A valence force field for the amide group

J. JAKEŠ* and S. KRIMM

Harrison M. Randall Laboratory of Physics, University of Michigan

Ann Arbor, Michigan

(Received 5 December 1969)

Abstract—A valence force field is presented for the grouping R—CO—NH—R' where R and R' are CH₂ or CH₃, derived from the frequencies of N-methylacetanide, nylons, and some of the deuteroderivatives. By refining all experimental data simultaneously, the overall agreement between the experimental and calculated frequencies is good.

Introduction

During the last decade extensive experimental data have been collected on infrared spectra of molecules with the amide group [1-14]. An assignment of characteristic frequencies of the amide group was soon established [2] and later work led to an understanding of the origin of other bands in N-methylacetamide [11, 12] and in polyamides made from ω -aminoacids [9]. Along with the assignment of spectra, normal coordinate calculations for these molecules were being performed. The first of these was that for N-methylacetamide [2] in which methyl groups were taken as mass points and a Urey-Bradley force field was used. This calculation was later refined to the complete molecular model of N-methylacetamide [12, 15] using, in addition, experimental frequencies of molecules with deuterated methyl groups. A calculation of the out-of-plane vibrations of polyamides in the planar form was done with a valence force field neglecting torsion coordinates and the amide VII vibration [16]. A similar attempt with in-plane vibrations [17], using a Urey-Bradley force field for the amide group, was not

^{*} Permanent address: Institute of Macromolecular Chemistry, Czechoslovak Academy of Sciences, Prague, Czechoslovakia.

^[1] H. B. KESSLER, Ph.D. Thesis, University of Michigan (1952).

^[2] T. MIYAZAWA, T. SHIMANOUCHI and S. MIZUSHIMA, J. Chem. Phys. 24, 408 (1956); 29, 611 (1958).

^[3] M. BEER, H. B. KESSLER and G. B. B. M. SUTHERLAND, J. Chem. Phys. 29, 1097 (1958).

^[4] B. Schneider, P. Schmidt and O. Wichterle, Coll. Czech. Chem. Commun. 27, 1749 (1962).

^[5] P. SCHMIDT and B. SCHNEIDER, ibid. 28, 2685 (1963).

^[6] E. M. BRADBURY and A. ELLIOTT, Polymer 4, 47 (1963).

^[7] H. ARIMOTO, J. Polymer Sci. A2, 2283 (1964).

^[8] G. HEIDEMANN and H. ZAHN, Makromol. Chem. 62, 123 (1963).

^[9] J. Jakeš, P. Schmidt and B. Schneider, Coll. Czech. Chem. Commun. 30, 996 (1965).

^[10] I. Matsubara, Y. Itoh and M. Shinomiya, J. Polymer Sci. B4. 47 (1966).

^[11] B. Schneider, A. Hoření, H. Pivcová and J. Honzl, Coll. Czech. Chem. Commun. 30, 2196 (1965).

^[12] C. D. NEEDHAM, Ph.D. Thesis, University of Minnesota (1965).

^[13] H. TADOKORO, M. KOBAYASHI, H. YOSHIDOME, K. TAI and D. MAKIMO, J. Chem. Phys. 49, 3359 (1968).

^[14] Y. KOYAMA and T. SHIMANOUCHI, Biopolymers 6, 1037 (1968).

^[15] J. Jakeš, Coll. Czech. Chem. Commun. 33, 643 (1968).

^[16] J. JAKEŠ, J. Polymer Sci. C16, 305 (1967).

^[17] J. JAKES, not published (1966).

successful due to a very poor computer used in this calculation (Russian Ural 2). However, it showed the probable necessity of using a valence force field for the amide group. With the Urey-Bradley force field, reproduction of the fine structure of the CH₂ wagging vibrations in the region 1150-1300 cm⁻¹ (see [9]) was not possible. Recently, a calculation was done for the dimer of polyglycine (CH₃NHCOCH₂NHCOCH₃) and was used for an estimation of the rotation angles of the central CO—CH₂ and CH₂—NH bonds [14]. A calculation on nylon 6, in which methylene groups were taken as mass points [13], showed that such a calculation may serve as a good tool in understanding far infrared spectra below 600 cm⁻¹, where there is no essential contribution from hydrogen atom motions.

In this paper we present a valence force field for the grouping R—CO—NH—R', where R and R' are CH2 or CH3, which was derived from the frequencies of Nmethylacetamide, nylons, and some of their deuteroderivatives. In the nylons, n-paraffin force constants were used for the $(CH_2)_{n-1}$ chain (with the exception of some constants for the first and last methylene groups). The force constants of the amide group were assumed to be transferable between nylons and N-methylacetamide. In out-of-plane blocks, torsion coordinates were included. In deriving this force field, we started from NEEDHAM's force field [12] and refined it using experimental frequencies of polyamides. When the refined force field was applied back to the N-methylacetamide, some frequencies were about 100 cm⁻¹ off their experimental values. Therefore, it was necessary to refine all experimental data simultaneously. After doing this, the overall agreement between experimental and calculated frequencies was good, and most of the frequencies were reproduced to within 7 cm⁻¹, although some greater deviations do occur (e.g. in the C—C stretching region in nylon 3). If this force field is applied to similar molecules [18], the agreement goes down only slightly; one frequency which seems to be systematically off about 15 cm⁻¹ is the CH₂ wagging mode in the CH₃—CH₂—CO— group.

THE FORCE FIELD

In view of the bad experience in the past with the Urey-Bradley force field for the amide group [17], we decided to introduce a valence force field instead. However, a unique result for this kind of force field cannot be expected, since the problem is expected to be ill-conditioned because of the large number of force constants. Therefore, measures must be taken to ensure the convergence of the refinement. These measures should express mathematically the physical requirements on the force constants, viz., that cross terms between remote coordinates should be small and that similar force constants should be close, and also the requirement that in each refinement cycle the differences between the initial and refined force constants should be small.

In our belief, the best way to do this is to add to the sum of the squares of frequency errors, i.e.

$$\sum_{i} P_{i} [\omega_{i}(\text{calc}) - \omega_{i}(\text{exp})]^{2}$$

the sum of squares of all linear combinations of force constants which we wish to keep close to zero, properly weighted according to the accuracy with which we wish to do

^[18] J. JAKEŠ and S. KRIMM, Spectrochim. Acta 27A, 35 (1971).

so. Thus, if the force constant f_i should lie between -0.2 and 0.2, we add $(f_i/0.2)^2$; if the constants f_i and f_i should be close to each other with an accuracy of 0.1, we add $[(f_i-f_i)/0.1]^2$. In our refinement program, we have introduced three types of such requirements: that a force constant be close to a predefined value, that the difference between two force constants be close to a predefined value (usually zero), and that the difference between a force constant before and after refinement in each cycle be close to zero. In addition, we permitted the corrections to any two chosen force constants to be kept exactly equal in each cycle. This was done to facilitate introducing more transferability among force constants than was assumed during the original coding of the F matrices (otherwise it is necessary to recode the F matrices).

The final values of the force constants are listed in Table 1. Of the 99 force constants in the polyamides (76 for the in-plane block and 23 for the out-of-plane block), 22 were transferred from n-paraffins, two torsion force constants were transferred from SHIMANOUCHI [22], and the force constant for the N-H stretching vibration was estimated to be 5.98 in order to lead to the value of about 3300 cm⁻¹ for the N—H stretching frequency. Twelve more force constants are required for N-methylacetamide, of which 2 constants for C—H stretching were transferred from n-paraffins. The remaining 84 force constants, 60 for the in-plane block, 14 for the out-of-plane block, and 10 new constants for N-methylacetamide, were refined by least squares. The cross terms involving coordinates C—C(—CO)—H, C—C—C(—O), H-C-C(=0), N-C-H, N-C(=H₂)-C, and H-C(-N)-C not shown in Table 1 were also transferred from n-paraffins, neglecting the difference between C(=O), N, and C(=H₂) atoms in these cross terms. Moreover, in the in-plane block 10 of the force constants were forced to the values of the similar force constants in n-paraffins with an accuracy of 0.1, and 6 with an accuracy of 0.2, as shown in Table 1. At first sight, the values of the force constants seem to be reasonable, although the value of the cross term between C—C(=O) and C=O may seem to be too high. But we must keep in mind that this set of force constants certainly is not unique, and we are convinced that other sets, in which some of the force constants may differ by as much as 0.5 from those in Table 1, may reproduce the experimental data equally well.

Some attention should also be paid to the transferring of force constants from n-paraffins. We calculated frequencies of some longer n-paraffins and observed that a few of the C-C stretching frequencies and several C-C-C bending frequencies were over 10 cm⁻¹ off their calculated values. Deviations of up to 7 cm⁻¹ were also observed in the CH2 wagging frequencies, and here they were determined almost exclusively by phase differences associated with the corresponding modes. This dependence was also observed in the C—C stretching and C—C—C bending regions. although the interaction of both branches of the dispersion curves interferes somewhat with this. Such errors are expected to be transferred to the amide force constants. That is, by keeping the n-paraffin force constants fixed during refinement, other constants which are being refined are forced to change so as to compensate for the errors caused by the fixed force constants. This compensation should probably work best for molecules with about five methylene groups, from which most of the data in the refinement were used. On this basis, we can explain some large errors in the C-C stretching frequencies in nylon 3 and in the CH2 wagging frequency of the CH₃CH₂CO group. The application of this force field to other similar molecules with

H-C(N)-C

N-C-H

NH o.p. bend

C(0)-N tors.

1.1975

1.2175 0.3780 0.4894_s 0.3819_s

0.0800 0.0009 0.0009 0

0.6706 0.0297 0 0 0

Table 1. Force constants for the CH2CONHCH2 group

	C-C(CO) C-C-C(O) C-C(O) C-C=O C=O C-C(O)-N C(O)-N C-N-C H-N-C(H, N-C(H, N-C)H, N-C(H, N-C)H, N-C(H, N-C(H, N-C)H, N-C(H, N-C)H, N-C(H, N-C(H, N-C(H, N-C(H, N-C)H, N-C)H, N-C(H, N-C(H, N-C(H, N-C(H, N-C(H, N-C(H, N-C(H, N-C(H, N-C)H, N-C)H, N-C(H, N-C)H, N-C)H, N-C(H,		11000
1		-	ξ

(a) Force constants involving coordinates symmetric to the skeletal plane

	Q-C(CO)	C-C-C(0)	C-C(0)	0=0-0	0=0	C-C(0)-N	C(0)-N	C-N-C	$ C-C(C0) \ C-C-C(0) \ C-C(0) \ C-C=0 \ C-C(0)-N \ C(0)-N \ C-N-C \ H-N-C(H_3) \ N-C(H_3)-C \ (N)C(H_3)-C \ (N)C($	N-C(H,) N	1-C(H2)-C	(N)C(H,)—C
(0))	4.532††	1.6986										
0	0.0880	0.31347	0.2584	2.8251								
C=0	٥	0	0.7637	-0.1167	8.7802							
G-C(0)-N	0	-0.208211	0.0207	1.4945	-0.4954	2.5393						
C(0)-N	0	0	0.6382	-0.0838	0.2304	0.4377	6,1175					
O-N-O	0	0	0	-0.0121	0	-0.1291	-0.4826					
H-N-C(H,)	•	0	0	0.1808	0	-0.0318	-0.3746					
N-C(H,)	a	0	0	0	٥	0	0.3522					
N-C(H2)-C	0	0	0	0	0	•	0	0.0150‡‡	-0.1433	0.31184	1.5625	
(N)C(H ₂)—C	9	0	0	•	0	0	0				0.3247*	4.532++
KNH = 5.98**	38**.											
(b) Force constants involving a	stants invo	dving jantisym	metrio and	atisymmetric and/or unsymmetric coordinates	aetric coo	dinates						

tric coordinates	CO o.p. bend	0.5797 0.1400 0.0266 0 0 0
rio and/or unsymme	H-C-C(0)	1.0665 _k 0.4707 _k 0.0346 0 0 0 0
ivolving antisymmet	н—(00)0—о	1.1582 0.6161 0.4747 0.5168 0 0 0 0 0 0
(b) Force constants involving antisymmetric and/or unsymmetric coordinates		C-C(CO)—H C-C(CO)—H H-C-C(O) CO o.p. bend C(O)—N tors. NH o.p. bend N-C-H H-C(N)—C

 $\tau_{C-C(0)} = 0.037, ** \tau_{N-C(H_2)} = 0.037, **$

Table 1 (cont.)

coordinates
unsymmetrio
and
symmetrie
between
terms
Cross
Ž

				0-0-5	9	J	C-C(0)-N
	C—C(CO)	C-C-C(0)	C-C(0)	вкем	oj.	ganope	trans
C-C(CO)-H H-C-C(O)	0.174†† 0.0923*	0.5232* 0.4920†	0.0730* 0.2074†	0.1317	00.1936\$	0 0.0229	0,0278\$
	C—N—C	O-	H—N—C(H ₂)	(H,)	N.C.H.	N_C(H)	O-V-HOOK)
N-C-H HC(N)-C	0.0099	0.0938\$	0.0560	0.0083\$	0.3655		
(d) Methyl group force constants		in N-methylacetamide	and an article of the particle	manyanen estatakan distributakan distributakan distributakan distributakan distributakan distributakan distribu			and the second s
	Ha	Ήβ	Fβ	MANAGEMENT CONTROL OF THE CONTROL OF		The same of the sa	and the selection of th
CH ₂ (CO) CH ₂ (NH)	0.6366 0.6277	0.5972 0.7982	-0.0182 -0.0461	manaman		gereg nama da maldan nama a nama kanda kapangangan kanda	and Account to the Contract of
(e) Symmetrized force constants	nstants	and American Control of the Control	anne e son de extrategrava un principal de descriptor de la companya de la companya de la companya de la compa	als de de de de de des des des des des des	TO THE TAX AND THE		
	H-C-C(0)	H-C(CO)-C	n-paraffin	H-C(N)-C	D(H—C—N	
$H_{\gamma}+F_{\gamma}+2H\delta \ H_{\gamma}-F_{\gamma} \ F_{\gamma}'+2H\delta \ F_{\gamma}'+2H\delta$	1.6373	1.6743 0.6421 0.9916 0.0421	1,710 0.682 1.087 0.021	1,7162 0.6798	0.1075	1.6966 0.8396 1,7, 1,7, 1,7, 1,7,	$f_{\gamma''} + f_{\gamma'} = 0.015$ $f_{\gamma''} - f_{\gamma'} = -0.131$ $f_{\gamma''} + f_{\gamma''} = -0.013$ $f_{\gamma''} - f_{\gamma''} = 0.005$ $f_{\gamma'''} + f_{\gamma''} = 0.022$ $f_{\gamma''''} + f_{\gamma'''} = 0.002$

* Kept close to the corresponding force constant in the polymethylene chain with an accuracy of 0.01.

† As in *, with an accuracy of 0.02.

+ 44.4

§ From N-methylacetamide (this calculation).

** Assumed (no refinement).

†† Transferred from n-paraffins [21]. ‡‡ trans.

Every H stom lies on the upper side of the skeletal plane and every H' stom on the lower side. The positive direction of the CO and NH out-of-plane (o.p.) bending coordinates corresponds to the situation in which the CO or NH bond enters the upper side of the skeletal plane. The positive direction of a torsion coordinate corresponds to the situation in which the outer skeletal stoms (i.e. C or N) involved in this coordinate enter the upper side of the skeletal plane. All sero values of force constants were assumed. the amide group showed the force field to be a powerful means of understanding and assigning their spectra [18]. But it also showed clearly that a further refinement of this force field to remove some of the uncertainty caused by ill-conditioning would be possible and desirable if new experimental data, and/or a more refined set of n-paraffin force constants, were available.

Assumed Structures and Coordinates

In the calculations we used the following bond lengths [19]: $d_{\rm CH}=1.093$ Å, $d_{\rm CC}=1.54$ Å, $d_{\rm NH}=1.01$ Å, $d_{\rm CO}=1.23$ Å, $d_{\rm C(-O)-N}=1.34$ Å, $d_{\rm C(-H)-N}=1.47$ Å. All angles in the methylene and methyl groups were assumed tetrahedral, and angles in the C—CO—NH—C group were assumed trigonal (120°). Mass values used were $m_{\rm H}=1.007825, m_{\rm C}=12, m_{\rm N}=14.00307, m_{\rm O}=15.99491,$ and $m_{\rm D}=2.01410$. For the velocity of light and Avogadro's number we used the values 2.997925×10^{10} cm/sec and 6.02257×10^{23} mol⁻¹ respectively.

The internal coordinates were bond lengths, bond angles, out-of-plane bend angles, and torsion angles. The first two kinds were used in the usual way: a + 1value of the coordinate means an increase by 1 Å, or 1 rad., respectively. For defining the next two types, let us call one side of the carbon skeleton the upper side and the other the lower side. The value + 1 for the coordinate C=O (or N-H) out-of-plane bend means the C=O (N-H) bond is rotated by 1 rad, perpendicular to the C—C—N (C—N—C) plane and moves into the upper side of this plane. In the internal torsion coordinates we follow the Fukushima convention [20]: if atom X has m adjacent atoms and atom Y has n adjacent atoms, (n-1)(m-1)dihedral angles about the X-Y bond may be defined. For the torsion coordinate about this bond we take the sum of the changes of all of these dihedral angles divided by (m-1)(n-1). The plus sign for a dihedral angle is chosen in a direction such that the change of the skeletal dihedral angle (i.e. the angle involving the C and N atoms only) moves both outer skeletal atoms into the upper side of the skeletal plane. This convention has the disadvantage that it changes the direction of the torsion coordinate about adjacent skeletal bonds from clockwise to counterclockwise; on the other hand, we found it very convenient for setting up the B matrix elements. If the rotation angles in the molecule differ from those of the standard all-trans for the skeleton (e.g. the γ form of nylon 6), we first rotate it to the standard conformation for determining the positive direction of the out-of-plane bending and torsion coordinates.

We decided to remove the local redundancy in each methylene group by omitting the H—C—H bending coordinate and in the amide group by omitting the H—N—C(—O) and O—C—N coordinates. The omission of the H—C—H bending coordinate leads to an increase by the value of H_{δ} of all diagonal and cross terms between the remaining five angle coordinates around this carbon atom. This change is included in Table 1, where final refined values of force constants are listed. In the actual coding of the F matrices, we further changed our force constant set in the case of the CCH

^[19] J. L. Katz and B. Post, Acta Cryst. 13, 624 (1960).

^[20] T. MIYAZAWA and K. FUKUSHIMA, J. Mol. Spectry 15, 308 (1965).

^[21] R. G. SNYDER, J. Chem. Phys. 47, 1316 (1967).

^[22] K. Itoh and T. Shimanouchi, Biopolymers 5, 921 (1967).

bending, NCH bending, and CH stretching coordinates to some sums and differences of force constants yielding in-plane and out-of-plane blocks in polyamides which are mutually independent. Even in the case where complete independence is not obtained, it is worth doing so since the conditioning of the in-plane and out-of-plane blocks may be different, requiring a different approach to ensuring convergence. This is difficult to do without having separated the force constants influencing the individual blocks. For the convenience of those who would wish to follow this approach, we also include the symmetrized combinations of force constants in Table 1. Note only that in forming out-of-plane coordinates, the internal coordinate containing the hydrogen atom on the upper side of the skeletal plane always enters with a + sign.

All calculations were performed on an IBM 360 computer using a computer program written by one of us (J. J.). In coding this program, care was taken to save computer time and storage space in handling large matrices. The method of calculation was essentially the same as in the previous work [15, 16].

EXPERIMENTAL DATA

Extensive experimental data on infrared frequencies of molecules with the amide group were collected in Prague in the early sixties [4, 5, 9, 11]. These data were used in the present refinement, complemented by some data in the region below 400 cm⁻¹ [10, 13]. Although other data are available in the literature [1, 7, 8], there is an advantage in using experimental data from a single source, since systematic errors in a given region of the spectrum are then the same for all the frequencies. This is important for a successful simultaneous refinement of a transferable set of force constants, since accurate frequency shifts are much more relevant than accurate frequencies. This is so because such a refinement is in reality an extrapolation from frequency shifts to unknown eigenvectors, and in some cases changes in such frequency shifts of as little as 3 to 5 cm⁻¹ can lead to drastic changes in eigenvectors.

The experimental frequencies are listed in Table 2 together with their statistical weights and calculated values. In our coding, 1273/3 means that the contribution to the sum of error squares was $((\omega_{\rm calc}-1273)/3)^2$; i.e. rather than statistical weights P_i , the values P_i^{-1} are listed. Because of the small difference between the starting and refined set of force constants in the last refinement cycle, we did not repeat the frequency calculations with the final set in Table 1 for all molecules. Only the frequencies of nylon 6 and nylon 66 listed in Table 2 are those obtained with the set of force constants in Table 1; the other calculated frequencies are those obtained with the next-to-last set of force constants.

In Table 2, B, W, T, R, and S mean CH_2 bending, wagging, twisting, rocking, and C—C stretching modes respectively. Where the assignment is shown between two lines, it relates to both of them (in the case of splitting of the monomer unit modes). The indices in the B, W, T, R, and S modes are sequence indices of the progression and are related to the phase differences in the polymethylene portion of the chain [23, 24]. Compared to the previous assignment [9], we now denote one band in the CH_2 wagging progression as amide III, although the selection of the proper one is

^[23] H. Primas and Hs. H. Günthard, Helv. Chim. Acta 36, 1659 (1953); 36, 1791 (1953).

^[24] J. Jakeš, Coll. Czech. Chem. Commun. 30, 1523 (1965).

Table 2. Experimental and calculated frequencies of nylons and N-methylacetamides

Exp.		Calc.	Nylon	3	Exp.		Calc.	Nylon	3
[9, 10]	A'	Carc.	A"	Assignment	[9, 13]	A_1	B_{3}	B_1	Assignment
646/6	1643			Amide I	1647/6	1644		1645	Amide I
537/6	1553			Amide II	1551/6	1556		1556	Amide II
						1000			VIIII/A II
467/4	1454			CH ₂ (—NH) bend	1480/2			1479	B_{5}
428/4	1421			CH ₂ (—CO) bend	1479/2	1479			•
373/3	1374			Amide III	1466/3			1474	B_4
358/3	1363			W_2		1473			<i>B</i> 4
291/2			1285	T_1	1455/3	1462			-
224/2	1227			W_1	•	-		1460	$B_{\mathbf{z}}$
203/3			1201	T_2^{-1}				1444	
	1110		1001	,				1522	D
116/2	1118		1004	S_1	140040	3 4 4 6			B_2
			1064	R_2	1439/2	1443			_
050/4	1070			S_{3}	1420/2	1420		1420	B_1
976/4	995			C—CO stretch		1382		1386	Amide III
792/3			806	R_1		1369		1374	W_{5}
•	722			Amide IV		1365		1346	W.
897/3	. 44		695	Amide V				1318	1274
•					130410		1005	7919	W ₃
580/3			582	Amide VI	1305/3		1305		$T_{\mathbf{s}}$
456/4	459		}	Skeletal bend	300-10		1304		$\underline{T_1}$
343/4	333		5		1295/2	1296			$egin{array}{c} T_1 \ W_2 \end{array}$
230/3			225	Amide VII	1282/3		1281		T_{s}
			92	Skeletal torsion	1270/2	1270			
					1244/4			1247	$W_{\mathbf{z}}$
			ylon 4		1244/3		1237	- 42	
Exp.		Calc.					1401	1010	T_4
, 10]	A_1	$B_{\mathbf{a}}$	B_1	Assignment	1217/2			1216	W_1
					1205/2	1203			
641/6	1645		1645	Amide I	1173/2		1175		T_{5}
550/6	1558		1554	Amide II	1128/2	1128			
474/3	1477		1477	B ₃	1115/2			1106	s_1
					,-		1099		$R_{\mathbf{s}}$
451/3	1452		1455	B_2			*****	1097	A. S
	1419			B_1	105014	1001		1081	$S_{\mathbf{a}}$
418/2			1419	21	1078/4	1081			
			1382	Amide III		1064		1067	s_{s}
	1379		1371	$W_{\mathbf{a}}$	1043/2	1048			
351/6	1354			Amide III	1032/2			1026	s_{4}
					•	1010		1019	$S_{\mathbf{a}}$
312/2	1314	1000		W ₃	964/2			964	
		1302		T_{2}			0	30 4	C—CO stretch
274/3			1278	w_{2}	955/2	000	955		R_4
263/3		1266		T_{2}^{-}	931/2	933			C-CO stretch
231/3			1239	-	838/2		842		R_{3}
212/2	1213			W_1			767		R_{\bullet}
		1192				738		733	Amide IV
190/2	1100	1104		T_{3}	734/2		727		
126/2	1123		1.0.	S_1					R_1
105/3			1104		692/3		696		Amide V
		1081		R_2	579/3		581		Amide VI
			1081			544		`	
070/4	1068			S_2	524/2			519	
•	1021		1062	\mathcal{S}_{3}	445/2	445			
951/4	958		949	C—CO stretch		770		431	
	800	07-	020		429/2	000		491	Skeletal bend
370/2		875		R_2	370/2	368			
755/2		756		R_1	345/6			332	
	777		690	Amide IV	295/2	299		- 1	
92/3		695		Amide V	•			266/	
74/3		580		Amide VI	220/3		217		Amide VII
•	545		1		195/2			196\	
154/3			455	Skeletal bend				166	
10 X 3	904			DEGLESSE DEUG	170/2		100	100	
	384		372)				126		
14/3		202		Amide VII			98		Skeletal bend
	104		338∖				71	,	
		107	1	011.4.11			62	1	and torsion
	98		242	Skeletal bend		54			
		93	(and torsion		53		1	
		49	}			00	41	- 1	'

Table 2 (cont.)

T7		Nylon Cale.	7	707			1 & (con	4.)
Exp. [9]	A'	Cane.	Assignment	Exp. [9]	A_1	Calc. B_2	B_1	Assignment
104410	1445		Amide I		1459		1481	ъ
1644/6	1645		Amide II		1452		1451 1442	B_3
1550/6	1556			7.410/0	1441			$B_{\mathbf{s}}$
1479/2	1479		$\frac{B_6}{D}$	1419/2	1420		1420	B_1
1470/2	1474		B ₅		1384		1386	w,
	1469		B_4		1380		1377	Amide III
	1456		B_3		1372		1365	W_{\bullet}
1440/2	1442		$B_{\mathbf{s}}$				1356	W _s
1422/2	1420		$B_{\mathbf{i}}$	1343/3	1341			" \$
	1386		\overline{W}_{6}	1325/2	1319			177
	1375		W_{5}				1304	W_4
1360/2	1359		Amide III	1308/3		1308		T_2
1346/2	1341		W_{ullet}	•		1306		T_{\bullet}^{\bullet}
1309/3		1307	T_2			1302		$egin{array}{c} T_{f 3} \ T_{f 1} \end{array}$
1303/3		1305	\hat{T}_{s}^{s}	1287/2		1288		<u>1</u>
		1296	$\overset{1}{T_{1}}^{3}$	1201/2		1200	1904	$T_{lacktree}$
1291/3	1070	1250	1 1 W	100710	1007		1284	$W_{\mathbf{a}}$
1281/2	1278	1000	W_8	1267/2	1267	10=0		
1271/3	3440	1269	T_4	1259/4	76.4	1259		T_{5}
1252/2	1258		$W_{\mathbf{s}}$	1245/2	1248			W_{2}
1229/3		1230	T_{5}				1233	
1199/2	1199		W_1	1219/2		1219		T_{\bullet}
1167/2		1166	T_{6}^{2}	1204/3			1205	-
1128/2	1129		S_1	1197/2	1196			W_1
		1106	$R_{\mathbf{s}}$	1163/2		1167		T_{7}
1081/2	1084		S_2	1126/2	1129			
1066/4	1065		\tilde{S}_{6}^{2}		2-20		1111	S_1
1000/#			<i>2</i> ,6			1100	1111	
	1052		8 ₅		1005	1106	110-	R_{γ}
701014	1030		S ₄ S ₃		1087		1105	S ₃
1012/4	1021		N. 3		1067		1065	s_7
978/2		977	$R_{\mathfrak{b}}$		1064		1062	S.
943/2	943		C-CO stretch		1042		1059	\widetilde{S}_3
879/2		880	R_4		1020		1027	$\overset{\sim}{\mathcal{S}}_{\mathbf{t}}$
793/3		799	R_8		1008		987	~ &
•		747	R_1	1000/8	1000	000	801	S_4
	726		Amide IV	1000/2		996		R_{\bullet}
727/2		723	R_1	940/4	952		939	C—CO stretch
693/3		696	Amide V	908/2		906		R_{5}
581/3		581	Amide VI	830/2		831		R_4
	514	001	IIIIIde VI	770/2		772		R_{\bullet}
513/2		1		,_		737		
40014	469	}	Skeletal bend		786		740	R ₂
437/4	448	1			729		746	Amide IV
	338			726/2		721		R_1
		214	Amide VII	688/3		696		Amide V
	153	ነ	Skeletal bend	582/3		581		Amide VI
	140	}	PERSONAL DRIEG	550/3			562	
		134		200,0	509			}
		125			481		471	ł
		84	Skeletal torsion					Gh-leant hour
		60			466		386	Skeletal bend
		53			358		342	1
		09,			249		258	1
					221		215	1
		37.1				214	•	Amide VII
		Nylon	5			137	`	
Exp.	,	Calc.				135	1	
[9]	A_1	B_2 B_1	Assignment			190	123	
			····					
104010	104"	10.0	A T			300	112	
1642/6	1645	1645	Amide I			100		Skeletal bend and
549/6	1556	1556	Amide II			67		torsion
480/2	1479	1479	B_{7}			49	İ	VOLDIVII
469/3	1474		B_{6}			45		
469/2		1474				35		
	1474	1473	$B_{\mathbf{g}}$		33			
	1464	1465	B_4		32			

Table 2 (cont.)

Exp.	C	Nylon ale.	11	Ēxp.			Nylon Cale.	11 (00	nt.)
[9]	A'	A"	Assignment	[9]		A'	Care.	A"	Assignment
1644/6	1645		Amide I					214	Amide VII
549/6	1556		Amide II					144\	
482/2	1479		B ₁₀					143	
470/2	1476		B_9^{10}					119	
410/4									
	1475		$B_{\mathbf{g}}$					106	as 1 (1) 1
	1473		B_7					90	Skeletal bend
	1470		B_{6}					8 2 }	and torsion
	1463		B_{5}			71		l	
	1454		B_4^-			68			
	1446		B_3					59	
	1440		B_2					30	
420/2	1420		B_1^-					28/	
•	1386		$\vec{w_{10}}$				N-	lon 66	
	1382		W_{9}^{10}	T				TOH OO	
	1376		Amide III	Exp.			Calc.		
				[4]	A_{g}	B_y	B_u	A_{u}	Assignment
0.010	1372		W_{8}	1840/8			1645		
353/3	1348		₩,	16 4 0/6	1044		1040		Amide I
340/2	1334		W _s	1 = = 1 10	1644		1 = = 0		
		1309	T_{\bullet}	1551/6			1556		
		1308	T_{3}						Amide II
		1305	T_{ullet}		1555				
		1303	$egin{array}{c} T_1 \ T_5 \end{array}$		1480				$B_5(NH)$
		1299	$T_{\scriptscriptstyle K}^-$	1480/2			1478		$B_{\epsilon}(\mathrm{NH})$
298/2	1296		$W_{\mathbf{z}}$	1471/2			1474		$B_{A}(NH)$
,		1284	T_6	•			1472		$B_{\bullet}(CO)$
281/2	1282	-20-	\overline{w}_{4}^{-}		1462				$B_3(NH)$
	1202	1263	T_{7}^{\bullet}		1460				$B_3(CO)$
263/3	1040	1200		1446/3	1400		1447		
242/2	1246	1004	W ₃	1440/3	1440		1 ** 1		$B_2(NH)$
		1234	T_8		1440				$B_1(NH)$
226/2	1229		$W_{\mathbf{a}}$	1423/2			1422		$B_2(CO)$
199/3		1204	T_{9}		1419				$B_1(CO)$
191/2	1191		W_{1}		1386				Amelda TTT
162/2		1160	T_{10}	1376/6			1378		Amide III
127/2	1130		S_1^{10}	•	1378				$W_{\mathfrak{s}}(\mathrm{NH})$
/-	-100	1109	R_{10}				1370		Ws(NH)
090/3	1093		S_2		1367				W4(NH)
00010			~ <u>2</u>				1334		W ₈ (NH)
	1070		S_3		1331		1004		$W_4(CO)$
	1068		S_{10}		1331	1005			
	1067		وه			1305			$T_1(CO)$
	1062		S_8			1305			$T_1(NH)$
	1043		S_7					1305	$T_2(\mathbf{NH})$
	1036		$S_{m{A}}$					1302	$T_2(CO)$
		1024	R_{9}			1289			$T_3(NH)$
999/3	1005		S_6	1281/2			1282		W _a (CO)
987/3	980		\tilde{S}_{5}	,	1282				Wa(NH)
968/2	0.50	964	\tilde{R}_8			1264			$T_{\mathbf{a}}(\mathrm{CO})$
	942		C—CO stretch					1260	$T_{\mathbf{A}}(\mathbf{NH})$
940/2	0±4	OVV	_		1243				$W_{\mathbf{s}}(CO)$
900/2		900	R_7		1270	1226			
		845	R_6	100010		1220	1001		T ₅ (NH)
793/2		796	R_5	1226/2			1221		W ₁ (NH)
		761	R_4	1201/2			1199	1150	$W_1(CO)$
	740		Amide IV	1183/2				1178	T ₆ (NH)
		738	R_3			1150			$R_6(NH)$
		724	R_2	1145/2				1144	$T_4(CO)$
23/2		718	R_1^-		1131			١	١
90/3		696	Amide V				1106		Shalatal -tt-L
84/3		581	Amide VI		1099				Skeletal stretch
44/3	560				1069			j	I
)			2000	1065			$R_4(CO)$
194/3	504	Ì			1064	2000			4//
144/3	448	ł		100510	100#		1064	}	
	409	J	Skeletal bend	1065/2	1040		1004	- 1	
	370	- 1		30.000	1049		1040		Skeletal stretch
	313	1		1043/2			1043	- 1	
	247	j		1017/3			1019		
		,			1003			,	

Table 2 (cont.)

жp.			lylon lalc.	66 (oor	it.)	Exp.	N-de	uterate Calo.	i nylon	4 (cont.)
4]	A,	B_g	$B_{\mathbf{u}}$	A_{y}	Assignment	[9]	A_1	$B_{\mathbf{s}}$	B_1	Assignment
88/2	960			993	R ₅ (NH) C—CO stretch	1092/4 1079/2	1087		1078	S_2
4/2	800		935		C—CO stretch	10.0/2		1050	1018	n
8/2			000	904	$R_3(CO)$		1084	1079	1000	R_3
.0,2		888		002	$R_4(NH)$	00414	1034		1059	S _s
		803			$R_2(CO)$	984/4	989		986	Amide III
8/2		703		798	$R_3(NH)$	940/4	939	070	939	C-CO stretch
,0,2			745	100	Amide IV	869/2		872		R_{2}
		743	140		R ₂ (NH)	754/2	***	743		R_1
		120		741	$R_1(CO)$		770	004	687	Amide IV
	726				Amide IV	40210		604		Amide VI
32/3	120			721	$R_1(NH)$	495/3	-00	502		Amide V
32/3		697		121	TOT (TATE)	44040	532		}	1
95/3		001		695	Amide V	449/2	606		450	
				582			383		366	Skeletal bend
33/3		£01		002	Amide VI				334	
9519		581	E 60						242	ł
35/2	200		539	1				202	•	Amide VII
	522			ı				107	١	
	472			- 1			103			
05/3			394	- 1	Skeletal bend		97		1	Skeletal bend
58/3			356	- (93	-	and torsion
	351			- 1				48		
30/3			318	- 1		-				
	254						7	V-deuter	ated no	rlan B
30/3				214	Amide VII	Exp.	•	Cale.	awu nj	1011 0
		214			Himao 122	[9, 13]	A_1	B_2	R	Assignment
			183	١.		[0, 10]	**1	22	B_1	resignificate
	178			1		1637/6	1630		1630	Amide I
		129				100170	1486			
				128					1487	Amide II
				112			1478		1476	B_5
		107		į			1471		1471	B_4
				74	Skeletal bend		1459		1460	B_3
		72		7	and torsion		1443		1443	B_2
		60				1419/2	1420		1420	B_1
	53			- 1		1371/4			1376	W_{5}
			51	J		1381/4	1376			-
				44			1367		1372	W_4
				22		1349/4	1339			
		19		/						W ₃
									1330	
		7.7	lauré :-		-la- 4	1303/3		1305		T_2
				ated ny	710D 4	1293/3		1304		T_1
xp.			alc.	-		1278/2		1281		T_3
9]	A_1		B_2	B_1	Assignment	•	1276		1281	W_{1}
						1243/2		1237		T_4
29/6	163	0		1630	Amide I	1227/2	1220			*** •
73/4	149									W_1
-,-				1481	Amide II				1214	** 1
64/4	147	1			~	1173/2		1175		T'5
-, -				1475	B_3				1127	- 5
48/4	145	1			-					\mathcal{S}_{1}
, -				1451	B_{1}	1122/2	1125			~1
19/2	141	7		1418	B_1		1102			S_2
84/4	137			1.470			1100	1098		$\stackrel{\scriptscriptstyle \mathcal{O}_{g}}{R_{5}}$
	101	-		1371	W_{8}	1090/2		1000	1095	1,2
59/4						1000/2	1004			$S_{\mathbf{z}}$
	100	1		1346	W_2		1064		1067	S 5
0211	133		200				1055		1035	S_{g}
34/4			302		T_1	60711	1004		1023	S_4
·			266		T_2	981/4	983		990	Amide III
63/3					W_1	961/2			945	C-CO stretch
63/3	124	7								
63/3 51/2	124			1240		951/2		954		R_4
34/4 63/3 51/2 92/2	124		192		T_2	923/2	926			C-CO stretch
63/3 51/2	124 111	1	192	1240 1132			926	954 836 762		

Table 2 (cont.)

Exp.	N-de	uterated Calc.	nylon	6 (cont.)	Exp.	N-de	euterate Calc.	d nylon	7 (cont.)
[9, 13]	A_1	B_2	$\boldsymbol{B_1}$	Assignment	[9]	A'	Caro.	A"	Assignment
	736		730	Amide IV		722		****	Amide IV
734/2		723		R_1				604	Amide VI
, -		604		Amide VI	493/3			502	Amide V
496/3		502		Amide V		508			
200/0	541	002		TIMIGO V		467		- }	
E10/0	041		513		49814			}	Skeletal bend
512/2	440		013		435/4	443		- 1	
442/2	440					337		~. <i>'</i>	
429/2			431	Skeletal bend				214	Amide VII
365/2	365					153		}	Skeletal bend
345/4			332			139		}	DROIDVAL DOLLA
294/2	298							134 _\	
•			263					125]	
220/3		217		Amide VII				83 }	Skeletal torsion
195/2			195					59	
170/2			165	1				52	
-10/2		126	200	ł				02,	
				l					
		97		Skeletal bend		1	N-deute	rated ny	rlon 8
		71		and torsion	Exp.		Calc.	•	
		61		1	[9]	A_1	B_2	B_1	Assignment
	53					-1		-1	
	53				1637/6	1630		1630	Amide I
		40		7	1001/0	1486		1486	Amide II
					-				
	N	-deutera	ted nv	lon 7		1478		1477	B_{7}
Exp.		Calc.				1474		1474	B_{6}
	A'		1″	A asimum ant		1471		1471	$B_{f 5}$
[9]	A.	- ₹	1	Assignment		1463		1463	B_4
					-	1451		1451	$B_{\mathbf{a}}$
632/6	1630			Amide I		1441		1441	$B_{\mathbf{a}}^{\mathbf{a}}$
	1487			Amide II	1420/2	1420		1420	\overline{B}_1^2
	1476				- 480 8	1381		1382	\widetilde{W}_{7}^{1}
				B_6					77
	1474			B_{5}		1372		1374	W_{6}
	1467			B_4		1366		1360	\overline{W}_{5}
	1454			B_3		1328		1335	W_4
	1442			B_2	1307/3		1308		T_3
421/2	1420			B_1			1306		T_3
374/2	1380			$W_{\mathbf{a}}$			1302		T_3 T_1 W_3
•	1373			W_{\bullet}		1294		1290	w.
355/4	1348			$\widetilde{\boldsymbol{W}}_{\bullet}$	1288/2		1288		$oldsymbol{r}$.
323/2	1314			w.	1253/2		1259		$\frac{T_4}{T_5}$
- 20 j M	1017	130	17	T_{\bullet}	-2001-	1249		1253	\widehat{w}
909/9		130		_m_1	1219/3	1270	1219	1200	
302/3				T_1 T_3		1208	1414		T_{ullet}
289/3		129		T 3	1211/2	1200		1004	W_1
262/2		126)A	T_4	330440		110-	1204	
	1260			W ₂	1164/2		1167		T_{6}
230/2		122	19	T_{5}^{-}				1128	S_1
219/2	1213			W_1	1124/2	1126			
168/2		116	36	T_6	1096/3	1109		1104	S_2
127/2	1125			S_1	•		1105		R_{η}
110/4		110)5	\tilde{R}_{s}		1068	-	1066	S_7
095/4	1105	***	. •	S_2		1064		1064	\tilde{s}_{\bullet}^{7}
~~~!				~ <u>1</u>		1036		1059	Ñ.
066/3	1065			8 .		1000			$S_3$
	1055			S	1000/0	1000		1036	$S_8$
	1036			<i>S</i> ₃	1022/3	1032			
021/4	1016			$S_4$		1009		993	$s_4$
973/2	980			Amide III	999/2		995		$R_{6}$
973/3		97	75	$R_{s}$	978/3	980			
937/2	935			C—CO stretch	978/2			974	Amide III
878/2		87	78	$R_{ullet}$	934/2	940		931	C-CO stretch
		79		$R_3$	911/3		903		$R_{5}$
793/2				7°8			828		<b>₽</b>
			14	$R_2$	828/2				$rac{R_4}{R_8}$
728/2		76	21	$R_1$	770/2		766		κ.

Table 2 (cont.)

	N-de		nylon	8 (cont.)	_	N-de	uterated nylo	n 11 (cont.)
Exp. [9]	$A_1$	Calc. $B_2$	$B_1$	Assignment	Exp. [11]	A'	Calc.	Assignment
	725		742	Amide IV	1162/2		1160	T ₁₀
		735		$R_{2}$	1129/2	1127		$\tilde{S}_1^{10}$
726/2		719		$R_1$	/-	1115		$\overset{\sim}{S_2}$
,-		604		Amide VI			1109	$\scriptstyle \scriptstyle $
494/3		502		Amide V		1070		
•						1068	1	$s_{\mathbf{a}}$
543/3	201		555	}		1064	- 1	
	501		400	1		1062	}	Skeletal stretch
	479		469	l., , , , ,		1048		
	466		383	Skeletal bend		1035	1	
	355		340	1		1099	1024	ъ
	249		258	j		1012	1024	$R_{\bullet}$
	220		214	<i>'</i>		968	}	Skeletal stretch
		213		Amide VII	975/2		,	Amaida TTT
		137	١	1		972	963	Amide III
		135			968/2	099	809	$R_8$
			122		934/2	933	000	C—CO stretch
			111		04010		898	$R_7$
		100		Skalatal hand	848/2		843	$R_{\bullet}$
		67		Skeletal bend and torsion	792/2		792	$\frac{R_{5}}{n}$
		49		and torsion	764/4		759	$R_4$
		44			741/2		735	$R_3$
		34				736		Amide IV
	33						723	$R_{\mathbf{g}}$
	32		- 1		723/2		718	$R_1^{}$
			•				604	Amide VI
					486/3		502	Amide V
	) T	3		I 11	- 541/3	554	1	
T7	N-	deuterat	ва пу	ion 11	498/3	502	1	
Exp.	41	Calc.		A• 4	441/3	445		
[9]	A'	A'		Assignment		408	Į	Skeletal bend
40014	1.000			A : 1 . Y		370	(	Data-order Dollar
632/6	1630			Amide I		311	ļ	
	1486			Amide II		246	•	
	1478			$B_{10}$		222	,	
	1476			$B_{0}$			214	Amide VII
	1474			$B_8$			144\	
	1473			$B_7$			143	
	1469			$\underline{B_6}$			119	
	1462			$B_{5}$			105	
	1453			$B_4$			90	Skeletal bend and
	1445			$B_3$			82 >	torsion
	1440			$B_2^{r}$		70	- 1	
420/2	1420			$B_1$		68	- 1	
	1384			$W_{10}$			58	
	1379			$W_{\bullet}$			30	
	1372			$W_{\mathbf{a}}$			28/	
	1366			$W_{7}$				
	1340			$W_{6}$			OTT CONTT	NET.
	1318			$W_{5}$	TO		CH,CONHO	ΣH ₈
		130	9	$T_{3}$	Exp.		Calc.	
		130	8	$T_{\bullet}$	[11]	A'	A"	Assignment
		130	5	$egin{array}{c} T_2 \ T_4 \end{array}$				
		130		$T_{-}$	1660/6	1662		Amide I
		129		$T_{\kappa}$	1569/6	1557		Amide II
	1286			₩ <b>4</b>	1471/4	1462		
288/2		128	4	$T_{6}$	/-			
256/3		126		$\tilde{T}_{7}^{6}$	1451/6		1465	$CH_3(NH)$ as bend
,•	1261	-20	-	$\hat{w}_s^7$	1458/6	1446	-200	
233/2		123	4	$T_8$	1441/6	- 220	1452	$CH_3(CO)$ as bend
,-	1229	- 20	-	$\hat{w}_{1}^{s}$	1414/2	1415	- 208	CH ₂ (NH) sym bend
199/2		120	4	<u>"</u> 2	1374/2	1378		CH ₂ (CO) sym bend
		120	-	<u></u>		1302		
,	1198			$W_1$	1300/2			Amide III

Table 2 (cont.)

E		CH,CONHO	CH ₃ (cont.)	Exp.		CD ₃ CONHC Calc.	CH ₃ (cont.)
Exp. [11]	A'	Calc. $A''$	Assignment	[11]	A'	A"	Assignment
1161/3	1163			715/3		699	Amide V
1101/0	1100	1134	CH ₃ (NH) rock	592/3	587	•••	Amide IV
1096/6	1105	1134	N CH stretch	537/3	ь.	536	Amide VI
•	1105	1054	N—CH _a stretch		404	000	ZIIIIQO VI
044/3	005	1054	CH ₃ (CO) rock	407/3		}	Skeletal bend
991/2	987		C—C stretch	288/3	282	100	A 1.3 . YTTT
883/2	884		CH _a (CO) rock	182/3		189	Amide VII
725/3		726	Amide V			140	CH ₃ torsion
628/2	634		Amide IV			104	$\mathrm{CD}_{8}$ torsion
600/3		597	Amide VI				
439/3 289/3	442 295	}	Skeletal bend			<del></del>	
192/3		195	Amide VII			CD,CONDO	CH.
•		147)		Exp.		Calc.	
		136	CH ₈ torsion	[11]	A'	A"	Assignment
		CH ₈ CONDC	CH ₈	1647/6	1634		Amide I
Exp.		alc.		1480/6	1488		Amide II
[1Ĭ]	A'	A''	Assignment	1452/6	-	1465	•
				,			
647/6	1648		Amide I		1451		CH ₃ as bend
485/6	1496		Amide II	1408/2	1407		CH, sym bend
471/4	1459		CH (ND) as band	1198/4	1200		
		1465	CH ₃ (ND) as bend	1100/4	1400	1133	CH ₃ rock
440/6		1452	OTT (OO) 1 1	110#/4	1100	1133	-
446/4	1439		$CH_3(CO)$ as bend	1125/4	1126	1045	N—CH ₃ stretch
406/2	1408		CH ₂ (ND) sym bend		1047	1045	CD ₃ as bend
372/2	1365		$CH_8(CO)$ sym bend		1044		CD ₃ sym bend
185/3	1186		-118(00) BJIII BOILD	976/4	968		Amide III
100/0	1100	1194	$CH_3(ND)$ rock	910/3		899	CD ₃ rock
100/0	1114	1134		861/3	857		C—C stretch
123/3	1114	1050	N—CH ₃ stretch	795/4	798		CD ₃ rock
045/3		1052	CH ₃ (CO) rock	588/3	583		Amide IV
000/2	993		-	•		559	Amide VI
965/3	967		Amide III	505/3		498	Amide V
872/2	872		C—C stretch	402/3	402		
		635	Amide VI	280/3	281	}	Skeletal bend
628/2	628		Amide IV		201	100	A : J - 3777
510/3		<b>504</b>	Amide V	173/3		189	Amide VII
439/3	439	1	•			140	CH ₃ torsion
292/3	294	}	Skeletal bend			103	CD ₃ torsion
189/3	-01	195	Amide VII			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
-0010		147)				CH,CONH	CD.
		136	CH ₃ torsion	Exp.	(	Calc.	3
		CD ₈ CONE	ICH ₃	[11]	A'	A"	Assignment
Exp		ile.		1847/8	1662		Amide I
[11]	A'	A"	Assignment	1647/6 1584/8			
0.4512	10-1	NF	A: 3. T	1564/6	1549		Amide II
647/6	1651		Amide I	1447/3	1446		CH ₃ as bend
567/6	1550		Amide II	1437/6	1600	1452	=
462/2	1460		CH, as bend	1373/2	1380		CH ₃ sym bend
446/6		1465	-	1302/2	1304		Amide III
416/2	1415		CH ₃ sym bend	1145/3	1144		N—CH ₃ stretch
326/2	1320		Amide III		1051	1059	CH ₃ rock
161/3	1165		CH wools		1030	1044	$CD_3$ as bend
•		1133	CH ₃ rock		1019		CD ₃ sym bend
120/3	1121		N-CH, stretch	968/4	967		C—C stretch
	1048	1046	CD, as bend	890/4		884	
	1039	2020	$CD_3$ sym bend		781	502	CD ₃ rock
871/4	865		C—C stretch	725/3		724	Amide V
~ · -/ =	500	908		606/4	610		Amide IV
007/2		avo	CD ₂ rock		210		
907/3 800/3	803		CD8 LOCK	600/3		595	Amide VI

Table 2 (cont.)

<b>77</b>	CH ₂ CONHCD ₃ (cont.)			***	CD ₂ CONHCD ₂ (cont.) Calc.		
Exp. [11]	A'	alc. A"	Assignment	Exp. [11]	A'	A"	Assignment
430/3	430 275	}	Skeletal bend	1027/3 979/3	1015 969		CD ₂ (NH) as bend CD ₂ (NH) sym bend
		181	Amide VII	911/3		916	CD ₂ (CO) rock
		144	CH, torsion	<b>82</b> 1/6	826		OD3(00) 100Z
		101	CD ₂ torsion	72010	740	874	CD _a (NH) rock
	CH.CONDCD.			750/6 716/3	746	698	Amide V
Exp.	C	ile.	•	57 <b>4</b> /3	570	000	Amide IV
[11]	A'	A"	Assignment	526/3	•	534	Amide VI
1040/0	1647		Amide I	394/3	392	1	Skeletal bend
1640/6 1480/6	1484		Amide II	266/3	264	<b>S</b>	
1432/4	1440		CH ₂ as bend			175	Amide VII
1473/6	7.5.40	1452	CH, as bend			1093	CD, torsion
1367/2	1365	- 202	CH, sym bend			965	•
1160/3	1167		N—CH, stretch				
	1065		Amide III				
		1056	CH, rock			CD,CONDO	m.
	1045		CD, as bend	Exp.		Calc.	
1041/3		1044	•		A'	A"	Assignment
	1009		CD ₃ sym bend	r3			***************************************
966/4	982		CH, rock				
	937		C—C stretch	100-10	1000		Amide I
773/3	777		CD ₂ rock	1635/6	1633 1468		Amide II
890/4		884	<del>-</del>	1473/2	1184		N—CH, stretch
00019	605	632	Amide VI Amide IV	1174/6 1110/6	1097		XI
606/3	000	503	Amide IV	1110,0	2001	1048	
516/4 428/3	428	303			1047		CD, bend,
	274	}	Skeletal bend		1046	1	C-C stretch,
		181	Amide VII			1045	and Amide III
		144	CH _s torsion	1010/4	1022	1	(strongly mixed)
		101	CD _s torsion	980/4	991	1	
				950/4	931	/	
	CD ₂ CONHCD ₃			912/3		910	CD _* (CO) rock
Exp.		alc.		815/4	825	079	
[11]	A'	A"	Assignment	74014	741	873	CD ₂ (ND) rock
104510	1850		Amide I	746/4 573/3	566		Amide IV
1645/6	1650 1540		Amide II	010/0	100	556	Amide VI
1555/6 1326/2	1323		Amide III	506/3		498	Amide V
1320/2	1149		N—CH _a stretch	396/3	390	•	
1098/4	1091		CD _s (CO) sym bend	268/3	263	}	Skeletal bend
2000, 2	1046		C—C stretch	•		175	Amide VII
		1048	$CD_3(NH)$ as bend			109 չ	CD _a torsion
	1046	1045	CD ₃ (CO) as bend			96}	AND WILLIAM

quite ambiguous since amide III contributes significantly to several bands in the  $CH_2$  wagging region. On the other hand, the previous notation, where we included the amide III band with the wagging sequence, was rather confusing. Further, we now denote the band at about 940 cm⁻¹ as C—C(=O) stretch instead of its previous inclusion with the S progression.

There are some frequencies which were not experimentally observed. Of greatest significance is the amide IV in polyamides, whose absence has for a long time been discussed by those studying the infrared spectra of polyamides. The present calculations show the somewhat surprising fact that this mode should lie in the 700 cm⁻¹

region, rather than in the 600 cm⁻¹ region where it was expected. In the former region it is masked by the strong amide V band, and in the deuterated molecules an ambiguity occurs as to whether some unpronounced shoulders in the vicinity of  $R_1$  may belong to the remnants of nondeuterated molecules or to a weak amide IV' band. No amide VI' band was observed; calculation places it at 604 cm⁻¹ in nylons and at 628 cm⁻¹ in N-methylacetamide. The bands  $R_{n-1}$  in nylons are masked by C—C stretching bands and could not be located with certainty. The dependence of these frequencies on force constants is somewhat similar to that of the 1045 cm⁻¹ band of nylon 66, and since the latter is well assigned, we can have some confidence in the calculated values of the former frequencies. No data for skeletal torsions (with the exception of amide VII), and for skeletal bends below 150 cm⁻¹, are available.

Acknowledgment—This research was supported by a grant from the National Science Foundation.