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Abstract: In this paper, we propose a variable block insertion heuristic (VBIH) algorithm to solve
the permutation flow shop scheduling problem (PFSP). The VBIH algorithm removes a block of
jobs from the current solution. It applies an insertion local search to the partial solution. Then,
it inserts the block into all possible positions in the partial solution sequentially. It chooses the best
one amongst those solutions from block insertion moves. Finally, again an insertion local search is
applied to the complete solution. If the new solution obtained is better than the current solution,
it replaces the current solution with the new one. As long as it improves, it retains the same block size.
Otherwise, the block size is incremented by one and a simulated annealing-based acceptance criterion
is employed to accept the new solution in order to escape from local minima. This process is repeated
until the block size reaches its maximum size. To verify the computational results, mixed integer
programming (MIP) and constraint programming (CP) models are developed and solved using
very recent small VRF benchmark suite. Optimal solutions are found for 108 out of 240 instances.
Extensive computational results on the VRF large benchmark suite show that the proposed algorithm
outperforms two variants of the iterated greedy algorithm. 236 out of 240 instances of large VRF
benchmark suite are further improved for the first time in this paper. Ultimately, we run Taillard’s
benchmark suite and compare the algorithms. In addition to the above, three instances of Taillard’s
benchmark suite are also further improved for the first time in this paper since 1993.

Keywords: heuristic optimization; block insertion heuristic; flow shop scheduling; iterated greedy
algorithm; constraint programming; mixed integer programming

1. Introduction

Sustainability in manufacturing industries is mainly measured by their competitiveness in the
market place. Competitiveness is referred to timely product delivery with the best quality, minimum
manufacturing time and price to customers. Minimum manufacturing time can be obtained by optimal
production sequences that can minimize makespan or total flowtime. Note that a manufacturing
company can fail to satisfy production plans although the other production entities such as operators,
maintenance, inventory, quality control, etc. are in control due to the lack of optimal or near optimal
production sequences in the shop floor. For this reason, seeking optimal or near-optimal production
sequences and schedules is vital to manufacturing companies in order to minimize the makespan,
which also minimizes idle times on the machines and maximize machine utilization.
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The permutation flow shop scheduling problem (PFSP) has been widely studied in the literature
and has extensively been applied in the inustry. There are many different fields in real-life where
PFSP can be used [1]. It is yet an exceptionally active topic of investigation, especially because flow
shop environments are at the center of real-life scheduling problems in various fields of high social or
economic impact. In addition, the flow shop layout is a regular configuration in many manufacturing
companies. The basic PFSP consists of a set of n jobs which are processed by m machines. These
jobs follow the same route and their operations on the machines cannot be interrupted. All the jobs
must be processed in the same order on the machines and the aim is to find the best permutation
π = {π1,π2, . . . ,πn} of these jobs with respect to the given objective.

In this study, our aim is to maximize the throughput of the system by maximizing the utilization
rate of the machines which means minimizing makespan. To compute the makespan, π denotes the
given arbitrary solution, where job πi is the job at the ith position of solution π. Ci,k is denoted as the
completion time of job πi on machine k at position i. Following this notation, completion times of jobs
at each machine are computed as in the following Equations (1)–(5), where pπi,k is the processing time
of job πi at the kth machine. The makespan of solution π, denoted as Cmax(π), is the completion time of
the last job (i.e., n) on the last machine (i.e., m). It is simply denoted as Cnm and calculated as follows:

C1,1 = pπ1,1 (1)

Ci,1 = Ci−1,1 + pπi,1∀i = 2, . . . , n (2)

C1,k = C1,k−1 + pπ1,k∀k = 2, . . . , m (3)

Ci,k = max
{

Ci−1,k, Ci,k−1

}

+ pπi,k∀i = 2, . . . , n;∀k = 2, . . . , m (4)

Cmax(π) = Cnm. (5)

The PFSP with makespan criterion is denoted as Fm|Permu|Cmax according to the notation of [2]
and has been proven to be NP-hard for the makespan criterion [3], so it is challenging to solve it with
exact methods. Therefore, metaheuristic algorithms were employed to solve the problem and obtain
near-optimal solutions. In recent years, various metaheuristic algorithms have been presented to solve
various variants of PFSP with different objectives. One of the state-of-the-art algorithms for PFSPs is
the iterated greedy algorithm (IG) presented by [4]. We focused on the recent literature that considers
the IG algorithm in their solution approaches.

The IG algorithm was employed to PFSP with makespan criterion in [4–9]. In [5], to improve the
solution quality, a local search was applied to the partial solution after the destruction step of the IG
algorithm, while in [6] sequence depended setup times were employed for the PFSP with makespan
criterion. In addition, in [7] the authors studied the PFSP with makespan and proposed a tie-breaking
mechanism for the IG algorithm, while in [8] an IG and a discrete differential evolution algorithm were
proposed and compared. In this study, we employ new hard VRF instances which are first introduced
in [9], and they also applied an IG algorithm. In addition, the same problem was studied in [10] to
minimize the makespan over Taillard’s benchmark suite.

The IG algorithm was applied to various variants of PFSP such as no-wait flow shops in [11–13];
blocking flow shops in [14–17]; no-idle flow shops in [18–20]; energy-efficient PFSP in [21,22];
multi-objective PFSP in [23,24] where both studies presented a restarted iterated Pareto greedy
algorithm. In a no-wait variant of PFSP, distributed no-wait flow shop problem [11], tabu-based
reconstruction strategy [12], and sequence depended setup times [13] were employed with IG algorithm.
In blocking variant of PFSP, IG algorithms were combined with local search algorithms [14], constructive
heuristics [15,16], and also embedded in differential evolution framework [17]. In [25] profile fitting
and NEH heuristic algorithms were proposed for the same problem. In a no-idle variant of PFSP,
iterated reference greedy algorithm [18], and variable IG algorithm [19] were presented. In addition,
IG algorithm was employed for the mixed no-idle PFSP [20].
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IG algorithm was also applied to PFSP with different objective functions such as total tardiness
criterion [26,27]; total flowtime criterion [28]. In [1], they carried out an exhaustive review and
computational evaluation of heuristics and metaheuristics published until 2017 for the PFSP to
minimize the makespan. Therefore, for the further analysis of the literature of PFSP, the indicated
manuscript [1] should be examined.

In traditional search algorithms, swap and insertion neighborhood structures are generally
employed. The swap neighborhood exchanges two jobs in a solution, whereas the insertion one
removes a job from a solution and inserts it into another position in the solution. Recently, block
move-based local search algorithms are presented for the single machine-scheduling problems in the
literature [29–32]. Xu et al. [31] developed a Block Move neighborhood structure in which l consecutive
jobs (called a block) are inserted into another position in the solution. They represent a block move by a
triplet (i, k, l), where i denotes the position of the first job of the block, k the target position of the block
to be inserted and l the size of the block. It is obvious that one edge insertion, two edge-insertion and
3-block insertion are the block move neighborhoods with l = 1, l = 2, and l = 3. Similarly, Gonzales
and Vela [32] developed a variable neighborhood descent algorithm with three distinct block move
neighborhoods and employed in a memetic algorithm. Then, a memetic algorithm with block insertion
heuristic is presented in [29]. Moreover, in [33], a variable block insertion heuristic (VBIH) algorithm
was employed to solve the blocking PFSP with makespan criterion.

In IG algorithms, some solutions components are removed from the current solution and reinserted
into the partial solutions. In other words, a number, dS, of jobs are removed randomly, which is known
as the destruction phase. Then, in the construction phase, these dS jobs are reinserted into the partial
solution in the same order they are removed. For each of dS jobs, it makes a number n − dS + 1 of
insertions. However, the VBIH algorithm removes a block of jobs πb with size b from the current
solution and it makes a number n− b + 1 of block insertions only. That is the difference between IG
and VBIH algorithms.

The main contributions of the paper can be outlined as follows. VBIH is employed to solve PFSP
with makespan criterion using the new hard VRF benchmark sets [9]. Detailed computational results
show that VBIH algorithm outperforms two variants of the iterated greedy algorithm. 236 out of
240 instances of large VRF benchmark suite are further improved for the first time in this paper, while
the results of the remaining four instances are found as the same with the current results. In addition,
the formulation of two mathematical models is given to solve the small benchmark set in order to
verify the results of our proposed VBIH algorithm. One hundred and eight out of 240 small instances
are proven to be optimal. Therefore, this paper proposes new lower bounds with the use of an efficient
algorithm, which differentiates the study from the current literature. We also show that the speed up
method of Taillard is substantially effective when solving the PFSP with makespan criterion.

The remaining part of the paper is organized as follows: Section 2 introduces the formulation of
PFSP including mixed integer programming (MIP) model and constraint programming (CP) model
whereas Section 3 presents all the heuristic algorithms. Section 4 explains the computational results
of the MIP and CP models on small VRF instances to show the solution quality of the heuristic
algorithms and the limitations of the models. Section 5 reports the experimental results of the heuristic
algorithms and the improvements to the large VRF instances. Finally, Section 6 summarizes the
concluding remarks.

2. Mathematical Model Formulation

This paper proposes MIP and CP models to solve small VRF instances for PFSP with the makespan
criterion in order to verify the solution quality of proposed heuristic algorithms. The input parameters
used in the models are presented in follows:
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Parameters:

n: Total number of jobs, i = 1, . . . , n

m: Total number of machines, k = 1, . . . , m

pi,k: Processing time of job i on machine k

M : A sufficient large constant integer.

2.1. The MIP Model

The MIP decision variables, objective function and the constraints are given in the following
equations. The MIP formulation of PFSP, which were proposed by Manne [34], is used.

Decision Variables:

Cmax: Makespan
Ci,k: Completion time of job i on machine k

Di, j : Binary variable: 1 if job i is scheduled before job j; 0, otherwise; i < j

MIP Model: Objective and Constraints:

Min Cmax

st :
(6)

Cmax ≥ Ci,m∀i = 1, . . . , n (7)

Ci,1 ≥ pi,1∀i = 1, . . . , n (8)

Ci,k −Ci,k−1 ≥ pi,k∀i = 1, . . . , n, ∀k = 2, . . . , m (9)

Ci,k −C j,k + MDi, j ≥ pi,k∀i = 1 ≤ i < j ≤ n, ∀k = 1, . . . , m (10)

Ci,k −C j,k + MDi, j ≤M− p j,k∀i = 1 ≤ i < j ≤ n, ∀k = 1, . . . , m (11)

Di, j ∈ (0, 1). (12)

The objective function (6) minimizes the makespan while Constraint (7) calculates the maximum
completion time of all jobs on the last machine. In PFSP, all jobs follow the same route through the
machines so that their final processes will be done on the last machine. Constraint (8) computes the
completion time of each job on machine 1 ensuring that they cannot occur earlier than the duration of
their processing time on machine 1 which is the starting machine for all jobs. Constraint (9) ensures
that the completion time of each job on each machine cannot be processed before their completion time
on the previous machine. Constraints (10) and (11) specify the relationship between the processing
of two consecutive jobs on the same machine. Constraint (11) starts that if job i precedes job j in the
permutation, then job i should be completed before job j on each machine. Otherwise, job j should
precede job i on each machine which is shown by Constraint (10).

2.2. The CP Model

CP decision variables, objective function and the constraints are presented in the following
equations using the OPL API of CP Optimizer. To express the processing times of the jobs on the
machines, the model uses interval variables denoted as JobInt. In addition, sequence variables for the
machines are defined in the model as Machine which collects all these interval variables.

Decision Variables:

JobInti,k: Interval variable for job i on machine k with duration pi,k

Machinek: Sequence variable for machine k over
{

JobInti,k

∣

∣

∣1 ≤ i ≤ n
}

.
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CP Model: Objective and Constraints:

Min

(

max
i∈J

(endO f (JobInti,m))

)

(13)

endBe f oreStart(JobInti,k, JobInti,k+1)∀i = 1, . . . , n, ∀k = 1, . . . , m− 1 (14)

noOverlap(Machinek)∀k = 1, . . . , m (15)

sameSequence(Machine1, Machinek)∀k = 2, . . . , m. (16)

The CP model minimizes the makespan by computing the maximum end date of each job on
the last machine (13). Constraint (14) impose the precedence constraints between the consecutive
operations of each job on the sequence of machines. Machines are the disjunctive resources and can
process only one job at a time, which is expressed by the noOverlap Constraint (15) over the sequence
variables associated with machines. The relationship between sequence variables and the interval
variables are provided while defining the decision variables. The last constraint sameSequence (16)
guarantees that all the jobs are processed in the same order on each machine. Therefore, the permutation
of the jobs will be the same for each machine.

3. Meta-Heuristic Algorithms

3.1. Taillard’s Speed Up Method for PFSP with Makespan Criterion

Insertion neighborhood structure is very effective for makespan minimization. The size of
the insertion neighborhood is (n− 1)2. Since each objective function evaluation takes O(nm) time,
its computational complexity is O(n3m). In [35], a speed-up method is proposed where it reduces the
computational complexity from O(n3m) to O(n2m) for the PFSP with makespan criterion. In order
to execute the insertion procedure in time O(nm), this speed-up method can be explained as follows:
Suppose that job πi will be inserted in a position l. Then the speed up method can be described below:

1. Compute the head, ei,k, which is the earliest completion time of each job on each machine. The
starting time of the first job on the first machine is 0. e0,k = ei,0 = 0 ∀i =

1, . . . , l− 1; ∀k = 1, . . . , m ei,k = max
{

ei,k−1, ei−1,k

}

+ pπi,k ∀i = 1, . . . , l− 1; ∀k = 1, . . . , m.

2. Compute the tail, qi,k, which is the duration between the starting time of each job on each machine
and the end of all the operations on each machine. qi,m+1 = 0 ∀i =

n, . . . , l− 1; ∀k = m, . . . , 1 ql,k = 0 ∀i = n, . . . , l− 1; ∀k = m, . . . , 1

qi,k = max
{

qi,k+1, qi+1,k

}

+ pπi,,k ∀i = n, . . . , l− 1; ∀k = m, . . . , 1.

3. Compute the earliest relative completion time fi,k on the lth machine of job π j inserted at
the lth position. Completion time of an inserted job on the first machine is zero. fi,0 = 0
∀i = 1, . . . , l fi,k = max

{

fi,k−1, ei−1,k

}

+ pπi,,k ∀i = 1, . . . , l; ∀k = 1, . . . , m.

4. The value of the makespan Cmax,l when inserting job j at the lth position is: Cmax,l = maxk( fik + qik)

∀i = 1, . . . , l; ∀k = 1, . . . , m.

In order to illustrate the speed up the procedure, we give the 7-job 2-machine example. Note that
Johnson’s algorithm [36] solves this problem to optimality. Hence, in Table 1, we provide the problem
instance with the processing times as well as the optimal solution.
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Table 1. Problem instance with processing times and optimal solution.

Instance Optimal Solution with Cmax=36

Jobs M1 M2 Jobs Position M1 M2

1 1 8 1 1 1 8
2 2 9 2 2 2 9
3 7 5 7 3 4 5
4 5 3 3 4 7 5
5 5 4 5 5 5 4
6 7 1 4 6 5 3
7 4 5 6 7 7 1

According to the Johnson’s algorithm [36], the optimal solution is {1, 2, 7, 3, 5, 4, 6} with Cmax = 36.
Now, suppose that we remove job 7 and obtain the partial solution, {1, 2, 3, 5, 4, 6}. Suppose that we
insert job 7 into position l = 3 of the partial solution to obtain the optimal solution. We follow the
speed up method now:

1. Compute heads:

e0,k = ei,0 = 0 ∀i = 1, . . . , l− 1; ∀k = 1, . . . , m

ei,k = max
{

ei,k−1, ei−1,k

}

+ pπi,k ∀i = 1, . . . , l− 1; ∀k = 1, . . . , m

e1,1 = max
{

e1,0, e0,1

}

+ pπ1,1 = max
{

e1,0, e0,1

}

+ p1,1 = max{0, 0}+ 1 = 1

e1,2 = max
{

e1,1, e0,2

}

+ pπ1,2 = max
{

e1,1, e0,2

}

+ p1,2 = max{1, 0}+ 8 = 9

e2,1 = max
{

e2,0, e1,1

}

+ pπ2,1 = max
{

e2,0, e1,1

}

+ p2,1 = max{0, 1}+ 2 = 3

e2,2 = max
{

e2,1, e1,2

}

+ pπ2,2 = max
{

e2,1, e1,2

}

+ p2,2 = max{3, 9}+ 9 = 18.

2. Compute tails:

qi,m+1 = 0 ∀i = n, . . . , l− 1; ∀k = m, . . . , 1

ql,k = 0 ∀i = n, . . . , l− 1; ∀k = m, . . . , 1

qi,k = max
{

qi,k+1, qi+1,k

}

+ pπi,k ∀i = n, . . . , l− 1; ∀k = m, . . . , 1

q6,2 = max
{

q6,3, q7,2
}

+ pπ6,2 = max
{

q6,3, q7,2
}

+ p6,2 = max{0, 0}+ 1 = 1

q6,1 = max
{

q6,2, q7,1

}

+ pπ6,1 = max
{

q6,2, q7,1

}

+ p6,1 = max{1, 0}+ 7 = 8

q5,2 = max
{

q5,3, q6,2
}

+ pπ5,2 = max
{

q5,3, q6,2
}

+ p4,2 = max{0, 1}+ 3 = 4

q5,1 = max
{

q5,2, q6,1

}

+ pπ5,1 = max
{

q5,2, q6,1

}

+ p4,1 = max{4, 8}+ 5 = 13

q4,2 = max
{

q4,3, q5,2

}

+ pπ4,2 = max
{

q4,3, q5,2

}

+ p5,2 = max{0, 4}+ 4 = 8

q4,1 = max
{

q4,2, q5,1

}

+ pπ4,1 = max
{

q4,2, q5,1

}

+ p5,1 = max{8, 13}+ 5 = 18

q3,2 = max
{

q3,3, q4,2

}

+ pπ3,2 = max
{

q3,3, q4,2

}

+ p3,2 = max{0, 8}+ 5 = 13

q3,1 = max
{

q3,2, q4,1

}

+ pπ3,1 = max
{

q3,2, q4,1

}

+ p3,1 = max{13, 18}+ 7 = 25.

Speed-up calculation of the partial solution is given in Figure 1.
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5. Compute the earliest relative completion time fi,k
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}
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Speed-up calculation of the complete solution is given in Figure 2.
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}
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Figure 2. Speed-up calculation of a complete solution.

It is clear that the above speed-up method reduces the complexity of the whole insertion
neighborhood from O(n3m) to O(n2m). This speed-up method is the key to success for any algorithm
for PFSP with makespan criterion. For this reason, we have chosen the Car8 instance from the literature
in order to illustrate the speed-up method above in detail. From the literature, we know that best or
optimal solution is {7, 3, 8, 5, 2, 1, 6, 4} with Cmax = 8366. In Appendix A, we remove job 2 from the
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optimal solution and re-insert it into the 5th position again. A detailed implementation of Taillard’s
speed up method is given in Appendix A in order to ease the understanding of it.

3.2. IG Algorithms

IG algorithms mainly have four components; namely, initial solution, destruction-construction
(DC) procedure, local search, and acceptance criterion. The traditional IGRS is proposed by [4]. In this
algorithm, the initial solution is constructed by the NEH heuristic in [37]. In the destruction step, dS

jobs are randomly removed from the solution πwithout repetition and stored in πD. The remaining
jobs are also stored in πP that represents the partial solution. In the construction step, each job in πD is
inserted into the partial solution πP, in the order in which they were removed, until a complete solution
of n jobs is constructed. Having carried out the destruction and construction procedure, a local search
is employed to further enhance solution quality. After a local search, if the solution is better than
or equal to the incumbent solution, it is accepted. Otherwise, it is accepted with a simple simulated
annealing-type acceptance criterion, which is suggested by [38]:

T =

∑n
j=1

∑m
k=1 pkj

10nm
× τP (17)

where τP is a parameter to be adjusted. The pseudo-code of the traditional IGRS is given in Algorithm 1,
where r is a uniform random number between 0 and 1.

Algorithm 1: Traditional IGRS algorithm

π = NEH

π
best = π

while (NotTermination) do

πD = Destruction(π)

π
1 = Construction(πD,πP)

π
1 = LocalSearch(π1) //Algorithm 4

i f ( f (π1) ≤ f (π))then

π = π1

i f ( f (π1) < f (πbest))then

π
best = π1

endi f

elsei f (r < exp
{

−( f (π1) − f (π))/T
}

) then

π = π1

endi f

endwhile

return πbest and f (πbest)

The IGRS algorithm for the PFSP under makespan minimization employs an initial solution
generated by the NEH heuristic. In addition, the NEH heuristic was extended to the FRB5 heuristic
with a local search on the partial solutions [39]. Both heuristics are simple and very effective for
minimizing the makespan, and its pseudo-code is given in Algorithm 2. In the first phase, the sum of
the processing times on all machines are calculated for each job. Then, jobs are sorted in decreasing
order to obtain δ. In the second phase, the first job in δ is selected to establish a partial solution π1.
The remaining jobs in δ are inserted in the partial solution one by one. After each iteration, optionally,
a local search is applied to the partial solution. Local search is implemented as long as the partial
solution is improved. After having inserted all jobs, a complete solution is obtained. Note that the
NEH heuristic is denoted as FRB5 heuristic with an optional local search to partial solutions.
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Algorithm 2: NEH and FRB5 constructive heuristics

δ = DecreasingOrder(
m
∑

k=1
pik)

π1 = δ1

f or i = 2 to n do

πi = InsertJobInBestPosition(πi, δi)

πi = ApplyLocalSearch(πi, f (πi)) //Algorithm 3 f or FRB5 heuristic

end f or

return π with n jobs and f (π)

The IGRS algorithm employs insertion neighborhood structure as a local search after destruction
and construction procedure. Insertion neighborhood is very effective with the speed-up method
explained in Section 3.1 for makespan minimization. Insertion neighborhood can be deterministic or
stochastic depending on the decision of choosing a job from solution to be removed. The deterministic
variant is given in Algorithm 3. This procedure removes πi from the solution π and inserts it into all
possible positions of the incumbent solution π. When the best-improving insertion position is found,
job πi is inserted into that position. These steps are repeated for all jobs. If an improvement is observed,
the local search is re-run until no better solution is obtained.

Algorithm 3: First improvement insertion neighborhood(π)

f or i = 1 to n do

π
∗ = InsertJobInBestPosition(π, πi)

i f ( f (π∗) < f (π)) then do

π = π∗

end i f

end f or

return π and f (π)

In the stochastic variant given in Algorithm 4, jobs are randomly chosen from solutions to make
insertions. In Algorithm 4, job πk at position k is randomly chosen from the solution π without
repetition, and partial solution πP is obtained. Then, job πk is inserted into all possible positions of
the partial solution πP. When the best-improving insertion position is found, job πk is inserted into
that position, and a complete solution π∗ is obtained. These steps are repeated for all jobs. If an
improvement is found, the local search is rerun again until no better solution is obtained.

Algorithm 4: First improvement insertion neighborhood(π)

f or i = 1 to n do

πP = Remove job πk f rom solution π randomly and without repetition

π
∗ = InsertJobInBestPosition(πP, πk)

i f ( f (π∗) < f (π)) then do

π = π∗

end i f

end f or

return π and f (π)

Recently, a new IGALL algorithm has been presented in the literature [5] with excellent results for
the PFSP with makespan minimization. The difference between IGALL and IGRS is that IGALL applies
an additional local search to partial solutions after destruction, which substantially enhances solution
quality. In the IGRS algorithm, local search is applied to the complete solution after the construction
phase to improve the current candidate solution whereas, in IGALL algorithm, local search is applied to
a partial solution after destruction phase. This idea is applied in heuristic algorithms by Reference [39].
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They study on vehicle routing problem and apply local search on the routes in the construction phase.
Applying local search to the partial solution is more advantageous in terms of computational time and
providing different search directions. Due to having a partial solution, a local search is applied to the
smaller size of the complete solution so that the search procedure can be conducted quickly. Another
difference between IGRS and IGALL is due to the fact that the initial solution is constructed by FRB5
heuristic. The pseudo code of IGALL algorithm is presented in Algorithm 5.

Algorithm 5: IGALL algorithm

π = FRB5
π

best = π

While (NotTermination) do

πD = Destruction(π)

πP = LocalSearchToPartialSolution(πP) //Algorithm 4
π

1 = Construction(πP,πD)

π
1 = LocalSearchToCompleteSolution(π1) //Algorithm 4

i f f (π1) ≤ f (π)then do

π = π1

i f f (π1) < f (πbest)then do

π
best = π1

endi f

else i f (r < exp
{

−( f (π1) − f (π))/T
}

)

π = π1

endi f

endi f

endwhile

return πbest and f (πbest)

endprocedure

Note that Algorithm 3 is used in the FRB5 heuristic in order to construct the initial solution with a
single run due to its deterministic property. In both algorithms, Algorithm 4 is employed in applying
local search to both partial and complete solutions.

3.3. Variable Block Insertion Algorithm

In this paper, we propose a VBIH algorithm as follows. The VBIH algorithm employs the FRB5
heuristic as an initial solution. It has a minimum block size (bmin), and a maximum block size (bmax).
It removes a block of jobs (πb) with size b from the current solution and obtains a partial solution (πP).
Similar to the IGALL algorithm, it applies the local search in Algorithm 4 to the partial solution. Then,
it makes a number, n− b + 1, of block insertion moves sequentially in the partial solution. It chooses
the best one amongst those solutions from block insertion moves. Well-known RIS local search in the
literature is applied to the complete solution found after block insertion moves. If the new solution
obtained after the local search is better than or equal to the current solution, it replaces the current
solution. As long as it improves, it retains the same block size (i.e., b = b). Otherwise, the block size is
incremented by one (i.e., b = b + 1) and a simulated annealing-based acceptance criterion, similar to
IGRS and IGALL algorithms, is employed to accept the new solution to escape from local minima. This
process is repeated until the block size reaches its maximum limit (i.e., b ≤ bmax). The outline of the
VBIH algorithm is given in Algorithm 6. Note that πR is the reference sequence; tP is temperature
parameter for the acceptance criterion and r is a uniform random number between 0 and 1.
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Algorithm 6: VBIH algorithm

π = FRB5
π

best = π

π
R = πbest

while (NotTermination)

b = bmin = 2
do

πb = Remove block πb f rom π

πP = LocalSearchToPartialSolution(πP) //Algorithm 4
π

1 = InsertBlockInBestPosition(πP,πb)

π
1 = RISLocalSearchToCompleteSolution(π1) //Algorithm 5

i f ( f (π1) < f (π)) then do

π = π1

b = b

i f ( f (π1) < f (πbest))then do

π
best = π1

π
R = πbest

endi f

else

b = b + 1

i f (r < exp
{

−( f (π1) − f (π))/T
}

)

π = π1

endi f

endi f

while((b ≤ bmax)

endwhile

return πbest and f (πbest)

To explain the block insertion procedure, we give the following example. Suppose that we are
given a current solution π = {1, 2, 3, 4, 5}. Furthermore, assume that the block size is b = 2. Let’s
randomly choose a block πb = {2, 5}, thus ending up with a partial solution, πp = {1, 3, 4}. After
applying local search to the partial solution πp, suppose that we have a partial solution πp = {3, 1, 4}.
Now, the block πb is inserted into four positions as follows: π1 = {2, 5, 3, 1, 4}, π2 = {3, 2, 5, 1, 4},
π

3 = {3, 1, 2, 5, 4} and π4 = {3, 1, 4, 2, 5}. Among these four solutions, the best one will be chosen
as a final solution.

Regarding the local search algorithm that will be applied only to complete solutions, we use a
well-known referenced insertion scheme local search, RIS [8,40]. RIS is guided by a reference solution
π

R, which is the best solution obtained so far during the search process. For instance, if the reference
solution is given by πR = {3, 5, 1, 4, 2} and the current solution by π = {1, 2, 3, 4, 5}. The reference
solution πR implies that job 3 in the current solution π might not be in a proper position. For this
reason, the RIS local search first removes job 3 from the current solution π and inserts it into all possible
slots of the partial solution πP. A new solution with the best insertion slot is replaced by the current
solution, and the iteration counter is reset to one if any improvement occurs. Otherwise, the iteration
counter is incremented by one. Then, it removes job 5 from the current solution π and inserts it into all
possible positions of the partial solution πP. This procedure is repeated until the iteration counter is
greater than the number of jobs n, and a new solution is obtained. The pseudo-code of the RIS local
search is given in Algorithm 7.

After the local search phase, it should be decided if the new solution is accepted as the incumbent
solution for the next iteration. A simple simulated annealing-type of acceptance criterion is used with
a constant temperature similar to the IGRS and IGALL algorithms. Note that Taillard’s speed-ups are
employed wherever possible in our code.
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Algorithm 7: Referenced insertion neighborhood(π)

Count = 1
pos = 1
π

R = πbest

while (Count ≤ n) do

k = 1
while (πk ! = πR

Pos
) k = k + 1; endwhile //Find job πk at position pos in πR

pos = pos + 1
i f (pos = n + 1) then

pos = 1
end i f

πP = remove πk f rom π

π
∗ = InsertJobInBestPosition(πP,πk)

i f ( f (π∗) < f (π)) then do

π = π∗

Count = 1
end

Count = Count + 1
end i f

endwhile

return π and f (π)

4. Design of Experiment for Parameter Tuning

In this section, we present a Design of Experiments (DOE) approach [41] for parameter settings
of the VBIH algorithm. In order to carry out experiments, we generate random instances with the
method proposed in [9]. In other words, random instances are generated for each combination of n ∈

{100, 200, 300, 400, 500, 600, 700, 800} and m ∈ {20, 40, 60}. Five instances are generated for each job
and machine combination. Ultimately, we obtained 1200 instances in total. We consider three parameters
in the DOE approach. These are maximum block size (bMax), temperature adjustment parameter (τP),
and the decision of whether or not to implement the local search to the partial solution after removal of
a block of jobs. We have taken the maximum block size with seven levels as bMax ∈ (2, 3, 4, 5, 6, 7, 8);
the temperature adjustment parameter with ten levels as τP ∈ (0.1, 0.2, 0.3, 0.4, 0.5); and the decision
on the local search to partial solutions as pL ∈ (1, 2). Note that pL = 1 means that the local search is
applied to partial solutions whereas pL = 2 does not apply the local search to partial solutions. In the
design of VBIH algorithm, there are 7× 5× 2 = 70 algorithm configurations, i.e., treatments. The VBIH
algorithm is coded in C++ programming language on Microsoft Visual Studio 2013, and a full factorial
design of experiments is carried out for each algorithm on a Core i5, 3.40 GHz, 8 GB RAM computer.
Each instance is run for 70 treatments with a maximum CPU time Tmax = 10 × n ×m milliseconds.
Note that it took 18 days to run the full factorial design. We calculate the relative percent deviation
(RPD) for each instance-treatment pair as follows:

RPD = (
CMAXi −CMAXmin

CMAXmin
) × 100 (18)

where CMAXi is the makespan value generated by the VBIH algorithm in each treatment and CMAXmin

is the minimum makespan value found amongst 70 treatments. For each job size-treatment pair,
the average RPD value is calculated by taking the average of five instances in each job size. Then,
the response variable (ARPD) of each treatment is obtained by averaging these RPD values of all job
sizes. After determining the ARPD values for each treatment as mentioned above, the main effects
plots of the parameters are analyzed and given in Figure 3.
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Figure 3. Main effects plot for parameters of VBIH.

As it can be seen from Figure 3, the following parameters have better ARPD values than the others:
bMax = 2, τP = 0.5, and pL = 1. Furthermore, in order to see whether or not there is an interaction
effect between parameters, an ANOVA analysis is also given in Table 2.

Table 2. ANOVA results for parameters of VBIH.

Source DF Seq SS Adj SS Adj MS F p-Value

bMax 6 0.0086 0.0086 0.0014 33.370 0.000
tP 4 0.0090 0.0090 0.0022 52.080 0.000
pL 1 5.5441 5.5441 5.5441 129,096.720 0.000

bMax× tP 24 0.0010 0.0010 0.0000 0.990 0.505
bMax× pL 6 0.0025 0.0025 0.0004 9.830 0.000

tP× pL 4 0.0090 0.0090 0.0022 52.100 0.000
Error 24 0.0010 0.0010 0.0000
Total 69 5.5752

Table 2 indicates that bMax, tP, and pL were statistically significant since higher magnitude of F

values and p-values of parameter interaction effects are less than the significance level α = 0.05. High
magnitude of F value for pL also suggest that applying local search to partial solutions has a significant
impact on the solution quality as mentioned in [5]. In terms of interaction effects, it can be observed
that bMax× tP interaction is not significant because the p-value is much higher than the significance
level α = 0.05. However, bMax× pL and tP× pL interactions were significant since their p values are
less than the significance level α = 0.05. The interaction effects plot for bMax× pL is given in Figure 4.
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Figure 4 indicates that maximum block size should be taken as bMax = 2 and local search to
the partial solution should be applied. Since tP × pL interaction is also significant, we provide the
interaction plot in Figure 5.
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Figure 5 also suggests that tP and pL parameters should be taken as τP = 0.5 and pL = 1.
Ultimately, we set the parameters of VBIH algorithm as follows: bMax = 2, τP = 0.5, and pL = 1.

5. Computational Results

In this section, the computational results for the small and large set of VRF benchmark sets are
provided. MIP and CP models were written in OPL and run on the IBM ILOG CPLEX 12.8 software
suite, while all the heuristic algorithms were being written in Visual C++ 13 and carried out on an
Intel Core i5, 3.40 GHz, 8 GB RAM computer. The proposed VBIH algorithm is compared to IGRS

and IGALL algorithms. In addition, the results of these algorithms are obtained without the Taillard’s
speed up method, and they are denoted as IGRS*, IGALL* and VBIH*. Regarding parameters of them
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with, destruction size ds, and temperature adjustment factor, tP are taken as ds = 4 and tP = 0.4 for
IGRS and IGRS* as suggested in [4]. They are taken as ds = 2 and tP = 0.7 for IGALL and IGALL* as
indicated in [5]. As explained in the previous section DOE is conducted for the VBIH algorithm and its
parameters are determined as follows: bMax = 2, τP = 0.5, and pL = 1, which are also used for the
VBIH* algorithm.

5.1. Small VRF Instances

5.1.1. MIP Versus CP

Computational results are given in Table 3 for each combination, giving a total of 240 small VRF
instances. For each combination, the table summarizes the number of optimal solutions (nOpt) found
for ten instances of each job-machine combination (n × m), the average relative percent deviation
(ARPD%) from the upper bounds given in [9], the average CPU time for its ten instances, and the
optimality gap percentage (GAP%) on termination, which means the gap between best lower and
best upper bound. The maximum CPU time is restricted to an hour (3600 s). The result of CP and
MIP models are compared for job sizes 10 and 20. While MIP model can find solutions for very small
sized instances (10 jobs) in a shorter time than CP model, it becomes hard for MIP to solve large sized
problems (20 jobs and more). Both models cannot always find optimal solutions when the machine
size becomes greater than 5, but the MIP model has larger gaps than the CP model. The results show
that CP is more efficient than MIP on PFSP, except for very small-sized instances. The results of the
remaining instances are obtained only from the CP model because of very large gaps by MIP model. CP
model always captures optimal solutions when the machine number is five regardless of the number
of jobs. Besides, CP can find optimal solutions in some of the instances when the machine size is 10.
Overall, within the time limit, the CP model verifies optimality for 108 out of 240 instances.

Table 3. MIP and CP results for VRF small benchmarks with 3600 s time limit (The number in bold
shows the total optimal solutions).

CP MIP
n × m

nOpt ARPD CPU GAP nOpt RPD CPU GAP

10 × 5 10 0 14.03 0 10 0 2.68 0
10 × 10 10 0 102.13 0 10 0 4.35 0
10 × 15 10 0 256.45 0 10 0 5.68 0
10 × 20 10 0 452.79 0 10 0 9.59 0
20 × 5 10 0 2.49 0 0 0.58 3600.18 0.37
20 × 10 6 0.11 2250.09 0.03 0 2.24 3600.51 0.32
20 × 15 0 0.53 3600.05 0.13 0 2.54 3600.06 0.29
20 × 20 0 0.48 3600.07 0.17 40 2.61 3600.06 0.25
30 × 5 10 0 5.82 0 Na Na Na Na
30 × 10 2 0.47 3191.89 0.05 Na Na Na Na
30 × 15 0 1.29 3600.14 0.11 Na Na Na Na
30 × 20 0 1.63 3600.13 0.15 Na Na Na Na
40 × 5 10 0 15.03 0 Na Na Na Na
40 × 10 3 0.22 3113.36 0.03 Na Na Na Na
40 × 15 0 2.16 3600.10 0.10 Na Na Na Na
40 × 20 0 2.11 3600.16 0.13 Na Na Na Na
50 × 5 10 0 11.64 0 Na Na Na Na

50 × 10 3 0.19 2939.96 0.02 Na Na Na Na
50 × 15 0 2.28 3600.22 0.08 Na Na Na Na
50 × 20 0 2.73 3600.22 0.12 Na Na Na Na
60 × 15 10 0 6.44 0 Na Na Na Na
60 × 10 4 0.19 3158.95 0.01 Na Na Na Na
60 × 15 0 1.98 3600.19 0.07 Na Na Na Na
60 × 20 0 2.82 3600.29 0.10 Na Na Na Na

Overall
Avg.

108 0.80 2146.78 0.05 40 2.61 3600.06 0.25
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5.1.2. Comparison of Heuristic Algorithms with Exact Solutions

In order to compare performances of heuristic algorithms with CP exact method, we run all
algorithms for five independent replications with different seed numbers. Relative percent deviation
values from upper bounds for ten different instances of each job-machine combinations are calculated
as follows:

RPD =
(M−MUB) × 100

MUB
(19)

where M is the makespan value generated by any heuristic; and MUB is the upper bound provided
in [9]. Note that, for each instance, we record the average RFD of five replications for statistical analysis
purposes, especially, for interval graphs. The solutions of the CP model are limited to 3600 s and its
average CPU times are given in Table 4. IGALL, IGRS, and VBIH algorithms are run for five replications
with three different time limits 15, 30, and 45× n×m. As expected, the performance of these algorithms
is much better than those by CP exact model, and they improve the upper bounds provided in [9],
which means that the proposed algorithm and other IG algorithms can find good (optimal in some
cases) solutions in a very short time. As the solution time increases, the solution quality of VBIH
algorithm increases and according to the RPD, it gives the best solutions amongst all other algorithms.
It should be noted that the VBIH algorithm further improves 64 out 240 upper bounds for small VRF
instances within a very short time.

Table 4. Comparison of ARPD of all algorithms for small VRF instances.

15 × n × m 30 × n × m 45 × n × m
Instance CP

IGRS IGALL VBIH IGRS IGALL VBIH IGRS IGALL VBIH

10 × 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 × 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 × 15 0.00 0.00 0.00 0.02 0.00 0.00 0.02 0.00 0.00 0.02
10 × 20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
20 × 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
20 × 10 0.11 0.04 0.00 0.04 0.03 0.00 0.04 0.02 0.00 0.04
20 × 15 0.53 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
20 × 20 0.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
30 × 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
30 × 10 0.47 0.06 0.04 0.05 0.01 0.03 0.01 0.01 0.03 −0.01
30 × 15 1.29 0.03 0.02 0.03 0.02 −0.02 0.02 0.02 −0.02 0.02
30 × 20 1.63 0.02 0.00 0.03 0.02 0.00 0.02 0.02 0.00 0.02
40 × 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
40 × 10 0.22 0.06 0.02 0.03 0.02 0.01 −0.01 0.00 0.00 −0.01
40 × 15 2.16 0.09 0.05 0.04 0.04 0.02 −0.02 −0.01 −0.05 −0.05
40 × 20 2.11 0.10 −0.08 −0.04 0.04 −0.08 −0.05 −0.01 −0.08 −0.07
50 × 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
50 × 10 0.19 0.16 0.14 0.04 0.11 0.11 0.00 0.08 0.08 −0.03
50 × 15 2.28 0.24 0.18 0.10 0.15 0.14 0.05 0.10 0.09 0.02
50 × 20 2.73 0.17 0.02 0.00 0.07 −0.08 −0.10 0.04 −0.11 −0.10
60 × 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
60 × 10 0.19 0.07 0.11 −0.01 −0.04 0.08 −0.03 −0.06 0.05 −0.05
60 × 15 1.98 0.21 0.09 0.10 0.12 0.06 0.01 0.08 0.06 −0.04
60 × 20 2.81 0.20 0.01 0.00 0.03 −0.07 −0.12 −0.03 −0.08 −0.17

Avg. 0.80 0.06 0.02 0.02 0.03 0.01 −0.01 0.01 0.00 −0.02

5.2. Large VRF Instances

Note that both IGALL and VBIH algorithms employ the FRB5 heuristic for constructing initial
solution whereas IGRS uses the traditional NEH heuristic. For the large VRF instances, Table 5
summarizes the ARPD values of heuristic methods such as NEH, NEH without speed-up, denoted as
NEH*, and extended NEH heuristic with a local search on partial solutions denoted as FRB5.
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Table 5. Comparison of ARPD and computation time (CPU) for constructive heuristic methods (The
number in bold shows better results).

NEH NEH * FRB5
Instance

ARPD CPU(s) ARPD CPU(s) ARPD CPU(s)

100 × 20 5.82 0.00 5.82 0.01 2.45 0.10
100 × 40 5.30 0.00 5.30 0.03 2.57 0.21
100 × 60 4.89 0.00 4.89 0.05 2.19 0.32
200 × 20 4.15 0.00 4.15 0.10 1.42 0.89
200 × 40 4.81 0.01 4.81 0.23 1.67 1.91
200 × 60 4.48 0.01 4.48 0.39 1.56 2.73
300 × 20 3.17 0.01 3.17 0.33 0.80 2.75
300 × 40 4.05 0.02 4.05 0.79 1.07 6.45
300 × 60 3.94 0.03 3.94 1.31 1.23 9.85
400 × 20 2.44 0.01 2.44 0.80 0.50 6.27
400 × 40 3.80 0.03 3.80 1.91 0.82 15.83
400 × 60 3.42 0.04 3.42 3.14 0.75 24.39
500 × 20 2.06 0.02 2.06 1.53 0.43 12.10
500 × 40 3.17 0.04 3.17 3.75 0.63 31.73
500 × 60 3.27 0.06 3.27 6.05 0.57 47.97
600 × 20 1.70 0.03 1.70 2.60 0.24 20.76
600 × 40 2.96 0.06 2.96 6.34 0.53 54.97
600 × 60 2.97 0.09 2.97 10.31 0.37 82.27
700 × 20 1.42 0.04 1.42 4.13 0.25 31.50
700 × 40 2.80 0.08 2.80 10.06 0.26 84.38
700 × 60 2.66 0.13 2.66 17.22 0.32 249.99
800 × 20 1.35 0.04 1.35 6.06 0.21 42.31
800 × 40 2.45 0.10 2.45 15.48 0.24 125.13
800 × 60 2.74 0.16 2.74 26.17 0.31 195.41

Avg 3.33 0.04 3.33 4.95 0.89 43.76

As shown in Table 5, NEH is very fast with 0.04 s on overall average CPU time. However,
its overall average of ARPD is 3.33%. Although FRB5 heuristic is computationally very expensive,
which is 43.76 s on overall average CPU time, its average ARPD is only 0.89% from the upper bounds.
It is obvious from Table 5 that FRB5 heuristic is substantially better than NEH with a very large margin
at the expense of increased CPU time. It is interesting to observe the CPU time performance of the
NEH heuristic without the speed-up method of Taillard. Table 5 clearly indicates that the Taillard’s
speed-up method is substantially effective since the overall average CPU time is jumped from 0.04 s to
4.95 s without the speed-up method of Taillard. In addition to the above, we present the interval graph
of both constructive heuristics in Figure 6 in order for justification. Figure 6 indicates that differences
in ARPDs are significantly meaningful on the behalf of FRB5 heuristic since their confidence intervals
do not coincide.

5.3. Computational Results of Metaheuristics

In this section, the performance of VBIH algorithm is compared to the best-performing algorithms,
IGRS and IGALL, from the literature. All algorithms are run five replications to solve the large VRF
instances. In Table 6, we present average, minimum and maximum ARPD values for the CPU time
limit Tmax = 15× n×m milliseconds.
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 IGRS IGALL VBIH 
Instance Avg. Min Max Avg. Min Max Avg. Min Max 
100 20 0.45 0.13 0.74 0.12 −0.07 0.33 0.00 −0.21 0.23 
100 40 0.56 0.26 0.90 0.28 0.04 0.49 0.13 −0.09 0.37 
100 60 0.50 0.22 0.78 0.23 0.02 0.42 0.27 0.05 0.54 
200 20 0.42 0.24 0.61 0.19 0.04 0.35 0.03 −0.14 0.17 
200 40 0.47 0.25 0.68 0.14 −0.01 0.31 0.01 −0.21 0.24 
200 60 0.46 0.24 0.65 0.17 −0.01 0.37 0.05 −0.15 0.22 
300 20 0.22 0.06 0.35 0.10 −0.03 0.21 −0.03 −0.17 0.11 
300 40 0.35 0.15 0.56 0.04 −0.16 0.25 −0.18 −0.35 −0.02 
300 60 0.36 0.16 0.56 0.12 −0.06 0.27 −0.03 −0.20 0.15 
400 20 0.20 0.11 0.33 0.09 0.01 0.18 0.03 −0.03 0.10 
400 40 0.31 0.12 0.50 0.01 −0.11 0.14 −0.17 −0.32 −0.03 
400 60 0.27 0.08 0.46 −0.02 −0.17 0.12 −0.16 −0.27 −0.05 
500 20 0.15 0.06 0.26 0.12 0.07 0.18 0.03 −0.05 0.12 
500 40 0.29 0.12 0.45 0.00 −0.10 0.11 −0.19 −0.30 −0.07 
500 60 0.33 0.15 0.51 −0.06 −0.20 0.08 −0.19 −0.31 −0.06 
600 20 0.11 0.03 0.18 0.02 −0.03 0.07 0.01 −0.05 0.06 
600 40 0.38 0.23 0.54 0.03 −0.07 0.13 −0.05 −0.17 0.06 
600 60 0.30 0.12 0.50 −0.05 −0.18 0.05 −0.13 −0.23 −0.04 
700 20 0.11 0.05 0.18 0.04 −0.01 0.08 0.03 −0.03 0.08 
700 40 0.24 0.13 0.37 −0.11 −0.20 0.00 −0.21 −0.28 −0.12 
700 60 0.26 0.09 0.46 −0.05 −0.15 0.04 −0.13 −0.24 −0.03 

Figure 6. Interval plot for small VRF instances.

Table 6. Computational results of algorithms with Tmax = 15× n×m milliseconds (The bolds show
better results).

IGRS IGALL VBIH
Instance

Avg. Min Max Avg. Min Max Avg. Min Max

100 × 20 0.45 0.13 0.74 0.12 −0.07 0.33 0.00 −0.21 0.23
100 × 40 0.56 0.26 0.90 0.28 0.04 0.49 0.13 −0.09 0.37
100 × 60 0.50 0.22 0.78 0.23 0.02 0.42 0.27 0.05 0.54
200 × 20 0.42 0.24 0.61 0.19 0.04 0.35 0.03 −0.14 0.17
200 × 40 0.47 0.25 0.68 0.14 −0.01 0.31 0.01 −0.21 0.24
200 × 60 0.46 0.24 0.65 0.17 −0.01 0.37 0.05 −0.15 0.22
300 × 20 0.22 0.06 0.35 0.10 −0.03 0.21 −0.03 −0.17 0.11
300 × 40 0.35 0.15 0.56 0.04 −0.16 0.25 −0.18 −0.35 −0.02
300 × 60 0.36 0.16 0.56 0.12 −0.06 0.27 −0.03 −0.20 0.15
400 × 20 0.20 0.11 0.33 0.09 0.01 0.18 0.03 −0.03 0.10
400 × 40 0.31 0.12 0.50 0.01 −0.11 0.14 −0.17 −0.32 −0.03
400 × 60 0.27 0.08 0.46 −0.02 −0.17 0.12 −0.16 −0.27 −0.05
500 × 20 0.15 0.06 0.26 0.12 0.07 0.18 0.03 −0.05 0.12
500 × 40 0.29 0.12 0.45 0.00 −0.10 0.11 −0.19 −0.30 −0.07
500 × 60 0.33 0.15 0.51 −0.06 −0.20 0.08 −0.19 −0.31 −0.06
600 × 20 0.11 0.03 0.18 0.02 −0.03 0.07 0.01 −0.05 0.06
600 × 40 0.38 0.23 0.54 0.03 −0.07 0.13 −0.05 −0.17 0.06
600 × 60 0.30 0.12 0.50 −0.05 −0.18 0.05 −0.13 −0.23 −0.04
700 × 20 0.11 0.05 0.18 0.04 −0.01 0.08 0.03 −0.03 0.08
700 × 40 0.24 0.13 0.37 −0.11 −0.20 0.00 −0.21 −0.28 −0.12
700 × 60 0.26 0.09 0.46 −0.05 −0.15 0.04 −0.13 −0.24 −0.03
800 × 20 0.07 0.02 0.14 0.06 0.02 0.12 0.01 −0.04 0.05
800 × 40 0.22 0.09 0.36 −0.06 −0.14 0.02 −0.25 −0.33 −0.17
800 × 60 0.40 0.25 0.57 0.02 −0.04 0.08 −0.19 −0.29 −0.10

Avg 0.31 0.14 0.48 0.06 −0.06 0.18 −0.05 −0.18 0.08
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As seen in Table 6, VBIH generated better Avg, Min and Max RPD values on the overall average.
On overall average, it was able to further improve the upper bounds up to −0.05%; its best overall
performance was −0.18% indicating that 0.18% of 240 instances are further improved and its worst-case
performance was 0.08%. In order to see if differences in ARPDs are statistically significant, we provide
the 95% confidence interval plot of algorithms in Figure 7, where we can observe that differences in
ARPD values are statistically significant on the behalf of VBIH against IGRS and IGALL algorithms
because their confidence intervals do not coincide.

800 20 0.07 0.02 0.14 0.06 0.02 0.12 0.01 −0.04 0.05 
800 40 0.22 0.09 0.36 −0.06 −0.14 0.02 −0.25 −0.33 −0.17 
800 60 0.40 0.25 0.57 0.02 −0.04 0.08 −0.19 −0.29 −0.10 

Avg 0.31 0.14 0.48 0.06 −0.06 0.18 −0.05 −0.18 0.08 
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200 × 40 0.30 0.06 0.51 −0.08 −0.25 0.08 −0.04 −0.25 0.16 
200 × 60 0.26 0.05 0.51 −0.04 −0.19 0.13 0.02 −0.17 0.19 
300 × 20 0.12 −0.01 0.23 0.01 −0.10 0.14 −0.06 −0.21 0.08 
300 × 40 0.17 −0.03 0.41 −0.22 −0.37 −0.04 −0.23 −0.39 −0.07 
300 × 60 0.18 −0.03 0.42 −0.08 −0.25 0.12 −0.09 −0.24 0.07 

Figure 7. Interval plot at the 95% confidence level for large VRF instances.

Computational results for Avg, Min and Max ARPD values with the CPU time limit
Tmax = 30× n×m milliseconds are given in Table 7. As seen in Table 7, VBIH was able to generate
better Avg, Min and Max ARPD values on the overall average. On overall average, it was able to
further improve the upper bounds by −0.11% in Avg value, −0.24% of upper bounds are further
improved on Min value and its worst-case performance was 0.02%. However, as CPU times increased,
the performance of IGALL algorithm was also remarkable. Briefly, both VBIH and IGALL outperformed
IGRS in almost each problem set.

In order to see if these results are statistically significant, we provide the 95% confidence interval
plot of algorithms in Figure 8, where we can observe that differences in ARPD values are statistically
significant on the behalf of both VBIH and IGALL algorithms against IGRS algorithm because their
confidence intervals do not coincide with IGRS. In other words, VBIH and IGALL algorithms were
statistically equivalent but significantly superior to IGRS.
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Table 7. Computational results of algorithms with Tmax = 30× n×m milliseconds (The bolds show
better results).

IGRS IGALL VBIH
n × m

Avg. Min Max Avg. Min Max Avg. Min Max

100 × 20 0.25 −0.02 0.54 0.03 −0.11 0.16 −0.05 −0.25 0.16
100 × 40 0.38 0.08 0.68 0.05 −0.14 0.23 0.07 −0.15 0.33
100 × 60 0.36 0.13 0.63 0.05 −0.17 0.23 0.21 −0.02 0.51
200 × 20 0.28 0.12 0.45 0.07 −0.05 0.22 0.00 −0.16 0.14
200 × 40 0.30 0.06 0.51 −0.08 −0.25 0.08 −0.04 −0.25 0.16
200 × 60 0.26 0.05 0.51 −0.04 −0.19 0.13 0.02 −0.17 0.19
300 × 20 0.12 −0.01 0.23 0.01 −0.10 0.14 −0.06 −0.21 0.08
300 × 40 0.17 −0.03 0.41 −0.22 −0.37 −0.04 −0.23 −0.39 −0.07
300 × 60 0.18 −0.03 0.42 −0.08 −0.25 0.12 −0.09 −0.24 0.07
400 × 20 0.12 0.04 0.19 0.03 −0.04 0.09 0.01 −0.06 0.09
400 × 40 0.16 −0.03 0.37 −0.20 −0.38 −0.07 −0.22 −0.36 −0.08
400 × 60 0.08 −0.11 0.24 −0.22 −0.37 −0.07 −0.20 −0.31 −0.11
500 × 20 0.11 0.02 0.20 0.07 0.01 0.13 0.02 −0.06 0.10
500 × 40 0.13 −0.05 0.32 −0.16 −0.26 −0.06 −0.24 −0.36 −0.12
500 × 60 0.15 −0.03 0.32 −0.22 −0.35 −0.09 −0.23 −0.35 −0.10
600 × 20 0.07 −0.02 0.15 −0.01 −0.06 0.04 −0.02 −0.07 0.03
600 × 40 0.20 0.04 0.36 −0.11 −0.19 −0.02 −0.19 −0.29 −0.07
600 × 60 0.13 −0.03 0.32 −0.23 −0.37 −0.11 −0.26 −0.37 −0.15
700 × 20 0.08 0.01 0.16 0.02 −0.03 0.06 −0.01 −0.07 0.03
700 × 40 0.09 −0.01 0.19 −0.27 −0.38 −0.15 −0.34 −0.42 −0.27
700 × 60 0.07 −0.11 0.23 −0.21 −0.28 −0.13 −0.28 −0.39 −0.19
800 × 20 0.04 −0.01 0.09 0.02 −0.01 0.05 0.00 −0.04 0.04
800 × 40 0.07 −0.07 0.21 −0.20 −0.30 −0.11 −0.28 −0.35 −0.21
800 × 60 0.22 0.10 0.40 −0.13 −0.22 −0.04 −0.23 −0.32 −0.13

Avg 0.17 0.00 0.34 −0.08 −0.20 0.03 −0.11 −0.24 0.02

400 × 20 0.12 0.04 0.19 0.03 −0.04 0.09 0.01 −0.06 0.09 
400 × 40 0.16 −0.03 0.37 −0.20 −0.38 −0.07 −0.22 −0.36 −0.08 
400 × 60 0.08 −0.11 0.24 −0.22 −0.37 −0.07 −0.20 −0.31 −0.11 
500 × 20 0.11 0.02 0.20 0.07 0.01 0.13 0.02 −0.06 0.10 
500 × 40 0.13 −0.05 0.32 −0.16 −0.26 −0.06 −0.24 −0.36 −0.12 
500 × 60 0.15 −0.03 0.32 −0.22 −0.35 −0.09 −0.23 −0.35 −0.10 
600 × 20 0.07 −0.02 0.15 −0.01 −0.06 0.04 −0.02 −0.07 0.03 
600 × 40 0.20 0.04 0.36 −0.11 −0.19 −0.02 −0.19 −0.29 −0.07 
600 × 60 0.13 −0.03 0.32 −0.23 −0.37 −0.11 −0.26 −0.37 −0.15 
700 × 20 0.08 0.01 0.16 0.02 −0.03 0.06 −0.01 −0.07 0.03 
700 × 40 0.09 −0.01 0.19 −0.27 −0.38 −0.15 −0.34 −0.42 −0.27 
700 × 60 0.07 −0.11 0.23 −0.21 −0.28 −0.13 −0.28 −0.39 −0.19 
800 × 20 0.04 −0.01 0.09 0.02 −0.01 0.05 0.00 −0.04 0.04 
800 × 40 0.07 −0.07 0.21 −0.20 −0.30 −0.11 −0.28 −0.35 −0.21 
800 × 60 0.22 0.10 0.40 −0.13 −0.22 −0.04 −0.23 −0.32 −0.13 

Avg 0.17 0.00 0.34 −0.08 −0.20 0.03 −0.11 −0.24 0.02 
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Figure 8. Interval plot at the 95% confidence level for large VRF instances.
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Computational results for average, minimum and maximum RPD values with the CPU time
limit Tmax = 45× n×m milliseconds are given in Table 8, where VBIH outperformed IGRS and IGALL

algorithms with respect to average, minimum and maximum RPD values on the overall average.
On overall average, it was able to further improve the upper bounds by −0.25% on the average value,
−0.36% on the minimum value, and its worst-case performance was −0.13%. These statistics indicate
that VBIH generated much better results than both the IGRS and IGALL algorithms.

Table 8. Computational results of algorithms with Tmax = 45× n×m milliseconds (The bolds show
better results).

IGRS IGALL VBIH
n × m

Avg. Min Max Avg. Min Max Avg. Min Max

100 × 20 0.13 −0.14 0.39 −0.04 −0.21 0.1 −0.25 −0.44 −0.03
100 × 40 0.29 0.02 0.59 −0.05 −0.25 0.13 −0.18 −0.35 −0.01
100 × 60 0.26 0.03 0.48 −0.03 −0.28 0.17 −0.02 −0.17 0.19
200 × 20 0.21 0.05 0.37 0 −0.14 0.12 −0.12 −0.27 0.03
200 × 40 0.21 0.01 0.4 −0.2 −0.36 −0.03 −0.3 −0.53 −0.07
200 × 60 0.14 −0.07 0.37 −0.14 −0.3 0.02 −0.27 −0.43 −0.1
300 × 20 0.07 −0.06 0.17 −0.04 −0.18 0.1 −0.15 −0.26 −0.05
300 × 40 0.06 −0.13 0.27 −0.33 −0.47 −0.17 −0.45 −0.56 −0.28
300 × 60 0.08 −0.14 0.34 −0.24 −0.4 −0.04 −0.32 −0.47 −0.17
400 × 20 0.09 0 0.17 −0.03 −0.12 0.02 −0.05 −0.12 0.01
400 × 40 0.09 −0.09 0.3 −0.44 −0.57 −0.3 −0.41 −0.52 −0.28
400 × 60 −0.03 −0.23 0.16 −0.48 −0.64 −0.31 −0.41 −0.52 −0.32
500 × 20 0.07 −0.02 0.18 0.02 −0.06 0.08 −0.04 −0.11 0.06
500 × 40 0.04 −0.16 0.21 −0.41 −0.53 −0.29 −0.42 −0.5 −0.29
500 × 60 0.02 −0.14 0.17 −0.44 −0.56 −0.3 −0.41 −0.54 −0.29
600 × 20 0.04 −0.04 0.13 −0.04 −0.08 0.01 −0.05 −0.08 −0.01
600 × 40 0.11 −0.05 0.29 −0.32 −0.41 −0.21 −0.27 −0.39 −0.15
600 × 60 0.03 −0.12 0.22 −0.45 −0.6 −0.33 −0.35 −0.44 −0.23
700 × 20 0.06 −0.02 0.14 0 −0.05 0.05 −0.03 −0.08 0.02
700 × 40 0.01 −0.11 0.13 −0.36 −0.48 −0.24 −0.42 −0.5 −0.35
700 × 60 −0.01 −0.2 0.16 −0.3 −0.4 −0.22 −0.37 −0.48 −0.25
800 × 20 0.02 −0.04 0.07 0.01 −0.03 0.04 −0.01 −0.06 0.03
800 × 40 −0.01 −0.15 0.12 −0.27 −0.36 −0.17 −0.36 −0.43 −0.29
800 × 60 0.13 0 0.31 −0.21 −0.3 −0.14 −0.32 −0.4 −0.22

Average 0.09 −0.07 0.26 −0.20 −0.32 −0.08 −0.25 −0.36 −0.13

In order to see if these results are statistically significant, we provide the 95% confidence interval
plot of algorithms in Figure 9, where we can observe that differences in ARPD values are statistically
significant on the behalf of VBIH algorithm against both IGRS and IGALL algorithms because their
confidence intervals do not coincide. In other words, VBIH algorithm was statistically superior to both
IGRS and IGALL algorithm.
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100 × 40 0.29 0.02 0.59 −0.05 −0.25 0.13 −0.18 −0.35 −0.01 
100 × 60 0.26 0.03 0.48 −0.03 −0.28 0.17 −0.02 −0.17 0.19 
200 × 20 0.21 0.05 0.37 0 −0.14 0.12 −0.12 −0.27 0.03 
200 × 40 0.21 0.01 0.4 −0.2 −0.36 −0.03 −0.3 −0.53 −0.07 
200 × 60 0.14 −0.07 0.37 −0.14 −0.3 0.02 −0.27 −0.43 −0.1 
300 × 20 0.07 −0.06 0.17 −0.04 −0.18 0.1 −0.15 −0.26 −0.05 
300 × 40 0.06 −0.13 0.27 −0.33 −0.47 −0.17 −0.45 −0.56 −0.28 
300 × 60 0.08 −0.14 0.34 −0.24 −0.4 −0.04 −0.32 −0.47 −0.17 
400 × 20 0.09 0 0.17 −0.03 −0.12 0.02 −0.05 −0.12 0.01 
400 × 40 0.09 −0.09 0.3 −0.44 −0.57 −0.3 −0.41 −0.52 −0.28 
400 × 60 −0.03 −0.23 0.16 −0.48 −0.64 −0.31 −0.41 −0.52 −0.32 
500 × 20 0.07 −0.02 0.18 0.02 −0.06 0.08 −0.04 −0.11 0.06 
500 × 40 0.04 −0.16 0.21 −0.41 −0.53 −0.29 −0.42 −0.5 −0.29 
500 × 60 0.02 −0.14 0.17 −0.44 −0.56 −0.3 −0.41 −0.54 −0.29 
600 × 20 0.04 −0.04 0.13 −0.04 −0.08 0.01 −0.05 −0.08 −0.01 
600 × 40 0.11 −0.05 0.29 −0.32 −0.41 −0.21 −0.27 −0.39 −0.15 
600 × 60 0.03 −0.12 0.22 −0.45 −0.6 −0.33 −0.35 −0.44 −0.23 
700 × 20 0.06 −0.02 0.14 0 −0.05 0.05 −0.03 −0.08 0.02 
700 × 40 0.01 −0.11 0.13 −0.36 −0.48 −0.24 −0.42 −0.5 −0.35 
700 × 60 −0.01 −0.2 0.16 −0.3 −0.4 −0.22 −0.37 −0.48 −0.25 
800 × 20 0.02 −0.04 0.07 0.01 −0.03 0.04 −0.01 −0.06 0.03 
800 × 40 −0.01 −0.15 0.12 −0.27 −0.36 −0.17 −0.36 −0.43 −0.29 
800 × 60 0.13 0 0.31 −0.21 −0.3 −0.14 −0.32 −0.4 −0.22 
Average 0.09 −0.07 0.26 −0.20 −0.32 −0.08 −0.25 −0.36 −0.13 
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Figure 9. Interval plot at the 95% confidence level for large VRF instances.

In the Supplementary Materials, we summarize all the best-known solutions found for the first
time by IGALL and VBIH algorithms. The VBIH algorithm further improves 230 out of 240 instances.
In addition, 173 out of 240 instances are improved by the IGRS algorithm, while the IGALL algorithm
further improves 222 out of 240 instances. The IGALL algorithm improves six instances that are
not improved by VBIH algorithm. Ultimately, 236 out of 240 instances are further improved by all
algorithms within 45× n×m time limits with the remaining four solutions being equal.

As mentioned before, IGALL algorithm is presented in [5], where they analyzed the performances
of IGRS and IGALL on both Taillard’s [42] and large VRF instances. They observed that the results
obtained by using Taillard’s benchmark set, both algorithms do not present very significant differences
with respect to the RPDs obtained. In fact, they have shown that both algorithms did not show any
statistically significant differences. However, statistically significant differences between IGRS and
IGALL have been shown when large VRF instances are employed. In order to validate this observation,
we have run three algorithms on Taillard’s benchmark set with a stopping criterion Tmax = 45× n×m

milliseconds. Furthermore, we run three algorithms without the Taillard’s speed up method and they
are denoted as IGRS*, IGALL* and VBIH*. The computational results are given in Table 9. As seen
in Table 9, VBIH produced much better RPDs than IGRS and IGALL algorithms when the Taillard’s
speed up method is employed since its overall RPD was 0.17 from the best-known solutions. However,
IGRS and IGALL algorithms do not show so many differences in terms of RPDs. Interval plots of the
algorithms in Figure 10 show that differences in RFDs are not statistically significant because their
confidence intervals do coincide. This suggests a fact that researches on PFSP and its variants should
employ VRF benchmark suite to see differences in algorithms newly presented. Figure 10 also shows
that the Taillard’s speed up method is significantly effective for all three algorithms. During these runs,
we were also able to find 3 new best-known solutions for the Taillard’s benchmark suite (ta054 = 3719,
ta55 = 3610, ta56 = 3680) and their permutations are also provided in the Supplementary Materials.
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Table 9. Computational results of Taillard’s instances with Tmax = 45× n×m milliseconds (The bolds
show better results).

IGRS IGRS * IGALL IGALL * VBIH VBIH *

Avg Avg Avg Avg Avg Avg

20 × 5 0.00 0.00 0.00 0.00 0.00 0.00
20 × 10 0.01 0.00 0.00 0.00 0.00 0.01
20 × 20 0.01 0.01 0.00 0.00 0.00 0.01
50 × 5 0.00 0.00 0.00 0.00 0.00 0.00

50 × 10 0.34 0.43 0.40 0.43 0.26 0.31
50 × 20 0.57 0.79 0.53 0.71 0.33 0.53
100 × 5 0.00 0.00 0.00 0.00 0.00 0.00
100 × 10 0.10 0.19 0.04 0.11 0.02 0.09
100 × 20 0.82 1.33 0.89 1.23 0.54 0.94
200 × 10 0.05 0.14 0.03 0.05 0.03 0.05
200 × 20 1.04 1.46 0.82 1.29 0.55 1.02
500 × 20 0.47 0.92 0.35 0.75 0.26 0.64

Overall Avg. 0.28 0.44 0.26 0.38 0.17 0.30

𝑇 = 45 × 𝑛 ×𝑚

𝑇 = 45 × 𝑛 × 𝑚
 IGRS IGRS * IGALL IGALL * VBIH VBIH * 
 Avg Avg Avg Avg Avg Avg 

20  5 0.00 0.00 0.00 0.00 0.00 0.00 
20 × 10 0.01 0.00 0.00 0.00 0.00 0.01 
20 × 20 0.01 0.01 0.00 0.00 0.00 0.01 
50 × 5 0.00 0.00 0.00 0.00 0.00 0.00 

50 × 10 0.34 0.43 0.40 0.43 0.26 0.31 
50 × 20 0.57 0.79 0.53 0.71 0.33 0.53 
100 × 5 0.00 0.00 0.00 0.00 0.00 0.00 

100 × 10 0.10 0.19 0.04 0.11 0.02 0.09 
100 × 20 0.82 1.33 0.89 1.23 0.54 0.94 
200 × 10 0.05 0.14 0.03 0.05 0.03 0.05 
200 × 20 1.04 1.46 0.82 1.29 0.55 1.02 
500 × 20 0.47 0.92 0.35 0.75 0.26 0.64 

Overall Avg. 0.28 0.44 0.26 0.38 0.17 0.30 
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Figure 10. Interval plot at the 95% confidence level for Taillard’s instances.

6. Conclusions

This paper presents a variable block insertion heuristic (VBIH) algorithm for solving the
permutation flow shop scheduling problem (PFSP) with makespan criterion. In addition, we introduce
mixed integer programming (MIP) and constraint programming (CP) models to solve the small
benchmark set and to verify the results of our proposed heuristic algorithm. By employing the time
limited CP model, we can find optimal solutions for some of small VRF instances for the first time
in the literature. Furthermore, all algorithms can generate better solution values than upper those
currently exist in the literature. We adapted a well-known speed-up method of Taillard and applied
all the necessary parts while coding the heuristic algorithms. The parameters of the proposed VBIH
algorithm is tuned through a design of experiments on randomly generated benchmark instances.
Extensive computational results on two new VRF benchmark suites show that the VBIH algorithm is
superior to the best performing algorithms from the literature.

CP model found and verify optimal solutions for 108 out of 240 small VRF instances, whereas 236
out of 240 large VRF benchmark instances are further improved by the VBIH and IGALL algorithms for
the first time in this paper with remaining solutions being equal, which are also given in Appendix B
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(Table A5). Furthermore, three instances of Taillard’s benchmark suite are also further improved for
the first time in this paper since 1993.

As future research, VBIH algorithm can be easily extended to other variants of the PFSPs such as
no-idle, blocking and no-wait PFSP. In addition, other performance criteria can be considered such as
total flow time and total tardiness. Furthermore, different meta-heuristic algorithms or matheuristics
can be proposed to solve the PFSP.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4893/12/5/100/s1.
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Appendix A

The processing times of Car8 instance is given in Table A1 in order to explain the speed-up method.

Table A1. Processing times of Car8 instance.

Machines
Jobs

1 2 3 4 5 6 7 8

1 456 654 852 145 632 425 214 654
2 789 123 369 678 581 396 123 789
3 654 123 632 965 475 325 456 654
4 321 456 581 421 32 147 789 123
5 456 789 472 365 536 852 654 123
6 789 654 586 824 325 12 321 456
7 654 321 320 758 863 452 456 789
8 789 147 120 639 21 863 789 654

We remove job 2 from the optimal solution and calculate the completion times of the partial
solution, which is given in Table A2.

http://www.mdpi.com/1999-4893/12/5/100/s1
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Table A2. Completion times of partial permutation.

ej,k Machines

Job Position 1 2 3 4 5 6 7 8

7 1 654 975 1295 2053 2916 3368 3824 4613
3 2 1308 1431 2063 3028 3503 3828 4284 5267
8 3 2097 2244 2364 3667 3688 4691 5480 6134
5 4 2553 3342 3814 4179 4715 5567 6221 6344
1 5 3009 3996 4848 4993 5625 6050 6435 7089
6 6 3798 4650 5434 6258 6583 6595 6916 7545
4 7 4119 5106 6015 6679 6711 6858 7705 7828

After inserting job 2 to the 5th position j = 5, we calculate the completion times of heads below
and they are summarized in Table A3:

f j,0 = 0

f j,k = max
{

f j,k−1, e j−1,k

}

+ pπ j,k

f5,0 = 0

f ′5,1 = max
{

f5,0, e4,1

}

+ p5,1 = max{0, 2553}+ 789 = 3342

f ′5,2 = max
{

f5,1, e4,2

}

+ p5,2 = max{3342, 3342}+ 123 = 3465

f ′5,3 = max
{

f5,2, e4,3

}

+ p5,3 = max{3465, 3814}+ 369 = 4183

f ′5,4 = max
{

f5,3, e4,4

}

+ p5,4 = max{4183, 4179}+ 678 = 4861

f ′5,5 = max
{

f5,4, e4,5

}

+ p5,5 = max{4861, 4715}+ 581 = 5442

f ′5,6 = max
{

f5,5, e4,6

}

+ p5,6 = max{5442, 5567}+ 396 = 5936

f ′5,7 = max
{

f5,6, e4,7

}

+ p5,7 = max{5936, 6221}+ 123 = 6344

f ′5,8 = max
{

f5,7, e4,8

}

+ p5,8 = max{6344, 6344}+ 789 = 7133

Table A3. Completion times of heads for {7, 3, 8, 5, 2}with Cmax = 7133.

fj,k Machines

Job Position 1 2 3 4 5 6 7 8

7 1 654 975 1295 2053 2916 3368 3824 4613
3 2 1308 1431 2063 3028 3503 3828 4284 5267
8 3 2097 2244 2364 3667 3688 4691 5480 6134
5 4 2553 3342 3814 4179 4715 5567 6221 6344
2 5 3342 3465 4183 4861 5442 5936 6344 7133
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q j,m+1 = 0

q j,k = max
{

q j,k+1, q j+1,k

}

+ pπ j,k

q7,9 = 0
q′7,8 = max

{

q7,9, q8,8
}

+ p7,8 = max{0, 0}+ 123 = 123

q′7,7 = max
{

q7,8, q8,7
}

+ p7,7 = max{123, 0}+ 789 = 912

q′7,6 = max
{

q7,7, q8,6
}

+ p7,6 = max{912, 0}+ 147 = 1059

q′7,5 = max
{

q7,6, q8,5
}

+ p7,5 = max{1059, 0}+ 32 = 1091

q′7,4 = max
{

q7,5, q8,4

}

+ p7,4 = max{1091, 0}+ 421 = 1512

q′7,3 = max
{

q7,4, q8,3

}

+ p7,3 = max{1512, 0}+ 581 = 2093

q′7,2 = max
{

q7,3, q8,2
}

+ p7,2 = max{2093, 0}+ 456 = 2549

q′7,1 = max
{

q7,2, q8,1

}

+ p7,1 = max{2549, 0}+ 321 = 2870

q6,9 = 0
q′6,8 = max

{

q6,9, q7,8
}

+ p6,8 = max{0, 123}+ 456 = 579

q′6,7 = max
{

q6,8, q7,7
}

+ p6,7 = max{579, 912}+ 321 = 1233

q′6,6 = max
{

q6,7, q7,6
}

+ p6,6 = max{1233, 1059}+ 12 = 1245

q′6,5 = max
{

q6,6, q7,5
}

+ p6,5 = max{1245, 1091}+ 325 = 1570

q′6,4 = max
{

q6,5, q7,4

}

+ p6,4 = max{1570, 1512}+ 824 = 2394

q′6,3 = max
{

q6,4, q7,3

}

+ p6,3 = max{2394, 2093}+ 586 = 2980

q′6,2 = max
{

q6,3, q7,2
}

+ p6,2 = max{2980, 2549}+ 654 = 3634

q′6,1 = max
{

q6,2, q7,1

}

+ p6,1 = max{3634, 2870}+ 789 = 4423

q5,9 = 0
q′5,8 = max

{

q5,9, q6,8
}

+ p5,8 = max{0, 579}+ 654 = 1233

q′5,7 = max
{

q5,8, q6,7
}

+ p5,7 = max{1233, 1233}+ 214 = 1447

q′5,6 = max
{

q5,7, q6,6
}

+ p5,6 = max{1447, 1245}+ 425 = 1872

q′5,5 = max
{

q5,6, q6,5
}

+ p5,5 = max{1872, 1570}+ 632 = 2504

q′5,4 = max
{

q5,5, q6,4

}

+ p5,4 = max{2504, 2394}+ 145 = 2649

q′5,3 = max
{

q5,4, q6,3

}

+ p5,3 = max{2649, 2980}+ 852 = 3832

q′5,2 = max
{

q5,3, q6,2
}

+ p5,2 = max{3832, 3634}+ 654 = 4486

q′5,1 = max
{

q5,2, q6,1

}

+ p5,1 = max{4486, 4423}+ 456 = 4942

Now, we calculate the completion times of tails as shown in Table A4.

Table A4. Completion times of tails for {2, 1, 6, 4}with Cmax = 4942.

qj,k Machines

Job Position 1 2 3 4 5 6 7 8

1 6 4942 4486 3832 2649 2504 1872 1447 1233
6 7 4423 3634 2980 2394 1570 1245 1233 579
4 8 2870 2549 2093 1512 1091 1059 912 123

Now, we calculate Cmax = maxk( f j,k + q j,k) at position j as follows:

Cmax = max
{

(3342 + 4942), (3465 + 4486), (4183 + 3832), (4861 + 2649), (5442 + 2504), (5936 + 1872), (6344
+1447), (7133 + 1233)

}

Cmax = max{8284, 7951, 8015, 7979, 7832, 8108, 8366, 8366} = 8366
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Appendix B

Table A5. New best solutions of our algorithms for Large VRF Instances (The bolds shows the new
best known solutions).

Instance Cmax Best Instance Cmax Best Instance Cmax Best

100_20_1 6198 6173 300_60_1 20522 20483 600_40_1 33839 33683

100_20_2 6306 6267 300_60_2 20399 20249 600_40_2 33467 33405

100_20_3 6238 6221 300_60_3 20434 20328 600_40_3 33866 33713

100_20_4 6245 6227 300_60_4 20395 20293 600_40_4 33693 33584

100_20_5 6296 6264 300_60_5 20341 20200 600_40_5 33553 33401

100_20_6 6321 6285 300_60_6 20388 20280 600_40_6 33809 33626

100_20_7 6434 6401 300_60_7 20457 20358 600_40_7 33686 33545

100_20_8 6104 6074 300_60_8 20410 20319 600_40_8 33482 33298

100_20_9 6354 6328 300_60_9 20549 20405 600_40_9 33697 33567

100_20_10 6145 6125 300_60_10 20472 20385 600_40_10 33642 33473

100_40_1 7881 7846 400_20_1 21120 21042 600_60_1 36198 35976

100_40_2 8007 7976 400_20_2 21457 21411 600_60_2 36184 35923

100_40_3 7935 7894 400_20_3 21441 21428 600_60_3 36201 35917

100_40_4 7932 7913 400_20_4 21247 21237 600_60_4 36136 36000

100_40_5 8011 7997 400_20_5 21553 21528 600_60_5 36153 36004

100_40_6 8023 7993 400_20_6 21214 21188 600_60_6 36116 35943

100_40_7 8006 7980 400_20_7 21625 21599 600_60_7 36179 35965

100_40_8 7979 7957 400_20_8 21277 21264 600_60_8 36185 35894

100_40_9 7931 7888 400_20_9 21346 21293 600_60_9 36195 35987

100_40_10 7952 7917 400_20_10 21538 21526 600_60_10 36163 35943

100_60_1 9395 9353 400_40_1 23578 23393 700_20_1 36394 36388

100_60_2 9596 9567 400_40_2 23456 23380 700_20_2 36337 36316

100_60_3 9349 9349 400_40_3 23575 23467 700_20_3 36568 36519

100_60_4 9426 9403 400_40_4 23409 23269 700_20_4 36452 36380

100_60_5 9465 9431 400_40_5 23339 23213 700_20_5 36584 36556

100_60_6 9667 9630 400_40_6 23444 23298 700_20_6 36671 36645

100_60_7 9391 9346 400_40_7 23556 23415 700_20_7 36624 36597

100_60_8 9534 9523 400_40_8 23411 23290 700_20_8 36522 36492

100_60_9 9527 9488 400_40_9 23637 23424 700_20_9 36329 36315

100_60_10 9598 9572 400_40_10 23720 23606 700_20_10 36417 36386

200_20_1 11305 11272 400_60_1 25607 25395 700_40_1 38964 38767

200_20_2 11265 11240 400_60_2 25656 25549 700_40_2 38775 38560

200_20_3 11327 11294 400_60_3 25821 25707 700_40_3 38621 38460

200_20_4 11208 11188 400_60_4 25837 25638 700_40_4 38785 38597

200_20_5 11208 11143 400_60_5 25877 25669 700_40_5 38671 38490

200_20_6 11367 11310 400_60_6 25536 25407 700_40_6 38710 38440

200_20_7 11380 11365 400_60_7 25600 25415 700_40_7 38585 38355

200_20_8 11141 11128 400_60_8 25800 25603 700_40_8 39059 38817

200_20_9 11123 11091 400_60_9 25882 25673 700_40_9 38814 38569

200_20_10 11310 11294 400_60_10 25767 25658 700_40_10 38850 38712
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Table A5. Cont.

Instance Cmax Best Instance Cmax Best Instance Cmax Best

200_40_1 13132 13124 500_20_1 26411 26374 700_60_1 41436 41192
200_40_2 13102 13049 500_20_2 26681 26641 700_60_2 41375 41002
200_40_3 13264 13222 500_20_3 26409 26359 700_60_3 41317 41173
200_40_4 13232 13163 500_20_4 26124 26080 700_60_4 41401 41120
200_40_5 13043 12974 500_20_5 26781 26759 700_60_5 41262 41167
200_40_6 13124 13061 500_20_6 26443 26411 700_60_6 41340 41159
200_40_7 13299 13220 500_20_7 26433 26409 700_60_7 40876 40734
200_40_8 13238 13132 500_20_8 26318 26305 700_60_8 41474 41305
200_40_9 13166 13033 500_20_9 26442 26430 700_60_9 41291 41111
200_40_10 13228 13146 500_20_10 26072 26034 700_60_10 41377 41186
200_60_1 14990 14906 500_40_1 28548 28402 800_20_1 41558 41479
200_60_2 14954 14909 500_40_2 28793 28613 800_20_2 41407 41345
200_60_3 15200 15134 500_40_3 28607 28526 800_20_3 41425 41399
200_60_4 15044 14968 500_40_4 28828 28615 800_20_4 41426 41426
200_60_5 15130 15042 500_40_5 28683 28579 800_20_5 41710 41705
200_60_6 15035 14996 500_40_6 28524 28432 800_20_6 42010 41961
200_60_7 15040 15006 500_40_7 28760 28553 800_20_7 41425 41395
200_60_8 14968 14894 500_40_8 28698 28488 800_20_8 41492 41435
200_60_9 15022 14925 500_40_9 28870 28640 800_20_9 41796 41783
200_60_10 15000 14908 500_40_10 28758 28644 800_20_10 41574 41568
300_20_1 16149 16089 500_60_1 30861 30682 800_40_1 43671 43466
300_20_2 16512 16483 500_60_2 30828 30664 800_40_2 43746 43575
300_20_3 16173 16129 500_60_3 31125 30852 800_40_3 43749 43596
300_20_4 16181 16168 500_60_4 30928 30793 800_40_4 43892 43743
300_20_5 16342 16307 500_60_5 30935 30763 800_40_5 43905 43794
300_20_6 16137 16095 500_60_6 31027 30788 800_40_6 43811 43638
300_20_7 16266 16244 500_60_7 30928 30826 800_40_7 43766 43484
300_20_8 16416 16369 500_60_8 30988 30837 800_40_8 43839 43666
300_20_9 16376 16324 500_60_9 30978 30805 800_40_9 43879 43643
300_20_10 16899 16798 500_60_10 31050 30866 800_40_10 43861 43630
300_40_1 18298 18199 600_20_1 31433 31372 800_60_1 46470 46279
300_40_2 18454 18373 600_20_2 31418 31397 800_60_2 46493 46232
300_40_3 18457 18348 600_20_3 31429 31429 800_60_3 46389 46258
300_40_4 18351 18227 600_20_4 31547 31487 800_60_4 46457 46261
300_40_5 18484 18343 600_20_5 31448 31407 800_60_5 46401 46164
300_40_6 18449 18340 600_20_6 31717 31696 800_60_6 46421 46288
300_40_7 18419 18396 600_20_7 31527 31527 800_60_7 46319 46061
300_40_8 18392 18290 600_20_8 31564 31523 800_60_8 46474 46257
300_40_9 18394 18261 600_20_9 31577 31532 800_60_9 46538 46279
300_40_10 18401 18286 600_20_10 31130 31107 800_60_10 46244 46211
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