
A Variable Neighbourhood Search
for the Workforce Scheduling
and Routing Problem

Rodrigo Lankaites Pinheiro, Dario Landa-Silva and Jason Atkin

Abstract The workforce scheduling and routing problem (WSRP) is a combina-

torial optimisation problem where a set of workers must perform visits to geo-

graphically scattered locations. We present a Variable Neighbourhood Search (VNS)

metaheuristic algorithm to tackle this problem, incorporating two novel heuristics

tailored to the problem-domain. The first heuristic restricts the search space using a

priority list of candidate workers and the second heuristic seeks to reduce the viola-

tion of specific soft constraints. We also present two greedy constructive heuristics

to give the VNS a good starting point. We show that the use of domain-knowledge

in the design of the algorithm can provide substantial improvements in the quality

of solutions. The proposed VNS provides the first benchmark results for the set of

real-world WSRP scenarios considered.

Keywords Workforce scheduling and routing problems ⋅ Home healthcare

scheduling ⋅ Variable neighbourhood search ⋅ constructive heuristics

1 Introduction

In workforce scheduling and routing problems (WSRP) a mobile workforce must per-

form tasks in scattered geographical locations. Solving this problem requires defin-

ing a schedule and a route plan for each worker such that all tasks (where possible)

are covered. These problems combine features from both scheduling and routing

problems, making them very challenging optimisation problems [1–3]. Examples of
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practical applications of WSRP are home healthcare scheduling [4, 5], technician

scheduling [6, 7] and security personnel scheduling [8]. Here we consider the prob-

lem of scheduling nurses and care workers to visit and provide care services to

patients in their homes. Data from four distinct home healthcare companies is used,

provided by our industrial partner, who provide an enterprise resource planning soft-

ware for home healthcare companies. This software includes a scheduling tool where

a decision maker must manually set the schedules and routes for each worker; our

work aims to automate this process.

The four real-world scenarios used here have been tackled before. Exact meth-

ods for these problems were investigated in [3], and the large size and complexity

of the mixed integer programming model required a decomposition method before

applying an exact solver. A study of genetic operators for the same problem scenar-

ios was later performed in [9]. These two previous studies focused on understanding

the problem scenarios and the behaviour of specific solution techniques rather than

providing benchmark results.

Here we present a Variable Neighbourhood Search (VNS) algorithm to tackle the

aforementioned scenarios and provide benchmark results. VNS algorithms have been

successfully applied to both scheduling and routing problems, e.g. nurse scheduling

[10, 11], job shop scheduling [12], vehicle routing problem with time windows [13]

and the multi-depot version of the vehicle routing problem with time windows [14],

a problem inherently similar to the WSRP.

The proposed VNS employs two domain-specific local search neighbourhoods.

The first one sorts the workers by priority, identifying the best workers for each

task and restricting the search space to the highest priority workers. The second one

attempts to eliminate time and area violations from a solution. As mentioned above,

results for the WSRP scenarios considered here are not currently available for many

techniques. We therefore compare the variants of our VNS against each other, and

also propose two constructive greedy heuristics to generate initial solutions quickly,

showing that the proposed VNS outperforms simpler versions with less domain-

knowledge integrated.

The contributions of this paper are twofold. The first is the proposed VNS algo-

rithm that produces benchmark best known solutions for these real-world WSRP

scenarios. The second is an improved understanding of the WSRP, obtained through

assessing both the performance of the proposed algorithms and the impact of the

tailored techniques which incorporate the domain knowledge. The remainder of this

paper is structured as follows: Sect. 2 presents an overview of the WSRP. Section 3

describes the proposed algorithmic approach. Section 4 details the experiments and

presents the results, while Sect. 5 concludes the paper.

2 The Workforce Scheduling and Routing Problem

For reasons of space, the WSRP is only briefly explained in this section. More details

and a survey can be found in [15], while a full mathematical formulation of the

problem can be found in [3]. The WSRP involves both scheduling and routing. A set
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Assignment a1 a2 a3 a4 ... as
Visit v1 v1 v2 v3 ... vn

Worker w5 w1 w3 w9 ... w5

Fig. 1 Example of solution representation. Note that two distinct workers are assigned to visit v1

of m workers {w1,w2,… ,wm}, must perform tasks at a set of n visits {v1, v2,… , vn},

which are located at various geographical locations. Each worker possesses a set of

skills, time and area availabilities, and working area preferences. Visits have both

required and preferred skills, and possibly have specific preferred workers. A worker-

visit match requires matching the required skills, the worker’s contract must allow

him/her to perform that visit, and the specific allocation may incur additional costs.

A solution for a WSRP instance is a set of s assignments or pairs (vj,wi), spec-

ifying that worker wi (i ∈ {1…m}) is assigned to perform visit vj (j ∈ {1… n}).

Note that s ≥ n because some visits might require more than one worker. An exam-

ple of a solution is shown in Fig. 1, where workers 5 and 1 are assigned to visit 1,

worker 5 is also assigned to visit n, and workers 3 and 9 are assigned to visits 2 and

3 respectively.

There are requirements that should be met if possible when assigning work-

ers to visits. Such visit requirements include preferred skills (patient preferences),

preferred workers (service provider preferences) and preferred working areas (staff

preferences). Also, the workers availability in terms of time and geographical areas

should be observed. A solution requires all visits to be served hence it is not always

possible to meet all visit requirements and workers availability. To evaluate the qual-

ity of a solution, the tier-based minimisation objective function shown in Eq. (1) is

utilised, which is employed by our industrial partner and also commonly used in the

literature [2, 16].

f (S) = 𝜆1(d + c) + 𝜆2(3s − 𝜌s − 𝜌w − 𝜌a) + 𝜆3(𝜓a + 𝜓t) + 𝜆4𝜔 + 𝜆5𝜙 (1)

The objective function has five main components each multiplied by a coefficient

(𝜆1,… 𝜆5) to enforce tier-based objectives, i.e. the component multiplied by 𝜆5 is

more important than the one multiplied by 𝜆4, and so on. The first component rep-

resents operational cost in terms of total travel distance (d) and staff cost (c). The

second component represents visit requirements for preferred skills (𝜌s), workers

(𝜌w) and areas (𝜌a). The value 3s is used because the values of 𝜌s, 𝜌w and 𝜌a can be

between 0 and 1 for each of the s visits. The third component represents the number

of violations of workers availability in terms of area (𝜓a) and time (𝜓t). The fourth

and fifth components represent the number of unassigned visits (𝜔) and the number

of time conflicts (𝜙) respectively; a time conflict occurs when a worker is assigned

to visits overlapping in time.

pszjds@nottingham.ac.uk



250 R.L. Pinheiro et al.

3 Proposed Algorithms

A VNS algorithm is proposed for solving the instances of the WSRP which were

provided by our industrial partner and a number of algorithm variants are consid-

ered. VNS is an improvement metaheuristic proposed in [17]. It starts from an initial

solution and performs successive local searches using multiple neighbourhoods to

improve the solution. In order to escape local optima, VNS randomly disturbs the

current solution (possibly making it worse) at the end of each iteration.

The VNS variant used in this paper has two stages, which are repeated: a shaking
phase and a local search phase. In the shaking phase, one of seven shaking neigh-

bourhoods is randomly selected and applied. If no change is made to the solution,

another shaking neighbourhood is selected. This process is repeated until a change

is made to the solution. The changed solution is then passed to the local search
phase, which uses two neighbourhood search operators to hopefully generate better

neighbouring solutions. One iteration of the local search phase consists of applying

the two neighbourhood searches in some random order. If an improved solution is

obtained from the current iteration, then another local search iteration (execution of

both neighbourhood searches) takes place. When no improvement has been achieved

in an iteration, the algorithm goes back to the shaking phase. We evaluate different

configurations of the local search in our experiments.

3.1 Shaking Neighbourhood Structures

Solutions generated with the seven shaking neighbourhoods described below may

be infeasible (e.g. one worker assigned to two simultaneous visits), but will still be

kept.

Random Flip. Randomly picks a visit and changes the assigned worker to a ran-

dom different worker that is skilled to perform that visit.

Area Availability Flip. Randomly picks a visit where the area availability con-

straint is violated and attempts to fix the violation by picking any other worker that

is skilled to perform that visit and is available to work in that area.

Time Availability Flip. Randomly picks a visit where the time availability con-

straint is violated and attempts to fix the violation by picking any other worker that

is skilled to perform that visit and is available to work at the visit time.

PreferredWorker Flip. Randomly picks a visit where the assigned worker is not

the most preferred and replaces the worker by the most preferred worker for the visit.

Preferred Skills Flip. As Preferred Worker Flip, but uses the preferred skills

value.

Preferred Area Flip. As Preferred Worker Flip, but uses the preferred areas

value.

pszjds@nottingham.ac.uk
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Priority-Based Flip. Uses a priority list (defined in Sect. 3.3). Selects a random

visit for which the currently assigned worker is not the top one in the priority list and

assigns the top priority worker instead.

3.2 Neighbourhood Searches

We define the following three neighbourhood searches to be evaluated as the opera-

tors used in the local search phase of the proposed VNS algorithm.

Randomised Hill Climbing (RHC). This is a very simple hill climbing local

search which iteratively processes all unassigned visits in random order, greedily

selecting the best worker in terms of the overall cost f (S) and assigning that worker

to the visit.

Priority-Based Search (PBS). This is detailed in Sect. 3.3 and exploits problem

domain knowledge to make an estimation of the overall cost f (S). Such estimation

considers the objective function components associated to 𝜆1 (except travel distance),

𝜆2 and 𝜆3.

Availability Violations Search (AVS). It was observed that minimising viola-

tions of time and area workers availability is very difficult to achieve for the majority

of the scenarios and that high costs resulted from these violations. This local search

aims to resolve this and is explained in detail in Sect. 3.4.

3.3 Priority-Based Search (PBS)

This search is applied to prioritise workers for each visit. The concept is shown in

Fig. 2 and involves the following steps:

1. An m × n cost matrix C is defined, containing the estimated costs of assigning

each worker wi to each visit vj. As explained above, an estimation of f (S) is used

for each assignment. More specifically, the cost cij for each assignment in C is

the weighted sum of the staff costs (greedily selecting the cheapest contract);

preferred skills, workers and areas; and workers availability for area and time.

For each assignment where wi does not have the required skills or a valid contract

to perform the visit vj we set cij = ∞.

2. A priority list Pj
is built for each visit vj, sorting the workers into ascending order

of cij. All visits are recorded as ‘unmarked’.

3. Pick a random unmarked visit, select it for use in steps 4 to 6 and mark it.

4. Use Pj
to determine if there is a worker with lower costs for the current visit vj.

5. If one or more such workers exist, pick the first in the list and check if assigning

that worker will generate a time conflict.

pszjds@nottingham.ac.uk
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Fig. 2 Diagram for the Priority-Based Search (PBS)

6. If the assignment can be done (no time conflict), then assign the worker and eval-

uate the solution. If this reduces the cost, the assignment is accepted, otherwise

the assignment is reverted. If the assignment generates a time conflict (hence

reverted), repeat from step 5, selecting the next valid worker on the list.

7. Repeat from step 3 until all visits have been marked.

3.4 Availability Violations Search (AVS)

The concept of this search is presented in Fig. 3 and involves the following steps:

1. For each visit, identify the candidate worker with the minimum number of time

and area availability violations for that visit. If multiple workers meet that cri-

terion, choose the one with the lowest value in the cost matrix C used by the

PBS.

2. Pick an unmarked visit in which the number of area and time availability viola-

tions is larger than the selected candidate for that visit. Mark the current visit.

3. Replace the current assigned worker with the candidate worker.

4. Identify whether time conflicts were created in step 3.

5. Where time conflicts occur, each conflicting visit is unassigned then perform

steps 4 to 6 of the PBS heuristic to find a new worker for the visit. This will

eliminate all time conflicts.

6. Evaluate the solution. If the costs improved (compared with those prior to step

3), accept the changes, otherwise revert the changes.

7. Repeat from step 2 while there are still visits for which candidates were identified

in step 1.

pszjds@nottingham.ac.uk
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Fig. 3 Diagram for the Availability Violations Seeker Search

3.5 Constructive Heuristics

VNS algorithms are well known for producing faster and better results when given

improved initial solutions. As suggested in [1], constructive heuristics were consid-

ered for finding initial feasible solutions.

Greedy Heuristic. This simple greedy heuristic achieved competitive results on

its own (as shown in Sect. 4). The algorithm starts with an empty solution and con-

siders each visit in a random order, choosing the best of the remaining workers for

that visit, i.e. the worker that results on the best value of f (S).
Flat Costs Heuristic (FCH). This heuristic performs a greedy search using the

estimation of the overall cost f (S) based on the matrix C as explained in the PBS

method. The heuristic iterates through the visits in a random order and identifies the

best (lowest cost in C) of the compatible remaining workers (skills and times match)

for the visit, then assigning that worker to the visit.

4 Experiments and Results

We use four real-world scenarios provided by an industrial partner. Each dataset, A,

B, C and D, is composed of 7 instances for a total of 28 problem instances. These

scenarios come from different home healthcare companies, hence having different

requirements and features. Set A has small instances (number of visits and workers)

while set D has the largest instances.

All experiments were performed on Intel quad-core i7 machines with 16GB

DDR2 RAM memory and each algorithm was executed eight times, computing the

pszjds@nottingham.ac.uk
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average solution. For scenarios A, B and C the runtime limit was set to 15 minutes,

for scenarios D it was one hour. The following experiments were performed to eval-

uate the VNS algorithm.

4.1 Evaluation of Individual Components

The performance of the PBS and AVS local searches was evaluated. Four configura-

tions of the algorithm were considered, all starting from the same feasible solution

which was obtained by the constructive heuristics:

∙ Full-VNS is the full proposed algorithm including both PBS and AVS local

searches and all seven shaking neighbourhoods.

∙ PBS-VNS is the Full-VNS without AVS (using only PBS as the local search).

∙ AVS-VNS is the Full-VNS without PBS (using only AVS as the local search).

∙ HC-VNS uses only six shaking neighbourhoods (excluding the Priority-based

Flip) and uses only RHC as the local search (not PBS or AVS).

Results are shown in Fig. 4, where the y axis presents the gap between the average

solution found by each algorithm for each of the problem instances in each dataset,

compared to the best solution found by all runs of all algorithms for that instance.

For some instances (sets A and B and instances C2, C4, C5 and C7), this is also

the optimal solution, obtained by a mathematical solver. All three algorithm variants

perform well for the smaller sets (A and B). However, for sets C and D PBS-VNS

and AVS-VNS alternate, showing that on some scenarios one local search has an

edge over the other. Notably, the AVS provided better solutions than the PBS for

scenarios where the number of time and area availability violations is high, whereas

PBS provided better solutions for the remaining scenarios. Importantly, the Full-VNS

produced better results overall, especially for sets C and D.

Fig. 4 Relative gap

comparison between the

Full-VNS, the PBS-VNS and

the AVS-VNS
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A
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ra
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G
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Fig. 5 Relative gap

comparison between the

Full-VNS and the HC-VNS
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4.2 Overall Performance

The overall performance of the Full-VNS algorithm was evaluated and compared

to HC-VNS. Results are shown in Fig. 5. We can see that HC-VNS produced good

solutions (the gap is always below 7 %). However, its performance worsens as the

size of the problem grows. This is due to hill climbing being slow for this problem.

A single iteration of the HC-VNS algorithm for the largest D instance took over

ten minutes while the Full-VNS could iterate in less than one minute. The proposed

VNS produced better solutions for all instances, and did so in a faster computation

time than HC-VNS. Additionally, the proposed VNS was able to reach the optimal

solution for all instances for which the optimal solution is known. None of the other

algorithm variants were able to do this. Full detailed results are shown in Table 1,

where the best average results obtained by the VNS variants for each dataset are

shown in bold.

4.3 Constructive Heuristics

The performance of the constructive heuristics was also evaluated. Figure 6 shows

the average gaps obtained by the constructive algorithms alone (without the VNS).

Both techniques show similar performance, with the Greedy outperforming the FCH

on sets B and C and the FCH outperforming the Greedy on set D, however, the

difference is always small. Figure 7 presents a comparison between the runtimes for

the Greedy and the FCH heuristics. Both are fast for sets A, B and C, providing

solutions in less than a second. The greedy algorithm is much slower for set D (up to

107 seconds compared to less than one second for FCH).
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Fig. 6 Performance

comparison of the FCH

heuristic against the Greedy

heuristic
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4.4 Discussion

The sizes of the instances in set D provoke unacceptably high runtimes for a simple

greedy algorithm, potentially hindering the performance of search methodologies

that rely on the systematic exploration of neighbourhoods (such as the HC-VNS).

The design of the Priority-Based Search (PBS) proved to be much more efficient,

allowing a much faster exploration of the neighbourhoods.

The constructive heuristics produce reasonable results compared to the other tech-

niques, with the average gap to the best known solution being roughly 9.5 %. This is

due to the structure of the problem, which favours the assignment of the best worker

to each visit unless there are time conflicts. The preferred worker requirement is

related to the continuity of care, i.e. the same worker providing care to the same

patient. So, a worker that is preferred for a visit is usually the worker who most often

performs the visits for that patient. Thus, a worker with a high preference value is

often also available for that area and time, and is likely to live nearby. In fact, since the

FCH provided results only 9 % worse on average than the proposed VNS, this con-

structive heuristic may be sufficient to provide good enough solutions very quickly,

illustrating the efficacy of the developed approach for combining the objectives con-

sidered here.
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Both PBS-VNS and AVS-VNS outperformed the HC-VNS. Since PBS outper-

formed RHC in all scenarios (even the small ones where runtime was less of an

issue), the restriction of workers by the priority list does not appear to have elimi-

nated the best candidates for assignments. Moreover, the AVS heuristic, which fixes

the time and area availabilities using the first worker available in the priority list,

could also reach the optimal and provide some of the best results. Comparing the

results for the PBS and the AVS shows differences between sets. The latter tech-

nique performs 3.5 % better for set D. This shows that the occurrence of area and

time violations are common in these datasets and that a focus on fixing these viola-

tions is beneficial. On the other hand, for set C the priority-based approach performs

4 % better.

Finally, when comparing all algorithm variants, it can be observed that increased

domain knowledge gives improved results. HC-VNS includes some domain-specific

shaking methods, giving reasonably good solutions. AVS-VNS and PBS-VNS use

more domain-specific knowledge, giving even better results. The full proposed VNS

makes the most use of domain-knowledge and provides the best results overall.

5 Conclusion

Heuristic algorithms to tackle difficult instances of workforce scheduling and rout-

ing problems (WSRP) were presented. First we introduced a VNS that employs two

domain specific local search procedures. The first local search procedure attempts to

reduce the search space while focusing on the interesting assignments. The second

local search procedure tries to reduce the number of area and time availability vio-

lations. We also introduced two greedy heuristics—one straightforward and another

that uses an estimation of costs to provide faster results.

We assessed the proposed algorithms on a set of real-world problem instances.

We showed that it may be difficult for the VNS to find a feasible solution in some sce-

narios, hence the use of constructive heuristics is a useful strategy. We also showed

that each local search procedure can perform well on its own, however the combined

effect of both local searches provides improved results. Additionally, we observed

that the greedy algorithms show good performance on this problem, considering the

trade-off quality versus computation time. Finally, we discussed how the algorithms

exhibited distinct performances on different sets of the WSRP, which allowed us to

understand more of the nature of the problem and its difficulties. It became clear

that adding problem domain knowledge to the solution algorithms improves their

performance.

Our future work will further investigate mechanisms to make a fast yet accurate

enough estimation of costs when exploring local moves and neighbour solutions.

The results in this paper show that much computational effort can be avoided by

using this technique and that the quality of the solutions is not affected much. We

could apply this concept to other local search procedures for the VNS or even exact

methods [3].
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