
A Utility-based Reputation Model for the
Internet of Things

Benjamin Aziz∗, Paul Fremantle∗, Rui Wei†, and Alvaro Arenas‡

∗School of Computing
University of Portsmouth

Portsmouth, United Kingdom
{benjamin.aziz,paul.fremantle}@port.ac.uk

†Department of Computer and Information Technology
Beijing Jiaotong University

Beijing, China
12120463@bjtu.edu.cn
‡IE Business School

IE University
Madrid, Spain

alvaro.arenas@ie.edu

Abstract. The MQTT protocol has emerged over the past decade as a
key protocol for a number of low power and lightweight communication
scenarios including machine-to-machine and the Internet of Things. In
this paper we develop a utility-based reputation model for MQTT, where
we can assign a reputation score to participants in a network based on
monitoring their behaviour. We mathematically define the reputation
model using utility functions on participants based on the expected and
perceived behaviour of MQTT clients and servers. We define an architec-
ture for this model, and discuss how this architecture can be implemented
using existing MQTT open source tools, and we demonstrate how exper-
imental results obtained from simulating the architecture compare with
the expected outcome of the theoretical reputation model.

Keywords: Internet of Things, Utility Reputation, Trust Management

1 Introduction

The Internet of Things (IoT) is an area where there is significant growth: both in
the number of devices deployed and the scenarios in which devices are being used.
One of the challenges for the Internet of Things is supporting network protocols
which utilise less energy, lower bandwidth, and support smaller footprint devices.
One such protocol is the MQ Telemetry Transport (MQTT) protocol [15], which
was originally designed to support remote monitoring and Supervisory Control
And Data Acquisition (SCADA) scenarios but has become popular for the IoT.

Another challenge with IoT networks is that small devices may not perform
as well as needed due to a number of factors including: network outages or poor
network performance due to the use of 2G or other low bandwidth networks,



2 A Utility-based Reputation Model for the Internet of Things

power outages for devices powered by batteries, deliberate vandalism or envi-
ronmental damage for devices placed in public areas, and many other such chal-
lenges. Therefore we identified that a reputation model for devices connecting by
MQTT would be a useful construct to express consumers’ (applications’) trust
in the behaviour and performance of these devices as well as measure the level of
performance of the server aggregating data from such devices according to some
predefined Service Level Agreement (SLA). In addition, we implemented the
reputation model to demonstrate that it could be used in real MQTT networks.

Our model of reputation is based on the notion of a utility function, which
formally expresses the consumer’s level of satisfaction related to various issues
of interest against which the reputation of some entity is measured. In the case
of MQTT networks, one notable such issue is the Quality of Service (QoS) with
regards to the delivery of messages; whether messages are delivered exactly once,
more than once or at most once to their consumers. The model, inspired by
previous works [6, 19], is general enough to be capable of defining the reputation
of client devices and servers at various levels of abstraction based on their level
of performance in relation to the delivery of messages issue of interest.

The paper starts with an overview of the MQTT protocol (Section 2). From
this, we then mathematically define the reputation model for MQTT clients and
server (Section 3), based on their ability to keep to the requirements of the
protocol. We then outline a system architecture (Section 4) for monitoring the
MQTT protocol and thereby being able to calculate the reputation by observing
the behaviour of MQTT clients and server in a real network. We show how this
system was implemented and we demonstrate the results of this implementation
(Section 5). Finally we look at related work (Section 6) and conclude the paper
outlining areas for further research (Section 7).

2 MQTT Overview

MQTT [9] is described as a lightweight broker-based publish/subscribe messag-
ing protocol that was designed to allow devices with small processing power
and storage, such as those which the IoT is composed of, to communicate over
low-bandwidth and unreliable networks. The publish/subscribe message pattern
[10], on which MQTT is based, provides for one-to-many message distribution
with three varieties of delivery semantics, based on the level of QoS expected
from the protocol. In the “at most once” case, messages are delivered with the
best effort of the underlying communication infrastructure, which is usually IP-
based, therefore there is no guarantee that the message will arrive. This protocol
is termed the QoS = 0 protocol. In the second case of “at least once” semantics,
certain mechanisms are incorporated to allow for message duplication. Despite
the guarantee of delivering the message, there is no guarantee that duplicates
will be suppressed. This protocol is also known as the QoS = 1 protocol. Fi-
nally, for the last case of “exactly once” delivery semantics, also known as the
QoS = 2 protocol, the published message is guaranteed to arrive only once at
the subscribers. The protocol also defines message structures needed in commu-



A Utility-based Reputation Model for the Internet of Things 3

nications between clients, i.e. end-devices responsible for generating data from
their domain (the data source) and servers, which are the system components
responsible for collating source data from clients/end-devices and distributing
these data to interested subscribers. Servers are often also referred to as brokers,
as they intermediate between the data publishers and subscribers.

3 A Reputation Model for MQTT

We show in this section how the model of reputation defined for business pro-
cesses in [7, 8] can be adapted, with minimum changes, to the MQTT protocol
to obtain the reputation of client devices and the server.

3.1 Monitoring Events

Central to the model defined by [7, 8] was the notion of an event, which is a signal
produced by an independent monitor system, which is monitoring the interac-
tions occurring between the different entities in the monitored environment, in
this case the client and server entities participating in the MQTT protocol. An
event is defined as follows:

Event : TimeStamp ×Ag ×Msg × Id × N

where TimeStamp is the timestamp of the event generated by the monitor
system issuing it, Ag is the identity of the agent (client device or server) to
whom the event is related, Msg is the specific message of interest (e.g. Publish
and Pubrel messages), Id is an identity value of the protocol instance and finally,
N is a natural number representing the number of times the message Msg has
been monitored, i.e. was sent.

For example, the following event, issued at monitor system’s local time:

evex1 = (12:09:52, temp sensor,Publish, 1234, 2)

denotes that the temp sensor device has been monitored, within the instance
number 1234 of the protocol, to have sent twice the Publish message to the server
responsible for collecting environment temperature data. On the other hand, the
following event issued at local time 12:19:02:

evex2 = (12:19:02, temp server,Publish, 1234, 1)

denotes that the server responsible for the environment temperature, temp server,
has been monitored, within the same instance number 1234 of the protocol, to
have published only once the specific message Publish to the subscribers of the
temperature topic. In both these examples, the assumption is that the monitor
system is capable of detecting that the protocol instance being monitored has
terminated before it issues any events related to that instance. Although theo-
retically this is impossible due to the halting problem, in practical terms, the



4 A Utility-based Reputation Model for the Internet of Things

monitor system can assume the protocol to have terminated after some reason-
able amount of time has elapsed since the last protocol message.

The monitor generates events in the above form, which are used by a repu-
tation engine to determine the reputation values for client devices and servers
in an MQTT-based environment. The reputation engine will then use a util-
ity function pre-supplied to the engine by subscribers to determine the level of
satisfaction of a subscriber with regards to the results reported within an event:

utility : Event × SLA→ [0, 1]

∀(t , a,m, i ,n) ∈ Event , sla ∈ SLA • utility((t , a,m, i ,n), sla) = r ∈ R

This utility function will consider a SLA, defined as follows:

SLA : Ag × Top × Iss → N0

Here the SLA considers an issue of interest to the subscriber, Iss, which will be in
our case the QoS level value fixed to one of 0, 1 or 2, expected from a particular
agent Ag in relation to a specific topic Top. The outcome of the utility function
is a real number r representing the satisfaction level of the subscriber in terms
of both the SLA and the real values reported by events.

For example, consider the following SLA instance

sla = ((temp server, temperature,QoS ), 2)

then given the event evex2, the utility function could return the following value:

utility(t , temp server,Publish, 1234, 1, ((temp server, temperature,QoS ), 2)) = 1

This indicates that the subscriber’s requirements have been fulfilled, as indicated
by their SLA (r = 1), with the results reported by the event evex2. On the other
hand, considering the same SLA, the utility function might return:

utility(t , temp server,Publish, 1234, 0, ((temp server, temperature,QoS ), 2)) = 0

to show that the subscriber has a satisfaction value of 0 since the number of
times the message was delivered to the subscriber is lower (i.e. 0) than what
its QoS level is defined in the SLA (i.e. 2), therefore breaching the exactly-once
delivery semantics to the subscriber principle in MQTT.

Since the number of times a message is delivered will either confirm or not to
the level of QoS expected by the subscriber, in all of the above cases, the score
given will reflect either total satisfaction (i.e. 1) or total dissatisfaction (i.e. 0).

3.2 Reputation Models

After introducing the main notions of an event and a utility function, we can now
define models of reputation for the clients (e.g. sensor devices) and the MQTT



A Utility-based Reputation Model for the Internet of Things 5

server (broker) that aggregates the messages from the clients before publishing
them to the subscribers. The subscribers are assumed to be the business appli-
cations or data consumers, and we do not include them in the reputation model.
The MQTT standard does not prohibit a client from acting as both a device
(i.e. source of data) and a subscriber (i.e. consumer of data). However, in our
case, we only measure the reputation of the “source of data” clients.

The Server Reputation Model The first reputation model reflects the be-
haviour of MQTT servers. Given a set of events, Event, captured by the monitor
system and relevant to the server for whom the reputation is being calculated,
then we can define the server’s reputation function computed at a particular
point in time and parameterised by a specific SLA as follows:

[Srv ,SLA,TimeStamp]
s rep sla : Srv × SLA× TimeStamp → [0, 1]

∀ esets : ℘(Event) •

s rep sla(s, sla, t) =

∑
ev ∈esets .snd(ev) =fst(sla) = s ∧ id top(ev , sla)

ϕ(t,te)utility(ev ,sla)

#esets

where #s denotes the cardinality of a set s and ϕ(t , te) is a time discount function
that puts more importance (emphasis) on events registered closer in time to the
moment of computing the reputation. One definition of ϕ(t , te) could be the time

discount function defined by [13], which we redefine here as ϕ(t , te) = e−
t−te
λ ,

where t is the current time at which the reputation is calculated, te is the
timestamp of the event being considered and λ is recency scaling factor used to
adjust the value of the function to a scale required by the application. After this,
the server reputation function, s rep sla, is defined as the weighted average of
the utilities obtained from all the generated events with respect to some SLA.

The above definition aggregates the set of all relevant events, i.e. the events
that first have the same server name as that appearing in the SLA and second
that are on an instance of the protocol related to the topic of the SLA. The first
condition is checked using the two operators fst and snd, which will return the
first and second elements of a tuple, whereas the second condition is checked
using the predicate id top(ev , sla), which returns a True outcome if and only if
the identity number of an instance of a protocol captured by ev corresponds to
the topic value mentioned in the SLA sla. Considering the example events of the
previous section, we would have the following calculation of id top(ev , sla):

id top(12:09:52, temp server,Publish, 1234, 1, ((temp server, temperature,QoS ),
2)) = True

The above definition calculates the sum of the time-discounted utility func-
tion values, with respect to the given SLA and the events gathered, and average
these over the total number of events gathered (#esets) in any one instance
when this reputation value is calculated.



6 A Utility-based Reputation Model for the Internet of Things

Based on the definition of s rep sla, we next aggregate the reputation of a
server across every SLA that binds that server to its subscribers:

[Srv ,TimeStamp]
s rep : Srv × TimeStamp → [0, 1]

∀ slasets : ℘(SLA) • s rep(s, t) =

∑
sla ∈ slasets .fst(sla) = s

s rep sla(s,sla,t)

#slasets

Which provides a more general indication of how well a server s behaves in
relegation to a number of subscribers. This reputation is again calculated in a
particular point in time, t , however it is straightforward to further generalise
this reputation function over some time range, between t and t ′.

The Client Device Reputation Model After introducing the reputation
model of the server, we define here the client’s reputation model. Like the server,
a client might also be implementing the QoS correctly, but it requires multiple
reconnections, duplicate messages etc., while the server does not. For instance,
if the devices are not sending PINGs or responding to them, or this is delayed,
it might indicate a problem is more likely to occur in the future. Similarly,
if the device needs to send multiple duplicate messages or needs to be sent
duplicate messages, it also might indicate possible failure in the future. Thus,
the reputation model for a client may be based on either the “Keep Alive/PING”
case or the “Client’s Retransmission Procedure” case. However, we start with
the definition of an overall reputation model that generalises these two cases.

Given a set of events, Event, captured by the monitor system relevant to some
client, then we define the client’s reputation function computed at a particular
point in time in a specific process (Keep Alive/PING procedure or retransmission
procedure) and parameterised by a specific SLA as follows:

[Client ,SLA,TimeStamp,Procedure]
c rep sla p : Client × SLA× TimeStamp × Procedure → [0, 1]

∀ psets : ℘(Event) • c rep sla p(c, sla, t , p) =∑
ev∈psets .snd(ev) =fst(sla) = c ∧ id top(ev,sla)

ϕ(t,te)utility(ev ,sla)

#psets

This definition gathers the set of all related events, i.e. the events that first
have the same client name as that appearing in the SLA and second that are
on an instance of the protocol related to the topic of the SLA. The definition is
parameterised by the client, an SLA, a timestamp and the specific procedure (e.g.
Keep Alive/PING or retransmission). The SLA represents what the expectation
is, from the server’s point of view, of the client’s behaviour in the context of the
specific procedure. Similar to the case of s rep sla, a utility function is applied
to measure the satisfaction of the server, in a time-discounted manner, in relation
to the client’s behaviour and this is then averaged over the total number of events
captured in a specific instance of time.



A Utility-based Reputation Model for the Internet of Things 7

For example, consider the case of the Keep Alive/PING procedure, then
c rep sla ka is defined as the time-discounted average of the utilities obtained
from all generated events with respect to the Keep Alive/PING procedure.

[Client ,SLA,TimeStamp,KeepAlive]
c rep sla ka : Client × SLA× TimeStamp ×KeepAlive → [0, 1]

∀ psets : ℘(Event) • c rep sla ka(c, sla, t , ka) =∑
ev∈kapingsets .snd(ev) =fst(sla) =c ∧ id top(ev,sla)

ϕ(t,te)utility(ev ,sla)

#kapingsets

In this procedure, the client sends a Pingreq message within each KeepAlive
time period, then the receiver answer with a Pingresp message when it receives
a Pingreq message from the gateway to which it is connected. Clients should use
KeepAlive timer to observe the liveliness of the gateway to check whether they
are connected to broker. If a client does not receive a Pingresp from the gateway
even after multiple retransmissions of the Pingresq message, it fails to connect
with gateway during the Keep Alive period.

Hence, for the above example, using id top to show a set of related events
ev corresponds to the topic value mentioned in the SLA, sla, we would have that:

id top(12 : 09 : 52, client,Pingreq ,False,False, 1234, 1, ((client , temperature,
QoS ), 0)) = True

The event evkaping = (12 : 09 : 52, client,Pingreq,False,False, 1234, 1) gen-
erated by the monitor, could reflect a client device that has sent once the
Pingreq message to connect to the gateway within the instance number 1234
of the protocol during the Keep Alive period. Then, given the SLA instance
sla = ((client, temperature,QoS ), 0), the client should deliver this Pingreq mes-
sage in relation to a specific topic (in this case temperature) at most once within
each KeepAlive time period, but there is no guarantee the message will arrive.

From the definition of c rep sla p, we generate a more general reputation
for some client in a particular point in time t within a period, Period, as follows:

[Client ,SLA,TimeStamp]
c rep sla : Client × SLA× TimeStamp → [0, 1]

∀ periodsets : ℘(Period) • c reps la(c, sla, t) =∑
ev∈periodsets .snd(ev) =fst(sla) = c ∧ id top(ev,sla)

c rep sla p(c,sla,t,p)

#periodsets

Giving an example based on the Keep Alive/PING procedure, assume the
KeepAliveTimer is set to 60, then calculating c rep sla(c, sla, t) will give us
the reputation of the client device during the whole Keep Alive period of 60
seconds. In another example, based on the retransmission procedure, we assume
that Nretry is set to 10. Aggregating over the c rep sla(c, sla, t) values yields
reputation in relation to the client’s retransmissions within a 10 time-unit limit.



8 A Utility-based Reputation Model for the Internet of Things

Finally, based on the definition of c rep sla, we can further generalise the
reputation value over all relevant SLAs for a specific client, c, and in a particular
point in time, t , as follows:

[Client ,SLA]
c rep : Client × SLA→ [0, 1]

∀ slasets : ℘(SLA) • c rep(c, t) =

∑
crep(c, t) = sla ∈ slasets .fst(sla) = c

c rep sla(s,sla,t)

#slasets

This definition gives a more general indication of how well the client device
generally behaves in relation to the SLAs it holds with the server (possibly on
behalf of the subscribers dealing with the server). These could include scenarios
where the clients might use the Keep Alive/PING procedure to observe the live-
liness of the gateway to check whether they are connected to a broker. Moreover,
in the case of messages that expect a response, if the reply is not received within
a certain time period, the client will be expected to retransmit this message.

The reputation model of a client in different procedures might cause dif-
ferent failures. Thus, as we demonstrated above the first reputation model,
c rep sla p, will lead to new models with slight variations capturing this variety
of failures. For example, for the case of a client’s retransmission procedure, all
messages that are “unicast” to the gateway and for which a gateway’s response
is expected are supervised by a retry timer Tretry and a retry counter Nretry.
The retry timer Tretry is started by the client when the message is sent and
stopped when the expected gateway’s reply is received. If the client does not
receive the expected gateway’s reply during the Tretry period, it will retransmit
the message. In addition, the client should terminate this procedure after Nretry
number of retransmissions and should assume that it is disconnected from the
gateway. The client should then try to connect to another gateway only if it fails
to re-connect again to the previous gateway.

One such client reputation, is defined based on a specific TRetry timer:

[Client ,SLA,TimeStamp,TRetry ]
c reptr sla tr : Client × SLA× TimeStamp × TRetry → [0, 1]

∀ tretrysets : ℘(Event) • c reptr sla tr(c, sla, t , tr) =∑
ev∈ kapingsets .snd(ev) = fst(sla) = c ∧ id top(ev , sla)

ϕ(t,te)utility(ev ,sla)

#tretrysets

For example, consider the following sla = ((client, temperature,QoS ), 1), then
given the event evtretry = (12 : 09 : 52, client,Publish,False,True, 1234, 2), it
could reflect an event in the retransmission procedure. If the client does not
receive a Puback message with QoS level 1 within a time period defined by the
TRetry value, the client may resend the Publish message with the DUP flag set.
When the server receives a duplicate message from the client, it re-publishes the
message to the subscribers, and sends another Puback message.



A Utility-based Reputation Model for the Internet of Things 9

Similarly, another variation of the client’s reputation function may be based
on the NRetry counter instead:

[Client ,SLA,TimeStamp,NRetry ]
c repnr sla nr : Client × SLA× TimeStamp ×NRetry → [0, 1]

∀nretrysets : ℘(Event) • c reptr sla tr(c, sla, t ,nr) =∑
ev ∈ kapingsets .snd(ev) = fst(sla) = c ∧ id top(ev , sla)

ϕ(t,te)utility(ev ,sla)

#nretrysets

Again, for the above definition, for sla = ((client, temperature,QoS ), 2), and
given the event evnretry = (12 : 09 : 52, client,Publish,False,False, 1234, 1), it
could indicate that the client should not retransmit again in the retransmission
period due to the fact that QoS is set to 2 (meaning the message is guaranteed
to be delivered exactly-once to the subscribers). In this case, the DUP flag must
be set to False, in order to prevent a retransmission.

4 A Reputation System Architecture for MQTT

Our architecture for a reputation system for an MQTT network is composed of
a reputation monitor and a reputation engine, as shown in Figure 1.

Fig. 1. The Reputation System Architecture.

The architecture defines the capabilities of the various components in an
MQTT network. The reputation monitor (also sometimes referred to as the
proxy) will monitor the MQTT interactions that take place among the MQTT
network components, namely the client devices, server and subscribers. Monitor-
ing implies that the reputation monitor will issue events to the reputation engine



10 A Utility-based Reputation Model for the Internet of Things

whenever these are required after each time it has captured an MQTT commu-
nication relevant to the utility functions predefined by the consumers (possibly
the subscribers). These events could represent aggregations/abstractions of data
collected from such communications, in order to minimise the additional network
traffic created by this process.

Once an event has arrived at the reputation engine, it is either stored for
applying further aggregations/abstractions or it is used immediately to compute
new updates for the various reputation values for the clients and the server. The
calculations are based on the reputation models defined in the previous sections,
and the updates to these reputation values are then stored in a local reputation
database. In our architecture, we only consider the monitoring problem, however,
it is easy to extend this architecture in the future to include a control step, where
the reputation values for different participants are then used to impact/feed back
into the MQTT network communications.

5 Simulation of the Model

We implemented the architecture, described in the previous section, by running
a number of off-the-shelf open source tools. First, we used the Mosquitto tool
[1] as the broker (server). Mosquitto is an open source MQTT broker written in
the C language that implements the MQTT protocol version 3.1. The Mosquitto
project is highly portable and runs on a number of systems, which made it an
effective choice for our experiments.

In order to simulate the client, we used the source code for the Eclipse Paho
MQTT Python client library [2], which comes with Java MQTT client API and
implements versions 3.1 and 3.1.1 of the MQTT protocol. This code provides
a client class, which enables applications to connect to an MQTT broker to
publish messages, receive published messages and to subscribe to topics. It also
provides some helper functions to make publishing one off messages to an MQTT
server very straightforward. Using this library we created a set of programs that
would publish and subscribe to the Mosquitto broker. Finally, to implement the
monitoring function we needed to capture all the traffic between the client and
the server. For this we extended the Paho MQTT test proxy [2], which acts as a
“reverse proxy”, impersonating an MQTT server and sending all the traffic on
to a real broker after capturing the messages. The proxy represents a mediator
between clients and the broker. By extending this proxy we were able to trace
all the packets being sent and received and send monitoring information to our
reputation engine in order to calculate the reputation of the client and broker.

5.1 Results

To begin with, we assume that the network will misbehave with regards to the
messages that are exchanged among the various entities in the system. This mis-
behaviour is modelled as the network dropping some messages according to a



A Utility-based Reputation Model for the Internet of Things 11

predefined rate (e.g. 0–100%). There could be other sources of network misbe-
haviour, such as the insertion of new messages and the repetition or modification
of transmitted messages, however, for simplicity, we consider only the suppres-
sion of messages as our example of how the network could misbehave and how
such misbehaviour would affect the reputation of MQTT clients and servers.

In our case, we chose the rate of successful message delivery to be in the
range of 50% to 100%, where 50% means that one message in every two is
dropped by the network, and 100% means that every message is delivered suc-
cessfully to its destination. This latter case is equivalent to the normal behaviour
discussed above. There are a number of tools that can drop network packets se-
lectively. However, we created a new tool based on the above-mentioned proxy
that specifically targets disrupting MQTT flows by dropping MQTT packets.
The tool allowed us to target a percentage of dropped packets and therefore
calculate the reputation under a given percentage of packet loss.

Since our aim is to demonstrate, in general terms, how reputation-based
trust can be obtained in an IoT system such as an MQTT network, and for
simplicity, we opted to consider only one source of misbehaviour, namely message
suppression, without considering the other sources. Despite the fact that such
sources are also interesting, they do not affect the generality of our approach.

5.2 Reputation Results

To compute the reputation value of clients and servers, we collected events re-
lated to the QoS level agreed between the client and the server throughout the
5-minute measurement window, and used the server and client reputation model
proposed in Section 3.2 to calculate their reputation values. The QoS level mon-
itoring is important as it is directly related to the issue of message suppression
when messages are communicated over the unreliable network. In the presence
of such abnormal behaviour, the reputation values of the clients and the server
are shown in Figure 2 versus the rate of successful message delivery (0.5 to 1).

From this figure, we note that despite starting at low reputation levels in
line with the low delivery rate of messages, these reputation values will increase
reaching the optimal value of 1 when the rate of delivery of messages is 1. This
optimal case represents the case of normal behaviour when every message is
delivered successfully to its destination.

6 Related Work

Reputation is a general concept widely used in all aspects of knowledge rang-
ing from humanities, arts and social sciences to digital sciences. In computing
systems, reputation is considered as a measure of how trustworthy a system
is. There are two approaches to trust in computer networks: the first involves
a “black and white” approach based on security certificates, policies, etc. For
example, SPINS [17], develops a trusted network. The second approach is prob-
abilistic in nature, where trust is based on reputation, which is defined as a



12 A Utility-based Reputation Model for the Internet of Things

Fig. 2. Reputation Values for the Clients (c rep) and Servers (s rep) vs. the rate of
Successful Message Delivery.

probability that an agent is trustworthy. In fact, reputation is often seen as
one measure by which trust or distrust can be built based on good or bad past
experiences and observations (direct trust) [14] or based on collected referral
information (indirect trust) [5].

In recent years, the concept of reputation has shown itself to be useful in many
areas of research in computer science, particularly in the context of distributed
and collaborative systems, where interesting issues of trust and security manifest
themselves. Therefore, one encounters several definitions, models and systems of
reputation in distributed computing research (e.g. [12, 14, 20]).

There is considerable work into reputation and trust for wireless sensor net-
works, much of which is directly relevant to IoT trust and reputation. The Her-
mes [22] and E-Hermes [23] systems utilise Bayesian statistical methods to cal-
culate reputation based on how effectively nodes in a mesh network propagate
messages including the reputation messages. Similarly TRM-IoT [11] evaluates
reputation based on the packet-forwarding trustworthiness of nodes, in this case
using fuzzy logic to provide the evaluation framework. Another similar work is
CORE [16] which again looks at the packet forwarding reputation of nodes.

Our approach differs from the existing research in two regards: firstly, the
existing reputation models for IoT utilise the ability of nodes to operate in
consort as the basis of reputation. While this is important in wireless sensor
networks, there are many IoT applications that do not utilise mesh network
topologies and therefore there is a need for a reputation model that supports
client-server IoT protocols such as MQTT. Secondly, the work we have done
evaluates the reputation of a reliable messaging system based on the number



A Utility-based Reputation Model for the Internet of Things 13

of retries needed to successfully transmit a message. Although many reputation
models have been based on rates of packet forwarding, the analysis of a reliable
messaging system (like MQTT with QoS > 1) is different as messages are always
delivered except in catastrophic circumstances. Therefore we looked at the effort
and retries required to ensure reliable delivery instead. We have not seen any
similar approach to this and consider this the major contribution of the paper.

7 Conclusion

To conclude, we defined in this paper a model of reputation for IoT systems, in
particular, for MQTT networks, which is based on the notion of utility functions.
The model can express the reputation of client and server entities in an MQTT
system at various levels, and in relation to a specific issue of interest, in our case
the QoS level of the delivery of messages in the presence of a lossy network. We
demonstrated that it is possible, using off-the-shelf open source MQTT tools, to
implement an architecture of the reputation system that monitors the MQTT
components, and we showed that the experimental results obtained from running
such a system validate the theoretical model.

Future work will focus on adapting the reputation model and its architecture
and implementation to other IoT standards, e.g. the Advanced Message Queu-
ing Protocol (AMQP) [21], the Extensible Messaging and Presence Protocol
(XMPP) [4], the Constrained Application Protocol (CoAP) [18] and the Sim-
ple/Streaming Text Oriented Messaging Protocol (STOMP) [3]. We also plan to
consider other issues of interest when calculating reputation where satisfaction is
not necessarily a binary decision, for example, the quality of data generated by
client devices and the quality of any filtering, aggregation or analysis functions
the server may apply to such data in order to generate new information to be
delivered to the consumers. Further, we intend to apply Bayesian statistics to
the results to improve the probabilistic calculation of the reputation values.

Some other interesting, though more advanced areas of research, include the
strengthening of the model to be able to cope with malicious forms of client and
server behaviour, for example, collusion across such entities in order to produce
fake reputation values for a targeted victim, and a study on the welfare of IoT
ecosystems based on the different rates of the presence of ill-behaved and well-
behaved entities in the ecosystem, and how variations in the presence ratio of
such entities would lead to a notion of reputation reflecting the wider ecosystem.

References

1. Mosquitto: An open source mqtt v3.1/v3.1.1 broker. http://mosquitto.org/, ac-
cessed: 2016-03-11

2. Paho. http://www.eclipse.org/paho/, accessed: 2016-03-11
3. STOMP: The Simple Text Oriented Messaging Protocol. https://stomp.github.

io, accessed: 2016-03-11
4. XMPP Standards Foundation. http://xmpp.org, accessed: 2016-03-11



14 A Utility-based Reputation Model for the Internet of Things

5. Abdul-Rahman, A., Hailes, S.: Supporting trust in virtual communities. In: HICSS
’00: Proceedings of the 33rd Hawaii International Conference on System Sciences-
Volume 6. IEEE Computer Society, Washington, DC, USA (2000)

6. Arenas, A.E., Aziz, B., Silaghi, G.C.: Reputation management in collaborative
computing systems. Security and Communication Networks 3(6), 546–564 (2010)

7. Aziz, B., Hamilton, G.: Reputation-controlled business process workflows. In: Pro-
ceedings of the 8th International Conference on Availability, Reliability and Secu-
rity. pp. 42–51. IEEE CPS (2013)

8. Aziz, B., Hamilton, G.: Enforcing reputation constraints on business process work-
flows. Journal of Wireless Mobile Networks, Ubiquitous Computing, and Depend-
able Applications (JoWUA) 5(1), 101–121 (Mar 2014)

9. Banks, A., Gupta, R.: MQTT Version 3.1.1 (2015)
10. Birman, K., Joseph, T.: Exploiting Virtual Synchrony in Distributed Systems.

SIGOPS Oper. Syst. Rev. 21(5), 123–138 (Nov 1987)
11. Chen, D., Chang, G., Sun, D., Li, J., Jia, J., Wang, X.: Trm-iot: A trust manage-

ment model based on fuzzy reputation for internet of things. Computer Science
and Information Systems 8(4), 1207–1228 (2011)

12. Fullam, K., Barber, K.: Learning trust strategies in reputation exchange networks.
In: AAMAS ’06: Proceedings of the fifth international joint conference on Au-
tonomous agents and multiagent systems. pp. 1241–1248. ACM Press (2006)

13. Huynh, T.D., Jennings, N.R., Shadbolt, N.R.: An integrated trust and reputation
model for open multi-agent systems. Autonomous Agents and Multi-Agent Systems
13(2), 119–154 (Sep 2006)

14. Jøsang, A., Ismail, R., Boyd, C.: A Survey of Trust and Reputation Systems for
Online Service Provision. Decision Support Systems 43(2), 618–644 (March 2007)

15. Locke, D.: MQ Telemetry Transport (MQTT) V3.1 Protocol Specification (2010)
16. Michiardi, P., Molva, R.: Core: a collaborative reputation mechanism to enforce

node cooperation in mobile ad hoc networks. In: Advanced Communications and
Multimedia Security, pp. 107–121. Springer (2002)

17. Perrig, A., Szewczyk, R., Tygar, J., Wen, V., Culler, D.E.: Spins: Security protocols
for sensor networks. Wireless networks 8(5), 521–534 (2002)

18. Shelby, Z., Hartke, K., Bormann, C.: Constrained Application Pro-
tocol (CoAP) draft-ietf-core-coap-18. https://tools.ietf.org/html/

draft-ietf-core-coap-18, accessed: 2016-03-11
19. Silaghi, G.C., Arenas, A., Silva, L.: Reputation-based trust management sys-

tems and their applicability to grids. Tech. Rep. TR-0064, Institutes on Knowl-
edge and Data Management & System Architecture, CoreGRID - Network of
Excellence (February 2007), http://www.coregrid.net/mambo/images/stories/
TechnicalReports/tr-0064.pdf

20. Silaghi, G.C., Arenas, A., Silva, L.M.: Reputation-based trust management systems
and their applicability to grids. Tech. Rep. TR-0064, Institutes on Knowledge and
Data Management and System Architecture, CoreGRID - Network of Excellence
(February 2007)

21. Vinoski, S.: Advanced Message Queuing Protocol. IEEE Internet Computing 10(6),
87–89 (Nov 2006)

22. Zouridaki, C., Mark, B.L., Hejmo, M., Thomas, R.K.: Hermes: A quantitative
trust establishment framework for reliable data packet delivery in manets. Journal
of Computer Security 15(1), 3–38 (2007)

23. Zouridaki, C., Mark, B.L., Hejmo, M., Thomas, R.K.: E-hermes: A robust coop-
erative trust establishment scheme for mobile ad hoc networks. Ad Hoc Networks
7(6), 1156–1168 (2009)


