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A value-based deep reinforcement learning model with human
expertise in optimal treatment of sepsis
XiaoDan Wu1, RuiChang Li1✉, Zhen He2, TianZhi Yu3 and ChangQing Cheng 4✉

Deep Reinforcement Learning (DRL) has been increasingly attempted in assisting clinicians for real-time treatment of sepsis. While a
value function quantifies the performance of policies in such decision-making processes, most value-based DRL algorithms cannot
evaluate the target value function precisely and are not as safe as clinical experts. In this study, we propose a Weighted Dueling
Double Deep Q-Network with embedded human Expertise (WD3QNE). A target Q value function with adaptive dynamic weight is
designed to improve the estimate accuracy and human expertise in decision-making is leveraged. In addition, the random forest
algorithm is employed for feature selection to improve model interpretability. We test our algorithm against state-of-the-art value
function methods in terms of expected return, survival rate, action distribution and external validation. The results demonstrate that
WD3QNE obtains the highest survival rate of 97.81% in MIMIC-III dataset. Our proposed method is capable of providing reliable
treatment decisions with embedded clinician expertise.
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INTRODUCTION
Sepsis is a life-threatening syndrome triggered by a chain reaction
through the body to an infection. Absent timely intervention and
treatment could lead to tissue damage, metabolic dysfunction,
and acute organ failures1. Almost any infection, including COVID-
19, can lead to sepsis. Approximately 30% of patients diagnosed
with severe sepsis do not survive2. According to the international
sepsis guidelines, fluid resuscitation and vasopressors are often-
times administered to contain the infection, the dose of which
should be adjusted according to dynamic measurements of the
disease progression3,4. However, it remains a confounding quest
in clinical practice to decide the optimal solution and dose of fluid
and vasopressor therapy, particularly considering the individual
difference. There is a lack of tools for personalized real-time
decision support on sepsis treatment. The recent advances in
electronic medical records (EMR)5 have provided an unprece-
dented opportunity to capture the evolution of patient health
status and design cost-effective treatment plans6. Consequently,
data-driven and artificial intelligence (AI) approaches, including
supervised learning (SL)7–9 and reinforcement learning (RL)10–12,
have been extensively attempted to assist clinical decision
making13.
The dynamic treatment decision for sepsis is naturally a

problem of Markov Decision Process (MDP)14. Komorowski et al.
developed an RL approach based on the SARSA (State-Action-
Reward-State-Action) algorithm15 to provide personalized treat-
ment decisions for adult sepsis patients in intensive care unit
(ICU)16. Here, the action is referred to as the dose of intravenous
fluids and vasopressors, and the dynamic patient health status is
considered as the state, which can be inferred from the
physiological data. Yet, this method is only limited to a discrete
state space, not amenable to the continuously evolving physio-
logical status17. To address this limitation and avoid the curse of
dimensionality in Q learning, approximation of the Q value has
been extensively investigated in value-based deep reinforcement

learning (DRL) algorithms, such as Deep Q-Network (DQN)18,
Double Deep Q-Network (DDQN)19, Dueling Deep Q-Network
(Dueling DQN)20 and Dueling Double Deep Q-Network (D3QN)17.
Q value function elucidates the value to perform a given action in
a given state. Such a value for the next state after taking an action
is denoted as the target Q value, and an accurate estimation of the
target Q value is crucial to policy improvement. However, if the
estimation of the target Q value is inaccurate, overestimation or
underestimation is likely to occur. For instance, the Dueling DQN
structure follows the maximum target values and uses the same
parameters in main network and target network to select and
evaluate an action, which tends to the overestimation issue21. The
D3QN structure possesses two neural networks with two separate
sets of weights: the main network selects the optimal action, and
then the target network computes the corresponding Q value for
the action. We note that D3QN structure often selects sub-optimal
actions for the target network, which tends to underestimate the
target Q value22,23.
In spite of the recent leap forward in AI-boosted smart

healthcare, it remains a challenging task for AI to outperform
experienced clinicians in the diagnosis and treatment for a variety
of diseases, including sepsis. Indeed, AI-derived systems cannot
replace the physician in the clinical management of sepsis. The
blind trust of AI algorithms in decision making for healthcare
management without clinician supervision has led to increased
medical risks and safety issues24,25. Remarkably, AI or data-driven
models suffer from biases in data and model building, and
consequently may provoke treatment solutions that are against
the principle of clinic practices. To this end, hybrid systems of SL
and RL that capitalize on the availability of large-scale EMR have
been proposed, which are capable of providing reliable medical
recommendations26. Nevertheless, the usage of SL not only
increases the computational complexity but also limits the self-
adaptiveness of the RL decision in long-term reward27. In addition,
most existing studies on sepsis treatment hinge on a large
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number of features extracted from EMR, including blood glucose
and white blood cell count, which could further impinge on the
performance and interpretability of AI models. Thus, eliminating
redundancy and singling out the most representative features are
vital for RL agent to make precise perceptions. Therefore, we aim
to integrate a DRL model with human expertise and sort out a
critical subset of the clinical features in sepsis towards reliable and
more clinically interpretable decision making for sepsis treatment.
More specifically, we propose a Weighted Dueling Double Deep

Q-Network with embedded human Expertise (WD3QNE) to aid
real-time sepsis treatment. The algorithm architecture is shown in
Fig. 1. Structure shows feature selection, trajectory, and agent
model training. The innovations boil down as follows: (1) We
develop a novel target Q value function with adaptive dynamic
weight, which improves the accuracy of target Q value estimation
and results in a higher-precision reinforcement learning model.
The method makes a trade-off between Dueling DQN over-
estimation and D3QN underestimation in value estimation. It is
worth noting that this method can be easily generalized to other
value-based DRL methods. (2) An AI platform is constructed that

integrates human expertise with the DRL model: the human
expertise provides guidance for AI and ensures higher efficiency
and reliability in sepsis treatment. We offer novel insights for
incorporating human expertise with DRL. (3) The important
features of clinical relevance for septic patients are selected by a
random forest algorithm. We eliminate statistical redundancy
among those commonly used clinical and biological features and
enhance the clinical interpretability of DRL. We also compare
WD3QNE with other widely used value-based DRL methods,
including DQN, DDQN, D3QN, and WD3QN, in terms of the
expected return, survival rate and action distribution treatment for
sepsis using the MIMIC-III dataset28. We demonstrate that the
WD3QNE policy outperforms human clinicians and other value-
based DRL methods and achieves the highest survival rate. We
further compare the drug intervention distribution of a pure AI
and AI with embedded human expertise. In addition, to explore
the generality of the target Q value function with adaptive
dynamic weight as proposed in this paper, we use OpenAI Gym
LunarLander-v2 environments29 to validate our model’s perfor-
mance (see Supplementary Note 1).

Fig. 1 Architecture of WD3QNE algorithm. a The dynamic treatment process of the WD3QNE agent for sepsis. The continuous state space
and discrete action space are then constructed. The DRL agent takes actions based on the current state and clinician expertise. b WD3QNE
algorithm structure.
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RESULTS
Q value function
In this study, we utilize a dueling deep neural network framework
for both the main network and the target network to approximate
the Q function, Q St; atð Þ. The dueling network structure has two
streams to separate out the estimate of state value V and the
advantage A for each action30 as Q St; atð Þ ¼ V Stð Þ þ A St; atð Þ. The
dueling architecture learns the states that are valuable or not,
without having to learn the value of each action for each state.
Here, the state St represents the health status of the patients and
the action at is the prescribed dose of intravenous fluids and
vasopressors at time t. The agent takes an action at in current state
St and transitions to the next state St+1. In Dueling DQN, the target
Q values are derived from the target network under the state Stþ1
at time t + 1. The maximum Q value is then selected, which tends
to result in overestimation30. In D3QN, the action is first
determined by the main network, and then the target Q value is
obtained from the target network, which tends to result in
underestimation31. Hence, the target Q value estimation in both
Dueling DQN and D3QN can be inaccurate, largely owing to the
uncertainty of the action in the next state. To find more accurate
target Q value estimation, we design a novel target Q value
function with adaptive dynamic weight p (Eq. (1)) to realize a
trade-off between Dueling DQN and D3QN to derive the optimal
policy:

Q Stþ1; atþ1ð Þ ¼ p ´ max
atþ1

Q Stþ1; atþ1;ω�ð Þ
þ 1� pð Þ ´QðStþ1; argmax

atþ1
Q Stþ1; atþ1;ωð Þ;ω�Þ (1)

where ω are the parameters of the main network, and ω− are the
parameters of the target network. The adaptive dynamic weight p
(Eq. (2)) is calculated as:

p ¼ φatþ1

φatþ1 þ σatþ1
(2)

Here, φatþ1 is the maximum target Q value divided by the
summation of the target Q value under all possible actions
(Eq. (3)), and the target Q values are obtained from the Dueling
DQN method. Similarly, the dynamic parameter σatþ1 is obtained
from the D3QN method (Eq. (4)).

φatþ1 ¼
max
atþ1

Q Stþ1; atþ1;ω�ð ÞP
atþ1 Q Stþ1; atþ1;ω�ð Þ

(3)

σatþ1 ¼
QðStþ1; argmax

atþ1
Q Stþ1; atþ1;ωð Þ;ω�Þ

P
atþ1 QðStþ1; argmax

atþ1
Q Stþ1; atþ1;ωð Þ;ω�Þ (4)

We use the adaptive dynamic weight to seek the balance of the
estimated target Q values of the two methods, so that the
approximate value of target Q is closer to the unbiased estimator.
The Q value function Q St; atð Þ is the expected cumulative reward
from taking a certain action at in state St following a policy. In
order to estimate the Q value of current state St, we add the
reward for performing an action at to the target Q value
Q Stþ1; atþ1ð Þ. Finally, the Q value function (Eq. (5)) is obtained.

Q St; atð Þ ¼ r þ γQ Stþ1; atþ1ð Þ (5)

where r is the reward after performing an action in the state St (see
Reward function), and γ is the discount factor.
Additionally, the personalized treatment of sepsis is a complex

puzzle for clinical management14. It is crucial to ensure the reliability
and safety of therapeutic interventions under personalized treat-
ment planning. Nonetheless, a DRL agent only interacts with the
environment to seek the optimal actions with high reward,
regardless of the potential risks. It has been noted that certain

actions induced by AI could cause high risk and lead to contentious
medical solutions26, which has significantly stymied the broad
adoption of AI in healthcare management. On the other front,
human experts maintain an edge over AI in abstract reasoning
under ambiguous conditions. Thus, a trend of keeping human in the
loop in critical decision making has been emphasized in a host of
industries domains. Here, we guide the DRL agent to perform
actions by incorporating human expertise. Raghu et al. found that
for sepsis patients with mild symptoms, the more similar a pure AI
policy is to a clinician’s policy, the greater the patient’s survival rate.
Thus, human clinicians are more reliable than pure RL agents in this
scenario, which is partially owing to the fact that human clinicians
are more cautious about other issues including individualized health
status and drug interactions. Interestingly, such disparity does not
exist for patients with severe symptoms. For patients with severe
symptoms, the optimal treatment strategy is still in the infancy
stage31, and not too much human expertise can be utilized for
comparison or to guide the AI. Komorowski et al. analyzed the drug
dose distribution, and found that AI policy tended to give high
doses of the vasopressor32. Particularly, in the latest guideline on
sepsis management, an initial target value of 65mm Hg for the
mean-arterial-pressure (MAP) has been suggested in lieu of 72.6mm
Hg as previously recommended3. That said, a high dose of
vasopressors is no longer favored in the initial stage. Furthermore,
Raghu et al. divided the Sequential Organ Failure Assessment (SOFA)
scores into three levels (<5, 5–15, and >15) to evaluate model
performance for different severity subcohorts17. Here, we employ
the human clinician expertise at the lowest SOFA level and along
with the patient outcome to estimate the target Q value function
and guide the agent. We propose the Q value function of clinician
expertise (Eq. (6)):

Qclin St; a
clin
t

� � ¼ r þ γQclin Stþ1; aclintþ1;ω
�� �

(6)

Accordingly, if SOFA is < 5, we use the Q value function of
clinician expertise, otherwise the novel Q value function is
leveraged. The Q value function of WD3QNE algorithm is given by:

QWD3QNE ¼ Qclin St; aclint

� �
Q St; atð Þ

(
if SOFA<5

otherwise
(7)

Survival rate and safety rate
We first calculate the expected return based on the double robust
off-policy value evaluation using the MIMIC-III dataset28. We
choose several value-based DRL algorithms for comparison with
our WD3QNE: DQN22 combines Q learning with a deep neural
network; DDQN23 is a variant of deep Q learning with two neural
networks, main network and target network; D3QN31 is DDQN
combined with Dueling DQN; Weighted Dueling Double Deep
Q-Network (WD3QN) introduces a target Q value function with
adaptive dynamic weight into D3QN, but does not use the human
expertise. Compared to other value-based DRL, the target Q value
function is additionally adopted to revise the Q value function in
WD3QN. We divide the MIMIC-III dataset into training set (80%),
validation set (10%) and test set (10%). Experimental studies are
conducted and the algorithms are run 30 times.
We obtain the survival rate according to the return value (see

Methods). The expected return and the survival rate on the test
dataset are shown in Table 1. The results show that the AI policy
has a higher survival rate than the human clinician’s policy. The
feature selection process improves the performance of algorithms,
because all models with feature selection (37 features) achieve
better performance than the same type of models without feature
selection (45 features). With 37 features, it is noteworthy that
the WD3QNE obtains the highest survival rate of 97.81% with the
lowest standard deviation of 0.0012. The results showed that the
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survival rate of the human clinician’s policy is 83.26% with
expected return 14.11. The survival rate of D3QN policy is 96.48%
with expected return 22.27. The survival rate of WD3QN policy is
97.49% with expected return 23.08. Overall, to human clinicians,
WD3QNE survival rate is improved survival by 17.5%. The
WD3QNE survival rate is also an improvement of 1.38% compared
to D3QN and 0.32% compared to WD3QN.
Furthermore, in Fig. 2, we present the expected return of

different algorithms at each learning epoch in the validation set.
The WD3QNE expected return values converge and stabilize
around reward value 24. Our proposed method outperforms other
baseline methods. It is noteworthy that WD3QNE with human
expertise achieved better performance than WD3QN without
human expertise. Additionally, although the DQN algorithm has
the fastest convergence in early period, it converges to the local
optimal value.

Action distribution
For further interpretation, we demonstrate the optimal policies
derived from the three representative methods (human clinician,

D3QN and WD3QNE). The action distribution of the clinician policy
is given in the MIMIC-III set. As shown in Fig. 3, the clinician uses
low doses of vasopressors, while D3QN uses higher doses of
vasopressors than the clinician. Obviously, the AI policy is very
different from that of the clinician. If the sepsis is mild, when we
introduce human expertise to the AI agent, we find that the
WD3QNE policy uses lower doses of vasopressor than the pure AI
policy. Although vasopressors are commonly used in the ICU to
increase MAP, most sepsis patients do not need high doses of
vasopressors3. The WD3QNE model provides personalized treat-
ment decisions based on the patient’s dynamic response.

Sensitivity analysis
To analyze the effect of patient information coded as discrete time
series into different hours, we perform a sensitivity analysis for the
binning intervals of 1 h, 2 h, 4 h, 6 h, and 8 h. As shown in Table 2,
the maximum records 1,104,929 and minimum records 138,116 in
the training set are used, and therefore we set the batch size of
patients to 32 and 256 in training respectively. Specially, to ensure
the fairness of the test set, we included 100 patients in the test data
and each patient has 5 samples for different binning intervals. The
test set has 9768 records. The performance results of different
binning intervals at each learning epoch are shown in Fig. 4. We can
see that the smaller intervals obtain larger expected value and faster
convergence in test set, which captures finer state changes. The
binning intervals of 1 h and 2 h has a lot of missing values and
therefore can result in overtraining. In total, the more frequent state
data make the model better in the case of fewer missing values.

External validation
We conduct an external validation using the eICU Research
Institute Database (eRI) from Philips33. A total of 1500 sepsis
patients with fewer missing values are select. Using the methods
suggested by Komorowski32, hospital mortality is considered as
the final outcome in this cohort. We extract the 24,279 records,
which spans the time interval of 36 h preceding and 72 h after the

Table 1. Off-policy evaluation performance of baselines in the test set.

Methods Expected return Survival rate (%)

Clinician 14.11 83.26

DQN-45 20.37 ± 0.32 88.29 ± 0.15

DDQN-45 20.17 ± 0.45 88.33 ± 0.26

D3QN-45 21.52 ± 0.34 89.35 ± 0.41

DQN-37 20.92 ± 0.21 94.29 ± 0.46

DDQN-37 20.20 ± 0.44 93.59 ± 0.19

D3QN-37 22.27 ± 0.30 96.48 ± 0.56

WD3QN-37 23.08 ± 0.19 97.49 ± 0.14

WD3QNE-37 23.63 ± 0.15 97.81 ± 0.12

Fig. 2 Expected return of different algorithms at each learning epoch. The value-based DRL algorithms is run for 100 epochs in the
validation set with feature selection (37 observation features) and without feature selection (45 observation features). Number 37 means 37
observation features that we select with the random forest algorithm. Number 45 means 45 observation features. Although the DQN
algorithm converges fast in the beginning, it exhibits premature convergence.
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estimated onset of sepsis. The off-policy evaluation performance
in the eRI dataset is shown in Table 3. The results show that the
survival rate of WD3QNE policy is 95.83% with expected return
21.81. The WD3QNE with human expertise achieve better
performance than other algorithms.

Bellman error tracking
For insightful analysis about how the algorithm behaves, we track
the Bellman error through training in Fig. 5. The result shows that
the Bellman error will gradually decrease with the iteration and
finally stabilize. Similarly, we find that p varies between 0 and 1. At
last, p is close to 0.5. The target Q value of WD3QN value is
between the target Q value of Dueling DQN and the target Q
value of D3QN.

DISCUSSION
We proposed the WD3QNE algorithm with a novel value function
and integration of clinician expertise of human clinicians for septic
patients in the ICU. As shown in Table 1 and Fig. 2, the WD3QNE
algorithm outperforms the conventional DRL approaches. Com-
pared to the human clinician and pure AI algorithm, our model
learns an optimal policy and notches reliable treatment action
distribution in Fig. 3.
To address the bias issue in Q value estimation, we design a

target Q value function with adaptive dynamic weight (WD3QN) in
the WD3QNE algorithm. In Table 1, we demonstrate that WD3QN
method achieves a higher survival rate (97.49%) compared to
D3QN (96.48%), along with significantly lower variability. This is
attributed to the fact our target Q value function finds a trade-off
between the Dueling DQN overestimation and the D3QN under-
estimation. Compared with other DRL methods22,23,28, this Q value
function estimates the Q value of the next state more precisely
without incurring additional algorithm complexity in this study.
We further note that the WD3QN framework can be easily
adopted to other problems. As demonstrated in Supplementary
Note 1, it registers high performance with respect to optimization
results and operation time.
In sepsis treatment, AI can be particularly beneficial in assisting

decision-making processes. However, DRL agents tend to seek the
maximal rewards via aggressive strategies, incurring extra risks for
patients in clinical practice. Moreover, it is still controversial,
ethically and practically on how much we can follow the
guidelines from AI, particularly when the AI solution deviates
substantially from the human clinician’s policy. As aforemen-
tioned, it has been recognized that AI policy prescribes overdose

Fig. 3 Action distribution for the test set. a Action distribution of
the human clinician policy. b Action distribution of the DQ3N policy
with 37 observation features. c Action distribution of the WD3QNE
policy with 37 observation features. We aggregate all actions
selected over all timesteps for the five dose bins of both
medications. 0 denotes no drug given. We discretize the action
space into per-drug quartiles. Action counts represent the utilized
times of the drug dose. We can see that the human clinician policies
tend to use low doses of vasopressors. The pure AI clinician policies
(D3QN) tend to use high doses of vasopressors. The AI clinician
policies with embedded human expertise (WD3QNE) tend to use
lower doses of vasopressors than D3QN and higher doses of
vasopressors than the clinician.

Table 2. Records of different binning intervals.

Hour bins Batch size Records of training set Records of test set

1 h 32 1,104,929 9768

2 h 64 552,464 9768

4 h 128 276,232 9768

6 h 192 184,153 9768

8 h 256 138,116 9768
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of vasopressors in sepsis treratment17. In such cases, some may
argue that it is necessary to bring in the expertise of human
clinicians to help AI make comprehensive judgments for risk
control. Human expertise tends to avoid so-called “common-sense
mistakes” such as overdosing as well as be more cautious about
other issues including side-effects and drug interactions, which
are vital towards elevating survival rate. However, such abstract

knowledge or expertise is largely missing in existing AI
approaches. In contrast to SL deep neural network models27,34,
the focus of our study is to set human expertise as constraints on
feasible solutions for AI algorithms. We put to test that with such
constraints, the proposed WD3QNE model prescribes reasonable
doses of vasopressors (lower than those from alternative models
without human expertise) for mild sepsis, as shown in Fig. 3. The

Fig. 4 Performance results of different binning intervals at each learning epoch. The patient trajectories are discretized into different
binning intervals, 1 h, 2 h, 4 h, 6 h, and 8 h. a The loss value of different binning intervals in training. b The expected return of different binning
intervals in the training test.
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algorithm with human expertise converges faster than other
approaches without such human expertise, owing to the reduced
search space for the optimization problem. Overall, the DRL
algorithm with clinician expertise has achieved excellent perfor-
mance by integrating the advantages of both AI and human
clinicians, thus optimizing the allocation of medical resources as
well as advancing AI technology in medical applications.
In addition, the high-dimensional ICU data on sepsis and septic

shock are challenging for DRL to address. Komorowski et al. used a
random forest35 classification model to rank the importance of the
features. Their studies suggested the presence of some redundant
features, so eliminating those features is also an important step in
further training our algorithm for learning the patterns of disease.
Therefore, we used a random forest as a feature selection method
to narrow our feature set from the original 45 features, as
suggested by Raghu et al.31. In total 37 features were selected as
the final subset to achieve the best performance as shown in
Table 1 and Fig. 2.
One limitation of this study is that our reward function only

considered survival rate and SOFA score. The intermediate
rewards and final rewards are essential components of RL
algorithm. We would like our reward function to capture changes
in and clinical significance of organ function of patients accurately.
Therefore, in future studies, we will further collect treatment data
on sepsis and expert advice to design a better reward structure.
Additionally, collecting large amounts of data from the real world
or simulator, the agent can greatly reduce sample efficiency and
lead to unexpected behavior. We use historical data to learn the

rules and teach RL agent to complete the tasks. Usually, the
historical data are time series trajectory of human behavior. RL
agent learns the optimal policy at a state from different clinicians
and extracts implicit knowledge from a large offline data set. The
agent can cause extrapolation errors from out-of-distribution
actions and is not exploring. A lot of offline data of human
behavior or a suitable regularization item of offline RL are needed.
We will investigate the offline RL algorithmic in sepsis treatment
problem in our future work. In the actual treatment process,
doctors should formulate treatment schedules according to the
physical or emotional needs of patients. AI-integrated treatment
methods should thus also consider personalized needs of the
doctor or the patient, such as minimal cost, minimal side effects
and minimum ICU stay. Moreover, as we have demonstrated in
this study, the inclusion of human expertise in the case of
SOFA < 5 improves the survival rate. A full-scale integration of
human expertise (e.g., drug interaction, side effect and common
sense) in the decision making loop will be further investigated.

METHODS
Dataset
We use the dataset from the Multiparameter Intelligent Monitor-
ing in Intensive Care (MIMIC)-III v1.4 database28, which is a de-
identified database of 61,532 admissions to the intensive care unit
from 2001 to 2012 from the Beth Israel Deaconess Medical Center
in Boston, Massachusetts, USA.
We exclude patients whose treatment was withdrawn or had

missing records over 24 h. We select 276,232 records from 17,083
adults with SOFA greater than or equal to 2 according to the latest
Sepsis definite-Sepsis 3.036. As in previous studies, we use 45
physiological feature variables, including demographics, vital signs
and lab values shown in Tables 4 and 5. In training, patient data
and interventions are recorded every 4 h. We use 80 h of patient
records from up to 24 h preceding until 56 h following the
estimated onset of sepsis. As a result, the period T= 20. In the
external validation, the maximum period T= 80 from the cohort
monitored every hour. The outcome is 90-day mortality37.

Table 3. Off-policy evaluation performance of baselines in the eRI set.

Methods Expected return Survival rate (%)

DQN-37 19.82 93.44

DDQN-37 19.94 93.57

D3QN-37 20.74 94.27

WD3QN-37 21.13 94.62

WD3QNE-37 21.81 95.83

Fig. 5 Bellman error as a function of epochs. Visualization of Bellman error evolution. The WD3QN is shown in red. The Dueling DQN is
shown in blue while the D3QN is shown in orange.
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Feature selection
Because the ICU observation data have many redundant features, the
algorithm is more likely to suffer the curse of dimensionality38.
Feature selection is a vital dimension reduction method for

high-dimensional data39. Here, we employ a random forest model
to select the vital features35. The random forest is an ensemble
classifier composed of multiple decision trees. We randomly sample
data by bootstrapping with resampling. Multiple decision trees are
constructed for each resampling by the random splitting technique.
The final prediction results are obtained through voting. The random
forest has a high tolerance for outlier and noise. More importantly,
the variable importance of each characteristic variable can be given.
We employ the Out-Of-Bag (OOB)40 to measure the importance Gi of
features Xi (Eq. (8)):

Gi ¼ 1
B

XB
j¼1

Dj � Dji

�� �� (8)

where B indicates the number of samples. i ¼ 1; 2; ¼ ;N is the ith

feature. Dj indicates the number of correct classifications by OOB,
and Dji indicates the number of correct classifications of samples
after perturbation.
First, the importance scores are used for ranking all features.

Second, the sequential backward search method is employed. The
classification accuracy (Acc) is calculated with death as the label. Each
time remove the least important feature with the lowest importance
score from the feature set. Finally, we obtain 37 observation features
with the highest classification accuracy, which will be used as the
input of feature perception (see Fig. 6 for the ranking).

State space and action space
Continuous state space is more sensitive to the subtle change
embedded in the physiological data41. The state space is the 37
observed features consisting of vital signs and personal informa-
tion after selecting features. We combine the observed states
excluding the SOFA score into a state space as inputs to networks.
The SOFA score is used as an intermediate reward in training.
Additionally, we use a combination of intravenous (IV) fluid and

Table 4. Demographics of sepsis cohort.

Category Feature (Mean, SD) Feature (Mean, SD) Feature (Mean, SD)

Demographics All patients 17,083 Survivors 13,855 Non-survivors 3,228

Male (N, %) 9,604 (56.2%) Race [W, B, A, L, Age 64.4 (17.1)

Weight 83.17 (24.6) O]

Vital signs SOFA 6.3 (3.4) SIRS 1.62 (1.04) GCS 12.58 (3.43)

HR 87 (16.7) SBP 119 (20.3) MBP 78.2 (13.4)

DBP 57.1 (13.3) Shock Index 0.74 (0.19) SpO2(%) 96.9 (2.65)

Temperature (°C) 36.9 (2.02)

Lab values Potassium 4.07 (0.55) Sodium 138 (4.91) Chloride 104 (6.27)

Glucose 5.7 (1.1) BUN 4.7 (2.3) Creatinine 0.78 (0.23)

Magnesium 1.11 (0.14) Calcium 8.3 (0.79) PaCO2 41.8 (10.7)

SGOT 38.2 (12.6) TB 10 (2.99) WBC 8.2 (2.2)

Platelets 224 (118) PTT 31 (6.44) PT 16 (6.64)

INR 1.5 (0.82) PH 7.3 (0.07) PaO2/FiO2 248 (107)

PaO2 99 (23.5) HCO3 24 (5.06) AL 2.05 (1.68)

ArterialBE 0.33 (5.0) RR 20 (5.18) FiO2 0.45 (0.18)

SGPT 31 (21.5) HGB 10.2 (1.73)

Fluid balance Total input 5783 (4802) Total output 4071 (4306) 4 Hourly output 387 (369)

CB 1690 (1333)

Race: White, Black, Asian, Latino, Others; SOFA Sequential Organ Failure Assessment, SIRS Systemic Inflammatory Response Syndrome, GCS Glasgow Coma
Scale, HR Heart Rate, SBP Systolic Blood Pressure, MBP Mean Blood Pressure, DBP Diastolic Blood Pressure, BUN Blood Urea Nitrogen, SGOT Serum Glutamic-
Oxaloacetic Transaminase, SGPT Serum Glutamic Pyruvic Transaminase, TB Total Bilirubin, WBC White Blood Cells Count, PTT Partial Thromboplastin Time, PT
Prothrombin Time, INR International Normalized Ratio, PH Arterial Potential of Hydrogen, PaO2/FiO2 PaO2/FiO2 Ratio, PaO2 Partial Pressure of O2, HCO3

Bicarbonate, AL Arterial Lactate, ArterialBE Arterial Base Excess, RR Respiratory Rate, FiO2 Fraction of Inspiration O2, SGPT Serum Glutamic Pyruvic Transaminase,
HGB Hemoglobin, CB Cumulated Balance.

Table 5. WD3QNE Algorithm.

Input: Electronic records X  x1; x2; ¼ ; xj , Action A, M,N,γ,βs,βT,T

Output: Neural network weight ω*

1: Initialize m= 1, n= 1 and random main network weights ω, target
network weights ω-

2: Compute state reward r according to formula (9)

3: Construct treatment trajectories
D fstate St; action at ; reward rg, t ¼ 1; ¼ ; T

4: while m <M do

5: for n < N do

6: Select trajectories St ; at ; r; Stþ1; atþ1f g  D

7: Compute target Q value QWD3QNE ;Qclin;QðStþ1Þ according to Eqs.
(1)–(7)

8: Compute Q value QðSt; atÞ
9: Compute the total loss L for the batch n using Huber loss

10: Perform a gradient descent step ωnþ1 ¼ ωn � δ∇ωL

11: if n% 30= 0 then

12: Update target Q net ω� ¼ ωnþ1

13: end if

14: end for

15: Set m=m+1

16: end while

17: Return ω*=ωm
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vasopressor (VP) as the intervention action space for sepsis. The
action takes place every four hours. We define a 5 × 5 action
space17 for IV and VP. Except for zero doses of medicines as bin 0,
we discretize the action space into per-drug quartiles and convert
each drug at every timestep into an integer representing its
quartile bin.

Reward function
The reward function provides a flexible indicator to promote or
punish specific actions of agents. The agent performs an action at
in state St to reach the next state St+1 and receives the reward r.
We evaluate agents by associating reward with the target Q value
function. Because only the patient’s survival is concerned, the
reward is observed after a long sequence of decisions. We also
apply intermediate rewards and final rewards in the form of SOFA
change and survival after 90 days respectively26. SOFA represents
the evidence of organ dysfunction and has been recommended
by experts as a screening tool for sepsis36. Then we define the
reward r as (Eq. (9)):

r ¼ βs ´ SOFAt � SOFAtþ1ð Þ
δ ´ βT

t<T

t ¼ T

�
(9)

where δ means patient survival 1 or death -1. βT is a final reward
value 24 and βs is a reward parameter.

Dueling net architecture
Our paper adopts an off-policy reinforcement learning method
based on value function. DQN, DDQN, and D3QN are the popular
methods for off-policy learning17–19. The goal of those methods is
to maximize the expected return. The value function and state-
action value function are defined as VπðStÞ ¼ E½Q St; atð Þ; π� and
QπðSt; atÞ ¼ E½rjSt ¼ S; at ¼ a; π�. For instance DQN, the optimal Q
function satisfies the Bellman equation: Q�ðSt; atÞ ¼ rþ
γE½max

atþ1
Q Stþ1; atþ1;ω�ð Þ�. In the sepsis environment, treatment

effects rely on both the patient’s observed state and the doctor’s
different intervention action. Thus, we use the dueling net
architecture30 which maintains separate value and advantage
functions: Qπ St; atð Þ ¼ Vπ St; atð Þ þ ½Aπ St; atð Þ � 1

jAj
P

a0t
Aπ St; a0t

� ��.
V is the value of the patient state and A is the advantage of
prescription according to the specific policy π.

Deep neural network
The neural network includes the input layer, the hidden layers with
256-dimensional fully connected layer, the hidden layers with 128-
dimensional fully connected layer, the streams layer, and the output
layer. All hidden layers are activated by rectified linear units (ReLUs).
Dueling neural network parameters are updated by gradient

descent according to Q value function shown in Eq. (7). In our
paper, we use the Huber loss function21. This loss function combines
the mean squared error function and the absolute value function. It
divides the error into three segments. Between -1 and 1 use the
mean square error (MSE), otherwise use absolute value. Putting all
the aforementioned components together, the WD3QNE algorithm
is provided in pseudocode WD3QNE Algorithm.

Off-policy evaluation
In experiments, we use the intermediate reward parameter
βs= 0.6 and the terminal reward parameter βT= 24, following
the setting in existing works26. Specifically, the terminal reward is
24 if the patient survives, otherwise -24. The Q learning rate is
0.0001. We use the Python3.8 environment and PyTorch frame-
work. All computations were performed on a PC equipped with a
3.30 GHz Intel Core i7-11370H CPU and 16 G RAM.
In model evaluation, the value of a newly learned AI policy is

evaluated using trajectories of health status generated by another
policy (the human clinicians). We employ an off-policy evaluation
to evaluate the performance of each algorithm. In this paper, we
use the double robust off-policy value evaluation42. The method
calculates the unbiased estimator of strategies evaluated under
each trajectory in Eq. (10) which combines importance sampling
(IS) and approximate Markov decision model.

Vtþ1 ¼ V̂ Stð Þ þ ρt r þ γVt � Q̂ St ;atð Þ
� �

(10)

where ρ denotes the importance ratio of AI policy π1 and clinician
policy π0: ρ ¼ π1=π0. V̂ Stð Þ is evaluation value. Q̂ðSt ;atÞ is the
expected return on the action a taken in the state St. Jiang et al.
confirmed the reward r and the importance ratio ρ are
independent42. Hence the expected return V under unbiased
estimation is obtained.
To further evaluate the policy survival rate, we apply an on-

policy SARSA reinforcement learning algorithm (Q St; atð Þ  
Q St; atð Þ þ α r þ γQ Stþ1; atþ1ð Þ � Q St; atð Þð Þ to establish the rela-
tionship between expected return and survival rate29. First, the
expected return value V is calculated. Then, we calculate the
average survival rate based on the return value. The survival
formula26 Eq. (11) is shown below:

S Qið Þ ¼ surVi
talVi

(11)

where surVi is the number of survivors and talVi is the total number
of people given the expected return Vi. Vi is an integer range of V
and Vt 2 Vi . The relationship between expected return and
survival rate is shown in Fig. 7. The survival rate is positively
correlated with the expected return for 45 and 37 observation
features. We can see that the survival rate becomes greater as the
expected return get increases.

Fig. 6 Feature importance score. We calculate the classification accuracy with death as the label for different numbers of features. The 37
features (variables) selected with the highest accuracy are displayed. The glossary of vital signs and lab values is provided in Table 4.
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Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
The open-source MIMIC-III data used in this present study can be retrieved from
https://physionet.org/content/mimiciii/1.4/.

Fig. 7 The relationship between expected return and survival rate. a The relationship between expected return and survival rate for 45
observation features. b The relationship between expected return and survival rate for 37 observation features. The relationship learned from
observational data and actions taken by actual clinicians in the MIMIC-III dataset.
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CODE AVAILABILITY
The WD3QNE algorithm is implemented in the dueling deep Q network framework
developed by the authors. Code and data are available at GitHub https://github.com/
CaryLi666/ID3QNE-algorithm.
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