
Abstract. We present the complete-active-space self-
consistent-field (CASSCF) implementation of a valence-
bond (VB) based method for the analysis of bonding in
organic molecules. The method uses the spin-exchange
density matrix P with a localized orbital basis, where the
determinants of the CASSCF wavefunction become VB-
like determinants with different spin coupling patterns.
The index Pij evaluates the contributions of the deter-
minants to the CASSCF wavefunction and is used to
generate resonance formulas. We use the bonding con-
tributions in the original VB formulation of the method
(ab terms). The method is applied in studies of excited-
state reactivity, as shown here for indole. Its first excited
state is covalent and is characterized by a decrease in the
bond orders in the benzene moiety, similar to the B2u

excited state of benzene. In contrast, the ionic excited
state has an inversion in the bonds of the pyrrole moiety
induced by charge transfer to the benzene ring.

Keywords: Bond orders – Organic molecules – Excited
states – Valence-bond formulas – Spin-exchange density
matrix

Introduction

One of the classic problems of quantum chemistry is how
to characterize the calculatedwavefunctions and interpret
them in terms of intuitive concepts. To mention a few
examples, general bonding-analysis methods can be
derived from the electronic density (likemethods based on
the theory of atoms in molecules) [1] or from an orbital
picture (like natural bond order analysis) [2]. Ideas from
natural bond order analysis have been recently extended
to treat photochemical reactivity [3]. Bond orders for

complete-active-space self-consistent-field (CASSCF)
wavefunctions have been calculated from the one-electron
reduced density matrix [4]. Related methods for spin-
coupled wave-functions use the two-electron reduced
density matrix or the weights of the spin functions for the
bonding analysis [5, 6]. A different approach evaluates
aromaticity using the nucleus-independent chemical
shielding [7], in what can be thought of as an indirect
bonding measure. In this paper we present the CASSCF
implementation of a method based on classic valence
bond (VB) theory [8] that calculates the spin-exchange
density matrix P (which is in turn related to the
two-electron reduced density matrix of the CASSCF
wavefunction, see Appendix) and gives a quantitative
analysis of bonding in molecules. The result can then be
expressed in terms of traditional resonance structures.

In previous work, we have applied this method for
the analysis of spin multiplicity (singlet versus triplet) [9]
and p-type bonding in organic molecules [10, 11, 12, 13].
In particular, our examples have shown that the excited-
state reactivity in photochemical problems can be
rationalized by the different bond patterns of the elec-
tronic states involved. The value of the method is shown
here for indole, the chromophore of the aminoacid
tryptophan [14]. Indole is a typical organic molecule
where the interpretation of the excited states in terms
of excitations between molecular orbitals is difficult,
because the molecular orbitals are delocalized and the
excited states are linear combinations of individual
excitations. Platt’s notation [15], which was developed
for the excited states of hydrocarbons, is useful to
characterize the lowest excited states of indole as cova-
lent (1Lb) and ionic (1La); however, this is insufficient
to rationalize its excited-state characteristics, such as
the excited-state geometries and the proton-induced
fluorescence quenching in tryptophan [12]. This goal
is achieved through our method of analysis by using
resonance structures to characterize the states.

In what follows we describe the CASSCF imple-
mentation and introduce some basic examples in order
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to provide the foundations of our analysis. The spin-
exchange density matrix evaluates the contribution of
VB-like determinants with different spin patterns to a
CASSCF wavefunction. One important theoretical point
is that the matrix elements Pij, as defined originally in
VB theory, are composed of a bonding contribution
(pairs of ab electrons) and a nonbonding or antibonding
one (pairs of aa electrons). The bonding contribution
P ab

ij is the index used in our structural analysis.

General approach and basic examples

The method uses the spin-exchange density matrix Pij.
The spin-exchange operator, which interchanges the spin
variables 1 and 2, appears in the Dirac identity [16, 17]:

S 1ð ÞS 2ð Þ½ �H 1; 2ð Þ ¼ 1

2
P12 �

1

4
1

� �
H 1; 2ð Þ;

i.e.

P12 ¼ 2 S 1ð ÞS 2ð Þ½ � þ 1

2
1

� �
: ð1Þ

For a given pair of electrons, the value of the two-
electron spin operator S(1)S(2) is )3/4 for paired spins, 0
for uncoupled spins and 1/4 for parallel spins [17]. In our
analysis we use the negative value of the elements of the
orbital representation, Pij. Using Eq. (1), they become
+1, )1/2 and )1 for pairs of paired, uncoupled and
parallel spins, respectively. For wavefunctions composed
of several VB structures ‘‘in resonance’’, the values of Pij

give a quantitative measure of the bonding, as suggested
early by Penney and Moffitt [18]. Further, the trace of P
is related to the total spin by [16]

S S þ 1ð Þ ¼ � 1

4
N N � 4ð Þ½ � þ

X
ij

Pij:

For the CASSCF implementation, the delocalized
orbitals of the active space are localized on the atoms
(i.e. the active space must be big enough to give a good
localization). In that case, the CASSCF wavefunction
becomes equivalent to an ‘‘extended’’ VB one. It con-
tains the ‘‘covalent’’ determinants (where every localized
orbital is occupied by one electron) of a VB function and
additional ‘‘ionic’’ determinants (with some orbitals
occupied by two or zero electrons). In our examples, the
active space of the CASSCF calculation consists mainly
of p orbitals, and the calculated Pij elements generally
give the p bonding between two sites i and j. However,
the method is also applicable to r bonding, including r
orbitals in the active space (see the examples of r-bond
forming reactions later). Most of the examples given
later are covalent hydrocarbons where the overall
occupation of the localized orbitals is of one electron.
Nevertheless, one of our examples for excited states (1La

state of indole, see later) has significant charge-transfer

character. In that case it is useful to examine also the
diagonal elements of the one-electron matrix (Dii), which
give the orbital occupations.

The most significant result from the derivation of an
expression for the spin-exchange density matrix P (see
Appendix) is that the final value of the Pij elements is the
difference between ab and aa terms:

Pij ¼ P ab
ij � P aa

ij ; ð2Þ

where the terms for spin-adapted Hartree–Waller
determinants [19] are given by

P ab
ij ¼

1

2

X
K;L

cKcL /Kh jaþiaajaaþjbaib /Lj i ð3aÞ

and

P aa
ij ¼

1

2

X
K

c2K /Kh jaþiaaþjaajaaia /Kj i: ð3bÞ

The ab and aa terms that appear in the general
formula of Eq. (2) represent the bonding and the
nonbonding or antibonding contributions to the spin-
exchange density, respectively. The bonding contribu-
tion comes from the positive ab terms where electrons i
and j have opposite spin (i.e. singlet coupling). In con-
trast to this, the nonbonding or antibonding aa terms
arise from configurations where the two electrons have
the same spin (i.e. uncoupled or triplet coupling) and
give a negative contribution. The calculation of the aa
terms is straightforward, because they are composed of
the squared coefficients of configurations FK that have i
and j electrons of the same spin. On the other hand, the
ab contributions are generated by two determinants FK

and FL that differ only in the relative spin of two elec-
trons (Fig. 1). The calculation of these terms is shown
later for two simple examples. We will focus on the
behavior of the bonding component P ab

ij , which is the
index used in our CASSCF-based analysis of ground-
state and excited-state structures. We finally note that
our analysis only considers interactions between neigh-
boring atoms. Atoms viz. orbitals that lie far apart (for
example meta and para positions in benzene) also give
nonzero P ab

ij components. However, the VB energy ex-
pression [8] where the Pij terms appear, is

Fig. 1. Example of two benzene configuration-state functions
coupled by the ab term of the Pij operator
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E ¼ Qþ
X

ij

PijKij:

For nonneighboring atom pairs, the exchange inte-
gral Kij tends to zero, and these terms have no effect on
the energy. They are therefore not considered in our
analysis.

Spin-exchange elements for and ideal VB function
of benzene

We start our discussion of the Pij bond indices with the
calculation of Pij values for an idealized wavefunction of
benzene made only of Kekulé-type configurations,
where the small number of configurations allows the Pij

elements to be derived ‘‘by hand’’. To facilitate the
comparison with the CASSCF results, the wavefunction
is expressed with spin-adapted Hartree–Waller configu-
rations rather than with the traditional spin functions of
VB theory (e.g. Rumer functions). For one of the Kekulé
structures (YA, Fig. 2), the four spin-adapted configu-
rations that describe this structure are (upper rows refer
to orbitals occupied by a electrons and lower rows to
orbitals occupied by b electrons)

U1 ¼
2 4 6

1 3 5

����
�
; U2 ¼

2 4 5

1 3 6

����
�
; U3 ¼

2 3 6

1 4 5

����
�
;

U4 ¼
2 3 5

1 4 6

����
�
:

The VB wavefunction corresponding to the pure
resonance structure is

WA ¼
1

2
U1 þ U2 þ U3 þ U4ð Þ;

i.e. normalization factor 0.5 for the four determinants,
where we assume that the determinants are orthogonal
to each other. For p-bonded neighboring atoms (for
example carbon atoms 1 and 2 in Fig. 1), the aa com-
ponent is 0, and the ab one is

P ab
12 ¼ c1c4 þ c2c3 þ c3c2 þ c4c1ð Þ ¼ 1:00

(for all Pij terms, the factor 0.5 of Eq. 3a is compensated
by the fact that the final value is obtained as the sum

of two equal terms, Pij and Pji). For the nonbonded
neighboring atoms (e.g. carbon atoms 2 and 3 in Fig. 1),
the ab terms are zero, and the aa ones are

P aa
23 ¼ c23 þ c24

� �
¼ 0:50:

Thus the total spin-exchange values Pij for bonded
and nonbonded atoms are 1.00 and )0.50, respectively.

We now consider ‘‘resonant’’ benzene, which is the
mixture of the resonance structures YA and YB. The
determinants for YB are

U1 ¼
2 4 6

1 3 5

����
�
; U5 ¼

3 4 6

1 2 5

����
�
; U6 ¼

2 5 6

1 3 4

����
�
;

U7 ¼
3 5 6

1 2 4

����
�
:

Assuming orthogonality of the determinants, the
corresponding wave-function is

WB ¼
1

2
U1 þ U5 þ U6 þ U7ð Þ

and the final, normalized ‘‘resonant’’ wave-function is

Wres ¼
1ffiffiffi
2
p WA þWBð Þ

¼ 1ffiffiffiffiffi
10
p 2U1 þ U2 þ U3 þ U4 þ U5 þ U6 þ U7ð Þ:

The six Pij elements for neighboring atoms are now
equivalent, and the components are

P aa
12 ¼ c25 þ c27

� �
¼ 0:20

and

P ab
12 ¼ c1c4 þ c2c3 þ c3c2 þ c4c1ð Þ ¼ 0:60:

The final value is

P12 ¼ P ab
12 � P aa

12 ¼ 0:40:

It is clear that the delocalization of the wavefunction
leads to the appearance of new nonbonding aa terms
and to a decrease of the bonding ab terms. Thus, the ab
term that is the bonding index of our analysis decreases
from 1.00 for idealized bezene (single resonance struc-
ture) to 0.60 (resonating structures).

Effect of heteroatoms and ionic configurations

The effect of heteroatoms with doubly occupied, local-
ized p orbitals on the calculated Pij values is exemplified
for a simple wavefunction of vinylamine (Fig. 3):

WVA ¼
1ffiffiffi
2
p U1 þ U2ð Þ;

Fig. 2. Kekulé forms for benzene
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where the two determinants are

U1 ¼
1 2
1 3

����
�
; U2 ¼

1 3
1 2

����
�
:

For centers 1 and 2 the aa term is

P aa
12 ¼ ðc21 þ c22Þ ¼ 1:

In contrast to this, the ab term is 0, because the
configurations that would give ab contributions with
F1 or F2 would have two electrons of the same spin in
the same orbital and would be forbidden. The absence
of a bond between N1 and C2 is thus clear from the 0
value of the bonding index P ab

ij . The total value of P12

is )1. The same applies for ‘‘ionic’’ configurations,
where localized p orbitals on carbon atoms are occu-
pied by two electrons.

Computational details

The VB analyses were carried out as single-point CASSCF/6-31G*
calculations, using Boys’ procedure to localize the orbitals [20]. The
geometries of the minima were optimized at the HF/6-31G* level.
For the Cope and Diels–Alder transition structures, the geometries
were optimized at the CASSCF/6-31G* level, because analyses on
the B3LYP/6-31G* optimized geometries [21] (CASSCF single-
point calculations) gave significantly different results. The active
spaces (number of electrons and orbitals) were (2,2) for ethylene,
(4,4) for butadiene, (6,5) for pyrrole, (6,6) for benzene, the Cope
and the Diels–Alder transition structures, and (10,9) for indole.
The geometries reported for indole were optimized at the CASS-
CF(10,9)/6-31G* level. The code to calculate the CASSCF spin-
exchange density matrix has been implemented in Gaussian98 (see
Appendix for details) [22].

Computational results

Ground-state examples

The spin-exchange elements P ab
ij for the ground state of

several structures (minima and transition states) are
shown in Figs. 4 and 5. The general idea is that the
deviation of the CASSCF-based values from the ideal
one for localized bonds (i.e. P ab

ij =1 for singlet coupled
pairs) comes from delocalization (i.e. resonance of
covalent VB structures, as shown for VB benzene), and
from determinants with doubly occupied orbitals (i.e.
heteroatoms or ionic terms) that are included in the
CASSCF function.

In ethylene (Fig. 4a) and butadiene (Fig. 4b), the
P ab

ij elements for the localized double bonds are smaller
than 1 because configuration interaction with ionic
structures lowers the coefficients. In the case of buta-
diene, there are also covalent structures with different
bonding patterns that contribute to the decrease of the
values to 0.696 and 0.074 for the localized bond and
the uncoupled carbons, respectively. For pyrrole
(Fig. 4c), we find significant delocalization of the
double bonds and some aromatic character. Thus, the
P ab

ij value for the double bond is decreased with respect
to ethylene and butadiene. At the same time, the value
of the uncoupled carbon–carbon and carbon–nitrogen
p bonds is increased with respect to ehylene and vinyl
amine, respectively.

These effects are shown in detail for benzene in
Fig. 5, which shows the three dominating types of

Fig. 3. Configurations for vinylamine

Fig. 4a–e. Spin-exchange density matrix elements Pij (ab terms) for
ground-state organic structures (CASSCF/6-31G*)

Fig. 5a–d. Dominant configurations (Hartree–Waller determi-
nants) for ground-state benzene, CASSCF(6,6)/6-31G*. d Spin-
exchange density matrix elements Pij (ab terms), equal for the six
C–C bonds
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Hartree–Waller determinants and the corresponding
coefficients. The main configuration (coefficient 0.332)
has alternating a and b spins along the six bonds and
contributes to the P ab

ij elements for the six carbon–car-
bon p bonds. However, there are six more covalent
determinants (coefficient 0.146 each) with parallel spins
on neighboring carbon atoms that only contribute to
four P ab

ij elements each. Finally, there are 12 ionic terms
(coefficient 0.142 each) that contribute to three P ab

ij ele-
ments each. Overall, this leads to a decrease of the ideal
value for P ab

ij in benzene from 0.6 (VB calculation) to
0.337 for the CASSCF wavefunction.

We also consider the Diels–Alder cycloaddition
(ethylene plus butadiene) and the Cope rearrangement
for 1,5-hexadiene. Different studies [6, 23] give aromatic
character to the transition structures for these reactions,
and our VB-type analysis for the CASSCF-optimized
transition structures (Fig. 4d, e) agrees with this
interpretation. All calculated P ab

ij values lie around 0.35,
which compares well with the value of 0.337 obtained
for benzene at the CASSCF level.

Characterization of excited states

Our VB-type analysis is particularly useful to charac-
terize excited states of organic molecules with resonance
structures [10, 11, 12, 13]. To get to the final goal of
characterizing the excited states using resonance struc-
tures, the most convenient starting point is to charac-
terize the ground state. The excited-state resonance
structures can then be obtained using the ground state as
a reference and examining the most significant changes
in the spin-exchange density and in the orbital occupa-
tions. The VB structures are helpful to rationalize the
optimized geometries for these states, as shown for the
intramolecular quenching of the indole chromophore
fluorescence in tryptophan [12].

The lowest excited states of indole are a covalent one
(S1 at the Franck–Condon geometry, 1Lb in Platt’s
nomenclature [15]) and an ionic or charge-transfer one
(S2,

1La). In terms of molecular orbital excitations, the
1Lb state at the CASSCF level is composed of two main
configurations, the HOMO-1 to LUMO and HOMO to
LUMO+1 excitations, with weights of 44 and 22%,
respectively. The 1La state is dominated by the HOMO-
to-LUMO excitation (54%), and several configurations
make for the remaining 46%. Our goal is to simplify
the complicated molecular-orbital picture by using our
VB-based analysis, which provides a compact bonding
index that can be expressed as resonance structures. We
note that a quantitative study of the energetics of the
excited states requires the inclusion of dynamic corre-
lation (see the CAS-PT2 study of Serrano-Andrés and
Roos) [24], but the states can be characterized at the
CASSCF level. Because one of the states has significant
charge-transfer character, we include in our analysis
the diagonal elements of the one-electron matrix (Dii),
which give the occupation numbers of the localized

orbitals. For a pure covalent wavefunction, the occu-
pations should be 1.00 on the carbon atoms and 2.00
on the nitrogen orbitals of indole. Occupations signifi-
cantly different from 1.00 are shown with arrows in
Fig. 6.

The ground-state wavefunction at the Franck–Con-
don geometry is the reference for our excited-state
analysis. It has localized double bonds and a doubly
occupied nitrogen p orbital (Fig. 6a). This qualitative
picture is based on the P ab

ij values for the neighboring
atom pairs C2–C3, C4–C5 and C6–C7, which lie between
0.39 and 0.48, approximately. For the C8–C9 bond, the
P ab

ij value is reduced to 0.26, presumably because of
the strain due to ring fusion. The occupation numbers of
the localized orbitals support the proposed resonant
structure, because the occupation of the nitrogen orbital,
1.70, is close to 2.0. Finally, the resonance structure
agrees with the calculated bond lengths, with shorter
lengths for the proposed double bonds (1.35–1.38 Å).
The C8–C9 double bond is slightly longer for the reason
mentioned previously.

Resonance structures for the excited states are
obtained by examining the most significant changes in
the spin-exchange density and the orbital occupations.
According to our analysis, the covalent excitation
(1Lb, S1) is centered on the benzene moiety of the
chromophore (Fig. 6b). Thus, the occupations of
the localized orbitals are similar to the ones obtained for
the ground-state wavefunction, and the P ab

ij elements
for the N1–C2, C2–C3 and N1–C8 atom pairs virtually do
not change. Thus, the covalent excitation does not affect

Fig. 6a–c. Spin-exchange density matrix elements Pij (ab terms) for
the three lowest singlet excited states of indole (left), and optimized
geometries for the states (right), CASSCF(10,9)/6-31G*. The
numbers shown with arrows are the occupation numbers of the
localized orbitals (diagonal elements of the one-electron matrix,
Dii) that differ significantly from 1.00
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the nitrogen p electrons and the pyrrole double bond.
In contrast to this, the values for the C4–C5, and C6–C7

pairs decrease from 0.39 to 0.24, while the one for the
C8–C9 pair decreases from 0.26 to 0.08 (i.e. the two
electrons on these carbon atoms are uncoupled). The
decrease of the P ab

ij elements in the benzene moiety
parallels the uncoupling of the p electrons found for
the covalent (1B2u) excited state of benzene, where the
values for the carbon–carbon bonds decrease from 0.34
in the ground state to 0.25 in the excited state. The
general decrease of the p-bond order in the benzene
moiety is reflected in the optimized geometry for this
state, where the bond lengths increase by up to 0.06 Å,
and the proposed resonance structure is shown in
Fig. 6b.

For the second excited state, the charge-transfer
character is clear from the occupations of the localized
orbitals (Fig. 6c). The charge transfer takes place mainly
from the nitrogen atom (occupation decreases by 0.37
electrons with respect to the ground state) to the C4 and
C7 carbons, which take up approximately 0.2 electrons
each. This causes a bond inversion in the pyrrole moiety.
Thus, a p bond between N1 and C2 is formed to stabilize
the positive charge on the nitrogen (see the resonance
structure), as seen in the increase in the P ab

ij element from
0.10 to 0.37 and the decrease of the C2–C3 value from
0.48 to 0.18. At the same time, the N1–C2 and C2–C3

bond lengths optimized for this state are inverted with
respect to the ground-state geometry. In the benzene
moiety, the C8–C9 p-bond character is retained and the
C4–C5 and C6–C7 one is lost (P ab

ij decrease from
approximately 0.39 to 0.15) because of the charge
transfer to C4 and C7. This allows for an increase in the
coupling between C5 and C6 (increase in P ab

ij values from
0.27 to 0.36), which leads to a decrease in the corre-
sponding bond length optimized for S2, from 1.40 to
1.38 Å. Thus, the proposed resonance structure has
double bonds between N1 and C2, and C5 and C6,
respectively, and the negative charge is shared between
C4 and C7. There is also some radical character on C3,
as seen from the small P ab

ij with neighboring atoms
(0.15 and 0.18) and the large distances (1.44 and
1.45 Å). Our calculations on the photochemistry of the
amino acid tryptophan [12] show that the ionic excited
state is responsible for the proton-transfer-induced
quenching of fluorescence observed experimentally.
Thus, the transfer of charge density to the C4 and C7

positions agrees with the experimental observation
of intramolecular excited-state protonation of C4 in
tryptophan [25].

Conclusions

Our VB-based bonding-analysis method characterizes
electronic states (ground and excited states from
CASSCF calculations) in terms of resonance structures.
In the present paper we have shown the foundations of

the method together with a few representative examples.
Its general value and applicability has been proved in
several studies of different excited-state processes, such
as double-bond isomerizations [10], energy transfer [11]
and proton transfer [12]. The method can also be
successfully applied to rationalize the behavior of n,p*
excited states, as shown for the ultrafast radiationless
decay of cytosine [13].

The bond-order analysis proposed by Ruedenberg
[4] for CASSCF is similar to the VB-based one pre-
sented here because it uses localized active orbitals;
however, it is based on the one-electron reduced den-
sity matrix. Our VB-derived bond indices are part of
the two-electron reduced density matrix, and this
allows the separation of the bonding (ab, ba) from the
antibonding (aa, bb) components (see Appendix for
details). The calculation of bond indices from the two-
electron density matrix of a multireference wavefunc-
tion was proposed by the groups of Cooper and Ponec
[5], using a spin-coupled wave-function. The authors
suggested a partition of the two-electron density matrix
elements into singletlike and tripletlike components,
using a different scheme from the one proposed here.
However, the use of a CASSCF function with a
localized orbital basis gives greater flexibility since it
allows the treatment of ionic states and a more general
approach to reactivity. For excited states, a different
approach to the one presented here has been proposed
by Zimmerman and Alabugin [3], using natural hybrid
orbitals. The method analyzes the changes in the elec-
tronic density imposed by the electronic excitation
in the molecule of interest, at the Franck–Condon
geometry. In fact, our experience with the VB-based
method presented here is that the use of the ground-
state wavefunction as a reference point makes the
rationalization of the excited state easier. Therefore,
the methodology of Zimmerman and Alabugin can be
of complementary value to the one proposed here.
However, we note that photochemical and photo-
physical behavior is often the result of the interaction
between several electronic states along a given reaction
coordinate [10]. In these cases, for a full mechanistic
rationalization it is necessary to study the complete
reaction coordinate.

Acknowledgements. The computations were done using an IBM-
SP2 funded jointly by IBM UK and HEFCE (UK). L.B. is funded
by the Ramón y Cajal program from the Ministerio de Ciencia y
Tecnologı́a (Spain).

Appendix

Derivation of a second-quantization expression
and implementation for CASSCF

It is convenient to express the spin-exchange operator
using second quantization, where the general expression
for a two-electron operator is [26]:
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Wh jÔO2 Wj i ¼ 1

2

X
ijkl

i 1ð Þj 2ð Þh jÔO 1; 2ð Þ k 1ð Þl 2ð Þj i

� Wh jaþi aþj alak Wj i:

The corresponding expression for the spin-exchange
operator, using Eq. (1), is (from here on we operate with
the negative quantity of the original operator)

Wh jP̂P12 Wj i ¼ �
X
ijkl

i 1ð Þj 2ð Þh jS 1ð ÞS 2ð Þ þ 1

4
I k 1ð Þl 2ð Þj i

� Wh jaþi aþj alak Wj i:

The orbitals are split into spatial terms (indices i,j,k,l)
and pure-spin terms (indices l,g,c,p), yielding

2 S 1ð ÞS 2ð Þ½ � þ 1

2
1

� �
¼ �

X
lgcp
ijkl

 
i 1ð Þl 1ð Þj 2ð Þg 2ð Þh jS 1ð ÞS 2ð Þ þ 1

4 I 1ð ÞI 2ð Þ k 1ð Þc 1ð Þl 2ð Þp 2ð Þj i � Wh jaþilaþjgalpakc Wj i
!
:

The spatial integrals are separated and resolved as
Kroneker-d terms dik and djl, and the spin operator
S(1)S(2) is expressed using step-up and step-down
operators, such that

S 1ð ÞS 2ð Þ ¼ 1

2
Sþ 1ð ÞS� 2ð Þ þ S� 1ð ÞSþ 2ð Þ½ � þ Sz 1ð ÞSz 2ð Þ:

Evaluation of the S(1)S(2) part for the different spin
combinations over l,g,c and p yields

2 S 1ð ÞS 2ð Þ½ �h i ¼ �
X

ij

1
2 Wh jaþiaaþjbajaaib Wj i þ 1

2 Wh jaþibaþjaajbaia Wj i þ 1
4 Wh jaþiaaþjaajaaia Wj i

� 1
4 Wh jaþibaþjaajaaib Wj i � 1

4 Wh jaþiaaþjbajbaia Wj i þ 1
4 Wh jaþibaþjbajbaib Wj i

 !
:

The part of the identity operator yields

1

2
1

� �
¼

�
X

ij

1
4 Wh jaþiaaþjaajaaia Wj i þ 1

4 Wh jaþibaþjaajaaib Wj i
þ 1

4 Wh jaþiaaþjbajbaia Wj i þ 1
4 Wh jaþibaþjbajbaib Wj i

 !
:

Adding the terms, we obtain the final expression

Pij ¼
1

2
Wh jaþiaajaaþjbaib þ aþibajbaþjaaia � aþiaaþjaajaaia

� aþibaþjbajbaib Wj i;

where we use the fact that creation and annihilation
operators for different spin orbitals are anticommuta-
tive. For our purposes, it is convenient to separate the
exchange density matrix elements into two terms:

P ab
ij ¼

1

2
Wh jðaþiaajaaþjbaib þ aþibajbaþjaaiaÞ Wj i

and

P aa
ij ¼

1

2
Wh j aþiaaþjaajaaia þ aþibaþjbajbaib

	 

Wj i;

so that

Pij ¼ P ab
ij � P aa

ij

Thus, the exchange density matrix elements are the
difference between exchange terms for electrons of
different and same spin, respectively. For a multi-
configuration wavefunction expressed in terms of Slater
determinants /K, the elements become

P ab
ij ¼

1

2

X
K;L

cKcL /Kh jðaþiaajaaþjbaib þ aþibajbaþjaaiaÞ /Lj i

¼ 1

2

X
K;L

cKcLBab
ij :

The spin-coupling coefficients Bab
ij are +1 for con-

figurations (i.e. Slater determinants) that differ only in
the relative spin of two electrons, and 0 otherwise. For
the same-spin terms,

P aa
ij ¼

1

2

X
K;L

cKcL /Kh jðaþiaaþjaajaaia þ aþibaþjbajbaibÞ /Lj i

¼ 1

2

X
K;L

cKcLBaa
ij :

Here the coefficients Baa
ij are +1 for configurations

with electrons i,j of the same spin and 0 otherwise.

Relationship to the two-electron reduced density matrix

The general formula for the two-electron reduced
density matrix is

P x1; x2; x
0
1; x
0
2

� �
¼ N N � 1ð Þ

Z
dx3:::dxNW x1; . . . ; xNð Þ

�W� x1; . . . ; xNð Þ:
For a multireference wavefunction, the two-electron

reduced density for the N electrons of the active space is

P x1; x2; x
0
1; x
0
2

� �
¼ N N � 1ð Þ

X
KL

cKc�L

�
Z

dx3:::dxNUK x1; . . . ; xNð Þ � U�L x1; . . . ; xNð Þ:

The discrete representation in the basis of the
(localized) active orbitals is

Pijkl ¼
Z

dx1dx2dx
0
1dx

0
2v
�
i x1ð Þv�j x2ð ÞP x1; x2; x

0
1; x
0
2

� �
vk x01
� �

vl x02
� �

¼
X
KL

cKcL

X
lm

UKh jaþilaþjmaklalm ULj i;
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where vi are spin orbitals, l and m are spin variables and
the coefficients c are assumed to be real [27]. Our Pij

indices (spin-exchange density matrix elements) corre-
spond to the bidiagonal terms Pijji, i.e.

Pijji ¼
X
KL

cKcL

�
UKh jaþiaaþjaakaala ULj iþ UKh jaþiaaþjbakaalb ULj i
þ UKh jaþibaþjaakbala ULj iþ UKh jaþibaþjbakbalb ULj i

 !
:

The corresponding formula for the one-electron re-
duced density matrix indices [4] (P 1e

ij ) is

P 1e
ij ¼

X
KL

cKcL

X
l

UKh jaþilajl ULj i:

In contrast to the spin-exchange density matrix ele-
ments, these one-electron terms are zero for the benzene
VB example just described.

Implementation

For the spin-exchange density matrix elements, the spin-
coupling coefficients Bij are calculated on the fly, using
the method of direct reduced lists implemented recently
for configuration-interaction -vector evaluation [28]. In
practice, the matrix P is diagonal (i.e. Pij=Pji), and the
bond order between two centers i and j is obtained by
calculating the element once and multiplying by 2. When
spin-adapted Hartree–Waller determinants are used in-
stead of Slater ones, the equations given previously are
simplified and we obtain

P ab
ij ¼

1

2

X
K;L

cKcL /Kh jaþiaajaaþjbaib /Lj i

and

P aa
ij ¼

1

2

X
K;L

cKcL /Kh jaþiaaþjaajaaia /Lj i

¼ 1

2

X
K;L

c2K /Kh jaþiaaþjaajaaia /Kj i:

For the aa terms, a further simplification is given by
the fact that /K and /L must be the same configuration.

The code for calculation of the spin-exchange density
matrix is available in Gaussian98 [22].
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