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Abstract 

 

A variable-fidelity aerodynamic model based on proper orthogonal decomposition (POD) of 

an ensemble of computational fluid dynamics (CFD) solutions at different parameters is 

presented in this article. The ensemble of CFD solutions consists of two subsets of numerical 

solutions or snapshots computed at two different nominal orders of accuracy or discretization. 

These two subsets are referred to as the low- and high-fidelity solutions or data, whereby the 

low-fidelity corresponds with computations made at the lower nominal order of accuracy or 

coarser discretization. In this model, the relatively inexpensive low-fidelity data and the more 

accurate but expensive high-fidelity data are considered altogether to devise an efficient 

prediction methodology involving as few high-fidelity analyses as possible, while obtaining the 

desired level of detail and accuracy. The POD of this set of variable-fidelity data produces an 

optimal linear set of orthogonal basis vectors that best describe the ensemble of numerical 

solutions altogether. These solutions are projected onto this set of basis vectors to provide a finite 

set of scalar coefficients that represent either the low-fidelity or high-fidelity solutions. 

Subsequently, a global response surface is constructed through this set of projection coefficients 

for each basis vector, which allows predictions to be made at parameter combinations not in the 

original set of observations. This approach is used to predict supersonic flow over a slender 

configuration using Navier-Stokes solutions that are computed at two different levels of nominal 

accuracy as the low- and high-fidelity solutions. The numerical examples show that the proposed 

model is efficient and sufficiently accurate.  
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Nomenclature 

 

 

ij
a      is the i-th scalar or projection coefficient of the j-th POD mode 

 

ij
F   is the i-th component of the j-th POD basis mode 

 

 m       is the number of  realizations or snapshots and POD modes  

 

 n        is the number of grid points in a mesh 

 

a    is a solution vector of primitive or conservative variables  

 

( )xf   computationally expensive analysis 

 

( )xf
~

  approximation to ( )xf   

 

 r       radial distance from a given centre point 
 

( )rY   a typical radial basis function 

 

)(xp   a polynomial of one degree less than the radial basis function ( )rY  

 

a    angle of incidence or angle of attack 

 

D      mid-body diameter 

 

M   Mach number 

 

Cx   component of the aerodynamic force along the axis of the body 

 

Cz   component of the aerodynamic force normal to the axis of the body 

 

Cm   pitching moment acting on the body 

 

Xcp  centre of pressure coordinate along the body axis   

 

 

 

 

 

 

 

 

 



  

1.0 Introduction 

 

A significant disadvantage of surrogate modelling based on proper orthogonal decomposition 

(POD) of an ensemble of CFD solutions is the up-front cost which is necessary to generate the 

dataset of observations. From this dataset, an adequately rich set of orthogonal basis vectors are 

constructed and subsequently used in the development of the surrogate model. Consequently, a 

method that reduces the time in generating this training dataset without a significant loss of 

accuracy is of interest. In an effort to limit this initial computational encumbrance, a variable-

fidelity model that incorporates the POD of an ensemble of CFD solutions at two different levels 

of fidelity is proposed in this paper so as to manage and control the up-front computational cost. 

Furthermore, this model provides a means for fusing computational data of variable-fidelity 

while yielding solutions for the complete flow-field. 

 

The variable-fidelity modelling concept was employed by various researchers such as Haftka [1], 

Hutchinson et al. [2], Kaufmann et al. [3] and Alexandrov et al. [4][5][6][7][8] for solving 

design optimisation problems. In general, variable-fidelity models (sometimes these are referred 

to as multi-fidelity models) combine inexpensive low-fidelity analyses with more accurate but 

expensive high-fidelity solutions. This combination is sought, as the evaluation of high-fidelity 

flow simulations can be computationally expensive and therefore it is of great interest to devise 

methodologies, most especially in design and analysis activities, that involve as few high-fidelity 

analyses as possible. The variable-fidelity modelling strategy generally uses multi-dimensional 

response surface technology to model the different fidelities. In this concept, a model of lower-

fidelity such as a coarser discretization, relaxed convergence tolerances and omitted physics are 

used to reduce the number of analyses using a high-fidelity model. As a result, the original 

complex and time consuming problem is mitigated and therefore a considerable reduction in the 

computational demand is achieved.  

 

There are various strategies for reducing the number of high-fidelity analyses. Haftka [1] 

introduced the notion of employing a linearly varying scaling factor between models of variable-

fidelity. In this strategy, a high number of points are selected for the relatively inexpensive low-

fidelity analyses and from these points a subset is chosen for high-fidelity analyses. The low-

fidelity results are used to fit a response surface while the high-fidelity analyses are used to fit a 



  

linear correction response surface. For a common design point between the two models, the ratio 

of the responses is evaluated and used for establishing the variable-fidelity approximation. 

Subsequently, the concept of correction response surfaces was applied by others such as 

Hutchinson et al. [2]. Another strategy presented by Kaufmann et al. [3], entails the use of low-

fidelity models to reduce the region in the design space and once this is reduced, a high-fidelity 

response surface is constructed over this reduced space.  

 

A different strategy, primarily of interest in optimisation problems, uses a model of low-fidelity 

to conduct the optimization. Then occasionally and systematically information from the high-

fidelity model is used to check and recalibrate the designs generated. In order to manage the 

approximations, various ways to decide when the fidelity is increased or decreased were 

suggested [4][6][7][8]. An approach related to the one proposed by Haftka uses an additive 

correction method in which the difference between low- and high-fidelity models is evaluated. 

This correction is subsequently added to the low-fidelity response surface. A comparison 

between multiplicative and additive correction response surfaces was conducted by Toropov and 

Markine [9], who suggested that the multiplicative correction leads to better approximations. 

Another possibility is to use low-fidelity models to identify unimportant response surface terms 

or to identify insignificant variables that reduce the problem dimensionality as shown by Knill et 

al. [10].  

 

An autoregressive co-kriging approach suggested by Kennedy and O’Hagan [11] was utilized by 

Huang et al. [12] and Forrester et al. [13]. The method has the advantage that it is applicable to 

more than two fidelity models. Leary et al. [14] presented a knowledge-based variable-fidelity 

approach, where low-fidelity data are dealt with as apriori knowledge in the training process of 

artificial neural networks and Kriging interpolation. A space-mapping model between low-

fidelity and high-fidelity data using POD was suggested by Robinson et al. [15] [16]. This model 

is based on the gappy POD method for the reconstruction of incomplete datasets developed by 

Everson and Sirovich [17]. A completely different approach, which utilises radial basis functions 

to fuse experimental and computational integrated data (ie. aerodynamic coefficients) for a 

missile configuration, was proposed by Reisenthel et al. [18] and to fuse experimental and 

computational surface pressure data for an aircraft wing by Rendall and Allen [19].  



  

In this article, a surrogate model based on POD of an ensemble of CFD snapshots at two 

different fidelities and at different parameters’ value is coupled together with the variable-fidelity 

model suggested by Reisenthel et al. [18]. While Reisenthel’s model can be applied over 

individual or integrated properties at different fidelities, the advantage of the model presented in 

this article is that it can be applied over the whole solution domain generated by CFD 

simulations. Consequently, the model produces a solution similar to that obtained from a CFD 

calculation. This model was originally presented by Mifsud [20]. 

 

The layout of the paper is as follows. In Section 2, a description of the various numerical 

methods employed is presented. In particular, a description of POD and a detailed description of 

the variable-fidelity model based on POD are made. In Section 3, the results obtained from the 

variable-fidelity model for a cone-cylinder-flare body are presented together with some 

recommendations in its use.  In Section 4, a conclusion is drawn.  

 

 

2.0    Numerical Methods 

 

In this section a brief description of the numerical methods employed is presented. This includes 

the CFD tool, the POD methodology as well as the variable-fidelity model. 

 

 

2.1 CFD Model 

 

The CFD analysis tool used to generate the snapshots in this work is the IMPNS flow solver [21] 

[22]. The IMPNS software has been developed to provide a practical flow solver for problems in 

high-speed air vehicle aerodynamics and includes algorithms for the solution of the Euler, thin-

layer or parabolized Navier-Stokes equations together with a range of turbulence closures. 

IMPNS has been used extensively to study the aerodynamics of high-speed air vehicle 

configurations with remarkable success. Further details of its development and application can 

be found in references [23] to [29].   

 

 

 



  

2.2 Surrogate modelling based on proper orthogonal decomposition  

 

The surrogate model presented in this article comprises three main elements:  a dimensionality 

reduction method that is used to determine the dominant characteristics of a set of discrete 

observations at different parameters’ value, a response surface representation of the scalar 

coefficients obtainable from the dimensionality reduction model and the variable-fidelity model. 

These three elements of the aerodynamic model are described in the following sections. 

 

 

2.2.1 Proper Orthogonal Decomposition 

 

In fluid mechanics, the POD was first introduced by Lumley [30] in the context of stochastic 

turbulence. The same procedure has been widely used in other disciplines and is commonly 

referred to as the Karhunen-Loéve expansion and the principal component analysis. POD is also 

very closely related to the singular value decomposition. The POD provides a basis for the modal 

decomposition of a system of functions, usually data obtained from either experiments or 

numerical simulations. The resulting basis functions are called proper orthogonal modes and are 

the best possible uncorrelated and data-dependent linear set of bases functions that describe the 

initial observations.  

 

The POD method has been used extensively in the fields of random variables, image processing, 

data compression and system controls. In the field of fluid dynamics, it has been used in 

unsteady flow problems such as aero-elasticity and stochastic turbulence to capture the temporal 

variation of the flow. It was also used in steady flow problems to capture parametric variations.  

For example, Epureanu et al. [31] employed POD to develop reduced-order models for potential 

flow in turbo-machinery with sampling performed over a range of inter-blade phase angles and 

time. LeGresley and Alonso [32] used POD to develop surrogate models of a 2D Euler flow 

solver for design optimization purposes in which the POD modes spanned a range of aerofoil 

geometries. Bui-Thanh et al. [33] employed the POD method, together with an interpolation 

procedure, to predict the pressure flow-field over an aerofoil for varying inflow Mach number 

and angle of attack while Mifsud et al. [34] presented a similar methodology which was applied 

to a high-speed aerodynamics problem in the supersonic flow regime.  



  

The POD procedure is usually described using the calculus of variations applied to a multi-

dimensional spatio-temporal dataset. In such problems, the dataset is produced from solution 

vectors obtained at a particular instant of time. In this paper, the POD is described for steady 

flow problems in terms of the singular value decomposition (SVD). Although these two 

approaches are equivalent in a descritized context, the SVD approach is preferred as it is more 

straightforward.  

 

Let 
nmx

RAÎ  denote the matrix whose rows are the snapshots with data centred about the 

origin. Each snapshot is constructed by placing in order the solution at each grid point in the 

CFD domain for the complete grid. This order can be determined arbitrarily, but it must be 

consistent throughout the whole set of snapshots. 
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The SVD of A  can be written as 

 

 ΣUA =
T

V                                                                                                             Eq. (2) 

 

where U
mmx

RÎ  and V
nnx

RÎ  are orthogonal matrices. These matrices are the left and right 

singular vectors respectively. 
nmx

RΣÎ  is a diagonal matrix whose diagonal elements consist of 

( )m,nq min =  non-negative numbers 
i
σ  arranged in decreasing order, that is,

  

qσσσσ ....
321

³³³³
 
 where 

i
σ  are referred to as the singular values of A . Since Σ  is a 

diagonal m x n matrix, then the above matrix equation can be written in reduced or thin form as 



  

follows if we assume that m < n, where the matrices 
mmx

RΣÎ  and 
nmx

RV
T

Î  are reduced 

in size. The columns of V and hence the rows of 
T

V  are the proper orthogonal modes of the 

system. These basis vectors are orthonormal. Writing the product of U and Σ  as a matrix [ ]
ij

a , 

Eq. (2) can be represented by  
   

 

 

 jk

m

ij
i
k

j

vαa~

1

)(
å
=

=                                                                                          Eq. (3) 

 

The scalar coefficients ijα  are also referred to as projection coefficients because these are 

obtained by projecting the solution onto the basis vectors. A complete reconstruction of the 

snapshots can be obtained from 

 

aaa
~

+ñá=                                                                                                                   Eq. (4) 

  

where ñáa  is the mean vector by which the snapshots were centred.  Now, a  may represent a 

vector of scalar functions such as the primitive or conservative variables and therefore the 

method described can be applied to each variable in turn to form a distinct basis for each 

variable. However, an improvement in the ability of the basis to represent the system may be 

achieved by considering not only how the individual variables vary from one snapshot to another 

but also how variables change relative to one another. Hence a  is developed from state variable 

vectors consisting of all the primitive or conservative variables [32]. In this case, the POD modes 

are sensitive to the scaling of the flow variables as these are in different units and have 

significantly varying magnitudes. Consequently, appropriate scaling factors are necessary for 

each fluctuating flow variable which makes their magnitude of the same order [35].
   

 

When a problem is represented by an appropriate number of snapshots from which a suitably 

rich set of basis vectors is available, the singular values rapidly become small and a few basis 

vectors are adequate to reconstruct and approximate the snapshots. Assuming that p modes 

which correspond to the largest p singular values are dominant, then the energy E or variance in 

the data captured by the first p modes can be computed as  
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If this energy is sufficiently high enough, say over 99.99 % of the total energy, then p modes are 

adequate to capture the principal features and approximately reconstruct the dataset.  Thus, a 

reduced subspace is formed which is only spanned by p modes. 

 

2.2.2 Constructing the response surface  
 

The use of surrogate models based upon proper orthogonal decomposition for prediction requires 

the fitting of a response surface through the projection coefficients, 
i

a . If 
i

a  varies as a smooth 

function with the change in parameters, then a surrogate model may be used  to determine the 

POD projection coefficients at intermediate parametric values not included in the original data 

ensemble. The predicted solution vector )(
a

b
 for any variableb  within the parametric space is 

given by, 

 

i

p

i

i
α vaa

)( å
¢

=
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1

bb                                                                        Eq. (6) 

 

where p¢  is normally greater than p and the weighting coefficients 
b

i
α are found by mathematical 

modelling. In this work, radial basis functions that produce an interpolative fit through all of the 

sample points were considered. 

 

 

2.2.2.1 Radial Basis Functions 

 

A radial basis function (RBF) [36] is a real-valued function whose value depends on the 

Euclidean distance from some point called a centre. Radial basis functions are typically used to 

build up a function approximation of the form  
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                                                                                     Eq. (7) 

 

where the approximating function ( )xf
~

 is represented as a sum of N radial basis functions Y , 

each associated with a different centre 
i
x  and weighted by an appropriate coefficient 

i
w . The 

variable )(xp  is a polynomial of one degree less than the RBF and is included to ensure a unique 

solution for the weight vector. Thus, an RBF is a weighted sum of translations of a radially 

symmetric basis function augmented by a polynomial term. In particular RBFs are suitable for 

interpolating scattered data and hence do not require the data to lie on any sort of regular grid for 

most types. 

 

Typical radial basis functions are  

(i) Gaussian ( )
2

q

r

er
-

=Y           

(ii) multi-quadric ( )
2

1
q

r
r +=Y     [37][38], 

(iii) polyharmonics such as the triharmonic ( ) 3

rr =Y   and 

(iv) thin plate splines  ( ) rrr ln
2=Y  

 

The constant θ in (i) and (ii) is called the shape parameter. The RBF interpolant ( )xf
~

 is defined 

by the coefficients of the polynomial p(x) and the weights wi.  Since this produces an under-

determined system, the orthogonality condition  
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j
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is further imposed on the coefficients w ),......,(
1 N

ww= . 

 

Let ( )
l
ppP ,.....,

1
=  be a basis for the polynomial and let c ( )

l
cc ,,.........

1
=  be the coefficients that 

give P in terms of this basis. Then Eq. (7) and Eq. (8) may be written in matrix form as  
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and       ),(
, ijji

xpP =        ..,.........1,,.......1 ljNi ==  Solving Eq. (9) determines c and w,  

hence )(
~
xf . 

 

 

2.2.3 The variable-fidelity model based on POD  

 

Assuming that the low-fidelity and the high-fidelity solutions significantly correlate with one 

another, a variable-fidelity model based on POD can possibly be set up in a number of ways. 

One possible way is to conduct the POD analysis on the high- and low-fidelity data separately 

and then to construct a response surface to model the discrete projection coefficients of the 

corresponding modes at low- and high-fidelity separately. However, this method may run into 

the problem that the low-fidelity and the high-fidelity POD modes are not directionally aligned 

with one another and hence it would not be straightforward to relate the low- and high-fidelity 

modes together. Moreover, this method would require a considerable number of high-fidelity 

snapshots, which is not a desirable characteristic. Hence, in order to circumvent these problems, 

a model is proposed in this work in which the POD analysis is conducted on the variable-fidelity 

dataset altogether. Generally, this methodology requires either a common computational grid 

between the low- and high- fidelity solutions or else that the low-fidelity solutions are mapped 

onto the high-fidelity grid by some interpolation technique. 

 

Considering an ordered ensemble of variable-fidelity data A , where 
nmx

RAÎ , is obtained 

from the solution vectors of low- and high-fidelity computations at various parameters’ values.  

The total number of realizations or parameters combination 
21
mmm += , where 

1
m  is the 

number of snapshots obtained from the high-fidelity computations and 
2
m  is the number of 



  

snapshots obtained from the low-fidelity computations.  It is assumed that 
21
mm <<  and n is the 

number of sample points over which the computational domain is sampled.  

 

Let 
nmx

RAÎ  denote the matrix whose rows are the centred snapshots where the primed entries 

denote the high-fidelity solution vectors, from row 1 to row 
1
m . The non-primed entries 

represent the low-fidelity solution vectors, from row 
1
m + 1 to m where 

21
mmm += . In this 

methodology, the parameters combination between the low- and high-fidelity solutions can be 

different and it is not necessary to have common snapshots between the variable-fidelities, 

although these can assist to establish apriori whether there exists a strong or weak correlation 

between the low- and high-fidelity solutions.  
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The SVD of A  which is equal to UΣ
T

V  can be written in reduced form as        
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The rows of T

V  are the proper orthogonal modes of the system. Multiplying the first two 

matrices on the RHS to obtain the projection coefficients matrix [ ]
ij

a  
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From this projection coefficients matrix, the set of scalar coefficients   and constji,
α

=  
 are 

considered altogether to develop multi-dimensional response surfaces for variable-fidelity data 

representation. Note that the high-fidelity response surface part is formed by the projection 

coefficients 
'

constji,α =  
 for 

1
1 mi ££  while the low-fidelity response surface part is formed by the 

projection coefficients constji,
α

=   
for mm i+ ££1

1
. This is achieved by the introduction of an 

auxiliary variable ε ≡ 
1+N

x  to the N-dimensional problem with variables ),......,,(
21 N

xxx . This 

auxiliary variable simply denotes whether the data is of low-fidelity (ε = 0) or high-fidelity (ε = 

1).  From this, a global response surface is then computed in the N+1 dimensions using radial 

basis functions. Predictions can be made by interrogating the newly developed response surface 

projected along ε = 1 at any arbitrary parameter value not in the original set of observations. The 



  

resulting model representation respects the accuracy of the high-fidelity data while following the 

features of the low-fidelity data. In this model, the introduction of the low-fidelity sub-space by 

making use of an additional variable, allows an interpolation-based extrapolation to be 

performed. In other words, an extrapolation at high-fidelity based on interpolation at low-fidelity 

is conducted.  

 

Following this, the predicted solution vector â  is determined by 

 

constjk

q

k

kconsti =

=

=å ¢+= ,

1

,ˆ vaa a                                                                         Eq. (12) 

where q < m and a  is the mean vector.  It is important to emphasize that this model gives access 

to the full flow-field data.  

 

 

 

3.0 Results 

The variable – fidelity model based on POD and described in the preceding section was tested by 

modelling supersonic flow over a high-speed air vehicle configuration as a function of two 

different flow parameters. The two  flow parameters of interest were the flight Mach number (M) 

and the angle of incidence (α). The geometry considered is a flare stabilized projectile as shown 

in Figure 1. It comprises a conical fore-body of length 3.56 mid-body diameters, a cylindrical 

centre-body of length 15.34 mid-body diameters with an aft flare which increases in diameter 

from one mid-body diameter to four mid-body diameters over a length of 4.24 diameters. All 

CFD computations were conducted using the IMPNS software on a half-body computational 

mesh with 26 grid points in the axial direction, 41 grid points in the radial direction and 31 grid 

points in the circumferential direction. No geometrical body deformations were considered.   

 

An ensemble of CFD solutions at different values of the flow parameters  and at two different 

levels of fidelity were generated. The two levels of data were computed using a different nominal 

order of accuracy in the computational scheme. This particular problem is of interest because 

PNS flow solvers tend to encounter difficulties when computing at high angles of incidence and 

at a high nominal order of accuracy, and despite these difficulties, a result would be highly 



  

desireable even if it is inaccurate. The variable-fidelity model can be equally applied to a 

problem where coarse and fine grids are considered to create the low- and high-fidelity sets of 

data respectively. In that case, however, a technique to map the larger number of points of the 

fine grid onto the coarse grid is necessary.  

 

As stated ealier, the two flow parameters considered were the angle of incidence which was 

varied within the range [0º, 10º] and the Mach number which was varied within the range [2, 6]. 

The two subsets of snapshots were generated by running the IMPNS software over the entire 

sampling space at a constant Reynolds number of 0.4 million based on the mid-body diameter. 

Fully turbulent flow was considered. The low-fidelity snapshots were generated by computing 

nominally first-order accurate calculations, while the high-fidelity snapshots were calculated 

using a nominally third order accuracy in the cross-flow directions and second order in the 

stream-wise.  

 

To investigate apriori the strength or weakness of the correlation between the low- and high-

fidelity solutions, the Pearson’s product - moment correlation coefficient was calculated for the 

surface parameters at low- and high-fidelity. The coefficient of pressure Cp and the surface 

friction coefficients τx ,  τy  and  τz  in the x, y and z directions respectively were considered. Note 

that the correlation coefficient could have been evaluated upon the primitive variables instead.  

 

 

3.1 Variable--fidelity correlations 

Table 1 shows the variable-fidelity correlations at Mach numbers 2 and 6. At a Mach number of 

2, the correlation coefficient between the low- and high-fidelity snapshots indicates a strong 

correlation in Cp throughout the whole range for the angle of attack. While it shows good 

correlation in surface friction towards the ends of the angle of attack range, this correlation 

deteriorates towards the mid-range at an angle of attack of 5º. Table 1 also includes the 95 % 

confidence that the correlation coefficient is between the lower and the upper limits. In addition 

these data provide significant evidence for the alternative hypothesis with a p-value less than 2.2 

x 10
-16

. 

 



  

Also at a Mach number of 6, the correlation coefficient indicates a strong correlation for Cp 

throughout the whole angle of attack range. The correlation coefficient based upon the  surface 

friction is relatively weak at 0º and steadily increases towards an angle of attack of 10º. 

Moreover, these data provide significant evidence for the alternative hypothesis with a p-value 

less than 2.2 x 10
-16

. These results indicate that reasonably good results are expected from the 

variable-fidelity model based on POD and this will be evident in the next two sections.  

 

 

3.2  Training the variable-fidelity model with five high-fidelity snapshots 

In this work, two problems were set-up with different training datasets. In the first problem, the 

training data consisted of  the following two subsets: 

 

i. For the low-fidelity dataset: 30 snapshots were generated with the Mach number varying 

within the range [2, 6] in increments of 1.0,  while the angle of incidence varying within the 

range [ 0º, 10º ]  in increments of 2º. 

 

ii. For the high-fidelity dataset: 5 snapshots were generated with the Mach number varying 

within the range [2, 6] in increments of 1.0 and at a constant angle of incidence of 5º.  

 

As explained previously, the two dimensional problem was augmented with an auxiliary variable 

denoting whether the data is of low- or high- fidelity, giving rise to a three-dimensional problem 

ie., the two aerodynamic parameters (M  and  α)  and the auxiliary variable (ε). With this training 

data, a global response surface of the projection coefficients was generated using Gaussian radial 

basis functions with a shape parameter of 1.0 and this was used as a global interpolant along the 

three dimensions. From the interpolated projection coefficients, predictions were generated of 

the full three-dimensional flow field which was then used to calculate the main integral 

parameters of interest, the viscous axial force coefficient Cx and the normal force coefficient Cz. 

 

Figures 2 and 3 show the variation of the predicted viscous axial force coefficient Cx and the 

normal force coefficient Cz with the angle of incidence for the cone-cylinder-flare body at a 

Mach number of 2 and 6 respectively. The figures also include the high-order accurate solution 



  

(high-fidelity) for verification purposes and the first-order accurate solution (low-fidelity) to 

show its trend. The training data which is partially input into the model at the respective Mach 

number are also shown and denoted by a diamond symbol. From Figures 2 and 3 it can be 

noticed that the predictions are reasonably good and generally follow the trend of the low-fidelity 

data while passing through the high-fidelity data point used in the training dataset at an angle of 

attack of 5º. During modelling, it was observed that this effect can even be made either more 

pronounced or else alleviated by an appropriate scaling of the magnitude of the auxiliary variable 

ε. 

 

The agreement between the predictions for the proposed model and the high-fidelity solutions 

are particularly good  at a Mach number of 2 and reasonably good at a Mach number of 6. The 

errors at a Mach number of 2 are within ±2.0 % for Cx and ±6.0 % for Cz of the high-fidelity 

values. At a Mach number of 6, the errors are within ±6.0 % for Cx and ±15.0 % for Cz of the 

high-fidelity values.  These results emphasize the importance of using low-fidelity models which 

incorporate the correct trends, as the biggest errors were observed in those regions where the 

low- and high-fidelity follow different trends and have different features.  This is most especially 

important when a few high-fidelity data points are taken into consideration, since the reliance on 

the low-fidelity solutions is considerably greater.  This observation was also made by Reisenthel 

et al. [18].  

 

3.3 Training the variable-fidelity model with fifteen high-fidelity snapshots 

In an effort to improve upon the results obtained from the variable-fidelity model, the training 

dataset was enriched by increasing the number of high-fidelity training data such that fifteen 

snapshots were considered together with the previous low-fidelity dataset. A full-factorial 

design-of-experiment was set up with Mach numbers at 2, 3, 4, 5 and 6, and an angle of attack of 

2º, 5º and 8º. These angles of attack were chosen so that the high-fidelity sub-space partially 

covers the whole parametric space. Therefore, this would provide a problem where some regions 

would be predicted by interpolation and some others by extrapolation. This dataset of 

observations was used to train a three-dimensional response surface which was once again used 

as a global interpolant along the three-dimensions. 

  



  

The variation of the viscous axial and normal force coefficients with the angle of attack at 

different Mach numbers are shown in Figures 4 and 5. As expected, significant improvement is 

achieved when using more high-fidelity data points over a wider area of the evaluation space as 

is evident in the predictions at the higher Mach number (Figure 5). Furthermore, from these 

results at both Mach numbers of 2.0 and 6.0, it is clear that by using the variable-fidelity model 

based on POD, an improvement is registered at regions beyond the high-fidelity data. This is 

evident when comparing the results obtained from  the variable-fidelity model  based on POD 

with the prediction generated using the high-fidelity snapshots only. This latter prediction is 

denoted by Prediction V-S only in Figures 4 and 5. This improvement is achieved due to the 

introduction of the low-fidelity sub-space to the problem which allows the extrapolation of the 

high-fidelity sub-space based on an interpolation of the low-fidelity sub-space. In this case, the 

errors at a Mach number of 2 are within ±1.0 % for Cx and ±5.0 % for Cz of the high-fidelity 

values. At a Mach number of 6, the errors are within ±2.0 % for Cx and ±8.0 % for Cz of the 

high-fidelity values.   

 

Figures 6 and 7 show the projected carpet plots of the viscous axial and normal force coefficients 

using different methods. The sub figures 6 (a) and 7 (a) show the results from the high-order 

accurate calculation using the IMPNS CFD code. The sub figures (b) and (c) show the results 

from the variable-fidelity model based on POD using five and fifteen high-fidelity snapshots, 

respectively. It is clear that when using five high-fidelity snapshots (Figure 6 (b) and Figure 7 

(b)), the discrepancies between the predicted and the high-order accurate CFD solutions are 

evident. These differences reduce substantially and tend to become insignificant when 

considering fifteen high-fidelity snapshots (Figure 6(c) and Figure 7(c)).  

 

 

3.4 Flow-field reconstruction using the variable-fidelity model 

In the first part of the assessment of the VFM based on POD approach, the performance was 

evaluated by considering the integrated properties such as the force coefficients. However, these 

are only a partial outcome from the proposed variable-fidelity model. In general, information on 

the details of the flow-field is also of interest and this is indeed provided by the VFM based on 

POD approach. Figures 8 and 9 show the total pressure contours along the symmetry plane and 



  

the body surface, while Figures 10 and 11 show the total pressure contours at the outflow and the 

body surface. Note that the total pressure contours were cut-off over 3225 Pa and below 325 Pa 

for clarity. The Figure 8 (a) and Figure 9 (a) represent the prediction from the VFM based on 

POD model and Figure 8 (b) and Figure 9 (b) are obtained from the full order CFD solution. 

These figures compare the total pressure contours for the high-fidelity CFD simulations and the 

model predictions with fifteen high-fidelity snapshots for a Mach number of 2.0 and at angles of 

incidence of 6° and 9°. The incidence setting of 6° sits within the high-fidelity training dataset 

while that of 9° is outside. At these parametric values, reasonably accurate viscous axial and 

normal force coefficients and their derivatives were attained and so it is interesting to observe the 

flow-field predictions. In this case, the total pressure was considered since it is a sensible 

indication of the accuracy by which all the primitive variables are predicted. The comparisons 

show that the predicted total pressure contours are only slightly different from the ones 

calculated over certain regions of the flow-field.  

 

 

 

3.5 Comments and recommendations  

The model presented in this article consists of coupling together a variable-fidelity model and a 

reduced-order model based on POD. It is therefore expected that the model  inherits both the 

advantages and disadvantages from these two elements. In fact, the reduced-order modelling 

limitations  are still present within the proposed method. Also,  it was observed that the model 

provides reasonably accurate predictions when there exists a significant correlation between the 

low-fidelity and the high-fidelity training data. As a consequence, the model cannot be used 

when there is significant difference in the flow physics between the low-fidelity and high-fidelity 

training data. For example, the model would not predict sensibly when considering a flow over 

an aerofoil in the transonic flow regime and using inviscid and viscous flow computations as the 

low- and high-fidelity training data respectively. The difference between the shock’s strength 

and position of an inviscid and viscous flow are  substantial. Another instance when the model 

fails  is when modelling the flow velocity and using inviscid and viscous flow training data as 

the low- and high-fidelity solutions respectively. Under this particular circumstance,  the  

boundary conditions at the wall  are totally different. 



  

On the other hand, the model provides reasonably accurate predictions when there exists 

significant correlation between the low-fidelity and the high-fidelity training data and this 

concurs with the observations reported by Reisenthal et. al [18], where the predictions were 

found to closely follow the trend of the low-fidelity training data points. This characteristic is 

most prominent when the high-fidelity training data is sparse. However, the influence of the low-

fidelity data upon the high-fidelity data reduces as the number of high-fidelity training data 

points is increased. A way to verify whether the model is adequately representing a particular 

application is by increasing in steps the number of high-fidelity training data and monitoring the 

discrepancies from its output. As the number of the high-fidelity training data is increased, the 

response from the model must tend towards some limiting value, which will be within some 

approximation error due to the interpolation technique.   

 

Moreover, it is well known that surrogate models based on POD work well in an interpolation 

based setting. However, it is not so clear whether the POD technique works well in an 

extrapolation based setting unless the physics of the problem changes linearly beyond the 

parametric range.  Therefore, by using this variable-fidelity model based on POD, a 

transformation of the problem is made from an extrapolation setting into an interpolation one by 

the introduction of the auxiliary variable, hence making it possible for the variable-fidelity model 

based on POD to work well. Thus, this technique may be considered also as a step towards 

achieving a variable-fidelity model based on POD to work successfully for a linear or non-linear 

problem in an extrapolation based setting.   

 

As a general recommendation, it is advisable that the scalar coefficients are scaled between 0 and 

1 for each POD mode separately before generating and interrogating the response surface, even 

though in this work no scaling was performed. After interrogation, the coefficients are unscaled 

once again and used as in Eq. (12) to generate the predicted solutions. Moreover, it is suggested 

that in order to establish apriori whether there exists correlation between the low- and high-

fidelity sets of data, a Pearson’s second-moment correlation coefficient is evaluated between the 

high- and low-fidelity solutions at common points within the parameters’ space. This together 

with other tests would provide apriori an indication of whether the prediction is reliable or not, 

after the necessary calibration.  



  

4.0 Conclusions 

 

A variable-fidelity model based on POD is applied to model the three dimensional flow around 

an air vehicle travelling at high speed. In this model, a POD of an ensemble  of snapshots made 

up of two different levels of fidelity is conducted, from which the resulting low- and high-fidelity 

projection coefficients along each significant POD mode are mathematically modelled using a 

variable-fidelity model. Subsequently, high-fidelity predictions are made for the modal 

coefficients at parameter values that are not available in the training dataset for each POD mode.  

It was observed that this model behaves like other variable-fidelity models in that the high-

fidelity prediction follows very closely the trend of the low-fidelity training data points. Thus, 

the resulting predictions depend on the low-fidelity dataset, especially when the high-fidelity 

training data is sparse. However, the predictions get more accurate and independent of the low-

fidelity trend as the number of high-fidelity data points is increased. Potentially this method 

offers a reduction in the up-front cost necessary to generate the training dataset for a POD-based 

surrogate model. In particular, the model was used to fuse low-order and high-order accurate 

CFD solutions. It was demonstrated that this technique works well for this kind of problems 

where both the physics and the boundary conditions of the variable-fidelity data are similar. The 

model was sequentially applied directly on all of the primitive variables and good agreement was 

found between the model predictions and the high-order accurate CFD solutions at the same 

parametric values.  
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Angle 

of 

attack 

 

Surface 

Parameter 

 M = 2.0   M = 6.0  

Correlation 

Coefficient 

Lower 

Limit 

Upper 

Limit 

Correlation 

Coefficient 

Lower 

Limit 

Upper 

Limit 

0.0º 

Cp 0.9888 0.9872 0.9903 0.9950 0.9943 0.9957 

τx 0.9606 0.9549 0.9656 0.8011 0.7749 0.8245 

τy 0.9756 0.9720 0.9787 0.8374 0.8155 0.8569 

τz 0.9729 0.9690 0.9764 0.8689 0.8509 0.8849 

2.0º 

Cp 0.9886 0.9869 0.9901 0.9935 0.9926 0.9944 

τx 0.9372 0.9283 0.9451 0.8017 0.7756 0.8251 

τy 0.9474 0.9398 0.9540 0.8639 0.8452 0.8804 

τz 0.9479 0.9404 0.9545 0.8918 0.8767 0.9051 

5.0º 

Cp 0.9872 0.9854 0.9889 0.9937 0.9928 0.9945 

τx 0.9268 0.9164 0.9360 0.9153 0.9034 0.9259 

τy 0.9156 0.9037 0.9261 0.8994 0.8853 0.9118 

τz 0.9141 0.9020 0.9248 0.9115 0.8991 0.9225 

8.0º 

 

Cp 0.9863 0.9843 0.9881 0.9962 0.9956 0.9967 

τx 0.9593 0.9534 0.9644 0.9520 0.9451 0.9581 

τy 0.9533 0.9466 0.9592 0.9344 0.9250 0.9426 

τz 0.9517 0.9447 0.9578 0.9385 0.9298 0.9463 

10.0º 

 

Cp 0.9863 0.9842 0.9880 0.9978 0.9975 0.9981 

τx 0.9793 0.9762 0.9819 0.9700 0.9657  0.9739 

τy 0.9803 0.9774 0.9828 0.9639 0.9586  0.9685 

τz 0.9806 0.9778 0.9831 0.9635 0.9582  0.9681 

Table 1 -  Pearson’s product-moment correlation coefficient evaluated upon the surface parameters 

at a Mach number of 2.0 and 6.0 between the low- and high-fidelity snapshots  for the cone-

cylinder-flare body 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

 

 

 

 

 

 

 

 

 

 

                     3.56D                                    15.34D                               4.24D  

                   
Figure 1 – Body geometry of total length 23.14D where D is the mid-section diameter 
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(a) Cx 

 

 

(b) Cz  

 

 
Figure 2 - Calculations and predictions for Cx and Cz as a function of angle of incidence using  

5 high-fidelity snapshots for M = 2 and  Re = 0.4 million  
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Figure 3 - Calculations and predictions for Cx and Cz as a function of angle of incidence using  

5 high-fidelity snapshots for M = 6 and Re = 0.4 million 
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( b)  Cz 
 

Figure 4 - Calculations and predictions for Cx and Cz as a function of angle of incidence using  

15 high-fidelity snapshots for M = 2 and Re = 0.4 million 
 

 

 

 

 

 

 

 



  

 

 

       

( a)  Cx 
 

 

 

( b)  Cz 
 

 
Figure 5 – Calculations and predictions for Cx and Cz as a function of the angle of incidence using 

15 high-fidelity snapshots for M = 6 and Re = 0.4 million 
 

 

 

 

 



  

 
(a) using 55 high-fidelity CFD solutions  

 

 
 (b) predicted from the variable-fidelity model based on POD with 5 high-fidelity snapshots 

 

 

(c) predicted from the variable-fidelity model based on POD with 15 high-fidelity snapshots 

 

Figure 6 – Projected carpet plots of the viscous axial force coefficient Cx  
 



  

 
(a) using 55 high-fidelity CFD solutions  

 

 
(b) predicted from the variable-fidelity model based on POD with 5 high-fidelity snapshots 

 

 

 
(c) predicted from the variable-fidelity model based on POD with 15 hi-fi snapshots 

 

Figure 7 – Projected carpet plots of the normal force coefficient Cz  
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Figure 8 - Comparison of the total pressure contours at M = 2 and alpha = 6° 

 (a) VFM predicted total pressure contours (b) High-fidelity CFD simulation total pressure 

contours  
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Figure 9 - Comparison of the total pressure contours at M = 2 and alpha = 9° 

(a) VFM predicted total pressure contours (b) High-fidelity CFD simulation total pressure 

contours  
 

 

 

 

 



  

 

 

 

 

 

 

 

Figure 10 – Cross-sectional view of the total pressure contours at M = 2 and alpha = 6° 

 (a) VFM predicted total pressure contours on the LHS (b) High-fidelity CFD simulation total 

pressure contours on the RHS 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

 

 

 

 

 

 

Figure 11 – Cross-sectional view of the total pressure contours at M = 2 and alpha = 9° 

(a) VFM predicted total pressure contours on the LHS (b) High-fidelity CFD simulation total 

pressure contours on the RHS 
 


