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1 Introduction

Multigrid methods for tau and Toeplitz matrices were firstly introduced in
[13] and then applied to two-level Toeplitz matrices in [14]. These early
works led to several generalizations, other matrix algebras in [22,9], dif-
ferent projecting strategies for Toeplitz matrices in [16,7,10], and to fur-
ther developments in the theoretical analysis on the convergence rate [7,10,
20,1]. In [1] it was proved that in the one-dimensional case the Algebraic
Multi-Grid (AMG) firstly introduced in [13] for tau and Toeplitz matri-
ces and in [22] for circulant matrices generated by nonnegative polynomial
functions, under slightly stronger conditions, is optimal when using the V -
cycle and only one iteration of relaxed Richardson as post-smoother. The
optimality is in the sense of Axelsson and Neytcheva [2], i.e., the problem
of solving a linear system with coefficient matrix An is asymptotically of
the same cost as the direct problem of multiplying An by a vector. These
slightly stronger conditions are translated in the choice of a projector which
results more powerful than the previous proposals when the coefficient ma-
trices possess a generating function with zeros of order greater than two.

In this paper we extend to the multidimensional case the analysis pro-
posed in [1]. Therefore we prove that, under slightly stronger conditions,
the AMG proposed in [14,20,22] for matrices that belong to multilevel cir-
culant, tau or Hartley algebras and that are generated by nonnegative mul-
tivariate polynomial functions is optimal when using the V -cycle and at
least one (pre or post) smoothing iteration of relaxed Richardson (a similar
analysis can be done for other stationary methods). We will show that the
total cost of the considered AMG is O(N(n)) arithmetic operations, since:

1. all the matrices appearing in the AMG have a number of non-zero di-
agonals independent by n and they can be computed with a number of
operations proportional to log(N(n)),

2. each iteration requires the same computational cost of the matrix-vector
product, i.e. O(N(n)) arithmetic operations,

3. the number of iterations required for the convergence is bounded by a
constant which does not depend on n.

The last point means that the convergence rate is independent of N(n)
and its proof in the multidimensional case is the main contribution of this
paper. Furthermore, the matrices at each multigrid level belong to the same
algebra and then the recursive V -cycle procedure is well defined.

In the case of the considered matrix algebras the cost by direct meth-
ods using fast transforms is O(N(n) log N(n)) operations, while an opti-
mal technique would require just O(N(n)) operations. This kind of matrix
algebra linear systems is widely encountered when preconditioning more
complicated problems (dense multilevel Toeplitz systems, discretization of
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multidimensional differential and/or integral equations, etc. [8,19]) or di-
rectly arises in some image restoration problems with shift-invariant kernel
and suitable boundary conditions (see [15,21]).

The tau algebra is also the key to extend the proposed AMG to multi-
level Toeplitz matrices. In this direction there are several proposals [16,20,
7,10,1]. The proposal in [16] does not follow a Galerkin strategy and hence
there are not many useful tools for a theoretical analysis, while the proposal
in [1] extends the one in [20] preserving more information at each recur-
sion level when the generating function has a zero of arbitrary finite order.
In [20] the optimality is proved in the Two-Grid case, while in [7,10] the
level independency in the one and twodimensional case is also proved with
generating function having zeros of order at most two. The latter implies
the optimality using the W -cycle, but, as shown in [1], it is not enough for
the optimality of the V -cycle. We emphasize that for multilevel Toeplitz
matrices with nonnegative generating functions having a zero of order at
most two, all the generalizations described in [16,20,7,10,1] of the origi-
nal idea contained in [13,14] define exactly the same multigrid procedure.
Furthermore for generating functions having zeros of order greater than two
there are no results on the optimality of the cited proposals. We recall that
in [20] the level independency is implicitly proved but not explicitly stated
for a zero of arbitrary order. However the experimentation presented here
and in [1] confirms numerically an optimal behavior of our proposal also
for zeros of order greater than two already in the V -cycle case. In this case
the fast direct techniques require a computational cost of O([N(n)]

3d−1
d )

[17] and need further stabilization tricks, while the most popular precondi-
tioning strategies can be far from being optimal [23].

With respect to [1,20], in this paper we provide a more precise analysis
of the computational cost of one AMG iteration and of the choice of the op-
timal smoothers’s relaxation parameter (it is the first time that a complete
analysis is considered also for the pre-smoother and an iteration number
greater than one), especially we extend to the multidimensional case the
proof of optimality presented in [1]. The latter study leads to the choice
of a more powerful projector with respect to [20] and, moreover, to de-
rive it from [1] is not a trivial task. In addition we remark that generally
it is not true that if we have optimality for a given iterative solver in the
one-dimensional case, then the same property transfers to the multidimen-
sional case. A notable example is the preconditioning of multilevel Toeplitz
systems using multilevel algebras like the circulant algebra: indeed many
optimal preconditioners can be found in the one dimensional case while in
the multidimensional case this has been shown to be theoretically impos-
sible, see [23]. On the other hand, by using multilevel band Toeplitz pre-
conditioners (see e.g. [19]), it is possible to reduce the computation with
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dense Toeplitz systems to the case of Toeplitz linear systems whose coef-
ficient matrices are generated by nonnegative polynomials. Therefore it is
of special interest to be able to solve in an optimal way these precondi-
tioned systems and the latter can be performed with the proposed AMG.
We expect that the theoretical tools introduced in this paper for the multi-
level matrix algebra case can be employed for proving the AMG optimality
in the multilevel Toeplitz context as well. However, to consider the algebra
case instead of the Toeplitz case is the same simplification that is done in
the classical Local Fourier Analysis for the geometric multigrid (see [6]).
As an example some discretizations of PDEs with periodic boundary con-
ditions lead to circulant matrices while Dirichlet boundary conditions lead
to Toeplitz matrices.

The paper is organized as follow. In §2 we describe the multilevel cir-
culant, tau and Hartley algebras and the multilevel Toeplitz matrices em-
phasizing their main common properties. In §3 we describe the V -cycle
AMG procedure. In §4 we analyze three constraints that the AMG must
satisfy in order to obtain an optimal method. In §5 we prove the conver-
gence and optimality property of our AMG. §6 contains a wide numerical
experimentation arising in 2D and 3D applications that confirms our theo-
retical analysis. Finally, §7 is devoted to concluding remarks.

2 Multilevel algebra and Toeplitz matrices

In this paper we will consider a multigrid method to solve linear systems
whose matrices belong to multilevel circulant, tau and Hartley algebras.
We will provide an uniform approach that in fact can be extended to other
matrix algebras (for DCTIII see [9]).

Let d, n ∈ N \ {0}, Fd = {f : Rd → R } and let Diag (z) be the
diagonal matrix with principal diagonal equal to z ∈ Rn. To any uni-
tary matrix Qn (i.e. Q−1

n = QH
n ) we can associate the Hermitian algebra

G(Qn) = {Qn· Diag (z) ·QH
n | z ∈ Rn

}
and hence the map An defined

by
An : F1 −→ G(Qn)

f −→ Qn ·Diag f(w[n]) ·QH
n

is an algebra homomorphism where w[n] is a fixed vector ofRn and f(w[n])
denotes the vector with components f(w[n]

i ). As a consequence u[n]
i =

Qnei is an unitary eigenvector of An(f) related to the eigenvalue f(w[n]
i ).

The circulant matrix Cn(f), the tau matrix τn(f) and the Hartley matrix
Hn(f) with f ∈ F1 can be written as An(f), A ∈{C, τ,H}, by means of
the objects Qn and w[n] defined in Table 1.
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A In w[n] Qn

Circulants C 0, . . . , n− 1 w
[n]
i = 2πi

n
Fn = 1√

n

h
e--ijw

[n]
i

i
i,j∈In

Hartley H 0, . . . , n− 1 w
[n]
i = 2πi

n
Hn = Re(Fn) + Im(Fn)

Tau τ 1, . . . , n w
[n]
i = πi

n+1
Sn =

q
2

n+1

h
sin
“
jw

[n]
i

”i
i,j∈In

Table 1. Basics of trigonometric algebras: index range, sampling points, eigenvectors.

In [1] we proposed an AMG (improving the one studied in [13]) to solve
the linear system An(f)x = b with total arithmetic cost linear in n under
the assumption that f is a trigonometric polynomial that vanishes in zero
and is positive in the open interval (0, 2π) (we required f even in the tau
case): then it was shown how to extend the result to the case where the
unique root is not at zero and in the case where f has more than one root.
In this paper we extend this analysis to the multilevel case improving the
previous proposals and the theoretical results in [14,20,22].

A d-level matrix An of partial dimension n = (n1, n2, . . . , nd) ∈
(N\{0})d can be described (see [26]) as a n1×n1 block matrix whose ele-
ments are n2×n2 block matrices and so on with d nesting levels; its true di-
mension is N(n) =

∏d
r=1 nr. We will refer to the elements of such matrix

by using a couple (i, j) of d-indices: An = [ai,j ], and the selected element
ai,j is the one in position (ir, jr) at the r-th level, for every r = 1, . . . , d.
Circulant, tau and Hartley d-level matrix algebras of partial dimension n
can be defined as the matrix algebra G(Qn) associated with the transform
Qn = Qn1 ⊗ · · · ⊗ Qnd

. All Qni have to be selected in the same row of
Table 1: it is possible to deal with mixed structures and the corresponding
multigrid analysis is straightforward (see e.g. [22]), but we will not em-
phasize this point hereafter. Of course we can associate multilevel matrices
Cn(f), τn(f) and Hn(f) to each multivariate function f ∈ Fd, thus we
extend the map An to An as follows

An : Fd −→ G(Qn)

f −→ Qn ·Diag f(w[n]) ·QH
n

where the sampling point multilevel vector w[n] ∈ RN(n) is defined as
w

[n]
i = (w[n1]

i1
, . . . , w

[nd]
id

), with i ∈ In := In1 × · · · × Ind
. It follows that

u[n]
i = u[n1]

i1
⊗ · · ·⊗u[nd]

id
is an eigenvector related to the sampling in w

[n]
i .

We note that An is an algebra homomorphism as well, thus in particular
An(f)An(g) = An(fg) holds.
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In this article we are interested in linear systemsAn(f)x = b withA∈
{C, τ,H, T}, f being a nonnegative multivariate trigonometric polynomial.
Once again, we require f to be even (with respect to each variable) in the
tau case. Here Tn(f) is the Toeplitz d-level matrix of partial dimension n
defined as

Tn(f) =
∑

|j|6n−e

ajJ
[j ]
n =

∑

|j1|<n1

. . .
∑

|jd|<nd

a(j1,...,jd)J
[j1]
n1

⊗ · · · ⊗ J [jd ]
nd

(e = (1, . . . , 1) ∈ Nd) by means of the Fourier coefficients of f

ak =
1

(2π)d

∫

[−π,π]d
f(x)e−i〈k|x〉dx, i2 = −1, k ∈ Zd. (1)

Here J
[j ]
n ∈ Rn×n is the matrix whose (s, t)-th entry equals 1 if s− t = j

and is 0 elsewhere.
We assume f ∈ Rz with z ∈ (N \ {0})d, where Rη, η ∈ Nd, is the set

of d-variate real-valued trigonometric polynomials with degree up to η:

Rη[x] =





∑

|k|6η

akei〈k|x〉 s.t. a−k = ak ∈ C


 .

In this case it is known (see [26,3,4]) that all the matricesAn(f) are hermi-
tian, banded (in the way induced from the considered structure) and semi-
positive definite if f > 0. Moreover An(f) is ill-conditioned whenever f
takes the zero value; it is singular ifA ∈ {C, τ,H} and f vanishes in a grid
point w

[n]
i .

If f > 0 vanishes in the grid point w
[n]
i then it is usually replaced by the

positive function

f+ = f + min
‖j‖∞=1

f
(
w

[n]
i+j

) · χ
w

[n]
i +2πZd , (2)

here χS is the characteristic function of the set S, thus χS(x) is 1 if x ∈ S
and is 0 if x 6∈ S. Therefore An(f) is consequently replaced by

An(f+) = An(f) +
(

min
‖j‖∞=1

f
(
w

[n]
i+j

)) · u[n]
i

(
u[n]

i

)H
,

where, in the preconditioning literature, the rank-1 additional term is known
as Strang correction [25].
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3 Algebraic MultiGrid

Let A ∈ CN×N be an Hermitian positive definite matrix, b ∈ CN , m inte-
ger with 0 < m < N . Fix integers N0 = N > N1 > N2 > · · · > Nm > 0,
take Ri ∈ CNi+1×Ni full-rank matrices and consider two classes Si, S̃i of
iterative methods for Ni-dimensional linear systems, i = 0, . . . , m−1. The
related AMG in the V -cycle version produces the sequence {x(k)}k∈N ⊂
CN according to the rule x(k+1) = AMG(0,x(k),b), with AMG recur-
sively defined as follows (where A0 = A, b0 = b):

x(out)
i := AMG( i,x(in)

i ,bi )

If (i = m) Then Solve(Amx(out)
m = bm)

Else 1 x(pre)
i := Sνi

i

(
x(in)

i

)

2 ri := bi −Aix
(pre)
i

3 bi+1 := Riri

4 Ai+1 := RiAi(Ri)
H

5 x(out)
i+1 := AMG(i + 1,0Ni+1 ,bi+1)

6 x(int)
i := x(pre)

i + RH
i x(out)

i+1

7 x(out)
i := S̃ϑi

i

(
x(int)

i

)

(3)

Step 1 performs some (νi) iterations of a “pre-smoother”; step 2 calculates
the residue of presmoother approximation; steps 3, 4, 5 and 6 define the
recursive coarse grid correction by restriction (3) of the residue, coarse
grid correction (4, 5) and interpolation (6), while step 7 performs some
(ϑi) iterations of a “post-smoother”.

The restrictors Ri have to be full-rank, thus all Ai are nonsingular, her-
mitian and positive definite. Most of the times smoothers are one-point
methods:

{Si(x)= Si x + (INi − Si)A−1
i bi

S̃i(x)= S̃i x + (INi − S̃i)A−1
i bi

, x ∈ CNi , i = 0, . . . , m− 1.

(4)
Steps 2-6 allow us to define on each level i the exact coarse grid correction
operator :

CGCi = INi −Ri
HA−1

i+1Ri Ai, i = 0, . . . , m− 1. (5)
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Under these assumptions, it is possible to prove that the AMG is a one-point
method and its linear part AMG0 is recursively defined as




AMGm = ONm×Nm

AMGi = S̃ϑi
i ·

[
INi−Ri

H
(
INi+1−AMGi+1

)
A−1

i+1Ri Ai

]
· Sνi

i ,

i = m− 1, . . . , 0.

(6)

This shows that, unless we are in the two-grid case, by swapping the order
of smoothers (or else by applying both before or after the recursive coarse
grid correction) we affect the spectra of AMG0.

4 The AMG for matrix algebras

To reach convergence and optimality, and what is more to write a good
algorithm, we have to answer three requests of different nature: algebraic,
computational, and convergence-optimality.

The algebraic requirement (§4.1) is the following: every matrix Ai ge-
nerated from step 4 of AMG algorithm (3) has to be in the same algebra G
of A0 and hence

Ai = Ani(fi) ∈ G(Qni) (7)

has to hold, fi being a suitable function (in the following f = f0, z = z0

and n = n0 by choice) and ni a suitable multiindex. This means that the
matrices Ai generated from step 4 of algorithm (3) have all to be circulant,
or all tau or all Hartley, each one of the right partial order. It is obvious that
the algebraic requirement does not imply convergence and optimality by
itself, but it is necessary to define a recursive technique and also to obtain a
good method: since the coarse grid matrix has to approximate the fine grid
matrix, if they are of the same matrix algebra type (e.g. circulant) then the
approximation would likely be better.

The computational requirement (§4.2) is related to optimality: the com-
putational cost on each iteration has to be as low as possible, i.e.

O(N0) = O(N(n0))

since we deal with banded matrices. This is reached if the following three
conditions are guaranteed:

1. {Ri}m−1
i=0 and {Ai}m

i=1 can be (pre)computed with cost at most O(N0);
2. the products Ai x, Ri r and Ri

Hy (steps 2, 3 and 6) and smoothers
(steps 1 and 7) have linear cost with respect to the dimension N(ni);

3. the cost of solving Amx(out)
m = bm is at most O(N0).
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Circulant & Hartley algebra τ algebra

N0 2t 2t − 1

Ni
Ni−1

2
= 2t−i Ni−1−1

2
= 2t−i − 1

KNi

"
1 0

1 0 ... ...
1 0

#

Ni+1×Ni

"
0 1 0

0 1 0... ... ...
0 1 0

#

Ni+1×Ni

KNiQi

ˆ
QNi+1 QNi+1

˜ ˆ
QNi+1 0Ni+1 MnQNi+1

˜

Ri KNi ANi(pi)

Table 2. Scalar case: dimensions, cutting operators and relations (Mn = Diagn
r=1(−1)r).

The convergence-optimality requirement (§4.3) is the following: the er-
ror reduction on each iteration has to be smaller than one (convergence) and
also uniformly bounded (optimality), with respect to the dimension of the
problem, by a constant smaller than one and independent of N0 and m. It
follows that this constant will depend only on the generating function:

ρ(AMG0) 6 const(f0) < 1,

ρ(M) being the spectral radius of M . Convergence and optimality are the
core of this article and will be proved in §5.

4.1 Algebraic requirement

Here we describe how to satisfy the algebraic requirement (7). We simply
give the multilevel version of the arguments defined in the one-level case
in [1] according to Table 2. In [1] we fixed Ni = 2t−i for circulants and
Hartley and Ni = 2t−i−1 for tau (t is an integer number) and we choose as
projector (restrictor) Ri the product between a cutting matrix KNi (defined
in Table 2) and a matrix ANi(pi) in the algebra G(QNi), each pi ∈ F1 be-
ing a trigonometric polynomial. By means of cutting relations we obtained
Ai = ANi(fi), being {fi}m

i=0 ⊂ F1 defined by fi+1 = Ψ1(p2
i fi), with

Ψ1 : F1 −→ F1 defined as follows [13]:

Ψ1

[
g(x)

]
=

1
2

[
g
(x

2

)
+ g

(x

2
+ π

)]
.

Now we deal with the d-level case, starting with A0 = An0(f0) whose par-
tial order is n0 = 2te ∈ Nd for circulants and Hartley and n0 = (2t − 1)e
for tau, where e = (1, . . . , 1) ∈ Nd and t is still a positive integer. We es-
sentially halve each partial order on each level, by defining ni = 2t−ie
for circulants and Hartley and ni = (2t−i − 1)e for tau. As projector
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Ri we choose again a product, between a d-level cutting matrix Kni =
K(ni)1 ⊗ · · · ⊗K(ni)d

and a matrix Ani(pi) in the d-level algebra G(Qni),
pi ∈ Fd (see Table 3).

Circulant & Hartley algebra τ algebra

n0 2te (2t − 1)e

ni
ni−1

2
= 2t−ie

ni−1−e

2
= (2t−i − 1)e

mmax t t− 1

Kni K(ni)1 ⊗ · · · ⊗K(ni)d

Ri Kni Ani(pi)

Table 3. Multilevel case (d > 1): dimensions and cutting operators (e = (1, . . . , 1)).

These choices preserve a d-level structure in each Ai, because of the induc-
tive step Ai = Ani(fi) ⇒ Ai+1 = Ani+1(fi+1):

Ai+1 = Ri Ai (Ri)H

= Kni Ani(p
2
i fi) (Kni)

H

= KniQni Diag
(
(p2

i fi)(w[ni])
)

QH
ni

KT
ni

= Qni+1 Diag
([

Ψd(p2
i fi)

]
(w[ni+1])

)
QH

ni+1

(see [14,22] for details on last equality, where we assume all functions to
be even in the tau case). This leads to the following

Proposition 1 (Algebraic requirement) With notations of Table 3, let t,
m ∈ N be such that 0 <m <t and let f0, pi ∈Fd be 2π-periodic functions
(even in tau case) for i = 0, . . . ,m − 1. Define also Ai+1 = Ri Ai (Ri)H

for i = 0, . . . ,m − 1. Then it holds Ai = Ani(fi), i = 0, . . . , m, {fi}m
i=0

being defined as
fi+1 = Ψd(p2

i fi) (8)

and Ψd : Fd −→ Fd defined as

Ψd

[
g(x)

]
=

1
2d

∑

s∈{0;1}d

g
(x

2
+ πs

)
. (9)

Moreover the projector Ri is full-rank if Ψd[p2
i (x)] > 0 holds for every x.
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4.2 Computational requirement

As we stated in §1, we are interested in linear systems generated by a poly-
nomial f0 ∈ Rz0 : this means that the first matrix of the sequence {Ai}m

i=0
is structured (i.e. A0 = An0(f0) ∈ G(Qn0)) and sparse (f0 ∈ Rz0), while
all Ai are still structured (Ai = Ani(f) for §4.1), even if they can be
dense. We assert that under the simple assumption that all the projector’s
generators pi are polynomials, then all the matrices Ai have a number of
non-zero diagonals lower than a constant independent by n and m. As a
consequence, it is possible to guarantee that each iteration of the AMG (3)
has a cost proportional to N(n).

To show this result we have to analyze in detail how Ψd acts on polyno-
mials: applying Ψd to a generic polynomial

∑
c16k6c2

akei〈k|x〉 we obtain

Ψd


 ∑

c16k6c2

akei〈k|x〉


 =

∑

c16k6c2


 1

2d

∑

s∈{0;1}d

eπi〈k|s〉


 akei〈k

2
|x〉

=
∑

d c1
2 e6k6b c2

2 c
a2kei〈k|x〉 (10)

with componentwise floor and ceiling. The second equality follows from
an orthogonality result1:

∑

s∈{0;1}d

eπi〈k|s〉 =





2d if kr ≡ 0 mod 2 ∀r ∈ {1, . . . , d},
0 if ∃ r̄ ∈ {1, . . . , d} s.t. kr̄ ≡ 1 mod 2.

In particular we get
Ψd(Rη[x]) ⊆ Rbη

2 c[x]. (11)

If a Strang correction is needed in the generating function f0, then it could
be useful (see §5.3) to have it also in the restrictor polynomials pi. We
observe that

(p + λ1χ{a})
2(f + λ2χ{a}) = p2f + λ3χ{a} (12)

with λ3 = λ3(λ1, λ2, p(a), f(a)) and Ψd is linear.
A simple result shows how the degree of fi+1 = Ψd(gifi) evolves when gi

are polynomials.

1 It is straightforward if all kr are even; if it exists r̄ such that kr̄ is odd, it is enough to
split {0; 1}d = J0 ∪ J1, being Jθ =

˘
d ∈ {0; 1}d s.t. dr̄ = θ

¯
. It holds J0 ' J1 '

{0, 1}d−1 and
P

s∈J0
eπi〈k|s〉 +

P
s∈J1

eπi〈k|s〉 = 0
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Proposition 2 (Computational requirement) Under the same assump-
tions of Proposition 1, let pi be polynomials such that pi ∈ Rqi

and assume
f0 ∈ Rz0 . Then the following properties hold:

1. each fi is a polynomial;
2. fi ∈ Rzi , being zi+1 6 qi +

⌊
zi
2

⌋
;

3. zi 6 max{z0, 2qj : 0 6 j < i};
4. if qi = q for each i, then zi 6 2q for i large enough (it depends on

z0 − 2q).

Here multiindex inequalities and maximum hold componentwise as usual.

Proof Points 1 and 2 follow from (8) and (11).
Inequalities 3 can be showed by induction: i = 0 is clear; if zi 6 2qi then
zi+1 6 2qi, while if zi > 2qi it holds zi+1 6 zi 6 max{z0, 2qj : 0 6
j < i}.
Inequality 4 follows from point 3 if z0 6 2q, otherwise, like described in
point 3, {zi}i∈N decreased strictly until for an index k holds zk 6 2q and
then zk+i 6 2q for any i ∈ N . ¤

From Proposition 2 follows that if pi ∈ Rq for all i (we will show
in §5.3 that this happen in our case) then the number of nonzero diago-
nals of the coefficient matrix at each multigrid recursion level is lower than∏d

r=1 2qr + 1. Therefore, it is easy to prove that, with a suitable choice of
the smoother, one iteration of the algorithm AMG (3) is linear in N0. This
is done in the following lemma.

Lemma 1 Under the same assumptions of Proposition 1 and

1. pi ∈ Rq, for i = 0, . . . , m− 1,
2. pre and post-smoother are Richardson with νi + ϑi 6 h · (2d − 1)i,

where h > 1 is a constant,

one iteration of the AMG in (3) has a computation cost linear in N0.

The above lemma does not consider the cost C{Ai}m
i=1

of calculating
the matrices {Ai}m

i=1, i.e. of calculating the functions {fi}m
i=1. This can be

done before the first iteration with logarithmic cost in N0. Indeed, from
Proposition 1 and from equation (10), it follows that we can get the coeffi-
cients of each fi+1 by computing the product p2

i fi, where pi ∈ Rq and the
relative fi ∈ Rmax{z0, 2q} holds for each i. Since q and z0 do not depend
on n0 but only on f0, and we have to repeat this calculation m − 1 times,
it follows that there exists a constant c(f0) such that C{Ai}m

i=1
6 c(f0) ·m

and m is less than log(N(n0)).
Concluding, under the assumptions of §4.1 (Table 3) and of Lemma 1

(pi ∈ Rq and νi + ϑi 6 h (2d − 1)i), we know that each iteration of
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AMG has linear cost, but it still remains to show the convergence and to
check that the error reduction is constant with respect to the dimension n0.
For this purpose we use a general result of Ruge and Stüben (see [18]),
introduced in the next subsection, and we will show the validity of their
hypotheses using linear algebra and functional tools (this is done in §5).

4.3 Convergence-optimality requirement

In the following, whenever X is an Hermitian positive definite matrix we
define ‖ · ‖X = ‖X1/2 · ‖2, being ‖ · ‖2 the usual Euclidean norm on Cn

or also the induced norm on Cn×n.
The proof of convergence for a V-cycle Multigrid is never trivial, since

it mixes information from each grid in order to prove convergence. In a
general framework, a typical convergence analysis is based on an esti-
mate of the energy norm of the error transfer operator and this estimate
is obtained from a factorization (see [5,28]) of the error transfer opera-
tor itself. Such approach is better understood with operator notation: if
we define H0 = CN0 , H1 = Range(RH

0 ), H2 = Range(RH
0 RH

1 ), . . . ,
Hm = Range(RH

0 RH
1 . . . RH

m−1) we get the sequence of nested spaces
H0 ⊃ H1 · · · ⊃ Hm which is underlying the algorithm (3). We may also
identify two class of projectors from H0 onto Hi, (i = 1, . . . , m)

– R0i = Ri−1 . . . R1 . . . R0 (i = 1, . . . , m), which is the one used in the
algorithm (3)

– Pi = RH
0iA

−1
i R0iA, which is A-orthogonal.

If we would follow the approach of [5,28], the main task will be to prove
this condition: for any i = 1, . . . , m and for any xi ∈ Hi find γi such that

‖(Pi − Pi+1)xi‖2 6 γi‖xi‖2
A

(with Pm+1 = O). Unfortunately it seems to be difficult to deal with the
above condition, which can be rewritten as: for any i = 1, . . . ,m and for
any yi ∈ CNi find γi such that

‖RH
0iCGCiyi‖2 6 γi‖RH

0iyi‖2
A.

This inequality is more complicate than subsequente equation (15c); the
condition stated above still needs to be investigated but hopefully will be
the core of a future work.
To overcome this difficuly and to prove the Multigrid convergence we re-
sorted to a different approach which has been proposed by Ruge and Stüben
and is based on the following theorem.
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Theorem 1 ([18]) Let m, N be integers satisfying 0 < m < N and sup-
pose that A ∈ CN×N is a positive definite Hermitian matrix and b ∈ CN ;
given a sequence of m + 1 positive integers N = N0 > N1 > · · · > Nm,
let Ri ∈ CNi+1×Ni be full-rank matrices for each i = 0, . . . , m− 1. Define
A0 = A, b0 = b and choose two classes of iterative methods Si, S̃i as in
(4). If there exist two real positive numbers δpre, δpost satisfying

‖Sνi
i x‖2

Ai
6 ‖x‖2

Ai
− δpre ‖CGCi S

νi
i x‖2

Ai
∀x ∈ CNi (13a)

and

‖S̃ϑi
i x‖2

Ai
6 ‖x‖2

Ai
− δpost ‖CGCi x‖2

Ai
∀x ∈ CNi (13b)

both for every i = 0, . . . , m− 1, then it holds δpost 6 1 and

‖AMG0‖A 6
√

1− δpost

1 + δpre
< 1. (14)

Remark 1 From Theorem 1 the sequence {x(k)}k∈N converges to the solu-
tion of Ax = b and besides when at least one between δpre and δpost is
independent of N and m, it converges with a constant error reduction not
depending on N and m.

There are two point in [18] which might be misleading so we like to clarify
them. In §4.3.1 of [18] at beginning the authors give partial a proof with
only the hypotesis (13b), then they consider only the hypothesis (13a) and
eventually they use both to prove Theorem 1. Later in §4.3.2 they suggest a
way to split (13a) and (13b), namely





‖Sνi
i x‖2

Ai
6 ‖x‖2

Ai
− α ‖Sνi

i x‖AiD
−1
i Ai

‖CGCi x‖2
Ai

6 γ ‖x‖2
AiD

−1
i Ai

δpre = α/γ

(13.a-bis)

for (13a) and




‖S̃ϑi
i x‖2

Ai
6 ‖x‖2

Ai
− β ‖x‖2

AiD
−1
i Ai

‖CGCi x‖2
Ai

6 γ ‖x‖2
AiD

−1
i Ai

δpost = β/γ

(13.b-bis)

and for (13b), where Di is the diagonal part of Ai.
The first observation is that the AiD

−1
i Ai-norm is not complusory: any

other vector norm will work as well, provided that the same norm is used
in the same block of braces. The A2-norm is good for our purposes.
The second observation is about the coefficients α, β and γ. They can be
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different when i changes, since the step from (13.a-bis) to (13a) and from
(13.b-bis) to (13b) is purely algebraic and does not affect the proof of The-
orem 1. This means that we can use the inequalities

‖Sνi
i x‖2

Ai
6 ‖x‖2

Ai
− αi ‖Sνi

i x‖2
A2

i
(αi > 0), ∀x ∈ CNi , (15a)

‖S̃ϑi
i x‖2

Ai
6 ‖x‖2

Ai
− βi ‖x‖2

A2
i

(βi > 0), ∀x ∈ CNi , (15b)

‖CGCi x‖2
Ai

6 γi ‖x‖2
A2

i
(γi > 0), ∀x ∈ CNi . (15c)

which are not weaker than (13), provided that it holds

δpre = min
06i<m

αi

γi
, δpost = min

06i<m

βi

γi
. (16)

for every i = 0, . . . , m− 1.
We refer to (15a) as the presmoothing property, (15b) as the postsmoothing
property and (15c) as the approximation property (see [18]). The approx-
imation property depends exclusively on the choice of the projectors Ri

but not on smoothers, whereas the smoothing properties are not related to
Ri. The separate study of these properties allows us to cope with the more
difficult part of the procedure, the verification of condition (15c), which
involves the projectors but is independent of the smoothers.

We also notice that our condition (15c) is much stronger than (5.4) and
(5.5) of [18], which are used in §4.5.3 of [18] to deal the Two-Grid conver-
gence.

However, in order to fulfil conditions (13a) and (13b) with δpre, δpost in-
dependent of n and m (which in turn imply the AMG optimal convergence
by Theorem 1), we will show (see §5.3) that positive sequences {αi}, {βi}
and {γi} can be found such that the two ratios αi/γi, βi/γi converge to
two positive constants if i goes to infinity. It follows that the optimality
is characterized by satisfaction of at least one of the two next inf −min
conditions:

inf
t

min
06i<mmax(t)

αi

γi
> 0, inf

t
min

06i<mmax(t)

βi

γi
> 0. (17)

Summarizing all the results in this section:

Remark 2 Under assumptions of Table 3 and pi ∈ Rq, νi+ϑi 6 h (2d−1)i,
it is possible to demonstrate convergence and optimality for AMG algo-
rithm (3) if all inequalities (15a,b,c) and at least one of (17) hold.
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5 Proof of convergence and optimality

In this section we show how to ensure (15a,b,c) and especially (17). The
smoothing properties (15a,b) will be discussed in §5.1 and proved in Propo-
sition 3, the approximation property (15c) will be discussed in §5.2 and
proved in Proposition 4, and finally in §5.3 we prove the optimality (i.e.,
the inf −min condition (17)) in the concluding Theorem 2.
Prop1

5.1 Smoothing properties

In the following proposition we consider smoothers at a fixed recursion
level and therefore, in order to simplify the notation, we do not use the grid
index i. If X and Y are Hermitian matrices then X 6 Y means that Y −X
is positive semidefinite.

Proposition 3 Let A = An(f) being f ∈ Fd nonnegative and not iden-
tically zero and let ω be a real number. If we define S = IN(n) − ωA,
then

‖Sνx‖2
A 6 ‖x‖2

A − α ‖Sνx‖2
A2 , (α > 0), ∀x ∈ RN(n) (18)

holds with ν ∈ N if one of the following two is satisfied:

1. 0 6 ω 6 1/‖f‖∞ and α 6 2ω ν;
2. 1/‖f‖∞ < ω 6 2/‖f‖∞ and

α 6 min

{
2ω ν,

1
‖f‖∞

[
1(

1− ω ‖f‖∞
)2ν − 1

]}
.

Moreover if we define S̃ = IN(n) − ωA, then

‖S̃ϑx‖2

A 6 ‖x‖2
A − β ‖x‖2

A2 , (β > 0), ∀x ∈ RN(n) (19)

holds with ϑ ∈ N if 0 6 ω 6 2/‖f‖∞ and

β 6
1− (

1− ω ‖f‖∞
)2ϑ

‖f‖∞
are satisfied.

Proof The scalar inequality (18) is nothing more than the Hermitian matrix
inequality

(IN(n) − ωA)νA(IN(n) − ωA)ν 6A−α(IN(n) − ωA)νA2(IN(n) − ωA)ν



A V-cycle Multigrid for multilevel matrix algebras 17

ω
−1

1

1 + αt

(1 − ωt)−2ν

ω−1

1

−

1 − βt

(1
−

ω
t)

2
ϑ

(a) Presmoother (b) Postsmoother

Figure 1. Functions related to smoother’s inequalities.

and by A = An(f) = QH
n Diag

(
f(w[n])

)
Qn this is implied by a function

inequality:

(1− ωf)νf (1− ωf)ν 6 f − α (1− ωf)νf2(1− ωf)ν ,

and being 0 6 f we rewrite it as 1 + αf 6 1/(1− ωf)2ν , thus (18) is
implied by

1 + αt 6 1
(1− ωt)2ν , 0 < t 6 ‖f‖∞. (20)

If at least one between ω and ν is zero, then α = 0 is the only choice
that fulfils (18) and the statement is trivial. Now we suppose that both ω
and ν are different from zero. It follows that the second derivative of the
function t → (1− ω t)−2ν is strictly positive in [0, +∞) \ {ω−1} while its
first derivative at the origin is 2ω ν (see Figure 1 (a)). By thus we need α 6
2ω ν and hence ω has to be positive. Therefore if ‖f‖∞ 6 ω−1 holds then
α 6 2 ω ν ensures (20) and also (18) and this is point 1 of the Proposition.
If ω−1 < ‖f‖∞ holds, then we also have to provide 1 + α ‖f‖∞ 6 1/(1−
ω ‖f‖∞)2ν in order to ensure (20), and this is point 2 of the Proposition.

Now we deal with the second part of the proposition. As we already
did with (18), we write the scalar inequality (19) as a matrix inequality:
(IN(n) − ωA)ϑA (IN(n) − ωA)ϑ 6 A−βA2, which is implied by the func-
tion inequality (1− ωf)ϑf (1− ωf)ϑ 6 f − βf2. As before, the assump-
tion 0 6 f allows one to write it as (1− ωf)2ϑ 6 1−βf and we infer that
(19) is implied by

(1− ωt)2ϑ 6 1− βt, 0 < t 6 ‖f‖∞. (21)

If at least one of ω and ϑ is zero, then the choice β = 0 fulfils (21) and then
(19). Now we suppose that both ω and ν are different from zero. It follows
that the second derivative of the function t → (1− ω t)2ϑ is nonnegative
for every t ∈ R (see Figure 1 (b)). By thus, if we want (21) to hold for
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each value of t in (0, ‖f‖∞], we only have to require 1− β ‖f‖∞ >
(
1 −

ω ‖f‖∞
)2ϑ, and ω has to belong to [0, 2/‖f‖∞] for β > 0. This completes

the second part of the proof. ¤

We remark that Proposition 3 suggests the best2 values for Richardson’s
parameters ω(pre) and ω(post) in the smoothing steps, i.e. the values ω that
lead to the largest α and β respectively.

Presmoother If no iteration is performed (ν = 0) we do not care of ω(pre),
but we get α = 0; otherwise we observe that the function

(
1

‖f‖∞
,

2
‖f‖∞

]
3 ω →

1(
1− ω ‖f‖∞

)2ν − 1

‖f‖∞

X X

t

2
ν
t

−

1

‖f‖
∞

−

2

‖f‖
∞

−

ω
∗

−

2ν
‖f‖

∞

−α
∗

decreases from +∞ to zero, so there exists just one optimal parameter
ω∗ and it is such that 1/‖f‖∞ < ω∗ < 2/‖f‖∞ and 2νω∗ = ((1 −
ω∗‖f‖∞)−2ν − 1)/‖f‖∞. If we set t = ω‖f‖∞ we get the polynomial
equality (2νt + 1)(1 − t)2ν = 1, and its root t∗ in the open interval (1, 2)
can be easily computed, or tabulated:

ν 1 2 3 4 5 6

t∗ 1.5 1.606 1.670 1.715 1.747 1.772

2νt∗ 3 6.423 10.02 13.72 17.47 21.27

so we get ω(pre) = t∗/‖f‖∞ and α = 2νt∗/‖f‖∞.

Postsmoother If no iteration is performed (ν = 0) we do not care of ω(post)

and get β = 0; otherwise ω
(post)
i = 1/‖fi‖∞ gives the largest value for β,

i.e. β = 1/‖f‖∞.

5.2 Approximation property

We first define the notation that we use in this section. Let x ∈ Rd, the set
of all “corners” is given by

Ω(x) =
{

yj | (yj)i ∈ {xi, π + xi}, i = 1, . . . , d, j = 1, . . . , 2d
}

2 according to Ruge-Stüben theory [18].
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which has cardinality 2d. The set of “mirror points” (see [14]) is denoted as
M(x) = Ω(x) \ {x}, e.g. for d = 1 it is M(x) = {π + x}. Furthermore,
we define

g[x] = (g(y1), . . . , g(y2d)), yj ∈ Ω(x), j = 1, . . . , 2d (22)

and its Euclidean norm is ‖g[x]‖2
2 =

2d∑

j=1

g(yj)2 =
∑

y∈Ω(x)

g(y)2.

We denote by S the fundamental set, which is [0, π]d for τ algebra and
[0, 2π]d for circulant and Hartley algebra. To ensure the validity of the key
assumptions (15c) we define pi, the generating function of the projector,
according to the following conditions. Let x0 be the unique zero of fi in S,
∀x ∈ S we choose pi such that

lim sup
x→x0

∣∣∣∣
pi(y)
fi(x)

∣∣∣∣ < +∞, y ∈M(x), i = 0, . . . ,m− 1, (23)

where
0 <

∑

y∈Ω(x)

p2
i (y), i = 0, . . . , m− 1. (24)

From (24) we emphasize that the projector Ri is full rank. In the following
proposition we prove that with the conditions (23) and (24) the assumption
(15c) is verified and therefore the AMG defined in Section 4.1 is conver-
gent.

Remark 3 The conditions (23) and (24) are a multidimensional generaliza-
tion of the condition (4.2) in [1]. Condition (23) is stronger than the con-
ditions (17) in [20] which come from the TGM optimality (relation (23)
could require an higher degree of pi).

Proposition 4 Let A = An(f) with A ∈ {C,H, τ} and f be a d-variate
nonnegative trigonometric polynomial with a single zero in the fundamental
set. Let R = Kn · An(p) as in Table (3) and define CGC = IN(n) −
RH(RARH)−1RA as in (5). If p(x) fulfils (23) and (24) then there exists
a real and positive value γ such that

‖CGC x‖2
A 6 γ ‖x‖2

A2 , x ∈ CN(n). (25)

Proof Defining R̂ = R ·A1/2, the equation (25) is implied by

In − (R̂)H
[
R̂(R̂)H

]−1
R̂ 6 γA, (26)

where R̂ = KnAn

(
p̂
)

with p̂ = pf1/2. Inequality (26) is the same rela-
tion that can be found in [20,22] for the TGM convergence in the multilevel
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case, but now we have R̂ instead of R. Therefore, we can proceed as in [20]
(pag. 23-25). Using tensor product arguments, we can extend the decompo-
sition of KNiQi given in Table 2 to the multidimensional case. Thanks to
this decomposition, for each algebra exist a suitable permutation by rows
and columns of QH

n (In − (R̂)H [R̂(R̂)H ]−1R̂)Qn, such that it is a 2d × 2d

block diagonal matrix and a generic diagonal block is given by

I2d − 1

‖p̂[w[n]
s ]‖2

2

p̂[w[n]
s ](p̂[w[n]

s ])T ,

for s ∈ In/2. Therefore the (26) is implied by

Z(x) 6 γI2d , x ∈ S,

where,

Z(x) = [diag(f [x])]−1/2(I2d − 1
‖p̂[x]‖2

2

p̂[x](p̂[x])T )[diag(f [x])]−1/2.

Therefore the proposition is proved if we show that the Hermitian matrix
valued function Z(x) is uniformly bounded in spectral norm, the latter be-
ing implied by the L∞ boundedness of the generic entry of Z(x). For r 6= s
we have

Zr,s(x) = − p̂(yr)p̂(ys)√
f(yr)f(ys)

· 1
‖p̂[x]‖2

2

, (27)

while

Zs,s(x) =
∑

y∈M(ys)

p̂2(y)
f(ys)

· 1
‖p̂[x]‖2

2

. (28)

The expression in (27) is equal to

Zr,s(x) = − p(yr)p(ys)∑

y∈Ω(x)

p2(y)f(y)
, (29)

that belongs to L∞ thanks to (23) and (24). In this case also a less restrictive
condition (like the usual TGM condition defined in [20,22]) is sufficient.
The expression in (28) is equal to

Zs,s(x) =

∑

y∈Ω(ys)

p2(y)f(y)− p2(ys)f(ys)

f(ys)
∑

y∈Ω(x)

p2(y)f(y)
(30)

=
1

f(ys)
− p2(ys)∑

y∈Ω(x)

p2(y)f(y)
. (31)



A V-cycle Multigrid for multilevel matrix algebras 21

If s = 1 then ys = x, while if s > 1 then ys ∈ M(x), moreover Ω(ys) =
Ω(x). Therefore, if s > 1 from (23) and (24) we deduce f(ys) 6= 0 that
implies f(ys)−1 ∈ L∞. The second addend in (31) belongs to L∞ like the
(29). If s = 1 the quantity in (30) is equal to

Z1,1(x) =

∑

y∈M(x)

p2(y)f(y)

f(x)
∑

y∈Ω(x)

p2(y)f(y)

=

∑

y∈M(x)

p2(y)f(y)

f2(x)
· 1

∑

y∈Ω(x)

p2(y)
f(y)
f(x)

. (32)

From (23) the first factor in (32) belongs to L∞ (now the TGM condition
is no longer sufficient) and the second factor in (32) belongs to L∞ thanks
to (24). ¤

5.3 Proof of optimality

In order to prove (17), in Propositions 3 and 4 we showed that values αi, βi

and γi exist in (0, +∞) such that they ensure (15) and then (13) (i.e., the
AMG (3) is convergent); such values depend on the function fi (γi depends
on pi too) but not on the dimensions ni neither on the number of grids
m used in algorithm (3). Therefore, the (17) is ensured if {fi} converges
uniformly to a function f∗ and the constants α∗, β∗ and γ∗ related to f∗ are
positive. In this paragraph we will use the symbol u−→ to represent uniform
function convergence (with respect to the usual sup norm), e.g. fi

u−→ f∗.
In the following we will consider generating functions as

f(x) = µ · χ2πZd(x) +
d∑

r=1

[
1− cos(xr)

]q · ψ(r)(x) (33)

being q ∈ N \ {0}, µ > 0, ψ(r) ∈ Fd and f positive in [−π, π)d \ {0} and
vanishing with order 2q around 0, i.e. ψ(r)(0) > 0, r = 1, . . . , d. We take
a particular choice for polynomials pi:

pi(x) = ζi · χ2πZd(x) + c ·
d∏

r=1

[
1 + cos(xr)

]q (ζ ∈ R). (34)

We emphasize that this choice (34) implies that all the functions fi share
the structure (33).
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Lemma 2 Assume that f0 takes the form (33):

f0(x) = µ0 · χ2πZd(x) +
d∑

r=1

[
1− cos(xr)

]q · ψ(r)
0 (x), (35)

with µ0 ∈ R and ψ
(r)
0 ∈ Fd for r = 1, . . . , d, and let pi and {fi}i∈N be

defined as in (34) and (8) respectively (fi+1 = Ψd(p2
i fi)).

Then it holds that also fi takes the form (33) for all i, in detail

fi(x) = µi · χ2πZd(x) +
d∑

r=1

[
1− cos(xr)

]q · ψ(r)
i (x), i ∈ N (36)

with {µi}i∈N and {ψ(r)
i }i∈N, r = 1, . . . , d, defined as





µi+1 = 2−d
(
ζi + 2qdc

)2
µi

ψ
(r)
i+1(x) = c2 Ψd

[
(φq[r]ψ

(r)
i )(x)

]
def
= c2 Φq[r]

[
ψ

(r)
i (x)

] i ∈ N,

(37)
where

φq[r](x) =
[
1 + cos(xr)

2

]q ∏

j=1,...,d
j 6=r

[
1 + cos(xj)

]2q (38)

and q[r] = 2qe − qer is the degree of φq[r] , where er is the r-th vector of
the canonical basis of Rd and e = (1, . . . , 1) ∈ Nd.

Remark 4 Choice (34) for pi is fundamental to get uniform convergence of
{fi} since it shows that the structure (33) is kept at each level, it is then
enough to show ψ

(r)
i

u−→ ψ
(r)
∗ . Moreover, choice (34) satisfies (23) and

(24) (refer to the following Lemma 3) and therefore the Proposition 4. Of
course a different choice for pi could still satisfy (23) and (24) (see e.g. [14,
22]) but no longer to preserve the structure (36) for {fi}.

Lemma 3 Let f be defined as in (33) and pi as in (34) for i = 0, . . . , m−1.
Then (23) and (24) hold true.

Therefore, under the same assumptions of Lemma 3, by Proposition 4
it exists γi > 0 such that (15c) holds true.

From Lemma 2 and Remark 4 we obtain the main tools to show fi
u−→

f∗: it simply follows from ψ
(r)
i

u−→ ψ
(r)
∗ , but we still have to prove that

the latter is true. The key is equation (37), which defines the d sequences
{ψ(r)

i }i∈N, r = 1, . . . , d.
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The proof will act as follows: from Proposition 2 we have that {∂ψ
(r)
i }i

is bounded by q[r] definitely, and by equations (37) and (9) we have that
each step ψ

(r)
i → ψ

(r)
i+1 is linear. Convergence ψ

(r)
i

u−→ ψ
(r)
∗ can be shown

in the finite dimension vector space Rq[r] [x] by linear algebra tools (mainly
resorting to the Perron-Frobenius theorem [27] applied to the matrix of the
transformation having dominant eigenvalue equal to 1), and then fi

u−→ f∗
holds true with

f∗(x) = µ∗ · χ2πZd(x) +
d∑

r=1

[
1− cos(xr)

]q · ψ(r)
∗ (x)

whenever µi → µ∗ holds in R.
From a technical point of view, it is easier to work with Cq[r] [x] than

with Rq[r] [x], being Cη[x] the vector space of d-variate trigonometric poly-
nomials with complex coefficients and degree up to η ∈ Nd

Cη[x] =





∑

|k|6η

akei〈k|x〉 s.t. ak ∈ C




since it is possible to use its canonical basis Bη[x] =
⋃
|k|6η{ei〈k|x〉}.

Of course we need (see (37)) the Fourier coefficients of φq[r](x) to get

the entries of the matrix c2M(Φq[r]) that represent the transform ψ
(r)
i →

ψ
(r)
i+1 = c2Φq[r](ψ(r)

i ) with respect to Bq[r] [x].
Monodimensional case (d = 1): it is already investigate in [1]. Indeed

we already know (see [1]) that for d = 1 the Fourier coefficients b
(q)
k of

φq[1] ≡ φq are given by

b
(q)
k =

1
2π

∫ π

−π

[
1 + cos(x)

2

]q

e−ikx dx =





1
4q

(
2q

q + k

)
if |k| 6 q

0 if |k| > q
. (39)

The linear dependence of ψ
[1]
i+1 on ψ

[1]
i is exploited by the following

Proposition 5 ([1]) Assume d = 1 and let M(Φq) be the matrix related
to the linear function Φq[1] : Cq[x] −→ Cq[x] with respect to the basis
Bq[x] = [e−iqx, . . . , eiqx]. The following three properties hold:
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1. [M(Φq)]k,j = b
(q)
2k−j > 0 and

M(Φq) =




b
(q)
--q
... b

(q)
1--q b

(q)
--q

...
...

. . . . . .

b
(q)
q b

(q)
q--1 b

(q)
1--q b

(q)
--q

. . . . . .
...

...

b
(q)
q b

(q)
q--1

...

b
(q)
q




--q:q×--q:q

, (40)

thus the inner block of M(Φq) fulfils the hypothesis of Perron-Frobenius
[27] theorem (in the strong version);

2. the dominant eigenvalue of M(Φq) is 1/2 and it is simple;
3. there exists a dominant eigenvector a(q) = [a(q)

--q , . . . , a
(q)
q ]T ∈ R2q+1

related to the eigenvalue 1/2 such that
(a) a(q)

--q = a(q)
q = 0;

(b) a(q)
j > 0 if |j| < q;

(c)
∑
|j|<q a(q)

j = 1.

Moreover the polynomial Bq[x] · a(q) ∈ Cq[x], whose components (with
respect to Bq[x]) are a(q), is real and positive in [−π, π).

Proposition 5 has been used in [1] (d = 1) with the choice c2 = 2 as fol-
lows: the dominant eigenvalue of c2M(Φq) is 1 and it is simple; we can as-
sume that exists ı ∈ N such that ψ

[1]
ı (x) is in Cq[x] and has nontrivial com-

ponent along Bq[x] · a(q) (otherwise ψ
[1]
i

u−→ 0) since3 ψ
[1]
i (0) = ψ

[1]
0 (0)

for all i ∈ N. Then it follows ψ
[1]
i

u−→ ψ
[1]
0 (0) Bq[x] · a(q).

Multidimensional case (d > 1): we extend the previous result in Propo-
sition 5 to the case d > 1 to show ψ

[r]
i

u−→ ψ
[r]
∗ . The first step is to compute

the Fourier coefficients b
(q[r])
k of φq[r] for any d:

Lemma 4 The Fourier coefficients b
(q[r])
k of φq[r] (given by (38)) are

b
(q[r])
k = 22q(d−1)

d∏

s=1

b
(q

[r]
s )

ks
∈

{
(0;+∞) if |k| 6 q[r],

{0} otherwise,
k ∈ Zd

3 ψ
[1]
i+1(0) = c2

21

h
1+cos(0)

2
ψ

[1]
i (0) + 1+cos(π)

2
ψ

[1]
i (π)

i
= ψ

[1]
i (0).



A V-cycle Multigrid for multilevel matrix algebras 25

thus

φq[r](x) =
∑

|k|6q[r]

b
(q[r])
k ei〈k|x〉

holds true.

Lemma 4 allows us to generalize Proposition 5 to the multilevel case d > 1.

Proposition 6 Assume d ∈ N \ {0}, r ∈ {1, . . . , d} and let M(Φq[r]) be
the matrix related to the linear function Φq[r] : Cq[r] [x] −→ Cq[r] [x] with
respect to the basis Bq[r] [x] =

⊗d
s=1 B(q[r])s

[xs]. The following three pro-
perties hold:

1. [M(Φq[r])]i,j > 0 and

M(Φq[r]) = 22q(d−1) ·
d⊗

s=1

M
(
Φ(q[r])s

)
, r ∈ {1, . . . , d} (41)

2. the dominant eigenvalue of M(Φq[r]) is 22q(d−1)−d and it is simple;

3. there exists a dominant eigenvector a(q[r])∈ ⊗d
s=1R2(q[r])s+1 (to which

we refer with the usual d-index notation, assuming the s-th index to
range in {−(q[r])s, . . . , (q[r])s}) related to the dominant eigenvalue
such that
(a) a(q[r])

j = 0 if |js| = (q[r])s al least for an s ∈ {1, . . . , d};

(b) a(q[r])
j > 0 if |j| < q[r];

(c)
∑
|j|<q[r] a

(q[r])
j = 1.

Moreover the polynomial Bq[r] [x] · a(q[r]) ∈ Cq[r] [x], whose components

with respect toBq[r] [x]) are a(q[r]), is equal to
∏d

s=1

(
B(q[r])s

[xs]·a((q[r])s)
)

,

and it is real and positive in [−π, π)d.

Proof We refer to entries of M
(
Φq[r]

)
with usual d-index notation, with k

row index and j column index, whose range is described by the inequalities
|k|, |j| 6 q[r]. To get the entries of M

(
Φq[r]

)
with respect to the basis
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Bq[r] [x], we compute the image of each vector in Bq[r] [x]:

Φq[r]

(
ei〈j|x〉) = Ψd

(
φq[r](x) ei〈j|x〉

)

= Ψd


 ∑

|k|6q[r]

b
(q[r])
k ei〈k+j|x〉




= Ψd


 ∑

j−q[r]6k6j+q[r]

b
(q[r])
k−j ei〈k|x〉




=
∑

‰
j−q[r]

2

ı
6k6

—
j+q[r]

2

�
b
(q[r])
2k−jei〈k|x〉

and by thus the (k, j)-entry of M
(
Φq[r]

)
is

b
(q[r])
2k−j = 22q(d−1)

d∏

s=1

b
(q

[r]
s )

2ks−js
=

[
1

2
d
2
+q(1−d)

]2 d∏

s=1

2b
(q

[r]
s )

2ks−js
.

What we find is a block structure that is represented by a tensor product
(see (40), (41)) between matrices as M

(
Φ(q[r])s

)
, thus by Proposition 5 the

largest eigenvalue of M
(
Φq[r]

)
is 22q(d−1)−d and it is simple. A related

eigenvector is a(q[r]) =
⊗d

s=1 a((q[r])s), and this fulfils requests (a), (b) and
(c) of point 3 by Proposition 5.
The result on Bq[r] [x] ·a(q[r]) follows from properties of tensor product. ¤

Remark 5 In the following we fix the restrictor parameter in (34) as c =
2

d
2
+q(1−d). Therefore from Proposition 6 the maximum eigenvalue of the

restriction of c2Φq[r] to Cq[r] [x] is 1, and it is simple. Furthermore, a related

eigenvector is Bq[r] [x] · a(q[r]) and

ψ
(r)
i

u−→ ψ
(r)
∗ = ψ(r)(0)Bq[r] [x] · a(q[r]),

since c2Φq[r] does not change the value at the origin (c2Φq[r](g(0)) = g(0)

for each g ∈ Fd) and Bq[r] [x] · a(q[r]) is the only eigenvector of c2Φq[r]

(apart rescaling) related to the eigenvalue 1 that is dominant and simple.

Finally, summarizing all the proposed results we obtain the following
property of optimality for the algorithm AMG in (3).
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Theorem 2 (optimality AMG) Let t,m, q ∈ N \ {0} with t > m and
assume z ∈ (N \ {0})d and f ∈ Rz as in (33):

f(x) = µ · χ2πZd(x) +
d∑

r=1

[
1− cos(xr)

]q · ψ(r)(x)

such that f is positive valued in [−π, π)d \{0} and vanishes around 0 with
order 2q.

To solve the linear system An(f)x = b, A ∈ {C, τ,H} (µ = 0 if
A = τ ) consider the algorithm AMG (3) with the assumptions of Table 3
and with the following choices for i = 0, . . . , m− 1:

1. the projectors pi are as in (34):

pi(x) = ζi · χ2πZd(x) + c ·
d∏

r=1

[
1 + cos(xr)

]q
, c = 2

d
2
+q(1−d),

(ζi = 0 if A = τ );
2. the smoothers Si, S̃i are the Richardson method with νi + ϑi = 1 and

the relaxation parameter chosen according to the Proposition 3.

Then at least one in (17) is satisfied and thanks to Theorem (1) there
exists a constant const(f) < 1 such that

‖AMG0‖A 6 const(f) < 1,

with AMG0 defined in (6). In particular const(f) depends only on f (i.e.
on q, µ and {ψr}r) but not on n. Moreover each step of AMG has linear
computational cost (i.e. O(N(n))) and therefore the algorithm AMG is
optimal in the sense of [2].

Proof The proof is a consequence of the results stated through this paper.
The first step is to show convergence of the generating functions to a

positive polynomial. From Lemma 2 it follows that all generating functions
fi share the structure of f as shown in (36), with µi and ψ

(r)
i defined in

(37) by means of c, {ζi}i∈N and of operator Φq[r] . It follows that the degree

∂ψ
(r)
i ∈ Nd of ψ

(r)
i satisfies

∂ψ
(r)
i+1 6

⌊
∂ψ

(r)
i + q[r]

2

⌋
, r ∈ {1, . . . , d}, i ∈ N,

thus by Proposition 2 ∂ψ
(r)
i 6 q[r] holds from a certain index ı forward.

We can then apply Proposition 6 and Remark 5 to get that each sequence
{ψ(r)

i }i∈N has a limit ψ
(r)
∗ ∈ Rq[r] [x], that is ψ(r)(0)Bq[r] [x] · a(q[r]).
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We define ζi = 0 if A = τ , while if A ∈ {C,H} we require fi(w
[ni]
0 ) =

fi(w
[ni]
e ) that means µi = fi(w

[ni]
e ), thus we define

ζi = 2
d
2

(√
µi+1

µi
− 2q

)
.

With this choice for ζi we have uniform convergence for fi and pi(0) =
ζi + c2qd 6= 0.

The second step is to check that all hypotheses of Theorem 1 are fulfilled
(convergence) and that at least one in (17) holds (optimality). This means
that we have to provide positive lower bounds for at least one between
αi/γi and βi/γi, and these bounds have not to depend on the parameters t
and m. It follows from Proposition 3 and uniform convergence of fi that:

– if νi > 1 a positive value α exists such that (15a) holds for each i,
– if ϑi > 1 a positive values β exists such that (15b) holds for each i.

We consider now the (15c). With our choice for pi, since pi(0) 6= 0, the
Lemma 3 implies (23) and (24). Therefore from Proposition 4 and uniform
convergence of fi follow that a finite γ exists such that (15c) holds for each
i. Finally, combining the previous results, at least one in (17) is fulfilled
with α/γ > 0 or β/γ > 0.

Finally, thanks to Lemma 1 each AMG iteration has a computational
cost linear in N0 and hence it is optimal in the sense of [2]. ¤

Remark 6 Theorem 2 ensures AMG optimality if just one smoother itera-
tion is performed: if we choose νi + ϑi larger on each grid i, we improve
the convergence factor and optimality holds until νi + ϑi 6 const(2d− 1)i

according to Lemma 1.

Remark 7 The optimality results of Theorem 2 can be extended to the linear
system An(f̃)x = b generated from a function f̃ with a zero shifted in
x̄ ∈ Rd

f̃(x) = f(x− x̄)

under a bit stronger assumptions: we require at least one of

1. A ∈ {C,H},
2. A = τ and x̄ ∈ {0, π}d.

In both cases to keep f̃i(x) = fi(x − 2ix̄) it suffices to define the polyno-
mial projectors as

p̃i(x) = pi(x− 2ix̄)
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and write

f̃i+1(x) =
1
2d

∑

s∈{0;1}d

(p̃2
i f̃i)

(x
2

+ πs
)

=
1
2d

∑

s∈{0;1}d

(p2
i fi)

(x− 2i+1x̄
2

+ πs
)

= fi+1(x− 2i+1x̄).

6 Numerical experiments

For the application of the proposed AMG to restoration of blurred and
noised images we refer the reader to [11,12]: for such a kind of problems
we recall that the generating function usually vanishes or is very small in
a neighborhood of (π, π). In this section we present some examples of two
and three-level matrix algebra and Toeplitz linear systems. These exper-
imentations confirm the optimality property proved in this paper for the
multilevel algebra case and its possible extension to the multilevel Toeplitz
matrices (the two grid optimality and the level independency have been
already proved in [10,20]).

Two iterations of relaxed Richardson with ω(pre) = 1.6/‖f‖∞ are used
as pre-smoother and two iterations of relaxed Richardson with ω(post) =
1/‖f‖∞ are used as post-smoother, according to Proposition 3. The initial
solution is x(0) = 0 and the method is stopped when the relative norm of
the residue is smaller than 10−7. The algorithms are implemented in Fortran
90 using double precision.

6.1 Tau and circulant algebras

Here we consider coefficient matrices generated by the functions:

f(x, y) = (4− 2 cos(x)− 2 cos(y))2,
g(x, y) = (4 + 2 cos(x) + 2 cos(y))(8− cos(x)− cos(y)),

f vanishes at the origin with order 4, while g vanishes at (π, π) with order 2.
Therefore in the Circulant case we use the Strang correction and we replace
f and g with their positive versions f+ and g+ defined as in (2). Further-
more, the conditioning number of An(f) is K(An(f)) ' K(An(g))2 '
[mini(ni)]4. We solve the linear system An(z)x = b where n = (n1, n2),
z ∈ {f, g}, A ∈ {τ, C} and the data vector b is obtained from the ex-
act solution x taking four different types of solutions (constant, periodic,
. . . ). As we can see from tables 4 and 5, according to the optimality proved
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f s.t. xi = g s.t. xi =
N = n1 · n2 i

N
(−1)i cos

`
2iπ
N

´
(− i

N
)i i

N
(−1)i cos

`
2iπ
N

´
(− i

N
)i

(27 − 1)2 44 14 44 14 4 7 4 7
(28 − 1)2 44 12 44 12 3 7 4 7
(29 − 1)2 44 10 44 11 3 7 3 7
(210 − 1)2 44 9 44 9 3 7 3 7

Table 4. Tau case: number of iterations increasing dimension n = (n1, n2) for τn(f)
and τn(g), where f(x, y) = (4 − 2 cos(x) − 2 cos(y))2 and g(x, y) = (4 + 2 cos(x) +
2 cos(y))(8− cos(x)− cos(y)).

f+ s.t. xi = g+ s.t. xi =
N = n1 · n2 i

N
(−1)i cos

`
2iπ
N

´
(− i

N
)i i

N
(−1)i cos

`
2iπ
N

´
(− i

N
)i

(27)2 41 11 41 18 3 3 2 5
(28)2 41 11 41 15 3 3 2 5
(29)2 41 11 41 13 3 3 2 5
(210)2 41 11 41 11 3 3 2 5

Table 5. Circulant case: number of iterations increasing dimension n = (n1, n2) for
Cn(f+) and Cn(g+), where f+ and g+ are f(x, y) = (4 − 2 cos(x) − 2 cos(y))2 and
g(x, y) = (4 + 2 cos(x) + 2 cos(y))(8 − cos(x) − cos(y)) plus them Strang corrections
respectively.

in the previous sections, the proposed AMG converges with about a con-
stant number of iterations when increasing the size of the problem. Fur-
thermore, its asymptotically optimal value is low, it is already reached for
small dimensions and it does not depend much on the decomposition in the
frequencies space of the exact solution x, stressing the robustness of our al-
gorithm. Moreover, the solutions xj = j/N(n) and xj = cos(2jπ/N(n)),
j = 1, . . . , N(n), have components essentially in the low frequencies and
since in the case of An(f) this is the ill-conditioned subspace, our AMG
(like any general iterative method which can be used as smoother), con-
verges more slowly; conversely, for An(g) the low frequencies are the
well-conditioned subspace and the method converges more quickly. For the
solutions xj = (−1)j and xj = (−j/N(n))j , j = 1, . . . , N(n), we have
the opposite behavior since they have larger components in the high fre-
quencies.

We emphasize that our AMG maintains an optimal behavior varying
the structure of the ill-conditioned subspace (it depends on the position of
the zero) and the smoothness of the solution, while for the classic geo-
metric multigrid the convergence depends strongly by these parameters (it
requires a zero in the origin or a smooth solution). We remark that An(f)
is spectrally equivalent to the classic discretization of elliptic partial differ-
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ential equations and usually these problems have smooth solutions. On the
contrary, problems with coefficient matrix like An(g) arise in some image
restoration applications where the solution is the observed image that can
have several jumps and therefore is only piecewise smooth. However our
AMG is optimal for both smooth and high oscillating solutions.

6.2 The Toeplitz case

We consider now multilevel Toeplitz matrices. The technique that we use
here to preserve the multilevel Toeplitz structure at each grid was proposed
in [1]. It is based on the main idea of having a (multilevel) Toeplitz matrix at
each recursion level by modifying the cutting matrices Kni , i = 1, . . . , d.
Accordingly we define Kni =

⊗d
j=1 K(ni)j

{κj} where κ = deg(p0)− e
(we recall that the degree of pi is constant for i = 0, . . . ,m− 1) and

K(ni)j
{κ}=

[
0κ
(ni+1)j

K(ni)j−2κ 0κ
(ni+1)j

]
∈ R(ni+1)j×(ni)j

where 0κ
(ni+1)j

is the null matrix of size (ni+1)j × κ and K(ni)j−2κ is the
usual one-dimensional cutting matrix in the τ algebra defined in Table 2.
For applying the AMG recursively, we must start with dimension n0 =
(2t − 1)e− 2κ and the size on each grid is ni = (2t−i − 1)e− 2κ.

In Table 6 we observe that the optimality holds in the Toeplitz case
as well, for both f and g and for both smooth (xj = j/N(n), for j =
1, . . . , N(n)) and highly oscillating (xj = (−1)j , for j = 1, . . . , N(n))
solutions. We emphasize that such a kind of generating function f is not
considered in the proof of level independency in [10] since f has a zero
of order 4. The latter is an informal indication that it should be possible to
extend this result of optimality also to the multilevel Toeplitz matrices with
zeros of every finite order (see also [20]).

Finally, we compare our AMG for multilevel Toeplitz matrices with the
other two techniques proposed in [16,10] in order to extend an original
idea by Fiorentino and Serra Capizzano in [14]. In §1 it was already ob-
served that all these techniques are identically for nonnegative generating
functions with a zero of order at most two: therefore they produce the same
results on the function g and they are different only when applied to the
function f . We note that the proposal in [16] requires to resort to the W -
cycle and indeed the classical V -cycle does not converge in this case (func-
tion f , V -cycle and Richardson as smoother). On the other hand the method
in [10] is only for generating function with zeros of order at most two, and
consequently it is not necessary to consider low rank corrections in the
computation of the matrices Ti. The only difference between our method
and the one proposed in [10] relies on the choice of the projector: in this
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g f
our AMG lin. interp.

N = n1 · n2 i
N

(− i
N

)i i
N

(− i
N

)i i
N

(− i
N

)i

(27 − ξ)2 3 6 119 25 54 14
(28 − ξ)2 3 6 120 20 72 12
(29 − ξ)2 3 6 121 17 87 11
(210 − ξ)2 3 6 121 13 115 9
(211 − ξ)2 3 6 121 10 134 7

Table 6. Toeplitz case: number of iterations for increasing dimension n = (n1, n2) for
Tn(f) and Tn(g), where f(x, y) = (4−2 cos(x)−2 cos(y))2, g(x, y) = (4+2 cos(x)+
2 cos(y))(8 − cos(x) − cos(y)). The two test solution have components xi = i

N
and

xi = (− i
N

)i for i = 1, . . . , N ; ξ = 3 for our AMG with f(x, y) while is one otherwise,

case (generating function f ) the chosen projector is Ri = Kni{0}Tni(pi),
with pi(x, y) = (1 + cos(x))(1 + cos(y)) (the classic linear interpola-
tion) for the method in [10] and Ri = Kni{1}Tni(p

2
i ) for our technique,

i = 0, . . . , m−1. In Table 6 we can see the optimal behavior of our method
also for the generating function f , especially for the more significant case
of a smooth solution (xi = i/N(n), i = 1, . . . , N ). Conversely for the
method in [10], in the case of a smooth solution, the number of iterations
increases with the size of the problem since, as proved in Proposition 4,
the choice of pi is not enough to satisfy the approximation property when
the function has a zero of order greater than two. The fact that the linear
interpolation is not sufficient to obtain optimality is well-known also from
the classic theory for the geometric multigrid, indeed Tn(f) is spectrally
equivalent to the discretization of the 4th derivative using finite differences
of lower order and proper homogeneous boundary conditions (see [24]).

6.3 3D case

In this subsection we present for the first time a 3D example (a number of
dimensions greater then two was previously considered only for the TGM
case in [20] but without numerical experiments).

We consider functions that vanish in a generic point. The first test func-
tion is

h(x, y, z) = 3− cos
(
x− 2

3
π
)
− cos

(
y − π

3

)
− cos(z − 1)

that vanishes in (2π/3, π/3, 1) with order 2. The second test function is

r(x, y, z) =
(
1− cos(x)

)2 +
(
1− cos(y)

)2 +
(
1− cos(z)

)2
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Circulant Toeplitz
N = n1 · n2 · n3 h s.t. xi = r s.t. xi = h s.t. xi = r s.t. xi =

i
N

(−1)i i
N

(−1)i i
N

(−1)i i
N

(−1)i

(24 − ξ)3 8 4 31 7 9 7 82 13
(25 − ξ)3 8 4 31 7 8 7 92 9
(26 − ξ)3 7 4 31 7 7 6 96 6
(27 − ξ)3 7 4 31 7 7 6 99 4

Table 7. 3D case: number of iterations for increasing dimension n = (n1, n2, n3), where
h(x, y, z) = 3−cos(x− 2

3
π)−cos(y− π

3
)−cos(z−1), and r(x, y, z) = (1−cos(x))2+

(1−cos(y))2 +(1−cos(z))2. In the Circulant case ξ = 0, while in the Toeplitz case ξ = 1
for h and ξ = 3 for r.

that vanishes in (0, 0, 0) with order 4.
The true solution has both smooth and highly oscillating components.

In Table 7 we can note, according to the previous theory, the optimality
behavior of the proposed AMG in the circulant case. Furthermore also in
the Toeplitz case, using the technique described in the previous subsection,
our AMG seems to maintain about a constant number of iterations increas-
ing the size of the problem. This is a good news especially for the second
test function r, since it has a zero of order 4 and, in order to preserve the
Toeplitz structure at each level, in the restriction process we have to re-
move 2n2n3 components in more with respect to the circulant case (i.e. it
is neglected a substantial level of information).

7 Conclusion

In this paper we have proved the V -cycle optimality of the proposed AMG
for coefficient matrices generated by a real and nonnegative multivariate
polynomial f and belonging to multilevel matrix algebras like circulant,
tau or Hartley. The AMG considered here is an extension of that proposed
by Fiorentino and Serra in [14]: now the projector has to satisfy the more
strictly conditions (23) and (24) (analogous conditions was proposed in [1]
with a V -cycle analysis only in the onedimensional case). Concerning the
future work, the main point to investigate is the extension of this proof
to multidimensional Toeplitz matrices. Preliminary results in this direction
can be found in [7,10] for the level independency in the case of generating
function with zeros of order at most 2, and in [20] for the TGM algorithm
and implicitly for the level independency.
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Appendix

In this appendix we provide the proofs of the lemmas previously intro-
duced.

Lemma 1

Proof By point 3 all matrices Ai = Ani(fi) involved in the AMG algo-
rithm (3) are uniformly banded at each level and there exists a constant
BA (B stands for “band”) such that each product Aix (step 3.2) has com-
putational cost less then BA · N(ni). If we use relaxed Richardson with
parameters ω

(pre)
i and ω

(post)
i then (4) becomes

{Si(x)= x + ω
(pre)
i (bi −Aix),

S̃i(x)= x + ω
(post)
i (bi −Aix),

thus analogous considerations hold for smoothers (steps 3.1 and 3.7) as
well. Moreover projectors Ri are sparse too, because of Ri = Kni Ani(pi)
and pi ∈ Rq, so there exists a constant BR such that the cost of each product
Ri ri and Ri

Hx(out)
i+1 (steps 3.3 and 3.6) will be less than BR · N(ni). We

emphasize that our choice on q will depend only on f0, so BA and BR

will depend on f0. Because of fast size reduction on each level, smoothing
iterations can be enriched (see also [22]) when i grows, at least up to νi +
ϑi 6 h · (2d − 1)i (where h > 1 is a constant), and the cost CAMG of each
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iteration of algorithm AMG (3) still keeps linear:

CAMG6
m−1∑

i=0





(νi+ϑi)(BA+3)︸ ︷︷ ︸
steps (1,7)

+BA+1︸ ︷︷ ︸
step (2)

+ 2BR+1︸ ︷︷ ︸
steps (3,6)





N(ni) + N(nm)3︸ ︷︷ ︸
case i=m

<
+∞∑

i=0

{
h (2d−1)i (BA+3) + 2 + BA + 2BR

} N(n0)
2d i

+ N(nm)3

=
{

h 2d(BA + 3) +
2d

2d − 1
(2 + BA + 2BR)

}
N(n0) + N(nm)3

62d
[
2 + 3h + (1 + h)BA + 2BR

]
N(n0) + N(nm)3

and N(nm)3 is small and it holds [N(nm)]3 6 N(n0) if m > 2t/3, with
t defined in Table 3.

Lemma 2

Proof We first suppose µ0 = ζi = 0 and show (36) by induction. The
initial step i = 0 is true for free. In order to prove the inductive step we
assume that (36) holds for a given i ∈ N. By replacing expressions of pi

(34) and of fi (36) in (8), we find

(p2
i fi)(x) =

d∑

r=1

[
1− cos(xr)

]q · ψ(r)
i (x) · c2

d∏

j=1

[
1 + cos(xj)

]2q

=
d∑

r=1

2q sin2q(xr) ψ
(r)
i (x) ·




c2

2q

[
1 + cos(xr)

]q
∏

j
j=1,...,d

j 6=r

[
1 + cos(xj)

]2q




=
d∑

r=1

[
1− cos(2xr)

]q · c2 · (φq[r] ψ
(r)
i

)
(x).

Therefore we have

(p2
i fi)

(x
2

+ πs
)

=
d∑

r=1

[
1− cos(xr)

]q · c2 · (φq[r] ψ
(r)
i

)(x
2

+ πs
)
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for all s ∈ {0; 1}d. This equality allows us to find the following expression
for fi+1:

fi+1(x) = Ψd

[
(p2

i fi)(x)
]

=
1
2d

∑

s∈{0;1}d

d∑

r=1

[
1− cos(xr)

]q · c2 · (φq[r] ψ
(r)
i

)(x
2

+ πs
)

=
d∑

r=1

[
1− cos(xr)

]q ·

 c2

2d

∑

s∈{0;1}d

(
φq[r] ψ

(r)
i

)(x
2

+ πs
)



=
d∑

r=1

[
1− cos(xr)

]q · c2 · Ψd

[(
φq[r] ψ

(r)
i

)
(x)

]

and this completes the inductive step.
Case µ0, ζi ∈ R is straightforward because of

(p2
i fi)(x) = (p2

i fi)(0)·χ2πZd(x)+
d∑

r=1

[
1−cos(2xr)

]q ·c2 ·(φq[r] ψ
(r)
i

)
(x),

Ψd[(p2
i fi)(0) · χ2πZd(x)] =

((
ζi + 2qdc)

)2
µi · Ψd[χ2πZd(x)]

= 2−d
(
ζi + 2qdc

)2
µiχ2πZd(x)

and thanks to the linearity of Ψd. ¤

Lemma 3

Proof The (24) is easy to prove since
∑

y∈Ω(0) p2
i (y) > p2

i (0) and pi(0) =
ζi + c2qd. Therefore it is enough that c 6= −ζi2−qd.

Concerning (23), let ψi = [ψ(1)
i , . . . , ψ

(d)
i ], we show that

lim sup
x→0

∣∣∣∣
pi(x + πs)

fi(x)

∣∣∣∣ =
c 2q(d−1)

〈s |ψi(0)〉 < +∞, ∀s ∈ {0, 1}d \ 0,

whenever c > 0 and ψ
(r)
i (0) > 0 for r = 1, . . . , d. This is implied by the

following limit on the reciprocal:

lim inf
x→0

pi(x+πs) 6=0

∣∣∣∣
fi(x)

pi(x + πs)

∣∣∣∣ =





+∞ if
∑d

r=1 sr > 1,

〈s |ψi(0)〉
c 2q(d−1)

if
∑d

r=1 sr 6 1
. (42)
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Therefore to satisfy the (23) it is enough to prove the (42). It holds

lim inf
x→0

pi(x+πs)6=0

∣∣∣∣
fi(x)

pi(x + πs)

∣∣∣∣ = (43)

=
1
c

lim inf
x→0

pi(x+πs)6=0

d∑

r=1

[
1− cos(xr)

]q

[1 + cos(xr+πsr)]
q ·

ψ
(r)
i (x)∏

j=1,...,d
j 6=r

[1 + cos(xj+πsj)]q

> 1
c

d∑

r=1

lim inf
x→0

pi(x+πs)6=0

[
1− cos(xr)

]q

[1 + cos(xr+πsr)]
q ·

ψ
(r)
i (x)∏

j=1,...,d
j 6=r

[1 + cos(xj+πsj)]q
.

Each term of the last sum is nonnegative around 0, and at least two are
infinite whenever two or more components of s are equal to 1.
If just one component of s is equal to 1, that is s = er, then from the
second equality of (43) we get

lim inf
x→0

pi(x+πer)6=0

∣∣∣∣
fi(x)

pi(x + πer)

∣∣∣∣ =

=

ψ
(r)
i (0) + lim inf

x→0
xr 6=0

∑

r=1,...,d
r 6=r

[
1− cos(xr)
1− cos(xr)

]q

ψ
(r)
i (x)

c 2q(d−1)
=

ψ
(r)
i (0)

c 2q(d−1)
.

The proof is trivial if s = 0 since p(x+πs) converges to 2qd > 0 if x goes
to 0, while f(x) vanishes. ¤

Lemma 4

Proof The proof follows from Fubini’s theorem for rectangles, with the
advantage that φq[r] can be factorized thanks to (38). For any k ∈ Zd it
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holds

b
(q[r])
k =

1
(2π)d

∫

[−π,π]d
φq[r](x)e−i〈k|x〉dx

=
1
2π

∫ π

−π

[
1 + cos(xr)

2

]q

e−ikrxr dxr ·

·
∏

s=1,...,d
s6=r

1
2π

∫ π

−π
[1 + cos(xs)]2qe−iksxsdxs

= b
(q)
kr
·

∏

s=1,...,d
s 6=r

22qb
(2q)
ks

= 22q(d−1)
d∏

s=1

b
(q

[r]
s )

ks

which completes the proof. ¤


