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Abstract—The LMS algorithm has found wide application in many ar-
eas of adaptive signal processing and control. We introduce a variable leaky
LMS algorithm, designed to overcome the slow convergence of standard
LMS in cases of high input eigenvalue spread. The algorithm uses a greedy
punish/reward heuristic together with a quantized leak adjustment func-
tion to vary the leak. Simulation results confirm that the new algorithm can
significantly outperform standard LMS when the input eigenvalue spread
is high.

I. INTRODUCTION

Consider the linear estimation system shown in Fig. 1, where
the input xk ∈ RN is a stationary zero-mean vector random

process with autocorrelation matrix R
�
= E

[
xkxT

k

]
for all k,

the desired output dk is a stationary zero-mean scalar random
process, wk ∈RN is the weight vector, and k is the time index.
The system output at time k is given by yk = wT

k xk, and the
error εk is computed via εk = dk − yk. Assume that xk and dk

are jointly stationary with crosscorrelation vector p
�
= E[dkxk]

for all k. Define a convex cost function

ξ
�
= E

[
ε2k

]
= E

[
d2

k

]− 2pT w + wT Rw.

This cost function is the mean square error (MSE). It can easily
be shown that, if R is full rank, the unique optimal fixed weight
vector which minimizes ξ is given by

w∗ = R−1p. (1)

This is called the Wiener solution [1]. The MSE when using w∗

is denoted by ξ∗.
The LMS algorithm of Widrow and Hoff [2] is an iterative

algorithm which can be used to compute w∗ when the statistics
R and p are unknown. Using an instantaneous squared error
ξ̂k = ε2k that is quadratic in the weight vector wk, the algorithm
uses gradient descent to find the optimal Wiener solution. Ac-
cordingly, given wk, the algorithm’s weight update equation to
compute wk+1, the weight vector at the next iteration, is given
by

wk+1 = wk −µ
∂ξ̂k

∂wk

= wk + 2µεkxk, (2)

where µ is a user-selectable step size parameter. It has been
shown [3] that, for the case of uncorrelated Gaussian data,

wk
in m.s.−−−→ w∗ as k →∞ if 0 < µ ≤ 1

3Tr(R) .
In steady-state, the weight vector wk undergoes Brownian

motion around the Wiener solution w∗. Consequently, there is
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Fig. 1. Linear estimation problem.

an excess MSE even as k →∞. A good approximation for this
excess MSE is given in [4] by ξexcess = µξ∗Tr(R).

During the transient phase, each of the N weight vector el-
ements exponentially relaxes to its optimal value with a time
constant of τn ≈ 1

2µλn
, where λn is the nth eigenvalue of R.

For example, consider the contours of constant MSE shown in
Fig. 2. We start the algorithm at three locations in the weight-
vector space, with all three locations corresponding to the same
initial MSE. We then proceed to run the LMS algorithm for 11
iterations and plot the resulting weight vector values. It can be
seen that the algorithm converges much slower along the worst-
case eigendirection (the direction of the eigenvector correspond-
ing to the smallest eigenvalue of R) as opposed to the best-case
eigendirection (the direction of the eigenvector corresponding
to the largest eigenvalue of R). This disparity increases as the
eigenvalue spread λmax/λmin increases – corresponding to an
equivalent increase in the eccentricity of the elliptical contours
of constant MSE [4]. Thus, the key step in improving the tran-
sient performance of LMS lies in decreasing the input eigen-
value spread.

Now consider a new instantaneous cost function that places a
penalty on the norm of the weight vector:

Jk = ε2k + γwT
k wk, (3)

where γ ≥ 0 is a user-selectable parameter. The term γwT
k wk

can be viewed as a regularization parameter or an effort penalty
[5]. A recursive algorithm for minimizing the cost function in
(3) can be derived via

wk+1 = wk −µ
∂Jk

∂wk

= (1− 2µγ)wk + 2µεkxk. (4)
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Fig. 2. Convergence of LMS-adapted weight vectors.

This algorithm is known as the leaky LMS algorithm, and the
parameter γ is referred to as the “leak.” The name stems from
the fact that, when the input is turned off, the weight vector
of the regular LMS algorithm stalls. With leaky LMS in the
same scenario, the weight vector instead “leaks” out. It has
been shown that leaky LMS can be used to improve stability in
a finite-precision implementation [6], ameliorate the effects of
nonpersistent excitation [7], and reduce undesirable effects like
stalling [8], bursting [9], etc. Detailed analysis of the perfor-
mance of this algorithm is given in [10] and [11]. In particular,
it can be shown that

lim
k→∞

E[wk] = (R+ γI)−1p, (5)

and thus the leaky LMS algorithm can be interpreted as adding
zero-mean white noise with autocorrelation matrix γI to the
input x.

II. VARIABLE LEAKY LMS ALGORITHM

Since limk→∞ E[wk] �= w∗, the leaky algorithm is biased.
However, it can also be seen that, by adding white noise to
the input, the leaky algorithm effectively decreases the in-
put eigenvalue spread. That is, if {λ1, . . . , λN} are the in-
put eigenvalues “seen” by the standard LMS algorithm, then
{λ1 + γ, . . . , λN + γ} are the eigenvalues “seen” by the leaky
LMS algorithm. Thus, since γ ≥ 0, the new eigenvalue spread
is smaller than the original eigenvalue spread:

λmax + γ

λmin + γ
≤ λmax

λmin
. (6)

This means that the leaky algorithm’s worst-case transient per-
formance will be better than that of the standard LMS algorithm.

On the one hand, we would like γ to be as large as possi-
ble (while still making sure the algorithm converges) in order
to achieve the greatest possible reduction in eigenvalue spread.
On the other hand, we would like γ to be as small as possible

because any non-zero γ biases the solution. In order to facili-
tate the tradeoff between the two objectives, we now introduce
a variable leaky LMS (VL-LMS) algorithm:

wk+1 = (1− 2µγk)wk + 2µεkxk, (7)

where γk is now a time-varying parameter. Note that the LMS
algorithm is a special case of VL-LMS when γk = 0. In a sta-
tionary environment, we would like the leak γk to be large in the
transient phase in order to speed up convergence. As we reach
steady-state, we would like to gradually decrease the leak. Of
course, this procedure also needs to work in nonstationary envi-
ronments, so the leak adjustment must be adaptive.

We need to answer two questions in order to design an adap-
tive leak adjustment algorithm. The first question is when to ad-
just the leak, i.e. when should it be increased and when should
it be decreased? The second question is how much to adjust the
leak. Let us deal with these questions one by one.

In order to answer the question of when to adjust the leak,
consider the a posteriori LMS error ε̃ LMS

k :

ε̃ LMS
k

�
= dk −wT

k+1xk

= dk − (wT
k + 2µεkxT

k )xk

= εk(1− 2µxT
k xk). (8)

It can be seen that this is the error when using the new weight
vector wk+1 together with the old desired response dk and input
vector xk. Similarly, consider the a posteriori VL-LMS error
ε̃ VL-LMS
k when using the current value of the leak:

ε̃ VL-LMS
k

�
= dk −wT

k+1xk

= dk − ((1− 2µγk)wT
k + 2µεkxT

k )xk

= dk − (1− 2µγk)wT
k xk − 2µεkx

T
k xk. (9)

Finally, consider the following simple leak adjustment algo-
rithm, to be performed with each iteration. If |ε̃ VL-LMS

k | <
|ε̃ LMS

k |, then we will increase the leak. Otherwise, we will
decrease the leak. This leak adjustment scheme is based on
a greedy punish/reward heuristic that increases the leak when
VL-LMS would outperform LMS and decreases the leak when
LMS would outperform VL-LMS.

The second question we need to answer is by how much to
increase or decrease the leak. When answering this question,
we need to keep the following two considerations in mind. First,
we need to have the ability to quickly vary the leak if the leak
is large. The rationale for this is that continuing with a large
leak when ε̃ LMS

k � ε̃ VL-LMS
k can have a large adverse impact on

the convergence speed of this algorithm. Second, we need to be
able to slowly vary the leak if the leak is small. The rationale
for this is that a small leak will frequently correspond to cases
when the algorithm is close to steady-state, and large jumps in
the leak due to gradient noise will adversely affect steady-state
performance.

Keeping the above two considerations in mind, here is one
simple procedure for determining the next leak γk+1 given the
current leak γk. Consider the following quantized exponential
function:

γ = f(m) = γmax(m/M)α, (10)

126



γ

m0
luld

m

Fig. 3. Quantized leak adjustment function.

TABLE I

VL-LMS LEAK ADJUSTMENT ALGORITHM.

set m = 1
while k is being incremented

if
˛
˛ε̃ VL-LMS

k

˛
˛ <

˛
˛ε̃ LMS

k

˛
˛

set m = min(m + lu,M)
else

set m = max(m− ld,0)
endif

endwhile

where m = 0, . . . ,M is the independent variable, and M ∈ Z ,
α ∈ R, and γmax ∈ R are positive user-defined parameters. An
example of this function is shown in Fig. 3. Consider the case
where we are at location m0, corresponding to leak γ = f(m0),
at the current iteration. Then, if we decide to increase the leak,
we will increase m0 by a user-defined constant lu ∈ Z and use
the new leak γ = f(m0 + lu). If we decide to decrease the leak,
we will decrease m0 by a user-defined constant ld ∈ Z and use
the new leak γ = f(m0 − lu). This is shown graphically in
Fig. 3. The complete pseudo-code for this algorithm is shown
in Table I. Note that the algorithm starts out with m = 1, which
corresponds to a small value of the leak.

III. SIMULATION RESULTS

We now present some simulation results to demonstrate the
performance of the VL-LMS algorithm. In all cases, we will
consider a system identification problem where we are trying to
identify the weights of a 12-tap FIR lowpass plant with cutoff
frequency at 0.6π radians. The problem setup is shown in Fig. 4
where w∗ corresponds to the weights of the plant. The output
noise nk is IID, zero-mean, and independent of xk. The out-
put noise variance ξ∗ (which also corresponds to the minimum
MSE) is −15 dB. The VL-LMS algorithm parameters are set to
M = 200, α = 4, lu = 1, and ld = 3. The step-size parameter
µ is adjusted for an excess MSE of 1.05ξ∗. All of the learning
curves are averaged over 200 runs.
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Fig. 4. Adaptive system identification.

A. Simulation 1

In the first simulation, the input is a first-order Markov pro-
cess obtained by passing white Gaussian noise through an au-
toregressive filter with impulse response

h[k] = ρku[k], (11)

where u[k] is a step function at time k = 0. The Markov param-
eter ρ is set to 0.999, so the resulting input eigenvalue spread is
rather high (λmax/λmin ≈ 2.3× 104).

Fig. 5 shows the convergence of LMS and VL-LMS when
started along the worst-case eigenvector. As expected, because
of the high eigenvalue spread, LMS converges rather slowly. On
the other hand, VL-LMS convergesmuch faster when compared
with LMS.

Fig. 6 shows the convergence of LMS and VL-LMS when
started along the best-case eigenvector. LMS converges very
fast when started from this direction and cannot be outper-
formed by the VL-LMS algorithm. Therefore, VL-LMS at-
tempts to keep the leak as small as possible and follow the LMS
trajectory as best as it can. Consequently, the trajectories of the
two algorithms virtually overlap.

B. Simulation 2

In the second simulation, the input is a discrete-time sinusoid
with radian frequency ω0 = 2π/3 and additive white Gaussian
noise. The input SNR is 30 dB, and consequently, the eigen-
value spread of the input autocorrelation matrix is once again
rather high (λmax/λmin ≈ 6× 103).

Fig. 7 shows the convergence of LMS and VL-LMS when
started along the worst-case eigenvector. Once again, because
of the high eigenvalue spread, LMS converges rather slowly. On
the other hand, VL-LMS convergesmuch faster when compared
with LMS.

Fig. 8 shows the convergence of LMS and VL-LMS when
started along the best-case eigenvector. Once again, VL-LMS
cannot outperform LMS when started along this eigenvector,
and VL-LMS thus once again attempts to keep the leak as small
as possible and follow the LMS trajectory as best as it can. In
this plot, the two trajectories are the same to within a pixel.
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Fig. 5. Simulation 1: Worst-case eigendirection.
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Fig. 6. Simulation 1: Best-case eigendirection.

IV. CONCLUSION

We described a new variable leaky LMS (VL-LMS) adaptive
algorithm with an adaptive leak parameter γk. We created a leak
adjustment algorithm for γk that facilitates a tradeoff between
reducing eigenvalue spread in the transient phase and keeping
the bias small in steady-state. Simulation results show that the
VL-LMS algorithm can significantly outperform the standard
LMS algorithm.
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