is G;; P;. Letn; be the background noise receive®IR requirements.

Il. SYSTEM MODEL AND RELATED WORK



212 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 2, APRIL 2003

whereq; is the “price” coefficient. Althoughy; is a constant
0.9F independent of;, it can be a function of environmental factors
0.8 such as user location and received interference. In fact, the use
of an adaptive price setting can be helpful in achieving fairness
0.7 and robustness. As is the case of the utility function, other forms
_06 of cost functions would also work for our scheme (although, not
F05 as simply).
=) The net utility of useri is NU;(SIR;, ;) = U;(SIR;) —
041 C;(P;). The power-control problem for usérs formulated as
0.3t
0.2 max NU;. 4)
0.1
0 ‘ , Taking the derivative ofVU; in (4), we have
0 5 % 15 20
' d(NUi(SIR;, %)) _d(Ui(SIR;) — Ci(I))
Fig. 1. Sigmoid utility versus SIR for user dP; dp;
—ul(sIR) 2R _ o
dp;
Il. UTILITY -BASED DISTRIBUTED POWER CONTROL
, SIR; ,
Although achieving satisfactory QoS is important for users, :Ui(SIRi)Ti - Ci(Pr) ®)

they may not be willing to achieve it at arbitrarily high power

levels, because power is itself a valuable commodity. This olvhereU; andC/ are the derivatives d¥; andC;, respectively.
servation motivates a reformulation of the whole problem usirig the last step, we use the fact that SiR linear with P;, as
concepts from microeconomics and game theory [5], [11]. blefined by (1). If apositive power P; is a local optimum for
this section, we will use such a reformulation to develop a medproblem (4), we requird( NU;(SIR;, P;))/dP; = 0, i.e.,
anism for power control where the desire for increased SIR is

weighed against the associated cost. We will point out the dif- U!/(SIR;)SIR; = C!(P;)P;. (6)
ferences between our work and that in [5] and [11] and discuss

some important implications of these differences. Considering (1) and (3), the above condition becomes

A. Problem Formulation and Basic Algorithm U/(SIR;) = ai& @

Instead of enforcing the constraint SIR +; as in the hard Gii
constraint case, we use a utility func_’ub’m to rgpresen_t the de- whereR, — Zj;éi Gi;P; + n; is the received interference of
gree of satisfaction of useto the service quality, and mtroduceuse”._ Because the right-hand side of (7) is known or locally
a cost functionC; to measure the cost incurred. The goal is theasurable. we find the solution to be

maximize the net utilityVU; defined asVU; = U; — C; by ad-

justing the transmitted powe¥;. Since each user in the system _— . R;

will try to maximize its own net utility, regardless of what hap- SIR; = f; (0471 Gﬁ) (8)
pens to the other users, this problem is a typical noncooperative

N-person game [18]. wheref;(SIR;) = U/(SIR;) in the concave part df; where a

Generally, the QoS depends on SIR, so we let the utilithe  |ocal maximum is possible. Then one candidate for the optimal
a function of SIR satisfying:Ui(O) =0; UL(OO) =1, and that power assignment is
Ui(SIR;) increases in SIR This means that a user is more and
more satisfied with the service as the quality improves. We will . — R R, ., R;
use the utility function given in Fig. 1 (called the Sigmoid func- Pi=SIR; G Gu fi (O‘i Gz’i) : ©)
tion) in this paper, because it captures the value of the service
to the user quite naturally. This function is also similar in shapgiearly, given the coefficient;, 7; is a function of R;/Gii.
to the capture probability [19]. However, it should be noted th@foy the problem is whetheP; defined above exists, and
our scheme can be applicable to many other utility functionsyynhether it is globally optimal (when it exists). Note tHat= 0

We choose’;, the cost for usef, as a function of power. AS s on the constraint boundary of (4) and need not satisfy the
mentioned before, power is itself a valuable commodity. Thgove condition even when it is a maximum point. In fact,
specific cost function should reflect the expenses of power cQR-some case’, = 0 achieves the global optimum, though it
sumption to the user. There are at least two requirements for t@responds to zer U;. Thus, the optimal poweP is either
cost function:C’;(0) = 0, and thatC;(F;) increases in power p, or 0, whichever results in a larger net utility. This leads to
P;. In this paper, we will use a linear cost function, i.e., a distributed power-control algorithm optimizing net utility.

We call the algorithm utility-based power control (UBPC), and
Ci(P,) = a; P; (3) nextillustrate it graphically.




XIAO et al: UTILITY-BASED POWER-CONTROL SCHEME IN WIRELESS CELLULAR SYSTEMS 213

0.35

0.3

0.25¢

20

Fig. 2. Sigmoid utility (and cost) versus SIR for uger Fig. 3. Derivative function of Sigmoid utility versus SIR for user

B. Graphical lllustration 15

We plot both the utility and the cost versus SIR in Fig. 2. \

Because’; = a; P; = «;(R;/Gi;)SIR;, the slope of the cost
line in Fig. 2 isa;(R;/G;;). By changing the slope, we have a
different position ofC;; relative toU,. When the slope is small, 10r
the cost line has two nonzero intersections with the utility, as <
shown by line 1. When the slope increases, the two intersectionsg,
will come closer, and eventually meet on line 2. If we continue 3
to increase the slope until it is equal to the maximum derivative gl
of the utility function, the cost line reaches line 3. Note that
R; > n; by definition, so the costline has a positive lower bound
as illustrated by line 4 in Fig. 2. Lek; be the slope of this
line,i.e.,K, = a;(n:/G;). This nonzero lower bound prevents ‘ . . . . ‘
infinite §II\% in power control. 001 002 003 004 005 006 007 0.8

In Fig. 2, if the cost line (e.g., line 1) lies between line 2 and Rkl
line 4, then there will be some positive net utility correspondingy 4 Target SIR versus transmission environment of iiser
to P, i.e., P’ = P;. If the costline reaches line 2, the maximum
net utility is 0, which is achieved at power levétsand 0. If the
cost line (e.g., line 3) is beyond line 2, the best choice is to ke
P} = 0, because all other powers will result in negative n
utility. We will call the SIR associated with cost line 2 thuenoff
SIRof useri, and denote it by SIR which is the lowest SIR
value useri will achieve when transmitting. Correspondingly
we denote the slope of line 2 biy;. Note thatk,; and SIR
depend only on the utility function.

In Fig. 3, we show the derivative/(SIR;) of the Sigmoid
utility function. The horizontal lines correspond to the cost lin
in Fig. 2, respectively. Note that lines 1, 2, and 4 each ha
two intersections withl//(SIR;), but only the intersection on
the right side qualifies foP; becausé/; is concave in this part.
In fact, the left-side intersections are the minimum points.

From Figs. 3 and 4, we see thatg$R;/G;) increasesSIR;
will decrease. This has important implications. If we introduce
the iteration index;, then (9) becomes Algorithm UBPC
1. Measure the received interference

Ri(k), update path gain Gii(k) and price

g PC the target SIR value will decrease automatically for a

orse transmission environment (i.e., for largg(k) /G, (k)),
while with the power-control algorithm given by (2), it remains
the same regardless of the environment. When the transmission
environment becomes very hostile, there will be no gain (posi-
tive net utility) in transmitting and the transmission will be to-
tally shut off by UBPC. To transmit under UBPC, uganust
have its cost line lie between line 2 and line 4, i©e.R; /G;; €

;, K;]. To be consistent with the hard SIR requirements, i.e.,

%Ri > ~,; for useri, from now on we assume SJR= ~;, be-
cause under this setting ugeglways achieves SIR higher than
when transmitting.
In summary, the iterative procedure of the UBPC for ussr
as follows.

Ri(k) _ SIR;(k)

Pi(k+1) = SlRi(k)Gii(k) = SIR(k) (k). (10)  coefficient a;(k), then calculate SIR;(k)
using (8). If SIR;(k) < ~i, turn off trans-
At each step, we are trying to maximize the net utility under thamission (i.e., P(k + 1) = 0), and go to

given interference. Contrasting (10) with (2), we see that wittstep 3. Otherwise, go to step 2.
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2. Calculate Pi(k + 1) using (10), and set 1
the power level to Pi(k +1). 0.9}
3. Let k< £k+1, and go to step 1. 0.8¢
. . . - 0.7}
The information required by UBPC from the utility of user
is the curve of the target SIBSIR; versusa; R; /Gy, which is =08
shown in Fig. 4. Hence, in implementation, a user only has to ©0.5;

provide this curve instead of the utility function. This simplifies 30_4_

implementation, and also enhances flexibility to meet heteroge-
neous QoS requirements, because the target SIR curve can hax 03
other forms, e.g., a staircase form. 0.2f

In the objective functiodVU;, our utility is a function of only 04}
SIR, while the cost term depends only on power. This arrange- .
ment not only achieves separation (between utility and cost) % 5 20
and simplifies the derivation, but also benefits the system per-
formance and facilitates network resource management. Befei€ s sigmoid utility versus SIR with different, .
elaborating on these points, we will first study a specific ex-
ample of the Sigmoid utility. 3 - ;
C. Sigmoid Utility 25

One well-known Sigmoid function is

h(z) =1/1 + e~ 2

. . . & — a=10,p=10
which has been widely used in the study of neural networks. D15} a=1, p=10
Clearly,h(b) = 1/2, so we callb the center ofi(z). It is easy =) L
to show that the derivative df(z) satisfies |

W (x) = ah(x)(1 — h(x)). (11)
This function is perfect as a utility function for our purposes, 08 |
except thath(0) = 1/(1 + ) # 0. This is not a serious R
problem, becausk(0) ~ 0 ase®® is large. Moreover, we can % 5 a% 15 20
always solve this problem (when desired) by using the linear ‘
transformation Fig. 6. Derivative funstion of Sigmoid utility versus SIR with different
b 1
U(z) = () 1+ eab . (12) ai(R;/Gy;) takesyy; = SIR, = f3;, andK; (the slope of cost
1— 1 line 2) achieves the upper bound~y;. We should emphasize
1+ eab that a user with a step utility can still be turned off if the slope

For simplicity, we will directly use the Sigmoid function(z) ©f its cost line is greater thaft;. If o; = 0 additionally, then
(with a = a; andb = 3;) as the utility function for user, i.e., Our UBPC for usef just reduces to the power-control algorithm

(2), as shown by (10). This type of rigid user can never be turned
(13) off by UBPC.
In Fig. 7, we fixa; and varys;. The two utility functions and
There are two tunable parameters in the Sigmoid utility (13heir derivative functions have the same shape, but with different
parameters,; andg;, which can be used to tune the steepnegsenters (af3;). Clearly, a user with a highe?; in utility will
and the center of the utility, respectively. get higher SIR when in service, but is more likely to be turned
In Figs. 5 and 6, we illustrate the utility functions and the comff by UBPC. Wheng; is large enoughk’; becomes small and
responding derivative functions for two different valuesupf insensitive to the shape of the utility, but a softer utility (with
When parameter; increases, the utility becomes steep, and itsnallera;) will show more flexibility and robustness.
derivative function becomes narrow and high. Applying UBPC Based on the effect of the two parameters on our power
to two users with utility functions shown in Fig. 5, we can showontrol, we make the following important observation: UBPC
that the target SIRIIR;) of the user with a larger value af de- is suitable for integrated wireless systems with both voice
creases more slowly ia; R; /G;;. Thus, a user having a utility users and data users, important in the third-generation wireless
with a large value ofi; is rigid, and is difficult to be turned off networks. To illustrate this point clearly, we start with the
(especially wherg; is small). In the limit as:; approaches in- well-known difference between voice and data in their service
finity, the utility function becomes a step function with a stepequirements. For a voice user, the essential objective is low
at SIR = f3;, and its derivative becomes an impulse functiordelay, and transmission errors are tolerable up to a relatively
In this case, the targ&IR; is fixed at3; no matter what value high point. Thus, the voice user does not want to be easily

1
1+ e—a7(SIR7—,ﬁ,) :

U:(SIR;) =
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After some algebra, we find that S|Ratisfies
0.9f LaSIR
0.8} — =%, (16)
a;SIR; — 1
0.7}
We have assumed SJR= ~;, where the SIR thresholg; is
E_o.e— predefined. Thus, the centgy can be calculated using (16) as
205 In(a;y; — 1)
Y Bi= i —— (17)
0.3 Inserting the above equation into (14) yields
0.2 1
o1 SIR, =; — o In(a;y; — 1) — o
% 5 10 1 20 25 30 2
S%‘ a; a
x In -1 ——1| —1|. @18
Fig. 7. Sigmoid utility versus SIR with different; . 9 Tt 90, Ji
‘G "G

turned off, but its target SIR can be relatively low. This means
that for a voice user, the cost should be low, and the utility
function should be steep and with low turnoff SIR, i.e;,is oB 11 (19)
small, a; is large, andy; is small. Note that; must be large “Gi T v an?
enough, but need not be infinite (in contrast to what is us?sp

ser: is active in transmission if and only 8IR; > ~;, i.e.,

s, we haveK; = (1/7;) — (1/a;~?) for the Sigmoid utility
in (13). This also verifies the previous result thatagoes
nfinity (i.e., the utility becomes a step&f), K ; achieves its
per bound /v;.

in [5]). On the other hand, a data user can accept some de
but has very low tolerance to errors, which can be satisfied tgi
a utility function with a smallew; and largery;. A user with
such a utility can achieve a high SIR when transmitting, bif
it must allow being turned off and delaying its transmissioB
until later. Thus, we can characterize the service requirements ) )
of both the voice users and data users by choosing differeni) Feasible Systems Under UBPErom the above dis-
utility parameters. In this way, these two different types diuSSions, transmission is automatically turne_d off v_vhen the
users have a unified and comparable measure for sharing rdéfg'Smission environment becomes very hostile. This simply
resources. It should also be pointed out that under the frani@plies that UBPC will never result in powers “blowing
work of UBPC, due to their rigid behavior, voice users can gé-" However, because the system cannot accommodate an
preemptive priority over data users, which is desirable in thigfinite number of users, we can also define feasibility in the
case. Moreover, some factors such as the voice activity facRS}‘Ner'(_?O””O”ed system under UBPC. A system is said to
and data burstiness can be automatically exploited through ffefeasible under UBPGf there exists a power assignment
received interference. We believe UBPC also works for hybrfd = [Pt P2, ..., P,]", such that

Feasibility and Convergence

systems with both circuit-switched and packet-switched users. SIR. > §”\:\,® (20)
To gain further insight, we derive; and_ SIR for the Sigmoid L=
utility (13). Combining (7) and (11) yields and NU; > 0 for all useri. We will call such a power assign-
mentP feasible under UBPC. Note that in the definition, the
5 Rifi R . :
P = - condition NU; > 0 is necessary.
Gis Giia; To see a counterexample showing that an infeasible system
2 can satisfy the first condition, consider a system feasible under
a; a; (2) but with an infinite price coefficient. The utility in this case
x In |7 7 B (14)  pecomes a step function, and the condition (20) reduces to
204 G ai? SIR; > ~;. The feasibility under (2) means that there exists a

positive power assignment such that the inequality holds for
which is in closed form, but looks quite complex. We obsen@! 7 [12], [3]. However, any positive power will result in infinite

that P; exists iscv;(R; /Gyi) < a;/4, which means that the costNext, we study how UBPC performs in a feasible system.
line should lie below line 3in Fig. 2. If this condition is satisfied, 2) Standard Power ControlRemember that a power-con-

we always havé®, > (R;/Gii)Gi, i.e.,SIR > ;. trol algorithmP (k + 1) = A(P(k)) is said to bestandard[4]
To derive SIR, we use (11) and the condition that the codt 4 Sat's_f'_e§ the following properties for &t > 0:
line is the tangent line d; through the origin, i.e., * Positivity. A(P) > 0;

* Monotonicity If P’ > P, thenA(P’) > A(P);
U!(SIR,)SIR; = U;(SIR)). (15) * Scalability For allx > 1, pA(P) > A(uP).
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This framework has been proposed for systems with a hard con-3) If the initial power assignment is the all-zero vector,

straintP > A(P), whereA(P) is called thanterference func- then UBPC generates a monotone increasing sequence

tion. A typical example of a standard power-control algorithm is of power assignments that converge®ta

(2). We next show that UBPC is standard under mild conditions. 4) UBPC converges from any initial power assignment to
Theorem 1: UBPC is standard iff; " (z)(x/a;) is an in- the unique fixed poinP* in both synchronous and asyn-

creasing function ofi;, K ;] for all 4. chronous cases.

Proof: From (9), the interference function of UBPCis  The standard power-control framework was originally pro-
posed for systems with a hard constraint (e.g.;StRy;), which
. T directly leads to the feasibility condition and the interference
AP) = [A1(P), A2(P). ..., An(P)] function. However, systems under UBPC do not have a hard re-
guirement, and the feasibility condition in (20) for such systems
where P = [P, Ps,...,P,])" and A;(P) — isimplied by the power control instead. In this sense, our work
(R:i/Gy) fi—l( a;(Ri/Gyi)) with R; = Zj % G;;P; + n;. The essentially generalizes the standard power-control framework in
positivity property is implied by the nonzero background?]. Although the feasibility condition in (20) for systems under
receiver noise;. UBPC is somewhat subtle, we can infer a physical meaning for
If P’ > P, thenR, > R;, whereR. = Y. G;; P! +n,. thisfeasibility definition from the following theorem.
el ’ i Z 13 ) VE g t . . . .
Because the functiofi ()(x/«;) is an increasing functionon  Theorem 2:A system is feasible under UBPC if and only
[K,;, K], we getA(P’) > A(P) for P’ > P. (As a reminder, if no user is turned off when starting from the all-zero power

the quantitiesk; and K; are the slopes of line 2 and line 4 inassignment. _ _
Fig. 2, respectively.) Proof: If the system is not feasible under UBPC, then for

Forallx > 1, we have any powerggsignmerﬁ(k) we will have eitherNU; < 0 or
SIR;(k) < SIR;(k) for all 7. The former condition means that
useri has to be turned off. If this happens, we are done with the

> GijuP; +n; > GijuPj + proof of this part. So we only have to consider the case where
A(uP) =2 = £ a,-”“G— NU; > 0in all the steps, i.e., SIRk) < SIR:(k). By (10), this
i i condition means that UBPC generates an increasing sequence
o o of power assignments. If the increasing sequence is bounded
J;Z Gignls +m; . J;L Gig Py + i from above, then the sequence will converge [20] to a power
< Tfi QLT assignmenP*, at which SIR = SIR; for all .. However, this
contradicts the assumption that the system is infeasible. Thus,
S Gii P+ S Gii P+ i the increase of the power (and of the cost) could be unlimited.
< Mj;éz’ 71 o j#i Then there always exists a usethat hasNU; < 0 at some
Gii ! ’ Gii iteration, becaus&; < 1. This just means that usgiis turned
off by UBPC at this step.
= pA(P) The other direction of the theorem follows from Property 3
of UBPC. O

In fact, we need not start from the all-zero power assignment
at all. If the initial power assignment is arbitrary, UBPC applied
to a feasible system may turn off some user temporarily, but
eventually all users will be turned on. Theorem 2 implies that
an infeasible system always has some user turned off, but this

es not exclude the possibility that a user that is switched off
fatries transmission, which may result in power oscillation. For-
' tunately, we can avoid such a situation by forbidding immediate
) ) ._retries or by setting a high price coefficient (see Section IV-A).
Section llI-C). Hence, UBPC is standard for almost all practicgh,q unIik)(; the stgndar% pl())wer—control sch(emes with hard cgn-
S|tu§1t|ons of interest. ) _ straints such as (2), UBPC can achieve convergence even when

Like o.ther standard power-control a'lgorltth, !JBPC app“qqfeasibility arises. Moreover, a system converging under UBPC
to afeas_lblesystem also has the foIIo_vvmg properties that can bifways reaches theash equilibriun{18], which is straightfor-
proved in exactly the same way as in [4]. ward to check from the definition of Nash equilibrium.

Properties of UBPC:

1) If there is a unique fixed poinP*, then that point is
unique.

2) If the initial power assignmem® is feasible, then UBPC  In this section, we will illustrate that several desirable proper-
generates a monotone decreasing sequence of feasilds and a high degree of flexibility can be achieved by properly
power assignments that convergePto This impliesthat tuning the parameters in UBPC. We also briefly discuss some
the fixed pointP* is componentwise minimum in the setradio resource management techniques that can be jointly con-
of all feasible power assignments. sidered with UBPC.

where the first inequality holds becauggz) is a decreasing
function on[K;, K;]. Thus, UBPC is standard ff *(z)(x/a;)
is an increasing function ok ;, K;]. O
For a fixed price coefficient, the functiofi™ (z)(z /) is
increasing if and only if the shaded area (under line 1 and
the left of its right-side intersection) in Fig. 3 increases in th
height of line 1, {;(R;/G:;)). This is a very mild condition
because a user in practice usually has a layge a largey; (see

IV. DISCUSSIONS ANDEXTENSIONS
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A. Adaptiveness and Fairness Considerations i.e., we perform power control based only on the received in-

1) Adaptive Price Settingit has been shown théﬁi de- terference (see Fig. 4), and have no prejudice against far users.
creases as the quantity;(R;/G;;) increases, and when thisAt the same time, we also achieve handoff prioritization. If this
quantity exceeds some critical poilt; (the slope of line 2 in weighting is still not enough, we can further decrease the price

Fig. 2), there will be no positive net utility, and useshould Or handoff users.

stop transmission. Clearly, the price coefficienthas the same ~ Other faimess problems (e.g., deadline fairness) can be
effect asR;/G;; does on the power control. In other wordssowed similarly. Since fairness is often achieved at the cost of
1 kA2 .

transmission is discouraged by a large valuephs well as throughput, the price to be used should depend on the tradeoff

by the hostile transmission environment (in termsQfG;;). between fairness ahd throqghput. . .
This is intuitive—users are generally unwilling to pay more for 3) Combined Price SettingTo achieve both adaptiveness

the same service. However, as will be explained, a higher prid8d fairness, we only have to combine schemes (21) and (23)
coefficient also means a more robust system, which can faclf- 96t the following price setting:
tate network management in congested situations. R;

From the network’s point of view, it can use the price coeffi- i = O‘Giig_ii = akR; (25)
cient as an effective way to manage resources and to maximize . .
revenue. When the transmission environment is desirable, ngerea |saconstant|n_dependenth and.G“ and can be pro-
network should set a low price, allowing users to enjoy go d ed by the base st.atlon. In. (25), the price coefficient adopted
Q0S (high SIR or high transmission rate). On the other ha% a user is proportional to its received interference. Now the

when congestion builds up, it should set a high price, to inq—éW power-control algorithm becomes
prove system robustness. In fact, if the price coefficient is not . R, — R, ., 4 2

high enough, under heavy traffic situations, a user may repeat pi= GiiSR = Gii fi (O‘ Gii) (26)
the procedure of being turned off and retrying, resulting in os- |

cillation. Thus, it is desirable to have a price coefficient that 15 Still depends orG;;, but more onf?;.

adaptive to the transmission environment. A good measure E)r
the transmission environment experienced by user?; /G;;, ’
so the price coefficient should be set as an increasing functiodt has been shown that power control can greatly improve

of this quantity. For example, a simple adaptive setting can baystem capacity [13]. On the other hand, resource management
of power-controlled systems often becomes more challenging

Integrated Resource Management

a; = aR’i (21) because of the dynamically variable capacity and limited
Gii (locally) available information [22], [16]. In the following,

wherea is a constant (may be provided by the base stationye will illustrate that UBPC can be readily integrated with

Then, we have a different power-control algorithm other resource management techniques and facilitate their
) implementation.
h_ Rigs Ry R; The task of admission control is to decide whether or not to
P, = SIR; = fi |« . (22) o v
Gii Gii Gii grant access to a newly arriving user. A good admission-con-

trol scheme should admit as many users as possible while main-

Our 5|_mulat|o_ns (in Section V) show that UBPC with th_e IInealraining the quality of ongoing users. Itis interesting to note that
adaptive setfing works well under a large range of traffic IO""d@BPC automatically has some admission-control function. Re-

2) Near—Far Fairness:The basic UBPC scheme exhibits : ) ; Lo

. . . ection happens when a new user finds that its cost line is beyond

kind of unfairness, the so-callegar—far unfairnessA user far a} . bp Y
?éw

f the b tation (the “f . v h I igher than) line 2 in Fig. 2. If there are enough resources to ac-
rom the base station (the “far user”) normally has a small p mmodate a new user, it is accepted to receive service better
gain, so Itis more likely to get a lower SIR or to be turned o an its minimum requirement. As a new user gets admitted,
This is beneficial to the network, because the total throughthe ongoing users may yield a little to make space for it. It is

can be improved in. this way. In fact, it hf”‘s.bee” shown bXBOhaIso possible for an infeasible new user to get service by turning
al. [21] that the optimal scheme to maximize throughput is th h existing user off. Such a situation allows a user of high pri-

near users transmit at the highest power while far users tot Pfty (e.g.. voice user) to preempt a user of best-effort service.
trn Oﬁ'l Of ctourselzl, tt;hesz ar_rangerrwnents are extren:ely lrjlnfa'thRe user being turned off first is usually the “bottleneck” user,
tjsers c_tols\/le o ce t(;un arles,;/v 0 may hever gte IQ Ctr?ng%vmch has the worst transmission environment. As mentioned
rl""”s”.“ .t oreover, te;]re‘z‘ason ?“SiprtV,Y‘?r S:OS'\;'OA n te 'rﬁéfore, the transmission environment can be changed by tuning
place Is to overcome the “near—iar efiect™in SysteMsyq price coefficient. Hence, to provide more protection to on-

Thus, we must gchleve near-far faimess even at some cos 8|fng users or handoff users, we only have to lower their prices
throughput. To this end, we should set a lower price to the fart set higher initial prices to new users. In short, power-con-

user. A simple and natural scheme is trolled systems under UBPC are highly autonomous, and the

a; = aGy; (23) behavior of a user depends on its utility, price coefficient, and
interactions with other users in the system.
wherea is a constant. Then we have Like the distributed power-control scheme (2), UBPC can
R; a R; R also be solved jointly with dynamic base station and channel as-
o~ = abji=— = aly;

Gii Gii (24) signment [14], [23]. The main difference is that we first choose
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the base station and channel resulting in the best transmissio 18 3
environment (in terms aR; /G;;). These dynamic assignments, 45l
along with the adaptiveness of UBPC, promise good perfor-
mance in the face of mobility. 141 56 2 %
Considering the hostile environment encountered in wireless ;,| I 4
systems, it is desirable for users to have adjustable transmissio
rates [15]. With rate control, systems under UBPC can take ad->.10' — users | |
vantage of high SIR in desirable transmission environments, anc 4| | —
translate it into high transmission rates to increase throughput.
6_
V. SIMULATION RESULTS a
In this section, we simulate the evolution of power and SIR for )
. . . . . 2r base stations
different algorithms. The purpose of the simulations is to show
that UBPC overcomes the divergence problem and achieves fair % : 4 * — 2
ness and adaptiveness using different parameters and differel Location

price coefficient settings. Capacity improvement of power-con-
trolled systems has been demonstrated in [13], so we will rfdg- 8. Distribution of users in the system.
repeat it here.

By modeling the system as a set of interfering links with indi- ~ 0.03
vidual SIR requirements, we can treat a two-dimensional (2-D)
system in the same way as a unidimensional model. Also, from
the viewpoint of implementing the algorithm, it makes no dif- &
ference whether there are just a few users in a carrier or there
are many more, because each user adjusts its power in a dis 0
tributed manner. While the proposed algorithm is applicable to 0
general systems with or without mobility, a simple system is
more illustrative in demonstrating our main results. As a result,
we consider a one-channel linear cellular system consisting of 15
20 cells, and simulation results of 2-D systems with or without <4
mobility can be found in [24]. In the system, base stations use
omnidirectional antennas and are located at the centers of th
cells. The distribution of users is illustrated in Fig. 8. In this 0
figure, each vertical line represents a user, and the height of Iterations
a line illustrates the SIR threshold of the corresponding user. , , _

Each user is numbered according to their order of arrival. Bag& 9 Evolution of power and SIR, using power control algorithm (2).
stations are marked by X's on theaxis, and each user is as-

signed to the closest base station. The path gajris modeled is infeasible [2], [16]. Note that the system is feasible after the
asG;j = Aij/d;‘j, whered;; is the distance between ugeand removal of either user 5 or 6.

the home base station of usgrand the attenuation factot;; We first apply the power-control algorithm (2) without ad-
models the power variation due to shadowing. We assume thassion control; the results are shown in Fig. 9. Each line in this
all A;; are independent and identically log-normally distributefigure shows the evolution of power or SIR of a user. The left-
random variables with 0-dB expectation and 8-dB log-varianeaost line in the SIR graph corresponds to user 1, the rightmost
as in [2] and [14]. The path gain matr& of our simulated line corresponds to user 6, and so on (similarly for the other sim-
system is shown in the equation at the bottom of the page, whatation plots in this section). We observe from the figure that al-
O(10™") means a quantity on the order of TQ From this ma- gorithm (2) works very well until an infeasible user is admitted,
trix, we see that users 2, 5, and 6 are far users, and the latter tfter which the power-control algorithm becomes unstable. This
are closely coupled. It is easy to check that the Perron—Froli®shown by the power blowup and SIR oscillations of users 5
nious eigenvalue of the system2d.844 > 1, i.e., the system and 6 in the figure.

% 0.02

0.01

20792 O(107%) 137 O(10™*) O(1073) O(107?)
O(107%)  53.67 O(107°%) O(1073) 0O(107%) O(107?)
0.49  O(107%) 66226 O(10~%) O(1072) 0O(107?)
O(107%) 0(1073) 0O(107%) 8556.8 O(107°) O(107%)
O(1073) O(1075%) O(1072) O(107%)  38.43 7.80
O(1073) O(1073%) O(1072) O(107°)  5.43 70.75
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Fig. 11. Evolution of power and SIR, using UBPC with prige = 1000. Fig. 13. Evolution of power and SIR, using UBPC with combined price

To implement UBPC, each user should specify a utilitiFig. 12, user 5 is turned off, and all other users achieve higher
function and a price coefficient. We assume that the six us&#R. Thus, this pricing scheme achieves transmission environ-
in the system use Sigmoid utility functions, with turnoff SIRsnent adaptiveness and robustness at the same time.
equal to the corresponding SIR thresholds, and steepnesAll the above schemes exhibit near—far unfairness. To give far
parameters 0.99, 1.35, 0.93, 1.02, 0.66, and 1.04, respectivabers a fairer share of resource, we use UBPC with combined
Clearly, user 6 is more “rigid” than user 5. price coefficient given by (25), where = 1000. Fig. 13 shows

Fig. 10 plots the evolution of power and SIR for UBPC, withihe results. Under this price setting, neither user 2 nor user 5 is
price coefficient 100 for all users. It performs similarly to (2furned off. Instead, user 6 is rejected to maintain the feasibility
when the system is feasible. However, as the system reachgthe system of existing users, even though user 6 is more rigid.
the point of infeasibility, the admission of user 6 forces ongoingll these results indicate that the combined price setting is supe-
user 5, whichis lessrigid, to turn off. The turnoff of user 5 allowsor to all the others above with respect to robustness, fairness,
user 6 to get satisfactory service at lower power. and active link protection.

Now, we increase the the price coefficient to 1000 for all Thus far, we have not included mobility of users in our sim-
users. The results are shown in Fig. 11, where users 2 and 5w@ations. To demonstrate how the algorithm works when users
turned off (at iterations 4 and 10). As pointed out before, usarsove, we next assume that user 6 comes into the system and
2 and 5 are far users, which are admissible only when the priveves toward its home base station at a speed that transverses
is low. Hence, a high price tends to result in conservative admas-cell in 100 iteration steps. Fig. 14 shows the mobility case
sion, leading to high system robustness. However, a high prieéh the same price setting as in Fig. 10 (i.e., price coefficient
will also discourage users to transmit at high SIR even when tise100 for all users). In the figure, the power and SIR corre-
traffic load is low. sponding to user 5 are shown in highlighted dashed lines, while

To solve this problem, we use an adaptive price coefficietitose of user 6 are shown in highlighted solid lines. As before,
given by (21), wherex = 50000 for all users. As shown in user 6 makes the system infeasible and forces user 5 to turn off.
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Fig. 14. Evolution of power and SIR of system with mobiliey; = 100). Fig. 16. Comparison of achieved SIR under different power-control schemes.
15 , , , . , , tively. The empty slots in some groups are due to turned-off
users. This figure illustrates that for infeasible systems, algo-
rithm (2) leads to SIRs lower than their corresponding thresh-
olds, while UBPC guarantees QoS to most users by turning off
some bottleneck users. We also verify that a low price encour-
- 101 ages transmission, and adaptive price settings generally perform
® better.
3
o
© Y
F VI. CONCLUSION
5 In this paper, we first demonstrate that when infeasibility
arises, the well-known distributed power-control algorithm (2)
diverges because of the hard constraint of SIR requirements.
Using this algorithm, every user tries to achieve its required

Qo 002 o0m3 oo ooE 008 05T o008 SIR valqe, no matter how hlgh.the power consumption, ignoring
oR; /G, the basic fact that power is itself a valuable commodity. By

softening the SIR requirement using utility functions and by
Fig. 15. Target SIR with hysteresis versus transmission environment OT'usq'htrOdUCing a cost function for power, we propose a utility-

based power-control framework, called UBPC. Although UBPC

However, as user 6 moves closer to its home base station, igetill noncooperative and distributed, some degree of cooper-
system becomes less infeasible. When user 5 senses that thation emerges: a user will automatically decrease its target SIR
terference drops below its threshold, it resumes transmissiondhd may even turn off transmission) when it senses that traffic
is turned off again as shown by the second spike in the line dengestion is building up. Itis this cooperation that prevents the
noting the power, because the system of all six users still remagystem from blowing up when infeasibility arises. At the same
infeasible. As user 6 moves even closer to its home base stattimg, under very mild conditions UBPC is standard (in the sense
the situation improves further and user 5 is finally allowed tdefined in [4]), which implies asynchronous convergence of the
transmit. Moreover, with the system becoming more feasiblelgorithm when applied to a feasible system. While UBPC is
the transmission power levels of users 5 and 6 decrease consis best-effort flavor, several tunable parameters in UBPC en-
tently. This also implies that the algorithm can react approp@able this scheme to be extremely flexible to satisfy different ser-
ately with the movement of user 6. Note that in this simulatiowjce requirements (such as fairness, delay, and bit error rate) in
user 5 tries to resume transmission prematurely and incurs sanmtegrated networks with both voice and data users. It also al-
unnecessary disturbance. To avoid this situation, we can inttows integration with some network resource management tech-
duce hysteresis in the target SIR curve, as shown in Fig. 15, iiques. Significant improvements over the existing algorithm
a user is easier to be turned off than to resume transmissionare demonstrated by analysis and simulation.

Finally, in Fig. 16 we compare the SIRs achieved by the dif- UBPC provides a promising framework for distributed power
ferent schemes. There are six groups of bars in the figure, wheomtrol of cellular wireless systems, but several issues remain
thesth group corresponds to usern each group, the first bar to be studied. How to translate different QoS requirements into
represents the SIR threshold, the minimum SIR required; the teility and cost functions that lead to a solvable power-control
maining bars correspond to the achieved SIR under power-cpneblem, how to achieve system optimality, and how to relate
trol algorithm (2), UBPC with fixed price 100, with fixed pricea cost term to practical pricing schemes are all topics requiring
1000, with adaptive pricing, and with combined pricing, respeturther research.
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