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A VALUE FOR n-PERSON GAMES

L. S. Shapley

1. Introduction.

At the foundation of the theory of games is the assumption that the players in
a game can evaluate, in their utility scales, every "prospect” that might arise as
a result of a play. In attempting to apply the theory to any field, one would nor-
mally expect to be permitted to include, in the class of "prospects", the prospect
of having to play a game. The possibility of evaluating gemes is therefore of
critical importance. So long as the theory 1s unable to assign values to the games
typically found in applicaticn, only relatively simple situations - where gemes do
not depend on other games - will be susceptidle to analysis and solution.

In the finite theory of von Neumann and Morgenstern® difficulty in evaluation
persists for the "essential" games, and for only those. In this note we deduce a
value for the "essential" case and examine a number of its elementary properties.
We proceed from a set of three axioms, having simple intultive interpretations,
which suffice to determine the value uniquely.

Our present work, though mathematically self-contained, is founded conceptually
on the von Neumann-Morgenstern theory as far as their introduction of characteristic
functions. We thereby inherit certain important underlying assumptions: (a) that
utility is objective and transferable; (b) that games are cooperative affairs; (c)
that games, granting (a) and (b), are adequately represented by their characteristic
functions. However, we are not committed to the assumptions regariing rationsl

behevior embodied in the von Neumann-Morgenstern notion of "solution".

1 Reference [1] et the end of this paper. Examples of Infinite games without velues
may be found in [2], pages 58-9, and in [ 3], page 110. See also Karlin [2],
pages 152-3,
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We shall think of a "game" as a set of rules with specified players in the
playing positions. The rules alone describe what we shall call an "abstract game".
Abstract games are played by roles - such as "dealer", or "visiting team" - rather
than players external to the game. The theory of games deels mainly with abstract
gemes® . The distinction will be useful in enabling us to staté in a precise way

that the value of a "game" depends only on its abstract properties. (Axiom 1 below).

2. Definitions.

Let U denote the universe of players, and define a geme to be any superaddi=-

tive set-function v from the subsets of U to the real numbers, thus:

(1) v§) =0,

(2) v(S) >v(SNT) + v(S - T) (111 s, TCU) .
A carrier of v 1is any set NCU with
(3) v(S) = v(N N S) (all SCU) .

Any superset of a carrier of v 18 again a carrier of v . The use of carriers
obviates the usual classification of games according to the number of players. The
players outside eny carrier have no direct influence on the play since they contrib-
ute nothing to any coalition. We shall restrict our attention to games which possess
finite carriers.

The sum ("superposition") of two games is egain a game. Intuitively it is the
game obtained when two gemes, with independent rules but possibly overlapping sets

of players, are<regarded as one. If the games happen to posses disjunct carriers,

1 An exception is found in the matter of symmetrization (see for example [2],
pages 81-5), in which the players must be distinguished from their roles.
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then their sum is their "composition”.!
Let 7T(U) denote the set of permutations of U - that is, the one to one
mappings of U onto itself. If x € TT(U) , then, writing =S for the image of S

under = , we may define the function =nv by
nv(nS) = v(S) (all SCU) .

If v 1is a game, then the class of games nv , =€ ] (U) , may be regarded as the
"abstract game" corresponding to v . Unlike composition, the operation of addition
of games can not be extended to abstract games.

By the value ¢ [v] of the game v we shall mean a function which assoclates
with each 1 in U a real mmber ¢, [v] , and vhich satisfies the conditions of
the following axioms. The value will thus provide en additive set-function (an

inessential game ) v :

(5) v(s) = 2_g¢i[v] (a1 scw),

to take the place of the superadditive function v .

AXIOM 1. For each = in 77(V) ,
¢ni[ﬂ] = ¢i[‘7] (ll 1e€U) .

AXIOM 2. For each carrier N of v,

:N di[v] = v(N) .

AXJOM 3. For any two games v and w ,

glv+w]=dv]+ g[v] .

1 see[1], $§26.7.2 and L41.3.
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Corments. The first axiom ("symmetry") states that the value is essentially a
property of the abstract geme. The second axiom ("efficiency") states that the value
represents a distribution of the full yileld of the game. This excludes, for example,
the evaluation ;‘i[vj = v((1)) , d4n which each player pessimistically assumes that
the rest will all cooperate and combine against him. The third axiom ("law of
aggregation”) states that when two independent games are combined, their values must
be added player by player. This is a prime requisite for any evaluation scheme
designed to be applied eventually to systems of interdependent games.

It is remarkable that no further conditions are required to determine the value

uniquely.?!

3, Determination of the value function.

IEMMA 1. If N is a finite carrier of v , then, for 1 ¢ N ,

Proof. Take i N . Both N and N U (i). are carriers of v ; and
v(N) = v(N U (1)) . Hence ¢i[v:| = 0 by Axiom 2, as was to be shown.
We first consider certain symmetric games. For any RCU , R # ¢ define Vg ot

1 if SDOR,

6) | S) =
( (S 0 if SPR.

The function oV is a game, for any nonnegative c , and R 18 a carrier.

In what follows, we shall use r , 8 , n , ... for the numbers of elements In

R,S,N, ... respectively.

1 Three further properties of the value which might suggest themselves as suitable
axioms will be proved as Lemma 1 eand Corollaries 1l and 3 below.
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LEMMA 2. For ¢ >0, O0<r<w, we have

c/r if 1€ R,

#i[o%) =

0 if 1¢R.

Proof, Take i end J in R , and choose = é&-7(¥U) 80 that sR =R and

ni = J . Then we have =nv, = YR and hence, by Axiom 1,

R
dj[cvR] = di[cvR] .
By Axiom 2,

c = oV (R) = Y 9{3 cvR] = rgfi[_cvR:] s

JER

for any 1 € R . This, with Lemma 1, completes the proof.

LEMMA 3.1 Any geme with finite carrier is a linear combination of symmetric

games Vo !

7) = ) ’
( v % c.R(v o

R#¢

N being any finite carrier of v . The coefficients are independent of N , and

are given by

(8) cR(v) = }: (-l)r-tv(T) (0O<r<w) .
TCR

Proof. We must verify that

1 fThe use of this lemma was suggested by H. Rogers.
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(9) v(S) = 2 cp(Mv ()

RCN
R#¢
holds for all SCU , and for any finite carrier N of v . If SCN , then (9)

reduces, by (6) and (8), to

ws) = Y Y (-1 Mw(m)

RcS TCR

Z[Z(n“‘* “)} (1) .

TcS

The expression in brackets vanlshes except for 8 = 1t , 80 we are left with the

identity +v(S) = v(S) . In general we have, by (3),

v(8) = W(NN8) = J_ cp(MW(NAS) = 7 _ ep(v)vp(s) .
REN RcN

Thie completes the proof.

Remark. It is easily shown that cR(v) =0 if R 1is not contained in every
carrier of v .

An immediate corollary to Axiom 3 is that ¢[v-w] = ¢d[v] - ¢[w] if v, v,
and v - w are all games. We can therefore apply Lemma 2 to the representatlion of

Lemma 3 and obtain the formula:

(10) 4,(v] = %\1 cR(v)/r (all 1ieN) .
R34

Inserting (8) and simplifying the result gives us
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(11) #,v] = gv lezi)iinog s - gifmel)i y5)  (all 1eW)
S31 s'$i

Introducing the quantities

(12) ro(8) = (s-1)i(n-8)t/n,

ve now assert:

THEOREM. A unique value function ¢ existe satisfying Axioms 1 - 3, for

gamee with finite carriers; it is given by the formula
(13) 4[v]= T wp(@) [v®) - ¥(s-()] (a1 1€ D)

where N is any finite carrier of v .

Proof. (13) follows from (11), (12), and Lemma 1. We note that (13), like
(10), does not depend on the particular finite carrier N ; the ¢ of the theorem
is therefore well defined. By its derivation it is clearly the only value function
which could satisfy the axioms. That it does in fact satisfy the axioms is easily

verified with the aid of Lemma 3.

4, TFlementary properties of the value.

COROLLARY 1. We have

(1) ¢,[v] > v((3)) (el 1€70) ,
with equality if and only if 1 1s & dumy - i.e., if and only if

(1) v(S) = v(S - (1)) + v((1))  (all §2 1)
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Proof. For any 1€ U we may take N 2 1 and obtain, by (2) ,

$i[v1> L_ v (e)v((1) ,
SCN
SR

with equality if and only if (15), since none of the E]n(s) vanishes. The proof

is completed by noting that

(16) T v s T (P yr ()= Lok,
sv g-1 el m s=1 D
31

Only in this corollary have our results made use of the superadditive nature
of the functions v .

COROLLARY 2. If v 1is decomposeble - i.e., if games w(l), w(z), cesy w(p)

having pairwise disjunct carriers N( l), N(a), ooy N(p) exiet such that

ey

k=1
- then, for each K =1, 2, ..., P,
§0v) = 4,7 (e 1e 1)

Proof. By Axiom 3.

COROLLARY 3. If v and w eare strategically equivalent - i.e., if

(17 w=cv+a,

where c¢ is a positive constant and e an additive set-function on U with
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finite carrier* - then

¢i[w] = cdi[v] + &((1)) (all 1€ D) .

Proof. By Axiom %, Corollary 1 applied to the inessential game a , and the
fact that (13) is linear and homogeneous in v .

COROLLARY k. If v 18 constant-sum - i.e., if

(18) v(S) + v(U - 8) = v(U) (ell scuv) ,

- then its value is given by the formula:

(19) ¢,[v]- 2 LS‘I% R8)V(8) - WM (a1l 1 W),
s 1

vhere N 1is any finite carrier of v .

Proof. We have, for 1 N,

$07] = I wy(e)v(s) - Iy (t4)v(T)
SCHN TCN

S31 T

= 1_ vp(e)v(s) - I_ y(n-sal)[v(W) - ¥(s)] .
ScN SCN
Sai S3i

But Kn(n-s+1) = Kn(s) ; hence (18) follows with the aid of (16).

1 This is McKinsey's "S-equivalence" (see [ 2], page 120), wider than the "strategic
equivalence” of von Neumann and Morgemstern ([1], §27.1).



P-205
-10-

5. Exemples.

If N is a finite carrier of v , let A denote the set of n-vectors (ui)

satisfying

Naziuv(N) R
(11 1€XN) .

a, > v((1))

If v is inessential A is a single-point; otherwise A is a regular simplex of
dimension n - 1 . The value of v may be regarded as a point ¢ in A, by Axiom

2 and Corollary 1. Denote the centroid of A by © :

1
6 = v((1) +5 [vm - %v((a));] :

Exsmple 1. For itwo-person games, three-person constant-sun games, and inessen-
tial games, we have
(20) d=86.

The same holds for erbitrary symetric games - i.e., games which are inveriant under
a transitive group of permutations of N - and, most generally, gemes strategically
equimlent to them. These results are demanded by symmetry, end do not depend on
Axiom 3.

Example 2. For general three-person games the positions teken by gl in A

cover a regular hexagon, touching the boundary at the midpoint of each l-dimensional

face (see figure). The latter cases are of course the decomposable games, with one

player a dummy.
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Example 3. The guota games! are characterized by the existence of constants

1 satisfying

+ W =v((1, J))

uJi 3

(211 1, JEN, 1 4 ))
PERSRVINES (¢ )

For n = 3, we have

(21) gd-06=—%.

Since W can assune any position in A the range of g{ is a triangle, inscribed

in the hexagon of the preceding example (see the figure) .

Example 4. All four-person constant-sum games are quota games. For them we

have

(22) d-6-= 5 -

The quota ( ranges over & certain cubeZ, containing A . The value ¢ meanwhile
ranges over a parallel, inscribed cube, touching the boundary of A at the midpoint
of each 2-dimensional face. In higher guota games the points ¢ and w are not so

directly related.

Example 5. The welghted ma jority game53 are characterized by the existence of

such that never ) ¥y = ) N-s¥1 * and such that

"weighte” w 1

1 Discussed in [4].
2 Tlilustrated in [ 4], figure 1.

3 see [1], §50.1.



v(S) =n -8 i Z:Swi > 'N-Swi ’

v(S) = -8 1 gy < :N-Svi .

The game is then denoted by the symbol [wl, Wiy vy W, n] . It is easily shown that

(23) {1 < ¢J implies w, < w, (all 1, j€ N)

in any weighted majority game [wl, Vs eees wn_] . Hence "weight" and "value" rank
the players in the same order.

The exact values cen be computed without difficulty for particular cases. We
have
n-
¢ = ;:% : (-1, -l’ ey -1, n-l)
for the game [1, 1, ..., 1, n-2], and

¢ =% (1: 1, 1:"'1,0 -1, 'l)

for the game [___2, 2, 2,1, 1, 1J2, etc.

6. Derivation of the value from a bargaining model.

The deductive approach of the earlier sections has failed to suggest a bargaining
procedure which would produce the value of the geme as the (expected) outcome. We

conclude this paper with a description of such a procedure. The form of our model,

1 piscussed at length in [1], §55.

2 piscussed in [1], §53.2.2.
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with its chance move, lends support to the view that the value is best regarded as
en a priori essesement of the situation, based on elither ignorance or disregard of
the social organization of the players.

The players constituting a finite carrier N agree to play the game v 1n a
grand coalition, formed in the following way: 1. Starting with a single member,
the coalition adds one player at & time until everyone has been admitted. 2. The
order in vwhich the players are to join is determined by chance, with all arrangements
equally probable. 3. Each player, on his admission, demands and is promised the
amount which his adherence contributes to the value of the cozlition (as determined
by the function v ). The grand coalition then plays the game "efficiently” so as
to obtain the amount v(N) - exactly enough to meet all the promises.

The expectations under this scheme are easily worked out. Let T(i) be the set
of players preceding 1 . For any S > 1 the payment to 1 1 & - (1) =T(} 1s
v(S) - v(S-(i)) , and the probability of that contingency is b’n(s) . The total

expectation of 1 1is therefore just his value, (13), as was to be shown.
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