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ABSTRACT
The decision problem associated with the problem of finding a point with
largest norm in a bounded polyhedral set is shown to have a considerable range
of complexity depending on the norm employed. For a p-norm with integer
p 2 1, the problem is shown to be NP-complete. For the @@-norm, the problem
can be solved in polynomial time. The problem of finding an upper bound to
the largest norm for any p € [1,2] can be solved in polynomial time by

solving a single linear program.
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A VARIABLE~-COMPLEXITY NORM MAXIMIZATION PROBLEM
0. L. Mangasarian and T.-H. Shiau

1. Introduction

The problem of obtaining bounds for polyhedral sets has received considerable
attention in mathematical programming [14, 15, 16, 12, 8, 9]. Part of the significance of
this problem stems from the fact that the solution set to a linear program [4, 10] and to a
monotone linear complementarity problem [2] is such a polyhedral set. Bounding the
solution set to such problems when possible is then of practical interest. 1In this work we
shall conéider the polyhedral set X in R? defined by
(1.1 X :={x | x e R", BAx 2 b}
where A is a given m X n rational matrix and b is a given m X 1 rational vector.

We assume throughout this work that X is bounded. It is easy to show that a necessary
and sufficient coﬁdition for X to be bounded is that
(1.2) vy={y|vyerR, 20 y#0}=¢ .

The problem we wish to consider here is

(1.3) max Ixl
xeXx
where fiel denotes the p—norm on R, 1 ¢ p = integer < =, defined by
n® Vp
Ixl = ( 2 Ix_ ‘P) and nxﬂw =  max ‘X. ‘-
Poi= Ki<n T

We will show that while (1.3) can be solved in polynomial time for p = ®, the
decision problem associated with it is NP-complete [6, 11] for integer p 2 1. Since it is
widely believed that no NP-complete problem can be solved in polynomial time (the famous
conjecture P # NP in computational complexity theory), the difference in the difficulty
between p = ® and all other integer p 2 1 is enormous. (The standard complexity theory
terms used here are defined in Section 4.) In fact we can summarize the complexity

situation for our problem (1.3) as shown in Table 1.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This material is
based upon work supported by the National Science Foundation under Grant Nos. MCS-8200632
and DMS-8210950, Mod. 1.



Problem Complexity Known Method of Solution

1. Find an upper bound P Single linear program
to max Ixl for (Deterministic
xex polynomial time)

any p € [1,®]

2. max Ixl P 2n linear programs
x€X

3. max l!xll1 NP-complete 2" 1linear programs
x8X (Nondeterministic

polynomial time)

4. max Ixl NP-complete Vertex enumeration
xex p '

Integer p 2 2

Table 1. Complexity of max Ixl and its method
of solution. xeX

We note in passing that the minimization problem min Ixl is by contrast a much
x€X

simpler convex programming problem for p € {1,°]. In fact for p = 1 and <« it can be

solved by standard linear programming techniques [4, 10] or by a polynomial time algorithm
e.g. [7]. For p = 2 the problem is a convex quadratic program which can be solved by
standard techniques e.g. [2] or by a polynomial time algorithm ([3].

In the following sections of this paper we will show how each of the problem of Table
1 is solved and its complexity. Section 2 deals with finding an upper bound to (1.3) for
p € [1,~]. Section 3 deals with problem (1.3) for p = 1 and ® while Section 4 deals

with the cases of integer p 2 1.

2. Bounding max fix!
x€X P

It is useful to know that for any p € [1,®], p not necessarily an integer, an upper
bound to the solution of the nonconvex problem max Ix1 can be obtained by solving a

x€X
single linear program (Theorem 2.1 below). This is a useful result since we show (Section

4) that the problems max ﬂxﬂp for integer p 2 1 are intractable NP~-complete problems.
xeX

-



When X is contained in the nonnegative orthant R} := {x | x e R, x » 0} it is evident

that a solution to the 1-norm problem max ﬂxﬂ1 is easily obtained by the single linear
xeX

program

(2. 1) max n ex
XGXnR+

where e 1is a vector of ones. However when X ¢:R2, as may be the case here, solution of
max Rxﬂ1 may take 2% linear programs, as shown in Section 3. 1In fact we will show in
x€X

Section 4 that the problem max Rxﬂ1 is NP-complete. However, merely obtaining an upper
xeXx

bound to max Ix! for any p € [1,®] will take at most a single linear program as shown
x8X P
by the following result.

2.1 Theorem. Let X be nonempty and bounded, let

and let B‘j denote the jth column of B. Then for any p € [1,] and any x € X

(2.3) 1x1? < max {1a1®, iy, + aif}

where Y is the maximum value of the following solvable linear program

(2.4) Y :=max{ey | x e R, y e R™, ax =y =b, y 2 0} .
XY

Proof. Note first that the boundedness condition (1.2) implies the linear independence of
the columns of A and hence the nonsingularity of ATA. In addition the nonemptiness and

boundedness of X implies the solvability of the linear program (2.3). Hence

max 1x1 max { 1x1 l x € Rp: y € Rw: &x =y =bs ¥y 2 0}
xeX XY

= max{nxup | x = By + d (AB-I)(y+b) = 0, y > 0, ey < Y}

XY

< max{ﬂxllD l x =By +d, vy 2 0, ey ¢ Y}
XY -

= max{1By + al | vy >0, ey ¥}

Y

max {14l _, 0yB ., + &b }
1¢3¢m j P



where the last equality follows from the fact that the maximum of a convex function on a

bounded polyhedral set is attained at a vertex [13, Corollary 32.3.4].

0

Note that if a lower bound to max Hxﬂp is also desired, then we have the following.
xeXx

2.2 Corollary. Under the assumptions of Theorem 2.1 we have that

IBy + al_ < max lxl
xeXx

—

where y is a solution of the linear program (2.4).
Since by Khachian's result [7] a linear program is solvable in polynomial time in the
size of the problem, and since the algebraic operations prescribed in (2.3) can all be

performed in polynomial time, the following holds.

2.3 Corollary. The bound (2.3) can be computed in time which is polynomial in the size
of A and b.

We note that the bound (2.3) of Theorem 2.1 may be sharp as evidenced by the following

example.
/
2‘ 40 E:}(ample A = '°2 1 b = "10
5 1 =10
1 -4 - 2
For this example it is easy to verify that
max x! =10 for p= 1, 2 and® , Yy = 42
xeX
B = [-.0649 . 1688 .0260 , d= -1.0909
.0519 . 0649 -.2208 - 7273

Computing the bound (2.3) of Theorem 2.1 gives for p= 1, 2 and

max {#al_, ¥yB . + 4l } = 10 .
1833 PF



3. max fixi for p = and 1
x8X

It is rather obvious that the problem max lIxHf_, can be solved by maximizing the
xex

absolute value of each component of x separately subject to x in X. This leads to

the followinge.

3.1 Proposition

The problem max lIx!_ = can be solved by solving the 2n linear programs
xeXx
(3.1) max max{ixi x € R, ax > b} .
1<isn

Since each linear program can be solved in polynomial time [7] we have the following.

3.2 Corollary

The problem max Hxﬂeo can be solved in time which is polynomial in the size of A
xeX
and b-. '
n
Since the problem max qu1 is equivalent to max 2 lxil, its solution can he

xeX ax i=1
obtained by solving 2" 1linear programs as follows.™

3.3 Progosition

The problem max Nxﬂ1 can be solved by solving the 2% linear programs
xex
(3.2) max max{vx | x € R", Ax > b}
veV =x
where V is the set of 2% vertices of the cube in R? defined by
n
(3.3) {v|ver' e <vel,
where e is a vector of ones.

While 2n linear programs can be solved in a reasonable amount of time for inter-
mediate~sized problems, solving 2" 1linear programs is intractable even for n as small
as 15. It is even worse for general p € (1,°) if we try to enumerate the vertices of
X for finding the maximal p-norm, for the number of vertices can be as much as (:)
which, by Stirling's formula, is bounded below by an exponential in n for m 2 (1+e)n

for any constant positive €. One may try to find other algorithms that are

computationally effective. Unfortunately., as shown in the next section, problem (1.3)



with p # ® is no easier than the partition problem (see (4. 1) below) which is inherently

intractable.

4. The intractability of the norm maximization problem for p # =

We begin this section with some basic concepts of complexity theory [6, 11]. Problem
A reduces (in polynomial time) to problem B, denoted by A « B, iff the following holds:
If there is a polynomial time algorithm for B, then one can construct a polynomial time
algorithm for A wusing the algorithm for B as a subroutine. Problems A and B are poly-

nomially equivalent iff A « B and B < A. BAn NP-complete problem is one which is poly-

nomially equivalent to any one of the standard intractable problems such as the

satisfiability, partition, or travelling salesman problems [6, 11)]. These problems are

considered intractable because any known algorithm which solves any one of them requires,
in the worst case; an amount of time which is not bounded above by any polynomial in
problem size. An NP-hard problem is any problem such that all problems in NP reduce to
it in polynomial time. For details see [6, Chapter 5]. Thus an NP-hard problem is at
least as difficult as an NP-complete problem. We will now show that our norm maximization
problem (1.3) is NP-hard for p # ® by reducing the following NP-complete partition
problem to it:
(4. 1) Given integers c4/Cyre-c,Cyr is there a set Sc {1,2,cc.,n}

such that 1 c, = 2 c. ?

ies 7 ygs

4.1 Theorem. The norm maximization problem (1.3) is NP-hard for p € [1,@).

Proof. We will show this by reducing (4.1) to (1.3). Let p € [1,2). We first reduce
(4.1) to the following problem:

(4:.2) Given integers cq4,Cgrev-4Cps is there an x € R® such that:

n
} eyx; =0, =1 g¢x; £ 1, 1£4 <n, Hxﬂg;n?
l=

It is easy to see that (4.1) has a solution S iff (4.2) has a solution x with Ixi] = 1



for 1gign and x; =1 for 1 €58 and x; = -1 for 1 ¢ S. Now it is easy to see

that (4.2) can be reduced to an instance of problem (1.3) by defining

-~ -
I -a
-1 -e
A := :+ b :=
cT 0
T
-C 0
L L J
and answering the question:
(4.3) Is max{ﬂxﬂg | x e R®, Ax > b} >n ?

Hence if we can solve (1.3) in polynomial time we can solve each of (4.3), (4.2) and (4. 1)

in polynomial time. Hence (4.1) « (1.3) and (1.3) is WP-hard. -

We go on to show now that our norm maximization problem (1.3) is in fact NP-complete
for integer p # ®. In order to do this we introduce additional concepts from complexity

theory. A nondeterministic algorithm is an algorithm which at each step has a firite

number of moves from which to choose (instead of only one for deterministic algorithms) and
it solves a problem in a finite sequence of choices leading to a correct answer. EEE is the
class of problems solvable by a nondeterministic algorithm in polynomial time, including
(4.1) and all other NP-complete problems. In fact NP-complete problems are the class of
most difficult problems in NP in the sense that each problem in NP reduces in
polynomial time to each NP-complete problem. By Cook's theorem [1, 6, 11], all we need to
show for (1.3) to be NP-complete is that it is NP-hard (which we already have done in
Theorem 4.1) and that it is in the class NP, which we proceed to do now. In order to do
that we introduce the following decision problem related to our optimization problem (1.3):
(4.4) Given A, b with integer entries satisfying (1.2), and nonzero integers I, S, P.
is there a vector x in R% such that

PyX
Ax 2 b, Dxﬂp 2 = ?

Note that in the proof of Theorem 4.1 we have already established that the decision problem

(4.4) is NP-hard, because we reduced the partition problem (4.1) to (4.2) which is an



instance of (4.4). We will now first show that (4.4) is in NP and hence it is NP-complete.
Then we will show that an optimization problem (1.3) is polynomially equivalent to the NP-
complete decision problem (4.4). Note that condition (1.2) which is imposed on problem
(4.4) which is a necessary and sufficient condition for the boundedness of X, plays an

essential role in Proposition (4.2) below which establishes that (4.4) is in NP.
4.2 Proposition. Problem (4.4) is in NP for integer p 2 T

Proof. It follows by the convexity of the norm and the boundedness of X by (1.2) [13],

r

p for some vertex v of X. Moreover, v

that 1xI® > £ for some x € x iff Ivi® >

p=s=s p =
is a vertex iff there is a J {1,2,...,m}, |3] = n such that v is the unique solution
of Aix = bi' i e J, and ij 2 bj for j ﬂ J. Conseguently we can prescribe the

following nondeterministic algorithm for solving (4.4).

4.3 Al gorithm
(i) choose J, a subset of {1,2,:..,m} with cardinality n.

(ii) Solve Aix =b,, 1 8 J for one x, or conclude that the system is

1

inconsistent.

 es . , . P.JX . .
(iii) iﬁ_solutlon x found and ij 2 bj for j ﬁlJ and ﬂxup ; S then print x;

success; else failure; endif.

Step (ii) can be performed in polynomial time (e.g. by Gaussian elimination). Since we
have assumed that p 1is an integer, ﬂxﬂg can be evaluated in polynomial time. Hence

Algorithm 4.3 is a polynomial time algorithm and (4.4) is in NP.
0

In standard terminology, the terms NP and NP-complete refer to decision problems
only but not to optimization problems. Now we show that the NP-complete decision problem
(4.4) and our optimization problem (1.3) are polynomially equivalent. First it is obvious
that if one can solve the optimization problem (1.3), then one can answer the decision
problem (4.4). The reverse is usually done by a binary search technique showing that the
optimization problem can be solved by a polynomial number of decision problems. This is

all rather obvious for discrete combinatorial problems, but not for our continuous problem



(1.3). To do this here, we shall use arguments similar to those of Khachian [7]. Define

m,n .
L := ) 1og2(|Aij| + 1) + ] logy(|b | + 1) + log,(nm+1) + log,(pt1) .
i,3=1 i

L is the total length of binary digits representing the input A, b, n, m, p of problem

(1.3).

4.4 Theorem. For any integer p 2 1, problem (1.3) is polynomially equivalent to the NP-

complete decision problem (4.4).

Proof. Since an optimal solution of (1.3) is at a vertex of X [13], such a vertex can be
D D D T

1 2 n
written by Cramer's rule as (B—-: Tt B*J ¢ where D and Dy are determinants of

submatrices of [A bl]. Hence
D D T

1 n
(i) PFor any vertex v = (Er-,ouor oo IDI < 2L, |Di| < 2L, Hvﬂg < 2PL, (See [5]

for details.)
D D T B B T

L. . 1 n 1 n
(ii) For any two distinct vertices Hvﬂp # Hwnp, v o= (E— tveoy B—) ¢ W = [E—-,...,E—J

it follows that

1 =2pL

b p p b
|D [P +eeet ]Dnl i |B P +eeut |Bn| l, .,
|p|® |8|® " |ol®P|Bl?

ivi® - 1wi?] =
P P

Hence we can reduce (1.3) to (4.4) by binary search on the interval [O,ZPL] until the

range is less than 2°2PL. Since each iteration reduces range by half, 3pL iterations

will do that by the following:

4.5 Algorithm

(i) 2 < 0, u « 2P

(ii) for i =1 to 3pL do
1
(iii) solve the decision problem (4.4) for input A, b, §-= (g+u)

|

(iv) if answer is yes then & *-g else u +-§ endif

(v) end for

If (iii) can be done in polynomial time, then (i) to (v) can be done in polynomial time.

After (v), we known that there exists an x € X such that £ = u—2-2PL, Exﬂg 2 2. whereas



there is no x € X such that Bxﬂg 2 u. Hence if we now use Algorithm 4.3 with input

a

Pl 2, A and b, the x printed in step (iii) of Algorithm 4.3 is an exact vertex

solution of (1.3) obtained in polynomial time. Hence {1.3) reduces to (4.4).

-10~
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